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Abstract

Multi-task learning (MTL) enhances efficiency
by sharing representations across tasks, but
task dissimilarities often cause partial learn-
ing, where some tasks dominate while others
are neglected. Existing methods mainly focus
on balancing loss or gradients but fail to funda-
mentally address this issue due to the represen-
tation discrepancy in latent space. In this paper,
we propose variance-invariant probabilistic de-
coding for multi-task learning (VIP-MTL), a
framework that ensures impartial learning by
harmonizing representation spaces across tasks.
VIP-MTL decodes shared representations into
task-specific probabilistic distributions and ap-
plies variance normalization to constrain these
distributions to a consistent scale. Experiments
on two language benchmarks show that VIP-
MTL outperforms 12 representative methods
under the same multi-task settings, especially
in heterogeneous task combinations and data-
constrained scenarios. Further analysis shows
that VIP-MTL is robust to sampling distribu-
tions, efficient on optimization process, and
scale-invariant to task losses. Additionally,
the learned task-specific representations are
more informative, enhancing the language un-
derstanding abilities of pre-trained language
models under the multi-task paradigm.

1 Introduction

Multi-task learning (MTL) has emerged as a pow-
erful paradigm in machine learning, enabling mod-
els to jointly learn multiple tasks together from
the shared representations (Caruana, 1997; Kendall
et al., 2018). Unlike single-task learning, MTL
paradigm not only allows the learned representa-
tions to simultaneously make predictions for sev-
eral tasks, but also reduces computation costs and
improves efficiency (Royer et al., 2023).

However, a persistent challenge in MTL stems
from the inherent task dissimilarity, which often
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leads to the partial learning problem (Liu et al.,
2021b). This occurs when the model dispropor-
tionately prioritizes certain tasks while neglecting
others, resulting in suboptimal overall performance.
In multi-task learning, the latent variable distribu-
tions of different tasks are often inconsistent. For
example, the latent variable distribution of Task A
may have a larger variance, while the latent variable
distribution of Task B may have a smaller variance.
This discrepancy can cause the representations of
Task A to dominate the optimization process, while
the representations of Task B is neglected.

Existing methods (Kendall et al., 2018; Chennu-
pati et al., 2019; Liu et al., 2019a; Yu et al., 2020;
Liu et al., 2021b; Lin et al., 2022) primarily fo-
cus on balancing task losses or gradients but fail
to address the fundamental misalignment in repre-
sentations. Balancing losses adjusts task weights
heuristically, yet it cannot resolve scale dispari-
ties in latent spaces. Similarly, gradient balancing
harmonizes parameter updates during backpropaga-
tion. However, gradients are inherently influenced
by the statistical properties of representations (e.g.,
magnitude, variance). If representations are im-
balanced, gradients will inevitably reflect this bias.
Specifically, high-variance tasks generate larger
gradients, perpetuating their dominance despite
gradient normalization efforts. These limitations
are particularly pronounced in scenarios involving
heterogeneous tasks or limited data, where the dis-
parities in task complexity and data availability
exacerbate the imbalance. Therefore, balancing
representations offers a more principled and effec-
tive solution to the partiality problem in MTL.

In this paper, we introduce a multi-task rep-
resentation learning framework named variance-
invariant probabilistic decoding (VIP-MTL), which
tackles the partial learning problem in MTL by
harmonizing representation spaces across tasks.
Specifically, VIP-MTL decodes task-agnostic
shared representations into task-specific probabilis-
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tic distributions, where each point in the distribu-
tion corresponds to a potential task-specific rep-
resentation. Unlike prior methods that focus on
loss or gradient balancing, VIP-MTL operates at
the level of representation balancing, ensuring im-
partial learning on representation spaces for all
tasks. To address the issue of scale variance across
tasks, we apply variance normalization on proba-
bilistic distributions, adaptively constraining them
to a consistent scale. By aligning the representation
distributions, VIP-MTL prevents any single task
from dominating the shared representation space
and ensures that the influence of each task remains
balanced during training.

We conduct experiments on two multi-task
benchmarks, TweetEval and AffectEval for lan-
guage understanding. The former includes 6 clas-
sification tasks, while the latter involves 2 classifi-
cation tasks and 2 regression tasks in a heteroge-
neous multi-task setting. The results show that our
VIP-MTL consistently surpasses 12 representative
methods across different pre-trained language mod-
els (PLMs) under the same multi-task settings. For
example, with the RoBERTa backbone, VIP-MTL
improves the average relative improvement (∆p) by
+5.06% on TweetEval and +7.66% on AffectEval,
and improves the average performance (Avg.) by
+2.92% on TweetEval and +3.76% on AffectEval,
compared to the EW baseline. Compared to single
task learning baselines, VIP-MTL also achieves
better results on most tasks with the same scale of
model parameters. Further analysis shows that our
method is robust to sampling distributions, efficient
on optimization process, and scale-invariant to task
losses. Extensive experiments demonstrate that
VIP-MTL offers significant advantages in hetero-
geneous task combinations and data-constrained
scenarios. Additionally, the learned task-specific
representations are more informative, enhancing
the language understanding abilities of PLMs un-
der the multi-task paradigm.

The contributions are as follows: 1) We intro-
duce a new idea of balancing representations to ad-
dress the partial learning problem in MTL, which is
a significant departure from existing works that fo-
cus on balancing losses or gradients. 2) We propose
a probabilistic framework VIP-MTL to ensure im-
partial learning in MTL by harmonizing representa-
tion spaces across tasks. It decodes shared represen-
tations into task-specific probabilistic distributions
and applies variance normalization ensure these
distributions maintain a consistent scale. 3) Experi-

(a) Vanilla MTL paradigm

(b) VIP-MTL (ours)

Figure 1: Comparison of vanilla MTL paradigm and the
proposed VIP-MTL. The deterministic decoder maps
each vector point to a fixed vector, while the probabilis-
tic decoder maps each point to a probability distribution.

ments on two language understanding benchmarks
show that our method outperforms 12 representa-
tive methods under the same multi-task settings,
especially in heterogeneous and data-constrained
scenarios. Further analysis shows that VIP-MTL
is distribution-robust, efficient, scale-invariant, and
the learned task-specific representations are more
informative for all tasks.1

2 Preliminary

Scope of the Study. The goal of this paper is to
study multi-task optimization that typically utilizes
a hard parameter-sharing setting (Caruana, 1993),
where several lightweight task-specific heads are
attached to a heavyweight task-agnostic backbone
model. Another orthogonal line of research on
multi-task learning mainly emphasizes designing
of network architectures that typically use a soft
parameter-sharing strategy. Details of the above
related studies are listed in Appendix A.

Notations. Define T tasks and the corresponding
dataset of task t as Dt. An MTL model typically
comprises task-sharing encoder with parameters θ
and task-specific decoder with parameters {ϕt}|T |

t=1,
where θ represents parameters in a feature extractor
shared by all tasks, and ϕt represents parameters in
the task-specific output module for task t. Define
ℓt(Dt; θ, ϕt) as the average loss on the dataset Dt

for task t. {λt}|T |
t=1 is the set of task-specific loss

weights with a constraint, where λt ≥ 0.

1The source code is available at https://github.com/
zerohd4869/VIP-MTL.
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MTL Baseline. The total MTL objective is com-
puted by aggregating multiple objective losses
with different weights, i.e., L(θ, {ϕt}|T |

t=1) =∑|T |
t=1 λ

l
tℓt(Dt; θ, ϕt). A straightforward method

involves assigning equal weights to all tasks dur-
ing training, i.e., λt = 1

|T | for all tasks in every
iteration, i.e., a common MTL baseline EW.

3 Methodology

We propose variance-invariant probabilistic decod-
ing for multi-task learning (VIP-MTL), a proba-
bilistic framework that ensures impartial learning.
As shown in Figure 1b, the encoder learns task-
agnostic shared representations across all tasks.
Based on shared representations, VIP-MTL de-
codes shared representations into task-specific
probabilistic distributions and applies variance nor-
malization to constrain them to a consistent scale,
balancing task influence during training. Different
from the vanilla MTL paradigm (Figure 1a) that
jointly learn multiple tasks by balance losses or gra-
dients, VIP-MTL balances representation spaces
across tasks to promote impartial learning.

In VIP-MTL, probabilistic decoding for MTL
and variance normalization on probabilistic distri-
butions can be considered as an integrated learn-
ing framework. The former decodes task-agnostic
shared representations into task-specific probabilis-
tic distributions, and the latter constrains the vari-
ance of task distributions (i.e., the distribution of
all data points within the task) to a consistent scale.

3.1 Probabilistic Decoding for MTL

Under the multi-task paradigm, we use probabilis-
tic decoding to decode task-agnostic shared repre-
sentations into task-specific probabilistic distribu-
tions. The probabilistic decoding technique simul-
taneously performs probabilistic embedding (Vil-
nis and McCallum, 2015; Hu et al., 2024) and task
prediction during the multi-task decoding process.
It provides the prerequisite for subsequently con-
straining task distributions through variance nor-
malization in Section 3.2.

Firstly, we extend the probabilistic coding tech-
nique (Hu et al., 2024) in single-task learning to the
multi-task setting. Specifically, we use variational
inference (Hoffman et al., 2013) to map the shared
representations z to a set of different distributions
in the output space, i.e., R|Yt| for the task t. Given
the input x, the task-agnostic shared representation
z shared by all tasks is a function of x by a mapping

pθ(z|x). For task t, the output representations zt in
the output space can be obtained by a task-specific
head qϕt(zt|z), and the corresponding prediction
value ŷt is non-parametric mapping of zt.

Based on the implementation of probabilistic
coding (Hu et al., 2024), we need to learn the para-
metric form of the posterior distribution p(zt|x)
of the output representations zt given the inputs
x. However, in the multi-task paradigm, where all
tasks share a common encoder pθ(z|x), directly
solving for the true posterior p(zt|x) for each task
t would encounter learning interference issues in
the shared representations z. To mitigate this, we
approximate p(zt|x) as p(zt|z), where z ∼ p(z|x)
and aim to estimate p(zt|z).

Since the true posterior p(zt|z) is intractable, we
approximate it with qϕt(zt|z), a variational approx-
imation learned by the t-th stochastic head with
parameters ϕt. And the objective of probabilistic
decoding for MTL can be:

L(θ, {ϕt}Tt=1) = Et∼T,z∼pθ(z|x){Ezt∼qϕt (zt|z)[− log s(yt|zt)]
+βKL(qϕt(zt|z); r(zt))},

(1)
where pθ(z|x) is a shared encoder with parameters
θ. zt is randomly sampled from qϕt(zt|z). s(yt|zt)
is a non-parametric operation on zt that adapts the
output distribution for task prediction (e.g., the
Softmax operation for classification). KL(·) de-
notes the KL-divergence term, which serves as a
regularization that forces the variational posterior
qϕt(zt|z) to approximately converge to the prior
estimate r(zt). For each task t, we specify the
prior r(zt) as an isotropic Gaussian distribution,
i.e., r(zt) ∼ N (zt;0, I). β > 0 controls the close-
ness between the learnable variational posterior
qϕt(zt|z) and the predefined prior r(zt). The dif-
ferent values of β means the posterior distribution
with different parametric forms.

Next, we parameterize the variational posterior
qϕt(zt|z) of zt to map the shared representations z
into the probabilistic distributions for task t. For a
sample xi and its task-specific representations zit
in task t, the variational posterior qϕt(z

i
t|zi) of zit

is assumed as a multivariate Gaussian distribution
with a diagonal covariance structure, i.e.,

qϕt(z
i
t|zi) = N (zit;µt(z

i),Σt(z
i)), (2)

where µt(z
i) and Σt(z

i) denote the mean and
diagonal covariance of the sample zi for task t.
Under the Gaussian assumption for each sam-
ple, the output representations for all data points
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in task t follows a mixture of Gaussian distribu-
tions. Following Hu et al. (2022, 2024), both of
their parameters (i.e., µt(·) and Σt(·)) are input-
dependent and can be learned by an MLP (a fully-
connected neural network with a single hidden
layer) for each task, respectively. Next, we sam-
ple zit from the approximate posterior qϕt(z

i
t|zi),

and obtain the prediction value by s(yit|zit). Since
the sampling process of zit is stochastic, we use
the re-parameterization trick (Kingma and Welling,
2014) to ensure it trainable, i.e., zit = µt(z

i) +

(Σt(z
i))

1/2 ⊙ ϵ, ϵ ∼ N (0, I), where ⊙ refers
to an element-wise product. Then, the KL term
can be calculated by: KL(qϕt(z

i
t|zi); r(zit)) =

−1
2

(
1 + logΣt(z

i)− (µt(z
i))2 −Σt(z

i)
)
.

3.2 Variance Normalization on Probabilistic
Distributions

To address the issue of scale variance across tasks,
we apply variance normalization to these proba-
bilistic distributions for all tasks, adaptively con-
straining them to a consistent scale. By aligning
the representation distributions, we can prevent any
single task from dominating the shared represen-
tation space and ensure that the influence of each
task remains balanced during training.

For task t, the task-specific representations zit
follow a multivariate Gaussian as shown in Eq.(2).
Then all data points in the output space for each
task follows a mixture of Gaussian distributions,
which can better approximate any distribution. The
variational posterior q′ϕt

(zt|z) of zt can be:

q′ϕt
(zt|z) =

∑|Dt|
i=1 εiq

i
ϕt
(zit|zi), (3)

where ε1 + · · · + ε|Dt| = 1, εi ≥ 0. |Dt| is the
dataset size of task t. qiϕt

is independent of each

other in {qiϕt
}|Dt|
i=1 . zt follows a mixture normal

distribution consisting of |Dt| normally distributed
components. Besides, let all samples be equally
weighted, i.e., ε = 1

|Dt| . Define a sufficiently large
number ξ. When |Dt| > ξ, the covariance of
this mixture distribution can be approximated as:
Σ′
t ≈ 1

|Dt|

(
Σ1
t +Σ2

t + · · ·+Σ
|Dt|
t

)
≤ max

i
{Σi

t}.

Then we use Σ′
t to normalize the probabilistic dis-

tributions in Eq.(2) for all tasks, i.e.,

q′ϕ∗
t
(zit|zi) = N

(
zit;

µt(zi)

(Σ′
t)

1/2 ,
Σt(zi)
Σ′

t

)
, where ||Σ′

t|| ≤ δ,

(4)
where Σ′

t is learned by a linear mapping of task
t with parameters τt. ϕ∗

t = {ϕt, τt}. δ is a certain

radius for Σ′
t due to the maximum value, max

i
{Σi

t},

being constrained by the KL-divergence term in
Eq.(1). And the diagonal covariance of q′ϕt

can be:

Σ′
t,norm ≈ 1

|Dt|

(
Σ1
t

Σ′
t

+
Σ2
t

Σ′
t

+ · · ·+ Σ
|Dt|
t

Σ′
t

)
≈ I. (5)

For all jointly trained tasks, after variance nor-
malization, they will consistently follow a mix
of Gaussian distributions with approximately unit
covariance in the output space. This means that
the mixed distributions for all tasks have the prop-
erty of approximate variance invariance: all mixed
distributions in the target space have a globally
consistent shape and level of dispersion. Addi-
tionally, the expectations under different tasks are
scaled to similar magnitudes. While some methods
UW (Kendall et al., 2018) and IMTL-L (Liu et al.,
2021b) indirectly impose constraints on the expec-
tation µt(z

i) across tasks via loss weighting, they
do not constrain the variance of the distributions
like our method.

In implementations, we apply a normalization
constraint to its stochastic sampled values, i.e.,
(zit)

′ = µt(z
i)/(Σ′

t)
1/2

+ (Σt(z
i
t)/Σ

′
t)
1/2 ⊙ ϵ. To

simplify the computation of Σ′
t, we assume the

normalization constraint imposed on all dimension
of the diagonal covariance have the same scale
for task t. We take cross-entropy (CE) and mean
squared error (MSE) for classification and regres-
sion tasks, respectively, i.e., − log Softmax(z′t|yt)
and ||z′t − yt||2. Accordingly, the scale of the nor-
malization constraint approximates (Σ′

t)
1/2 and Σ′

t

in loss terms.

3.3 VIP-MTL
Under MTL paradigm, we incorporate the vari-
ance normalization on the probabilistic decoding
framework, named variance-invariant probabilis-
tic decoding (VIP-MTL). The total objective of
VIP-MTL can be:

Ltotal(θ, {ϕt}Tt=1) = Et∼T,z∼pθ(z|x){Ezt∼qϕ∗t
(zt|z)[− log s(yt|zt)]

+βKL(qϕ∗
t
(zt|z); r(zt)) + γ log τt},

(6)
where pθ(z|x) is a shared encoder with parame-
ters θ. q′ϕ∗

t
(zt|z) is a variational estimate of the

true posterior of zt and is learned by the t-th nor-
malized stochastic decoder with parameters ϕ∗

t =
{ϕt, τt}. τt is a linear mapping of task t, which
represents the approximated variance of a mixture
distribution for task t. zt is randomly sampled from
qϕ∗

t
(zt|z). s(yt|zt) is a non-parametric operation
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on zt. β > 0 controls the closeness between the
learnable variational Gaussian posterior qϕ∗

t
(zt|z)

and the standard Gaussian prior r(zt). γ > 0 is
another Lagrange term that constrains the variance
τt of a mixture distribution for task t.

The total objective in Eq.(6) is only used during
the training phase (to update learnable parameters),
where sampling zt from the variational posterior
pϕt(zt|z) of zt is performed. During the testing
phase, the loss function only includes the task-
specific loss term − log s(yt|zt) (thus eliminating
the need for variational inference and the sampling
process), and the t-th stochastic decoder ϕt de-
generates into a traditional deterministic decoder
(i.e., retaining the expectation function in Eq.(3.1):
zt = µt(z)) and directly outputs zt.

4 Experiments

4.1 Experimental Setups
Datasets and Tasks We experiment on two multi-
task benchmarks, i.e., TweetEval and AffectEval.
TweetEval (Barbieri et al., 2020) consists of 6
text classification tasks about tweet analysis on
social media, EmotionEval (Mohammad et al.,
2018) for social emotion detection, HatEval (Basile
et al., 2019) for hate speech detection, IronyEval
(Hee et al., 2018) for irony detection, OffensEval
(Zampieri et al., 2019) for offensive language de-
tection, SentiEval (Rosenthal et al., 2017) for senti-
ment analysis, and StanceEval (Mohammad et al.,
2016) for stance detection. AffectEval involves
2 classification tasks and 2 regression tasks in a
heterogeneous multi-task setting, i.e., GoEmotions
(Demszky et al., 2020) for fine-grained emotion
detection, EmotionEval (Mohammad et al., 2018),
Emobank (Buechel and Hahn, 2017) for emotion
regression, and EI-Reg (Mohammad et al., 2018)
for emotion intensity regression. See Appendix B.1
for more detailed descriptions.

Comparison Methods We compare with the fol-
lowing 12 representative MTL methods includ-
ing Equal Weighting (EW), Scale-invariant Loss
(SI), Task Weighting (TW), Uncertainty Weight-
ing (UW) (Kendall et al., 2018), Geometric Loss
Strategy (GLS) (Chennupati et al., 2019), Dynamic
Weight Average (DWA) (Liu et al., 2019a), Pro-
jecting Conflicting Gradient (PCGrad) (Yu et al.,
2020), IMTL-L (Liu et al., 2021b), Random Loss
Weighting (RLW) (Lin et al., 2022), MT-VIB (Qian
et al., 2020), VMTL (Shen et al., 2021), and Hier-
archical MTL (de Freitas et al., 2022). Among

them, MT-VIB, VMTL, and Hierarchical MTL
are probabilistic MTL series. For fair compari-
son, we reproduce each method under the same
experimental setups (e.g., the network backbone).
We use pre-trained language models BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019c) as the
backbone model. Specifically, we use bert-base-
uncased2 and roberta-base2 to initialize BERT and
RoBERTa for fine-tuning. We also compare with
large language model (LLM) GPT-3.53 and sin-
gle task learning (STL) baseline. Please see Ap-
pendix B.2 for details of comparison methods.

Evaluation Metrics We utilize the same evalua-
tion metrics as those used in the original tasks. For
classification tasks, the macro-averaged F1 over all
classes is employed with three exceptions: stance
(macro-averaged of F1 of favor and against classes),
irony (F1 of ironic class), and sentiment analysis
(macro-averaged recall). For regression tasks, we
compute Pearson correlation for each VAD dimen-
sion on EmoBank, and use both Pearson and Spear-
man correlation coefficients on EI-Reg. Following
Barbieri et al. (2020), we report a global metric
(Avg.) based on the average of all task-specific
metrics. Following Maninis et al. (2019); Liu et al.
(2021a), we also report the average relative im-
provement of each method over the EW baseline
as the multi-task performance measure, denoted
as ∆p. See Appendix B.3 for details of metrics.
Additionally, we use t-test (Kim, 2015) to verify
the statistical significance of differences between
results of VIP-MTL and the baseline on the task.

Implementation Details All experiments are
conducted on a single NVIDIA Tesla A100 80GB
card. The validation sets are used to tune hyper-
parameters and choose the optimal model. For
each method, we run three random seeds and re-
port the average result of the test sets. The network
parameters are optimized by using Adamax opti-
mizer (Kingma and Ba, 2015) with the learning
rate of 5e−5. For VIP-MTL, the dropout rate is
set to 0.2 for TweetEval and 0 for AffectEval. β
is searched from {0.001, 0.01, 0.1}. γ is searched
from {1, 10} for classification and {0.1, 1} for re-
gression. More details are listed in Appendix B.4.

4.2 Main Results
Overall Results for MTL The overall results on
both benchmarks are reported in Table 1, where

2https://huggingface.co/
3https://chat.openai.com
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Methods
TweetEval AffectEval

BERT backbone RoBERTa backbone BERT backbone RoBERTa backbone
Avg. ∆p ↑ Avg. ∆p ↑ Avg. ∆p ↑ Avg. ∆p ↑

EW (baseline) 65.62±0.57 0.00 66.17±0.43 0.00 52.93±2.02 0.00 57.64±2.12 0.00
SI 65.67±0.66 +0.06 67.16±1.08 +1.75 53.49±1.89 +1.80 57.94±2.02 +0.61
TW 65.68±0.54 +0.11 67.08±1.17 +1.55 53.27±2.12 +0.82 57.70±1.63 +0.09
UW 66.97±0.51 +2.22 67.11±3.47 +1.92 53.79±1.85 +1.81 59.69±1.10 +4.05
GLS 66.05±1.49 +0.60 67.32±0.38 +1.67 54.56±0.36 +9.82 57.66±1.65 -0.23
DWA 65.56±0.57 -0.09 66.94±1.13 +1.35 52.88±1.88 -0.25 57.36±2.53 -0.51
PCGrad 65.45±0.33 -0.50 67.42±0.30 +1.96 51.62±0.51 -3.09 56.27±2.16 -2.73
IMTL-L 66.18±1.45 +0.86 66.54±1.50 +0.67 53.89±0.42 +3.41 57.73±1.20 +0.05
RLW 66.76±1.42 +1.86 67.07±0.73 +1.63 51.38±1.42 -3.03 55.61±2.32 -4.26
MT-VIB 65.80±0.23 +0.66 67.14±0.87 +2.00 50.13±0.71 -5.09 57.68±1.56 +0.36
VMTL 65.80±1.59 +0.65 67.05±1.06 +1.81 50.02±0.76 -5.01 57.52±0.48 +0.20
Hierarchical MTL 66.42±0.10 +1.76 66.84±1.68 +1.60 50.55±0.65 -4.19 55.18±0.58 -4.74
VIP-MTL (ours) 67.42∗±1.06 +3.11 69.09∗±0.09 +5.06 58.16∗±0.45 +17.80 61.40∗±0.58 +7.66

Table 1: Multi-task performance (%) on TweetEval and AffectEval. For all methods with BERT/RoBERTa backbone,
we run three random seeds and report the average result on test sets. Best results are highlighted in bold. ∗ represents
statistical significance over scores of the baseline under the t-test (p < 0.05).

Methods EmotionEval HatEval IronyEval OffensEval SentiEval StanceEval Avg. ∆p ↑M-F1 M-F1 F1(i.) M-F1 M-Recall M-F1 (a. & f.)
EW (baseline) 74.37±0.56 44.08±5.26 65.32±1.84 79.04±1.43 70.64±1.71 63.59±2.43 66.17±0.43 0.00
SI 75.81±1.05 46.19±6.01 66.17±5.81 78.58±2.00 71.00±1.80 65.24±2.31 67.16±1.08 +1.75
UW 74.76±3.08 48.49±3.21 65.41±7.01 79.49±1.48 71.56±0.74 62.96±6.84 67.11±3.47 +1.92
GLS 75.47±1.15 43.97±1.13 69.18±2.62 79.46±0.84 71.84±0.38 64.01±0.71 67.32±0.38 +1.67
IMTL-L 75.25±1.26 45.61±3.84 65.94±0.74 79.59±1.28 71.19±0.60 61.65±5.41 66.54±1.50 +0.67
MT-VIB 74.74±0.38 48.06±4.79 66.09±3.38 78.17±1.39 70.95±0.99 64.83±1.56 67.14±0.87 +2.00
VMTL 74.07±0.72 47.44±3.42 68.55±2.80 77.95±0.22 70.52±1.04 63.76±2.86 67.05±1.06 +1.81
VIP-MTL (ours) 77.36∗±0.53 49.79∗±1.37 68.65∗±1.74 79.60∗±0.89 71.32∗±0.49 67.80∗±0.33 69.09∗±0.09 +5.06

(a) Fine-grained results on TweetEval

Methods GoEmotions EmotionEval Emobank EI-Reg Avg. ∆p ↑M-F1 M-F1 V A D Pear Spear
EW (baseline) 47.13±0.33 77.97±0.63 75.62±0.79 49.44±4.70 36.47±4.02 51.01±4.62 52.23±4.68 57.64±2.12 0.00
SI 47.08±0.72 78.22±0.49 75.61±1.39 50.35±5.02 37.26±4.78 51.55±3.99 52.60±3.82 57.94±2.02 +0.61
UW 48.54±0.55 78.55±1.14 76.81±0.28 53.26±0.44 38.60±3.32 54.94±3.14 55.93±3.00 59.69±1.10 +4.05
GLS 37.15±0.43 79.43±1.34 80.18±1.47 55.07±1.07 45.73±0.61 53.15±6.16 54.31±5.96 57.66±1.65 -0.23
IMTL-L 46.71±0.38 79.08±1.02 75.18±1.03 50.99±2.68 37.05±2.13 50.34±2.94 51.12±2.78 57.73±1.20 +0.05
MT-VIB 46.92±0.29 76.66±2.31 75.61±1.96 51.60±1.01 37.50±5.59 51.80±1.39 52.64±2.19 57.68±1.56 +0.36
VMTL 46.83±0.23 75.25±1.70 77.38±0.44 51.02±1.52 37.77±8.17 51.35±2.81 53.83±2.05 57.52±0.48 +0.20
VIP-MTL (ours) 49.38∗±1.37 79.47∗±0.45 78.55∗±1.01 55.51∗±0.48 45.73∗±1.28 56.46∗±1.17 57.19∗±1.10 61.40∗±0.58 +7.66

(b) Fine-grained results on AffectEval

Table 2: Fine-grained results of representative comparison methods and our VIP-MTL. We experiment with the
RoBERTa backbone. ∗ represents statistical significance over scores of the baseline under the t-test (p < 0.05).

the homogeneous TweetEval contains six differ-
ent classification tasks, and heterogeneous AffectE-
val includes two classification and two regression
tasks. VIP-MTL consistently obtains the best av-
erage performance over comparison methods on
both benchmarks with different backbone mod-
els. Specifically, compared to EW baseline, VIP-
MTL with BERT/RoBERTa backbone improves
Avg. by +1.80%/+2.92% and increases ∆p by
+3.11%/+5.06% on TweetEval. VIP-MTL with
BERT/RoBERTa backbone gains improvements in
Avg. by +5.23%/+3.76% and an increase in ∆p
by +17.80%/+7.66% on AffectEval.

Fine-grained Results Table 2 summarizes fine-
grained results of VIP-MTL, the EW baseline, and
6 representative comparison MTL methods (includ-

ing 4 task-balanced and 2 probabilistic methods).
Our VIP-MTL consistently outperforms the EW
baseline on all tasks and achieves the best fine-
grained results on most tasks, demonstrating the
effectiveness of VIP-MTL.

Comparison with STL and LLM We compare
our VIP-MTL with the single-task learning (STL)
baseline and the large language model (LLM) GPT-
3.5. For STL, each task is trained with a sepa-
rate model. For GPT-3.5, predictions are made
under the zero-shot setting using task descriptions
and instructions. As shown in Table 3, our VIP-
MTL outperforms GPT-3.5 on all tasks signifi-
cantly. Compared to the STL baselines, our method
also achieves superior results on most tasks with
the same scale of model parameters.
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Methods # Param EmotionEval HatEval IronyEval OffensEval SentiEval StanceEval Avg.M-F1 M-F1 F1(i.) M-F1 M-Recall M-F1 (a. & f.)
GPT-3.5 (LLMs) 73.23 48.30 66.81 63.71 40.40 39.45 55.32
STL 6×110M 74.49 45.26 53.27 79.20 72.43 66.70 65.23
STL with CNN 110M+6×2M 59.11 47.61 52.10 77.80 70.85 57.58 60.84
VIP-MTL 110M 77.29 49.73 67.88 80.02 71.15 67.28 68.89

Table 3: Comparison results with different learning paradigms on TweetEval. We experiment with RoBERTa
backbone for all methods except for GPT-3.5. STL stands for single-task learning with a cross-entropy loss. STL
with CNN indicates fine-tuning task-specific CNN classifiers with a frozen RoBERTa backbone. # Param refers to
the number of parameters of the model for all tasks excluding the task-specific linear head.

Methods
TweetEval AffectEval

BERT backbone RoBERTa backbone BERT backbone RoBERTa backbone
Avg. ∆p ↑ Avg. ∆p ↑ Avg. ∆p ↑ Avg. ∆p ↑

VIP-MTL 67.42±1.06 +3.11 69.09±0.09 +5.06 58.16±0.45 +17.80 61.40±0.58 +7.66
w/o VI 65.36±1.14 -0.58 67.59±1.06 +2.72 53.08±1.89 +5.17 58.21±1.96 +1.46
w/o VIP 65.62±0.57 0.00 66.17±0.43 0.00 52.93±2.02 0.00 57.64±2.12 0.00

Table 4: Ablation study results of our VIP-MTL. We report fine-grained results of the ablation study in Appendix C.1.

Methods
TweetEval AffectEval

BERT backbone RoBERTa backbone BERT backbone RoBERTa backbone
Avg. ∆p ↑ Avg. ∆p ↑ Avg. ∆p ↑ Avg. ∆p ↑

EW 49.07 0.00 66.56 0.00 61.87 0.00 59.47 0.00
VIP-MTL (β =0.001) 67.42 +3.11 68.75 +4.42 56.73 +13.95 61.40 +7.66

w/o VI 65.36 -0.58 67.79 +3.26 52.90 +2.63 58.21 +1.46
VIP-MTL (β =0.01) 66.75 +1.96 69.09 +5.06 56.43 +11.59 60.52 +6.09

w/o VI 65.16 -0.84 67.59 +2.72 53.21 +3.72 57.45 -0.09
VIP-MTL (β =0.1) 67.18 +2.62 68.27 +3.98 58.16 +17.80 60.69 +6.42

w/o VI 65.40 -0.42 67.81 +2.75 53.08 +5.17 56.28 -2.17

Table 5: Results with different sampling distributions.

4.3 Ablation Study

We conduct ablation studies by removing the vari-
ance normalization (w/o VI) and further remov-
ing probabilistic decoding (w/o VIP). As shown
in Table 4, compared with two ablation models,
the full VIP-MTL consistently obtains the best per-
formance in terms of Avg. and ∆p on TweetEval
and AffectEval. The results reveal the effective-
ness of both components for MTL. Additionally,
VIP-MTL applies variance normalization to con-
strain task-specific probabilistic distribution to a
consistent scale, showing a smaller variance than
the ablation w/o VI on all benchmarks.

4.4 Robustness Evaluation on Sampling
Distribution

We evaluate the robustness on different sampling
distributions. β controls the closeness between the
learnable variational Gaussian posterior distribu-
tion and predefined standard Gaussian prior. We
adjust values of β to obtain sampling distributions
with different Gaussian forms. As shown in Ta-
ble 5, VIP-MTL outperforms EW baseline across
different posterior distributions, which shows the
robustness of VIP-MTL on sampling distribution.
Additionally, compared with w/o VI, VIP-MTL

consistently achieves superior performance across
different values of β. It indicates that Variance nor-
malization exhibits promising performance under
different probabilistic distributions, and our VIP-
MTL can be applied to a wider variety of tasks
without being limited to specific distributions.

4.5 Optimization Efficiency Evaluation

We further evaluate optimization efficiency on the
MTL paradigm. Figure 2 shows loss curves for
each task on TweetEval. VIP-MTL performs bet-
ter on both the training and validation sets and
converges faster, indicating that the optimization
process is more efficient. From results, we have:
1) VIP-MTL exhibits a steeper slope in the train-
ing loss for each task, particularly during the early
stages of training. This indicates that the method is
capable of reducing the training error for multiple
tasks more rapidly during the training process. 2)
During the training process, the validation loss of
VIP-MTL is lower than that of other methods in
most cases (except during the early stages of train-
ing for IronyEval4), demonstrating that our VIP-

4In the early stage, VIP-MTL mainly focuses on balancing
overall tasks rather than individual tasks. IronyEval, which re-
quires complex semantic understanding, gains more attention
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Figure 2: Loss analysis during training on TweetEval. RoBERTa is the default backbone model.

Figure 3: Loss analysis during training phase on pair-wise tasks on AffectEval. RoBERTa is the default backbone
model. Results on other pair-wise task combinations are listed in Appendix C.3.

MTL performs better on unseen data and possesses
stronger multi-task generalization capabilities.

4.6 Evaluation of Scale-invariance Property

To analyze the impartial ability, we evaluate the
scale-invariance property of pairwise task combina-
tions within AffectEval. The scale invariance of a
method generally refers to the invariance to individ-
ual loss scales. We experiment involving two het-
erogeneous and two homogeneous pair-wise MTL
settings (More experimental details and results can
be found in Appendix C.2). The results show that
VIP-MTL achieves the best performance in terms
of Avg. and ∆p on all scenarios. Then, we show
loss curves on pairwise task combinations in Fig-
ure 3 (loss curve results on other two task combina-
tions are listed in Appendix C.3). The task losses
obtained by VIP-MTL are closer to each other on
both heterogeneous and homogeneous combina-
tions, showing that our method is scale-invariant to
task losses.

only in the later stage of training.

4.7 Evaluation under Data-constrained
Conditions

The evaluation under data-constrained conditions is
designed to assess the effectiveness of the proposed
method in real-world scenarios where the partiality
problem is more severe. We evaluate VIP-MTL
and 7 comparison methods when training with lim-
ited data by adjusting different ratios of the training
set. Following Hu et al. (2024), all methods are
trained on randomly sampled subsets from the orig-
inal training set, and we report the average results
on the test set. Table 6 shows overall results against
different sizes of training set where RoBERTa is
the default backbone model. VIP-MTL achieves
superior average performance against different ra-
tios of the training set. This suggests that VIP-MTL
is capable of learning sufficient representations, im-
proving the efficiency of utilizing limited data.

4.8 Representation Quality Evaluation

To analyze the quality of the learned representa-
tions, we evaluate the clustering performance of
output representations obtained by different objec-
tives. Following Hu et al. (2024), we apply silhou-
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Methods Data per TweetEval AffectEval
Avg. ∆p ↑ Avg. ∆p ↑

EW 20% 62.43 0.00 43.99 0.00
SI 20% 62.23 -0.34 43.08 -1.86
UW 20% 61.78 -1.59 48.93 +19.17
GLS 20% 61.33 -2.32 49.32 +29.91
IMTL-L 20% 60.66 -3.38 48.94 +20.88
MT-VIB 20% 60.00 -4.18 44.35 +4.30
VMTL 20% 58.34 -7.30 42.82 -0.40
VIP-MTL 20% 64.41 +3.20 50.51 +33.80
EW 40% 66.01 0.00 51.03 0.00
SI 40% 65.95 -0.11 51.60 +0.68
UW 40% 64.35 -2.82 52.91 +5.60
GLS 40% 63.63 -4.13 54.07 +8.19
IMTL-L 40% 64.16 -3.22 51.00 +0.92
MT-VIB 40% 63.58 -3.90 49.42 -1.84
VMTL 40% 63.36 -4.33 49.37 -2.47
VIP-MTL 40% 66.29 +0.73 56.74 +15.51
EW 60% 66.38 0.00 55.03 0.00
SI 60% 66.31 -0.24 54.13 -1.71
UW 60% 66.17 -0.45 55.27 +1.00
GLS 60% 66.33 -0.04 56.10 +2.26
IMTL-L 60% 66.96 +1.02 54.99 +0.27
MT-VIB 60% 66.31 +0.04 52.85 -3.94
VMTL 60% 65.00 -1.95 53.47 -2.27
VIP-MTL 60% 67.12 +1.35 58.79 +8.57
EW 80% 66.34 0.00 56.75 0.00
SI 80% 67.33 +1.98 56.17 -1.13
UW 80% 66.93 +1.30 58.71 +4.49
GLS 80% 66.43 +0.23 57.05 +0.86
IMTL-L 80% 66.59 +0.84 56.31 -0.65
MT-VIB 80% 65.34 -1.57 54.80 -3.39
VMTL 80% 65.07 -2.33 55.72 -0.94
VIP-MTL 80% 67.97 +2.73 60.54 +8.19

Table 6: Results against different training data size.
RoBERTa is the default backbone model.

ette coefficient (SC) and adjusted rand index (ARI)
to measure the clustering ability relevant to input
data and target tasks, respectively. Figure 4 shows
SC and ARI values of representations learned by
5 representative comparison objectives, VIP-MTL
and its ablation w/o VI on TweetEval. Both VIP-
MTL and its ablation w/o VI achieve higher ARI
and SC values on six tasks. This reveals that our
method can learn more compact and informative
output representations for all tasks.

4.9 Computational Overhead Analysis

As stated in Section 2, we use a hard parameter-
sharing pattern and adopt the same architecture for
MTL. Compared to the line of designing architec-
tures (usually by soft parameter-sharing), the hard
pattern leads to lower training and inference costs.
Compared to other MTL methods, VIP-MTL has
advantages in terms of computations and memory
costs: 1) Loss-based methods (e.g., GLS, DWA,
UW, IMTL-L, RLW) require the losses of all tasks
to jointly update loss weights. They often need a
larger batch size or a task-balanced sampling strat-
egy within a batch, leading to higher memory us-

Figure 4: Quality analysis of the learned task-specific
representations by different objectives. The X-axis and
Y-axis refer to silhouette coefficient (SC) and adjusted
rand index (ARI) of task-specific representations.

age during training. In contrast, VIP-MTL allows
one or multiple tasks in a batch sample, making
it more suitable for memory-limited settings. 2)
Gradient-based methods (e.g., PCGrad) need to
find an aggregated gradient to balance tasks, which
incurs higher computations and memory costs dur-
ing training. VIP-MTL avoids this via standard
training. 3) Traditional probabilistic methods (e.g.,
VIB-MTL, VMTL, Hierarchical MTL) introduce
higher training costs than VIP-MTL in the imple-
mentation of variational inference. Specifically,
VIB-MTL and Hierarchical MTL require more pa-
rameters due to high-dimensional probabilistic en-
coding, while VMTL incurs extra memory costs in
exploring task relatedness.

5 Conclusion

This paper proposes a probabilistic framework VIP-
MTL that directly addresses the issue of represen-
tation imbalance in MTL by harmonizing represen-
tation spaces across tasks, which is a significant
departure from existing works that focus on balanc-
ing losses or gradients. Experiments on two lan-
guage benchmarks demonstrate that VIP-MTL out-
performs 12 comparative MTL methods, especially
in heterogeneous and data-constrained scenarios.
Further analysis shows that VIP-MTL is robust to
sampling distributions, efficient on optimization
process, scale-invariant to task losses, and learns
more informative task-specific representations.
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Limitations

While VIP-MTL demonstrates effectiveness in ad-
dressing the partial learning problem in MTL, es-
pecially in heterogeneous and data-constrained sce-
narios, several limitations should be noted: 1) The
evaluation is currently limited to NLU tasks (clas-
sification and regression), leaving generation tasks
unexplored. 2) Its scalability to larger model archi-
tectures like LLMs remains unverified. 3) Due to
computational constraints, the current comparison
is limited to 12 representative MTL methods that
we reproduced under the same settings. A more
exhaustive comparison would further strengthen
the empirical validation.

Acknowledgements

This work was supported by the National Natural
Science Foundation of China (No. U24A20335),
the Postdoctoral Fellowship Program of China Post-
doctoral Science Foundation (No. GZC20232969),
and Youth Innovation Promotion Association CAS.
The authors thank the anonymous reviewers and
the meta-reviewer for their helpful comments.

References
Cédric Archambeau, Shengbo Guo, and Onno Zoeter.

2011. Sparse bayesian multi-task learning. In
NeurIPS, pages 1755–1763.

Bart Bakker and Tom Heskes. 2003. Task clustering
and gating for bayesian multitask learning. J. Mach.
Learn. Res., 4:83–99.

Francesco Barbieri, José Camacho-Collados, Luis Es-
pinosa Anke, and Leonardo Neves. 2020. Tweeteval:
Unified benchmark and comparative evaluation for
tweet classification. In EMNLP (Findings), pages
1644–1650.

Valerio Basile, Cristina Bosco, Elisabetta Fersini, Deb-
ora Nozza, Viviana Patti, Francisco Manuel Rangel
Pardo, Paolo Rosso, and Manuela Sanguinetti. 2019.
Semeval-2019 task 5: Multilingual detection of hate
speech against immigrants and women in twitter. In
SemEval@NAACL-HLT, pages 54–63.

Sven Buechel and Udo Hahn. 2017. Emobank: Study-
ing the impact of annotation perspective and repre-
sentation format on dimensional emotion analysis. In
EACL (2), pages 578–585.

Rich Caruana. 1993. Multitask learning: A knowledge-
based source of inductive bias. In ICML, pages 41–
48.

Rich Caruana. 1997. Multitask learning. Machine
learning, 28:41–75.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and
Andrew Rabinovich. 2018. Gradnorm: Gradient nor-
malization for adaptive loss balancing in deep multi-
task networks. In ICML, pages 793–802.

Sumanth Chennupati, Ganesh Sistu, Senthil Kumar Yo-
gamani, and Samir A. Rawashdeh. 2019. Multinet++:
Multi-stream feature aggregation and geometric loss
strategy for multi-task learning. In CVPR Workshops,
pages 1200–1210.

João Machado de Freitas, Sebastian Berg, Bernhard C.
Geiger, and Manfred Mücke. 2022. Compressed
hierarchical representations for multi-task learning
and task clustering. In IJCNN, pages 1–8.

Dorottya Demszky, Dana Movshovitz-Attias, Jeongwoo
Ko, Alan S. Cowen, Gaurav Nemade, and Sujith
Ravi. 2020. Goemotions: A dataset of fine-grained
emotions. In ACL, pages 4040–4054.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In NAACL-HLT, pages 4171–4186.

Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsu-
ruoka, and Richard Socher. 2017. A joint many-task
model: Growing a neural network for multiple NLP
tasks. In EMNLP, pages 1923–1933.

Cynthia Van Hee, Els Lefever, and Véronique Hoste.
2018. Semeval-2018 task 3: Irony detection in en-
glish tweets. In SemEval@NAACL-HLT, pages 39–
50.

Matthew D. Hoffman, David M. Blei, Chong Wang,
and John W. Paisley. 2013. Stochastic variational
inference. J. Mach. Learn. Res., 14(1):1303–1347.

Dou Hu, Xiaolong Hou, Xiyang Du, Mengyuan Zhou,
Lianxin Jiang, Yang Mo, and Xiaofeng Shi. 2022.
Varmae: Pre-training of variational masked autoen-
coder for domain-adaptive language understanding.
In EMNLP (Findings), pages 6276–6286.

Dou Hu, Lingwei Wei, Yaxin Liu, Wei Zhou, and
Songlin Hu. 2024. Structured probabilistic coding.
In AAAI, pages 12491–12501.

Dou Hu, Lingwei Wei, Wei Zhou, and Songlin Hu. 2025.
An information-theoretic multi-task representation
learning framework for natural language understand-
ing. In AAAI, pages 17276–17286.

Hal Daumé III. 2009. Bayesian multitask learning with
latent hierarchies. In UAI, pages 135–142.

Alex Kendall, Yarin Gal, and Roberto Cipolla. 2018.
Multi-task learning using uncertainty to weigh losses
for scene geometry and semantics. In CVPR, pages
7482–7491.

Donggyun Kim, Seongwoong Cho, Wonkwang Lee, and
Seunghoon Hong. 2022. Multi-task processes. In
ICLR.

19892



Tae Kyun Kim. 2015. T test as a parametric statistic.
Korean journal of anesthesiology, 68(6):540–546.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR (Poster).

Diederik P. Kingma and Max Welling. 2014. Auto-
encoding variational bayes. In ICLR.

Baijiong Lin, Feiyang Ye, Yu Zhang, and Ivor W. Tsang.
2022. Reasonable effectiveness of random weighting:
A litmus test for multi-task learning. Trans. Mach.
Learn. Res., 2022.

Bo Liu, Yihao Feng, Peter Stone, and Qiang Liu. 2023.
FAMO: fast adaptive multitask optimization. In
NeurIPS.

Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and
Qiang Liu. 2021a. Conflict-averse gradient descent
for multi-task learning. In NeurIPS, pages 18878–
18890.

Liyang Liu, Yi Li, Zhanghui Kuang, Jing-Hao Xue,
Yimin Chen, Wenming Yang, Qingmin Liao, and
Wayne Zhang. 2021b. Towards impartial multi-task
learning. In ICLR.

Shikun Liu, Edward Johns, and Andrew J. Davison.
2019a. End-to-end multi-task learning with attention.
In CVPR, pages 1871–1880.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jian-
feng Gao. 2019b. Multi-task deep neural networks
for natural language understanding. In ACL, pages
4487–4496.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019c.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Kevis-Kokitsi Maninis, Ilija Radosavovic, and Iasonas
Kokkinos. 2019. Attentive single-tasking of multiple
tasks. In CVPR, pages 1851–1860.

Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and
Martial Hebert. 2016. Cross-stitch networks for
multi-task learning. In CVPR, pages 3994–4003.

Saif M. Mohammad, Felipe Bravo-Marquez, Mo-
hammad Salameh, and Svetlana Kiritchenko. 2018.
Semeval-2018 task 1: Affect in tweets. In
SemEval@NAACL-HLT, pages 1–17.

Saif M. Mohammad, Svetlana Kiritchenko, Parinaz
Sobhani, Xiao-Dan Zhu, and Colin Cherry. 2016.
Semeval-2016 task 6: Detecting stance in tweets. In
SemEval@NAACL-HLT, pages 31–41.

Weizhu Qian, Bowei Chen, and Franck Gechter. 2020.
Multi-task variational information bottleneck. CoRR,
abs/2007.00339.

Sara Rosenthal, Noura Farra, and Preslav Nakov. 2017.
Semeval-2017 task 4: Sentiment analysis in twitter.
In SemEval@ACL, pages 502–518.

Amelie Royer, Tijmen Blankevoort, and Babak Ehte-
shami Bejnordi. 2023. Scalarization for multi-task
and multi-domain learning at scale. In NeurIPS.

Sebastian Ruder, Joachim Bingel, Isabelle Augenstein,
and Anders Søgaard. 2019. Latent multi-task archi-
tecture learning. In AAAI, pages 4822–4829.

Ozan Sener and Vladlen Koltun. 2018. Multi-task learn-
ing as multi-objective optimization. In NeurIPS,
pages 525–536.

Jiayi Shen, Xiantong Zhen, Marcel Worring, and Ling
Shao. 2021. Variational multi-task learning with
gumbel-softmax priors. In NeurIPS, pages 21031–
21042.

Naftali Tishby, Fernando C Pereira, and William Bialek.
1999. The information bottleneck method. In Proc.
of the 37th Allerton Conference on Communication
and Computation.

Naftali Tishby and Noga Zaslavsky. 2015. Deep learn-
ing and the information bottleneck principle. In ITW,
pages 1–5.

Michalis K. Titsias and Miguel Lázaro-Gredilla. 2011.
Spike and slab variational inference for multi-task
and multiple kernel learning. In NeurIPS, pages
2339–2347.

Matías Vera, Leonardo Rey Vega, and Pablo Pi-
antanida. 2017. Compression-based regularization
with an application to multi-task learning. CoRR,
abs/1711.07099.

Luke Vilnis and Andrew McCallum. 2015. Word repre-
sentations via gaussian embedding. In ICLR.

Fariba Yousefi, Michael Thomas Smith, and Mauricio A.
Álvarez. 2019. Multi-task learning for aggregated
data using gaussian processes. In NeurIPS, pages
15050–15060.

Kai Yu, Volker Tresp, and Anton Schwaighofer. 2005.
Learning gaussian processes from multiple tasks. In
ICML, volume 119, pages 1012–1019.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey
Levine, Karol Hausman, and Chelsea Finn. 2020.
Gradient surgery for multi-task learning. In NeurIPS.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019. Semeval-2019 task 6: Identifying and catego-
rizing offensive language in social media (offenseval).
In SemEval@NAACL-HLT, pages 75–86.

19893



Appendix Overview

In this appendix, we provide: (i) the related work,
(ii) detailed experimental setups, and (iii) supple-
mentary results.

A Related Work

Existing works on multi-task learning (MTL) can
be categorized into two groups: multi-task opti-
mization and network architecture design.

A.1 Multi-task Optimization

The optimization of MTL aims to improve the MTL
training process by balancing the training dynam-
ics of different tasks. This line of studies typically
employs a hard parameter-sharing pattern (Caru-
ana, 1993), where several light-weight task-specific
heads are attached upon the heavy-weight task-
agnostic backbone. Recent works on multi-task
optimization are roughly divided into two parts:
task-balanced and probabilistic methods.

Task-balanced methods aims to balance the
learning process across multiple tasks via loss-
based and gradient-based methods. Loss-based
methods focus on aligning the task losses magni-
tudes by rescaling loss scales (Kendall et al., 2018;
Chennupati et al., 2019; Liu et al., 2019a, 2021b;
Lin et al., 2022). These works can prevent MTL
from being biased in favor of tasks with large loss
scales, but cannot ensure the impartial learning of
the shared parameters. Gradient-based methods
(Sener and Koltun, 2018; Chen et al., 2018; Yu
et al., 2020; Liu et al., 2023) aims to find an aggre-
gated gradient to balance different tasks. Moreover,
Liu et al. (2021b) and Lin et al. (2022) also provide
the gradient-based version, and the overall effects
are comparable to their loss-based version. While
gradient balance can evenly learn task-shared pa-
rameters, they also incur a higher compute and
memory training cost.

Probabilistic methods aims to explore task re-
latedness (Yousefi et al., 2019; Kim et al., 2022;
Shen et al., 2021) or compress task-irrelevant re-
dundant information (Vera et al., 2017; Qian et al.,
2020; de Freitas et al., 2022). To explore task relat-
edness, some works study design priors over model
parameters under the Bayesian framework (Yu
et al., 2005; Titsias and Lázaro-Gredilla, 2011; Ar-
chambeau et al., 2011; Bakker and Heskes, 2003),
or share the covariance structure of parameters
(III, 2009). Additionally, some works (Vera et al.,
2017; Qian et al., 2020; de Freitas et al., 2022)

introduce the information bottleneck (IB) princi-
ple (Tishby et al., 1999; Tishby and Zaslavsky,
2015) into the information encoding process of
MTL. They typically enhance the adaptability to
noisy data by compressing task-irrelevant redun-
dant information and learning compact represen-
tations. For example, Qian et al. (2020) use vari-
ational inference to learn probabilistic representa-
tions for multiple tasks based on the information
bottleneck. de Freitas et al. (2022) propose a hi-
erarchical variational MTL method that restricts
information individual tasks can access from a
task-agnostic latent representation. Recently, Hu
et al. (2025) propose an information-theoretic MTL
framework with variational implementation that si-
multaneously ensures sufficient shared representa-
tions and low-redundancy task-specific representa-
tions.

A.2 Architectures for MTL

Orthogonal to our work, another line of studies em-
phasizes on designing neural network architectures
by optimizing the allocation of shared versus task-
specific parameters (Misra et al., 2016; Hashimoto
et al., 2017; Ruder et al., 2019; Liu et al., 2019a,b).
Some of these methods utilize soft parameter shar-
ing, allowing for parameter sharing among tasks to
a large extent. However, they often result in higher
inference cost. The scope of our study is comple-
mentary to this line of work, since we focus on how
to balancing multiple tasks that is agnostic to the
architecture employed.

B Experimental Setups

B.1 Details of Datasets and Downstream
Tasks

We conduct experiments on TweetEval and Af-
fectEval benchmarks. The statistics are summa-
rized in Table 7.

TweetEval benchmark contains 6 classification
tasks. EmotionEval (Mohammad et al., 2018) in-
volves detecting the emotion evoked by a tweet and
is based on the Affects in Tweets conducted during
SemEval-2018. Following Barbieri et al. (2020),
the most common four emotions (i.e., anger, joy,
sadness, and optimism) are selected as the label
sets. HatEval (Basile et al., 2019) stems from
SemEval-2019 Hateval challenge and is used to
predict whether a tweet is hateful towards immi-
grants or women. IronyEval (Hee et al., 2018) is
from SemEval-2018 Irony Detection and consists
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Dataset Task Task Type # Label # Train # Val # Test # Total
Homogeneous benchmark: TweetEval
EmotionEval Social emotion detection Classification 4 3,257 374 1,421 5,502
HatEval Hate speech detection Classification 2 9,000 1,000 2,970 12,970
IronyEval Irony detection Classification 2 2,862 955 784 4,601
OffensEval Offensive language detection Classification 2 11,916 1,324 860 14,100
SentiEval Sentiment analysis Classification 3 45,389 2,000 11,906 59,295
StanceEval Stance detection Classification 3 2,620 294 1,249 4,163
Heterogeneous benchmark: AffectEval
GoEmotions Fine-grained emotion detection Classification 28 36,308 4,548 4,591 45,447
EmotionEval Social emotion detection Classification 4 3,257 374 1,421 5,502
EmoBank Emotion regression Regression - 8,062 1,000 1,000 10,062
EI-Reg Emotion intensity regression Regression - 7,102 1,464 4,068 12,634

Table 7: Dataset statistics on TweetEval and AffectEval. The homogeneous TweetEval contains six different
classification tasks, and heterogeneous AffectEval includes two classification and two regression tasks.

Hyperparameter TweetEval AffectEval

B
E

R
T

Trade-off weight β 0.001 0.1
Trade-off weight γ 10 for Cls. and 0.1 for Reg.
Number of epochs 20 20
Patience 3 3
Max length 256 256
Batch size 128 128
Dropout 0.2 0
Learning rate 5e−5 5e−5

R
oB

E
R

Ta

Trade-off weight β 0.01 0.001
Trade-off weight γ 10 for Cls. and 0.1 for Reg.
Number of epochs 20 20
Patience 3 3
Max length 256 256
Batch size 128 128
Dropout 0.2 0
Learning rate 5e−5 5e−5

Table 8: Hyperparameters of VIP-MTL on TweetEval
and AffectEval.

of identifying whether a tweet includes ironic in-
tents or not. OffensEval (Zampieri et al., 2019) is
from SemEval-2019 OffensEval and involves pre-
dicting if a tweet contains any form of offensive
language. SentiEval (Rosenthal et al., 2017) comes
from SemEval 2017 and includes data from previ-
ous runs (2013, 2014, 2015, and 2016) of the same
task. The goal is to determine if a tweet is positive,
negative, or neutral. StanceEval (Mohammad et al.,
2016) involves determining if the author of a piece
of text has a favorable, neutral, or negative position
towards a proposition or target.

AffectEval includes 2 classification and 2 regres-
sion tasks. GoEmotions (Demszky et al., 2020) is
a corpus of comments from Reddit, with human
annotations to 27 emotion categories or neutral. It
is used fine-grained emotion prediction. Following
Hu et al. (2024), nearly 16% of multi-label data was
removed from the source corpus to better evaluate

the performance of multi-class classification. Emo-
tionEval (Mohammad et al., 2018) involves detect-
ing the emotion evoked by a tweet and is based on
the Affects in Tweets conducted during SemEval-
2018. Emobank (Buechel and Hahn, 2017) is a
large-scale text corpus across 6 domains and 2 per-
spectives and manually annotated with continuous
VAD scores. Each sentence has three scores rep-
resenting VAD in the range of 1 to 5. Following
Buechel and Hahn (2017), we use the average of
VAD scores as the overall metric. EI-Reg (Moham-
mad et al., 2018) is an emotion intensity regression
task and is from SemEval-2018 Task 1: Affect in
Tweets. The goal is to determine the intensity of
the emotion E that best represents the mental state
of the twitter. The intensity is a real-valued score
between 0 (least E) and 1 (most E). In this task, we
did not use additional emotion labels in the dataset
to better evaluate this regression task.

B.2 Description of Comparison Methods

Since most MTL methods use different benchmarks
and experimental setups, it is difficult to fairly com-
pare with different methods. We reproduced 12
representative MTL methods under the same set-
tings (e.g., network architecture).

Equal Weighting (EW) is a typical baseline
that applies equal weights for each task. Scale-
invariant Loss (SI) is invariant to rescaling each
loss with a logarithmic operation. Task Weighting
(TW) utilizes loss weights to each task based on
the ratio of task examples. Uncertainty weighting
(UW) (Kendall et al., 2018) uses the homoscedastic
uncertainty quantification to adjust task weights.
Geometric Loss Strategy (GLS) (Chennupati
et al., 2019) uses the geometric mean of task losses
to the weighted average of task losses. Dynamic
Weight Average (DWA) (Liu et al., 2019a) sets the
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Methods EmotionEval HatEval IronyEval OffensEval SentiEval StanceEval Avg. ∆p ↑M-F1 M-F1 F1(i.) M-F1 M-Recall M-F1 (a. & f.)
VIP-MTL 77.36±0.53 49.79±1.37 68.65±1.74 79.60±0.89 71.32±0.49 67.80±0.33 69.09±0.09 +5.06
w/o VI 76.02±1.10 49.30±3.75 64.63±3.14 79.44±1.93 71.67±1.25 64.47±1.65 67.59±1.06 +2.72
w/o VIP 74.37±0.56 44.08±5.26 65.32±1.84 79.04±1.43 70.64±1.71 63.59±2.43 66.17±0.43 0.00

(a) Ablation results on TweetEval

Methods GoEmotions EmotionEval Emobank EI-Reg Avg. ∆p ↑M-F1 M-F1 V A D Pear Spear
VIP-MTL 49.38±1.37 79.47±0.45 78.55±1.01 55.51±0.48 45.73±1.28 56.46±1.17 57.19±1.10 61.40±0.58 +7.66
w/o VI 48.87±0.79 78.15±0.57 74.23±4.01 51.02±3.15 39.62±3.19 50.62±3.79 51.16±4.20 58.21±1.96 +1.46
w/o VIP 47.13±0.33 77.97±0.63 75.62±0.79 49.44±4.70 36.47±4.02 51.01±4.62 52.23±4.68 57.64±2.12 0.00

(b) Ablation results on AffectEval

Table 9: Fine-grained ablation study of VIP-MTL. We experiment with the RoBERTa backbone.

Methods
GoEmotions Emobank Avg. ∆p ↑

M-F1 V A D
EW (baseline) 46.69 73.10 48.17 33.09 49.07 0.00
SI 46.59 73.10 49.04 34.59 49.42 +0.95
UW 48.91 77.70 53.97 44.87 53.88 +11.36
GLS 46.23 79.24 51.73 44.27 52.32 +7.77
IMTL-L 48.37 76.18 51.82 38.48 51.93 +6.47
MT-VIB 46.28 74.65 48.84 30.83 48.86 -1.00
VMTL 46.32 75.61 51.30 41.06 51.16 +5.27
VIP-MTL 50.67 78.86 55.84 45.81 55.42 +14.63

(a)

Methods
EmotionEval EI-Reg Avg. ∆p ↑

M-F1 Pear Spear
EW (baseline) 76.96 55.94 56.38 66.56 0.00
SI 78.07 55.44 56.36 66.99 +0.49
UW 78.83 59.26 59.95 69.22 +4.28
GLS 77.48 59.49 60.19 68.66 +3.62
IMTL-L 78.83 59.62 60.30 69.40 +4.60
MT-VIB 76.53 58.74 59.11 67.72 +2.18
VMTL 75.14 58.93 59.39 67.15 +1.48
VIP-MTL 79.30 60.20 59.85 69.66 +4.96

(b)

Table 10: Results on heterogeneous multi-task scenarios.
We experiment with the RoBERTa backbone.

loss weight of each task to be the ratio of two adja-
cent losses. PCGrad (Yu et al., 2020) removes con-
flicting components of each gradient w.r.t the other
gradients. IMTL-L (Liu et al., 2021b) dynami-
cally reweighs the losses such that they all have
the same magnitude. Random Loss Weighting
(RLW) (Lin et al., 2022) with normal distribution,
scales the losses according to randomly sampled
task weights. MT-VIB (Qian et al., 2020) is a
variational MTL method based on information bot-
tleneck. VMTL (Shen et al., 2021) is a variational
MTL framework that uses Gumbel-Softmax priors
for both representations and weights. Hierarchical
MTL (de Freitas et al., 2022) is a hierarchical vari-
ational MTL method with compressed task-specific
representations based on information bottleneck.

For LLM, we compare with GPT-3.5, an en-
hanced generative pre-trained transformer model

Methods
Emobank EI-Reg Avg. ∆p ↑

A V D Pear Spear
EW (baseline) 79.40 55.52 46.71 57.96 58.83 59.47 0.00
SI 80.50 56.35 49.38 59.82 60.50 61.12 +2.94
UW 81.40 51.34 44.99 61.48 62.19 60.54 +1.50
GLS 80.11 56.23 48.13 60.05 60.90 60.98 +2.65
IMTL-L 81.32 50.79 44.58 61.93 62.48 60.55 +1.48
MT-VIB 79.92 54.83 47.39 60.09 60.74 60.57 +1.88
VMTL 79.70 54.87 46.94 59.75 60.49 60.31 +1.43
VIP-MTL 81.21 56.61 50.94 60.79 61.40 62.01 +4.53

(a)

Methods
GoEmotions EmotionEval Avg. ∆p ↑

M-F1 M-F1
EW (baseline) 46.69 77.05 61.87 0.00
SI 47.13 77.09 62.11 +0.50
UW 48.01 77.23 62.62 +1.53
GLS 42.41 79.02 60.72 -3.31
IMTL-L 47.62 76.94 62.28 +0.93
MT-VIB 46.19 77.99 62.09 +0.08
VMTL 46.05 77.20 61.63 -0.59
VIP-MTL 50.17 78.07 64.12 +4.39

(b)

Table 11: Results on homogeneous multi-task scenarios.
We experiment with the RoBERTa backbone.

based on text-davinci-0035, optimized for chatting.

B.3 Evaluation Metrics

The average performance Avg. is computed as,

Avg. =
1

T

T∑

t=1

1

Nt

Nt∑

n−1

Mt,n,

where Mt,n denotes the performance of a task bal-
ancing method for the n-th metric in task t. Nt

denotes the number of metrics in task t. T refers
to the number of tasks.
∆p measures the average of the relative im-

provement over the baseline EW on each metric of

5We present the results of the snapshot from June 13th
2023 based on specific inputs, including task descriptions,
task instructions, and evaluation texts.
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Figure 5: Loss analysis during training phase on pair-wise tasks on AffectEval. RoBERTa is the default backbone
model.

each task, i.e.,

∆p =
1

T

T∑

t=1

1

Nt

Nt∑

n−1

(−1)pt,n(Mt,n −MEW
t,n )

MEW
t,n

,

where MEW
t,n is the n-th metric score for EW on

task t. pt,n = 0 if a higher value is better for the
n-th metric in task t and 1 otherwise (Maninis et al.,
2019; Liu et al., 2021a).

B.4 Implementation Details
We conduct experiments using an epoch number
of 20, a total batch size of 128, and a maximum
token length of 256. The maximum patience for
early stopping is set to 3 epochs. Following Liu
et al. (2019b), we clip the gradient norm within
1 for all methods to avoid the exploding gradient
problem. We report the detailed hyperparameter
settings of VIP-MTL with RoBERTa and BERT
backbone models on two benchmarks in Table 8.
The detailed analysis of the hyperparameter β can
be found in Section 4.4. For each comparison
method, we fine-tune the key parameters following
the original paper for fair comparison and to obtain
corresponding optimal performance.

C Supplementary Results

C.1 Fine-grained Results of Ablation Study
Table 9 shows fine-grained ablation results of each
task on TweetEval and AffectEval.

C.2 Fine-grained Results across Different
Pair-wise Task Combinations

For multi-task evaluations on pairs of tasks, we
consider two distinct combinations of tasks: ho-
mogeneous scenarios (i.e., EmotionEval & GoE-
motions, and Emobank & EI-Reg), and heteroge-
neous scenarios (i.e., EmotionEval & EI-Reg, and

GoEmotions & Emobank). Table 10 and Table 11
shows fine-grained results across pair-wise hetero-
geneous and homogeneous MTL scenarios. VIP-
MTL achieves the best performance in terms of
Avg. and ∆p on all scenarios. This emphasizes the
effectiveness of VIP-MTL in both heterogeneous
and homogeneous MTL settings.

C.3 Supplementary Results of
Scale-invariance Property Evaluation

Figure 5 shows loss curves on two pairwise task
combinations with AffectEval.
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