
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 19767–19790
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Text-to-ES Bench: A Comprehensive Benchmark for Converting Natural
Language to Elasticsearch Query

Dongge Xue, Zhili Pu, Zhentao Xia, Hongli Sun, Ruihui Hou, Guangya Yu,
Yupian Lin, Yongqi Fan†, Jingping Liu* Tong Ruan*

School of Information Science and Engineering,
East China University of Science and Technology, Shanghai, China

y80230114@mail.ecust.edu.cn, {jingpingliu,ruantong}@ecust.edu.cn

Abstract

Elasticsearch (ES) is a distributed RESTful
search engine optimized for large-scale and
long-text search scenarios. Recent research
on text-to-Query has explored using large
language models (LLMs) to convert user
query intent to executable code, making it
an increasingly popular research topic. To
our knowledge, we are the first to introduce
the novel semantic parsing task text-to-ES.
To bridge the gap between LLM and ES,
in detail, we leverage LLMs and employ
domain experts to generate ES query bodies,
which are Domain-Specific Language (DSL),
along with the corresponding post-processing
code to support multi-index ES queries.
Consequently, we propose the text-to-ES
benchmark that consists of two datasets: Large
Elasticsearch Dataset (LED), containing
26,207 text-ES pairs derived from a 224.9GB
schema-free database, and ElasticSearch
(BirdES)with 10,926 pairs sourced from
the Bird dataset on a 33.4GB schema-fixed
database. Compared with fourteen advanced
LLMs and six code-based LLMs, the model we
trained outperformed DeepSeek-R1 by 15.64%
on the LED dataset, setting a new state-of-
the-art, and achieved 78% of DeepSeek-R1’s
performance on the BirdES dataset. Addi-
tionally, we provide in-depth experimental
analyses and suggest future research directions
for this task. Our datasets are available at
https://huggingface.co/datasets/Barry1915/Text-
to-ES.

1 Introduction

Elasticsearch (ES) is a distributed database and
RESTful search engine (Akdal et al., 2018b) that
offers powerful full-text search capabilities and sup-
ports schema-free scenarios, allowing it to process

† Special Contribution.
* Corresponding authors.

Single-Index
Identify the 54 arxiv categories that have seen 
the least number of papers updated in the year 
2024.

#DSL Query
query={

"query": {"range": {"update_date": 
{"gte": "2024-01-01", "lte": "2024-12-31"}},

    "aggs": {"categories": {"terms": {
     "field": "categories.keyword",
     "size": 54,"order": {"_count": "asc" }}

data = esclient.search("arxiv",query)
#Post-Processing Code 
category_list_pre=[data["aggregations"]["ca
tegories"]]
...
result = category_list

Multi-Index
Calculate the percentage whereby Hamilton 
was not at the 1st track of the the f1 circuit 
since 2010.

Answer: 74%Answer: alg-geom math.AG、astro-ph hep-ph...

#DSL Query
query_one = {"query":{"term": 
{ "surname.keyword": "Hamilton"}...}}
data_drivers=esclient.search(“formlua”,query_one)
query_two = {"query":{"range": {"year": 
{ "gte": 2010 } }}...}
data_races=esclient.search(“formlua”,query_two)
#Post-Processing Code 
#index-join
join=pandas.merge(data_drivers,data_races,)
...
result=(positions_count * 100.0) / total_count

Figure 1: Example of converting natural language to ES
query statement. Left: Query involves a single index.
Right: Query involves multiple indexes. The green part
denotes the Domain-Specific Language query body, the
red part denotes the index join option, and the purple
part denotes the post-processing code.

petabytes of data in seconds 1. When using ES as a
database, people can only interact with it by man-
ually writing ES queries, which presents several
challenges. (1) Using wrong keywords. For in-
stance, in the green part of Figure 1, it is difficult to
organize appropriate ES keywords to express infor-
mation from natural language, such as aggregation
information. (2) Index join error. In the red part
of Figure 1 right where a natural language question
involves multiple indexes, assessing the logic of
index joining is quite challenging. (3) Generating
wrong post-processing code. In the purple sec-
tion of Figure 1, both single-index and multi-index
queries necessitate complex post-processing code.

Text-to-Query refers to the process of utilizing
large language models (LLMs) to automatically
translate user intent into executable code, which
can alleviate the three challenges faced by ES. Cur-
rently, the most rapidly developing area is text-
to-SQL (Zhong et al., 2017; Yu et al., 2018; Li
et al., 2024b), which transforms natural language
into SQL query. Similarly, text-to-Cypher (Guo
et al., 2022) focuses on the automated generation of

1https://www.elastic.co/cn/elasticsearch

19767

https://huggingface.co/datasets/Barry1915/Text-to-ES
https://huggingface.co/datasets/Barry1915/Text-to-ES
https://www.elastic.co/cn/elasticsearch


Dataset # Size # Row/Index # Column/Index # Scale Domain Schema-Free

WikiSQL 81,654 0.01k 6 0.2GB SQL ✕

Spider 10,181 1k 5 1.7GB SQL ✕

Bird 12,751 530k 4 33.4GB SQL ✕

BirdES(ours) 10,962 530k 4 33.4GB ES ✕

LED(ours) 26,207 88k 37 224.9GB ES ✔

Table 1: Comparison of text-to-SQL datasets. Size represents the number of datasets. Row/Index indicates the
average number of data rows per index, while Column/Index denotes the average number of columns per index,
with LED reaching a maximum value of 37. Scale refers to the corresponding database size of the dataset, with LED
achieving an enormous size of 224.9 GB. Domain represents the query statements used in the dataset. Schema-Free
indicates the flexibility of the dataset; in LED, the schema of any two rows can differ, whereas in SQL, the schema
of any two rows must remain consistent. For more schema-free details, see the Appendix A12.

knowledge graph Cypher query, alongside related
processes such as text-to-OverpassQL (Staniek
et al., 2024), text-to-CQL (Lu et al., 2024) and
text-to-SPARQL (Yin et al., 2021). owever, there
is a lack of research on the automatic generation of
queries for ES.

In this paper, we explore the text-to-ES task
and evaluate the performance of LLMs. To our
knowledge, we are the first to propose this task, a
novel semantic parsing problem well-motivated in
real-world applications. The task aims to convert
natural language to ES query. To bridge the gap
between LLMs and ES, we leverage LLMs to gen-
erate Domain-Specific Language (DSL) and cor-
responding post-processing code, enabling ES to
support multi-index query, as illustrated in Figure 1
right. Based on the text-to-ES task, we propose the
text-to-ES benchmark that consists of two datasets.
To address the challenges of writing ES query, we
collected data from Wikipedia and Kaggle to cre-
ate LED, a Large-scale ES Dataset grounded in
text-to-ES, containing 26,207 text-to-ES pairs with
a total size of 224.9 GB. In this manner, we con-
structed the Bird ElasticSearch (BirdES) dataset,
derived from the Bird (Li et al., 2024b) dataset in
the text-to-SQL domain. The BirdES dataset con-
sists of 10,962 text-to-ES pairs, with nearly 80% of
the data representing multi-index query and featur-
ing a highly complex index structure. The detailed
comparison table with text-to-SQL capabilities is
shown in Table 1.

Ultimately, we conduct extensive experiments
using fourteen advanced models and six code mod-
els on our LED and BirdES datasets. The model
we trained outperformed DeepSeek-R1 (Guo et al.,
2025) by 15.64% on the LED and achieved 78%
of DeepSeek-R1’s performance on the BirdES. We

also performed manual sampling evaluations on
our datasets, achieving scores of 95% and 99%, re-
spectively. In addition, we suggest future research
directions for this task. We believe that our work
will contribute to advancing real-world applications
of text-to-ES research. Our contribution is as fol-
lows.

• To our knowledge, we are the first to propose
a semantic parsing task text-to-ES. To bridge
the gap between LLMs and ES, we leverage
LLMs to generate DSL and post-processing
code to support multi-index ES query.

• We propose the large text-to-ES benchmark
that consists of two datasets, LED and BirdES.
LED has 26,207 Text-ES pairs with a 224.9
GB schema-free database, and BirdES has
10,962 Text-ES pairs with a 33.4 GB schema-
fixed database.

• We conduct extensive evaluation and analy-
sis experiments using fourteen advanced and
six code LLMs. The model we trained out-
performed DeepSeek-R1 by 15.64% on the
LED and achieved 78% of DeepSeek-R1’s
performance on the BirdES. Additionally, we
conduct manual sampling assessments on our
datasets.

2 Releated Work

2.1 Text-to-Query
Text-to-Query is the process of using LLM to con-
vert user intent into executable code. Firstly, text-
to-SQL based on large language models (LLMs)
is mainly divided into two categories. The first
category is GPT-based frameworks for text-to-
SQL. Notable examples are DEA-SQL (Xie et al.,

19768



STEP1:Question Template Construction

STEP3: Rewrite and Quality Check

STEP2:Value Fill

Find articles id  where the word 
OPENAI appears in the title or 
content, published post-2005-
11-07, with  limit of 30 entries.

Get articles id that match the 
term OPENAI in either title or 
content, published after 2005-
11-07, and limited to 30.

Check Consistency

#DSL Query query = {"size": [size],"multi_match": {"query": [term],
"fields": ["title","content"]},"range":{"date":{"gte":[start_date]},
"_source": ["ID"]}response = es.search("allsides",query)
# Code Post Process...result = response_processed

Get articles id that match the term [term] in either title or content, published 
after [start_date], and limited to [size]. Text

ES

Question10Question9Question1
Get articles id that match the 
term OPENAI in either title or 
content, published after 
2005,11,7 and limited to 30.

term:OPENAI,China...

size:30,23,14...

phone_code:973,233..Value Pool

Value Inject
template

GPT4o Expert

Text

ES

Annotation
Find places......template2
Retrieve total...template1

...

query={ES template2...}

query={ES template1...}

...Expert

Verify
Template Pool

Collect

BirdES
STEP1:Pre Classification

STEP2:SQL-To-ES

Note:Different types with different transformation prompts

STEP3:Quality Check

Multi Table

Two Table                   Three Table  ...         

Single Table

Rule
✅

Target Pool

❌ Verify

Initial Pool

SELECT AVG(amount) FROM payments WHERE paymentDate 
BETWEEN '2004-01-01' AND '2004-06-30'

SQL1

query_ratings={...}
query_movies={...}
join_data=pandas.merge(data_r
atings,data_movies)

SELECT ... FROM ratings AS T1 
INNER JOIN movies AS T2 ON 
T1.movie_id = T2.movie_id WHERE 
T2.list_followers > 5 and T1...

SELECT AVG(amount) FROM 
payments WHERE 
paymentDate BETWEEN 
'2004-01-01' AND '2004-06-
30'

query={
“range”:{“gte”: “2004-01-
01”,“lte”: “2004-06-30”},
 “avg”:{“field”:“amount”}
}...

Single

Multiple

A
B
C
D

A
B
C
D

A
B
C
D

A
B
C
D

A
B
C
D

Classify     

A
B
C

4.21

3.11

SQL

5.33
D
E ...

price A
B
C

Category

E
D

Fruit
Meat
Veg.

...

SQL

    MAX             GROUP BY  ...

Check

LED

Figure 2: Detailed flowchart of data construction. On the left, the LED data construction process is depicted, where
Text-ES template pairs are created using multiple experts in collaboration with GPT-4o. The templates are populated
with values from the database, and the constructed data is rewritten using GPT-4o. On the right, the BirdES data
construction process is illustrated, where SQL statements from the Bird dataset in the text-to-SQL domain are
transformed into ES query to build BirdES, which is subsequently evaluated.

2024), which employs a complex pipeline to en-
hance accuracy, alongside DIN-SQL (Pourreza and
Rafiei, 2024a), MBR-Exec (Shi et al., 2022), Coder-
Reviewer (Zhang et al., 2023b), LEVER (Ni et al.,
2023), SELF-DEBUGGING (Chen et al., 2023),
StructGPT (Jiang et al., 2023), Least-to-Most (Tai
et al., 2023). The second category that enhances the
text-to-SQL process through training models. Rep-
resentative works include CodeS (Li et al., 2024a),
which compiles extensive SQL-related data during
its pre-training phase. Other similar works include
Granite (Mishra et al., 2024), CLLM (Kou et al.,
2024), DAIL-SQL (Gao et al., 2023), Symbol-
LLM (Wu et al., 2024), StructLM (Zhuang et al.,
2024), and DTS-SQL (Pourreza and Rafiei, 2024b).
In the field of Text-to-Cypher, the first dataset,
SpCQL, was proposed by (Guo et al., 2022). Addi-
tional contributions in this area include works such
as (Zhao et al., 2022, 2023a; Liang et al., 2024;
Zhao et al., 2023c). Beyond these two domains,
notable efforts include Text-to-CQL (Lu et al.,
2024), which transforms natural language into cor-
pus query statements, and Text-to-SPARQL (Soru
et al., 2017; Luz, 2019; Jung and Kim, 2020; Yin
et al., 2021), which converts natural language into
SPARQL query statements. We propose the text-

to-ES task, bridging the gap in automatic querying
of ES database.

2.2 Domain-Specific Language Generation

DSL is a programming or scripting language de-
signed for specific application domains. Before
LLMs emerged, Akdal et al. (2018a) used Model-
driven techniques to generate ES query. At present,
LLMs excel in generating code for languages like
Python. For instance, Bassamzadeh and Methani
(2024) utilized retrieval augmentation for Web
API DSLs, while autoDSL (Shi et al., 2024) cre-
ated a framework for generating DSLs for non-
displayed query with LLMs, especially for non-
standard experimental constraints. Although Akdal
et al. (2018a) explore integrating heuristic rules
for ES query generation, we propose an advanced
LLM-based text-to-ES task, offering a more stan-
dardized approach for automated query generation.

3 Text-to-ES Task Formulation

Text-to-ES refers to the process of converting a
natural language question Q into an ES query E ca-
pable of retrieving relevant data from ES database.
The schema information can be represented as
S = ⟨F , I⟩, where F and I are fields and indexes

19769



respectively. Text-to-ES can be formulated as:

D, C = f(Q,S | θ),
E = C(D),

(1)

where the function f(· | θ) represents a model with
parameters θ, D represents DSL and C represents
post-processing code. The post-processing code
helps ES execute multi-index queries.

4 Data Construction

4.1 LED
The LED dataset encompasses nearly all common
ES queries from the official documentation2.

4.1.1 Template Construction
The template construction aims to create numerous
Text-ES template pairs, as shown in Figure 2, based
on index mapping information and the DSL types
from the official ES documentation. We collected
a substantial amount of long-text data from open
data platforms such as Kaggle3 and PaperWith-
Code4. Additionally, we incorporated geographic
data to leverage ES’s geographic query capabilities.
After collecting data, we engaged 25 ES experts,
including five industry professionals and twenty
university students. More recruitment details can
be found in Appendix A.4. Experts manually con-
structed a batch of data while simultaneously using
prompts to guide GPT-4o in generating another
batch, ultimately creating 2,783 text-ES template
pairs. More prompt details can be found in Ap-
pendix A.2.1. Then, the experts reviewed and veri-
fied each piece of data. To avoid biases, we monitor
this process. Ultimately, approximately 2,600 text-
ES template pairs were created.

4.1.2 Value Filling
The value-filling step inserts appropriate values
from the value pool into the created templates to
form text-ES pairs. The process of building the
value pool is as follows: We used automated data
retrieval and manual input methods. We extract
relevant data from the ES index for non-open fields,
such as names and geographical locations. For
open fields, such as title keywords, the values are
manually crafted based on the ES index data. One
text-ES template generates approximately ten data
entries. We use Python to execute each data. When

2https://www.elastic.co/query-dsl.html
3https://www.kaggle.com
4https://paperswithcode.com

multiple conditions in a query do not intersect, the
result is empty. In such cases, we adjust the condi-
tions to ensure meaningful results.

4.1.3 Question Rewrite
The question rewrite step is intended to enhance the
semantic richness of the LED data. Some semantic
redundancy occurs in the data generated by tem-
plate construction in the previous phase. To address
this, we carefully rewrite a portion of the problems
as In-Context Learning (ICL) (Dong et al., 2022)
examples, offering clearer guidance for subsequent
rewrites in GPT-4o, thereby enhancing the quality
and diversity of the generated outputs. For imple-
mentation details, refer to Appendix D.8.

4.1.4 Quality Control
In the quality control phase, we concentrated on
two key dimensions: consistency and readability of
the rewritten questions. In terms of consistency, we
rigorously evaluate whether the rewritten questions
align with the corresponding ES query statements.
In terms of readability, our focus is on whether
the logical structure of the rewritten questions is
clear and coherent. We employed a random sam-
pling method, extracting 1,000 samples from the
dataset in three rounds for review. If over 98% of
the samples meet both completeness and readabil-
ity standards, it indicates that the dataset quality
has passed inspection. To ensure data quality, the
authors worked with experts throughout.

4.2 BirdES

Inspired by Zhao et al. (2023b), the BirdES dataset
is derived from the text-to-SQL dataset Bird. ES
has the characteristics of both structured and un-
structured queries, and BirdES can evaluate the
LLM’s ability to generate structured ES queries.
Our SQL-to-ES approach aligns with the methods
used by the ES official documentation and the ES
community to convert SQL into ES.

4.2.1 Pre-Classification
The pre-classification step is designed to catego-
rize the SQL data into different classes. We initially
classify the queries into single-table and multi-table
based on the number of tables involved in the SQL
statements. Furthermore, we classify single-table
queries by keywords into categories such as MAX,
LIKE, GROUP BY, etc. In contrast, multi-table
queries are categorized by the number of tables in-
volved, such as two-table or three-table queries. We

19770

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
https://www.kaggle.com
https://paperswithcode.com


apply different transformation methods according
to the SQL data category.

4.2.2 Single Table Conversion

We employed a human-machine collaboration ap-
proach to convert 2,610 single-table SQL queries
into corresponding single-index ES queries. In de-
tail, We first use GPT-4o to convert Bird data into
corresponding ES queries. Then, we compare the
results of the original SQL queries with those of
the converted ES queries. If both execution results
are consistent, the conversion is deemed successful.
For each instance that fails to convert successfully,
we manually write the corresponding ES query. We
manually converted the 394 single-table entries in
the test set. See Appendix A7 for examples.

4.2.3 Multiple Table Conversion

We also utilized a human-machine collaboration
approach to convert multi-table data. Prompt infor-
mation can be found in Appendix A.3.2. In detail,
we first used post-processing code to address the
challenge of ES not supporting multi-index queries.
We carefully constructed SQL-to-ES examples as
in-context learning (ICL) for GPT-4o, allowing it to
perform an initial transformation on 7,212 records.
For any data that did not pass the transformation,
we manually adjusted it one by one. Additionally,
we manually transformed 1,140 single-table entries
in the test set manually. It is worth mentioning
that we attempted to overcome the limitation of
multi-index queries by converting them into multi-
ple single-index queries. However, we found this
approach unfeasible, and Zhang et al. (2023a) faced
the same constraint.

4.2.4 Quality Control

The quality control step focuses on primarily veri-
fying whether the execution results of the original
SQL and ES are consistent. It is important to note
that discrepancies between the execution results of
ES and SQL do not necessarily indicate that ES
is incorrect. For example, when multiple records
meet the query conditions but only one record is
required, the returned results from SQL and ES are
likely to differ, yet the ES query can still be correct.
This situation requires further confirmation by the
annotator. We consider the ES query correct as
long as the DSL aligns with the question intent. Ul-
timately, we conducted three random samplings of
1,000 entries each, achieving over 90% accuracy.

4.3 Dataset Splitting
At the data split level of the LED dataset, we ran-
domly selected data from the constructed templates
for the dev and test sets, ensuring no two points in
these sets came from the same template. For the
BirdES dataset, we adopted the data split method
used for the Bird dataset. Since Bird does not have
a publicly available test set, we designated the dev
set as the test set for BirdES.

4.4 Data Statistics
The total size of the LED index data is 224.9 GB,
containing 26,207 Text-ES pairs. LED including
23,099 train samples, 1,569 dev samples, and 1,539
test samples. LED has a higher average number of
fields per index, with approximately 37 fields per
index. The total size of the BirdES index data is
33.4 GB, containing 10,962 Text-ES pairs. Nearly
80% of the data consists of multi-index query. The
BirdES dataset contains 9,428 training samples and
1,534 test samples, as shown in Table 2.

Dataset Train Dev Test Total

BirdES 9,428 - 1,534 10,962
LED 23,099 1,569 1,539 26,207

Table 2: Statistics of our constructed BirdES and LED.

5 Experiment

5.1 Experiment Models
We select 16 representative LLMs covering 10 ad-
vanced models and 6 code models as follows:

Advanced Model We used the LLaMA series
models (Touvron et al., 2023) includes {LLaMA2-
7b-Chat, LLaMA2-13b-Chat, LLaMA2-70B-Chat,
LLaMA3-8B-Instruct, and LLaMA3.1-8b} and the
Qwen 2.5-Instruct series models (Yang et al., 2024)
covering {7B, 14B, 32B, 72B}. We also used
DeepSeek-R1, DeepSeek-V3 (Liu et al., 2024),
Claude 3.5-Sonnet (Anthropic, 2024), and GPT-
4o (OpenAI, 2024).

Code Model We utilized the CodeLLaMA-
Instruct series models {7B, 13B, 34B} (Roziere
et al., 2023) and the Qwen2.5-Coder-Instruct series
models {7B, 14B, 32B} (Hui et al., 2024).

Fine-tuning Model Additionally, we selected
Qwen2.5-Coder-14B-Instruct as our base model
and trained it using the training set from the LED

19771



and BirdES datasets, resulting in Qwen2.5-Coder-
14B-FeynMan.

5.2 Experiment Setup
In this section, we clarify the evaluation metrics
and implementation details.

5.2.1 Evaluation Metrics
Domain-Specific Language Exact Match Accu-
racy (DSLEM) refers to the measure of whether
the DSL in a generated query precisely matches
the DSL query in the ground truth. The calculation
formula is as follows:

DSLEM =
1

N

N∑

n=1

1(Qn, Q̂n) (2)

The ground truth DSL is represented as Qn and the
generated DSL as Q̂n. If Qn exactly matches Q̂n,
the function 1(·) is a decision function used to de-
termine whether Qn and Q̂n are equal. The detailed
calculation process is provided in Appendix B.1.

Execution Accuracy (EX) EX refers to the exact
match between the generated query and the ground
truth result. The formula is shown below:

EX =
1

N

N∑

n=1

1(On, Ôn) (3)

The terms On and Ôn represent the final out-
put of the ground truth query code and the model-
generated query code, respectively. The function
1(·) is used to determine whether On and Ôn are
identical, with the detailed calculation process pro-
vided in Appendix B.2.

Valid Efficiency Score (VES) VES reflects the
performance improvement of the generated query
statements compared to the correct answers, based
on the generation of accurate results. The specific
calculation process is outlined below:

VES =
1

N

N∑

n=1

1(Vn, V̂n) ·R(Yn, Ŷn) (4)

Here, Ŷn and V̂n represent the ES query gener-
ated by the model and its corresponding execution
result, while Yn and Vn denote the ground truth ES
query and its execution result. The function 1(·)
is used to determine whether Vn and V̂n are equal.
R(·) is a function that evaluates the efficiency ratio.
Further details can be found in the derivation of
formulas section of Appendix B.3.

5.2.2 Implementation details
Methods and settings Zero shot and three shot
results can be found in Appendix A1 and Ap-
pendix A2. To ensure stability in the experiments,
we set the temperature for all models to 0.0001 and
kept all other hyperparameters at their default val-
ues. The FeynMan training method was LoRA (Hu
et al., 2021), with learning rates and other parame-
ters detailed in the appendix D.3. Additionally, all
experiments in the main results and analysis were
conducted using a one-shot approach. For ICL se-
lection, we utilize the llm-embedder (Zhang et al.,
2024) model to select one example from the train
set.

Human evaluation We further designed a man-
ual answering method. In this approach, we ran-
domly selected 100 samples from both LED and
BirdES and invited three undergraduate students
(different from the data construction team in Sec-
tion 4) to answer the questions. The evaluation
method is consistent with the evaluation of the
model inference results.

5.3 Main Results

The experimental results are presented in the Ta-
ble 3. From the table, we notice that: 1) All
LLMs perform poorly on the LED and BirdES
datasets, with even DeepSeek-R1 achieving only
19.36% in a zero-shot setting. The best-performing
model, Qwen2.5-Coder-FeynMan-14B, achieves
accuracies of 62.31% and 25.25%, respectively.
2) Among models of the same series, larger
models tend to perform better. This is evident
from the performance of the LLaMA2, Qwen2.5,
CodeLLaMA, and Qwen2.5-Coder series models
shown in Table 3. 3) Models fine-tuned with
code outperform their base models. CodeL-
LaMA outperforms LLaMA2 under the same pa-
rameters, and Qwen2.5-Coder models show similar
results. 4) The models fine-tuned on our dataset
outperform their base models. The fine-tuned
two Qwen2.5-14B-Coder-FeynMan significantly
exceed the performance of its base model Qwen2.5-
Coder-14B-Instruct on both LED and BirdES.
The model we trained outperformed DeepSeek-
R1 by 15.63% on the LED and achieved 78%
of DeepSeek-R1’s performance on the BirdES re-
spectively. 5) One-shot demonstration signifi-
cantly improves the performance. The model we
trained improved by 68.63% on LED and 82.30%
on BirdES, and DeepSeek-R1 achieved improve-

19772



Models LED BirdES

DSL-EM EX VES DSL-EM EX VES

Advanced Models

LLaMA3-8B-Instruct (one-shot) 3.37 6.04 5.85 0.07 0.15 0.15
LLaMA3.1-8B-Instruct (one-shot) 10.66 16.89 17.26 0.59 1.17 1.29
LLaMA2-7B-Chat (one-shot) 4.48 5.07 5.06 0 0.22 0.22
LLaMA2-13B-Chat (one-shot) 13.84 24.37 24.51 0 0.39 0.72
LLaMA2-70B-Chat (one-shot) 21.64 26.97 27.45 0.29 0.81 0.74
Qwen2.5-7B-Instruct (one-shot) 0.51 7.01 7.27 1.24 9.61 12.04
Qwen2.5-14B-Instruct (one-shot) 2.14 15.91 16.25 1.62 16.96 19.68
Qwen2.5-32B-Instruct (one-shot) 8.12 27.55 29.11 2.05 23.34 26.74
Qwen2.5-72B-Instruct (one-shot) 27.95 43.28 43.86 2.93 25.03 26.74
DeepSeek-V3 (one-shot) 24.88 42.31 43.15 3.02 24.89 33.94
Claude3.5-Sonnet(one-shot) 35.54 49.78 50.67 1.99 27.91 43.96
GPT-4o (one-shot) 30.15 48.73 49.42 2.35 25.75 35.12
DeepSeek-R1(zero-shot) 2.01 19.36 21.53 2.43 27.83 46.40
DeepSeek-R1(one-shot) 38.80 52.57 53.37 3.46 32.53 49.69

Code Models

CodeLLaMA-7B-Instruct (one-shot) 0.37 5.79 6.20 0 0.39 0.72
CodeLLaMA-13B-Instruct (one-shot) 19.42 26.19 26.20 0.13 0.52 0.43
CodeLLaMA-34B-Instruct (one-shot) 33.91 43.92 44.81 0.81 4.63 4.90
Qwen2.5-Coder-7B-Instruct (one-shot) 2.46 11.24 11.89 1.91 12.99 13.36
Qwen2.5-Coder-14B-Instruct (one-shot) 2.22 19.49 21.64 3.30 22.32 22.96
Qwen2.5-Coder-32B-Instruct (one-shot) 26.57 43.79 44.84 3.34 24.81 28.16

Fine-tuning

Qwen2.5-14B-Coder-FeynMan (zero-shot) 6.88 23.52 24.19 1.54 4.47 3.68
Qwen2.5-14B-Coder-FeynMan (one-shot) 48.27 62.31 63.25 4.04 25.25 23.19

Human Evaluation

Human (sampling) 81.00 95.00 97.29 83.00 99.00 99.56

Table 3: DSLEM denotes Domain-Specific Language Exact Match Accuracy. EX denotes Execution Accuracy.
VES denotes Valid Efficiency Score Performance comparison on LED and BirdES benchmarks. The best results
are highlighted in bold. The second results are highlighted by underline. All zero-shot experimental results can be
found in the appendix A1.

ments of 63.17% and 14.45% on the same datasets.

5.4 Detailed Analysis

In this section, we focus on five problems: (1)
Which types of ES query affect the performance?
(2) Are multiple index ES queries more difficult
than single index? (3) How do the LLMs perform
at different levels of difficulty? (4) Can external
knowledge improve the performance of LLM? (5)
What types of errors can LLMs make in the text-to-
ES benchmark?

5.4.1 Analysis for different types of ES
We categorized the LED dataset questions based
on types from the ES official documentation. For
instance, geography-related queries were classified
as "Geography." Ultimately, we divided the dataset

into six categories: "Specialized," "TermLevel,"
"FullText," "Geography," "Joining," and "Aggrega-
tion." Detailed descriptions of each category are in
Appendix D.4. As shown in Table 4, we draw the
following conclusions: Compared to other models,
Qwen2.5-14B-Coder-FeynMan shows significant
improvement across various categories, achieving
an accuracy of approximately 63% in nearly all
categories, except for "Specialized". This perfor-
mance in the "Specialized" category may stem from
its higher complexity, as shown in Appendix A10.

5.4.2 Analysis for Single and Multiple Index

For the BirdES dataset, we classified queries based
on the number of indices involved, dividing them
into two categories: single-index and multiple-
index. From Table 5, we observe that: 1) All

19773



Models Specialized TermLevel FullText Geography Joining Aggregation

DSLEM EX DSLEM EX DSLEM EX DSLEM EX DSLEM EX DSLEM EX

GPT-4o 28.00 48.58 34.09 50.92 20.80 38.40 51.87 62.15 33.41 45.04 18.61 46.32
DeepSeek-V3 31.88 36.23 24.67 42.67 14.40 28.80 39.33 48.67 20.00 38.00 16.00 51.33
DeepSeek-R1 0.00 14.49 5.33 34.67 0.80 17.76 0.67 8.67 2.67 8.67 0.00 27.33

Claude3.5-Sonnet 34.78 47.65 36.67 50.00 22.40 34.40 52.00 62.47 37.33 46.67 27.33 44.00
Qwen2.5-14B-Coder-Instruct 4.35 10.14 2.00 37.33 0.00 14.40 0.00 13.33 2.00 5.33 2.00 22.67

Qwen2.5-14B-Coder-FeynMan 43.48 46.38 54.00 63.33 34.40 63.45 56.00 64.67 48.67 62.67 48.00 68.00

Table 4: Model Performance on Different Categories in the LED Dataset.

Models Single Multiple

DSLEM EX VES DSLEM EX VES

GPT-4o (zero-shot) 2.8 11.4 12.4 0.4 8.5 12.1
GPT-4o (one-shot) 2.8 34.5 36.5 2.2 13.6 21.9
Claude-3-5-sonnet (zero-shot) 3.95 27.37 29.00 0.26 11.84 23.00
Claude-3-5-sonnet (one-shot) 3.68 37.37 37.00 0.53 24.21 49.00
DeepSeek-R1 (zero-shot) 7.89 33.68 35.00 0.26 23.95 43.00
DeepSeek-R1 (one-shot) 5.00 42.11 42.00 4.21 26.84 57.00

Qwen2.5-14B-Coder-FeynMan (zero-shot) 1.58 7.63 5.00 2.11 3.68 3.00
Qwen2.5-14B-Coder-FeynMan (one-shot) 2.89 36.84 36.00 4.47 18.68 16.00

Table 5: Performance of Different Models in Single-
Index and Multi-Index Scenarios

models performed better on the Single-Index than
on the Multi-Index, with average improvements
of over 12.45% in EX. 2) One-shot demonstra-
tion is limited for Multiple-Index. For example,
the average improvement of LLMs on the single-
index query is 17.68%, while it is 8.83% for the
multi-index query. This highlights the challenges
of multi-index in text-to-ES tasks.

5.4.3 Analysis for different levels of difficulty
We follow the prior work (Li et al., 2024b) and
set three levels {simple, moderate, challenging} in
BirdES aligned with the Bird dataset. The results of
different models at varying levels of difficulty are
shown in Figure 3. Our experimental results clearly
demonstrate that as the complexity of the input data
increases, there is a corresponding and measurable
degradation in model performance. This indicates
that challenging SQL query continue to pose diffi-
culties for ES query.

5.4.4 Analysis for incorporating external
knowledge

Leveraging the external knowledge from the Bird
dataset, we explore the impact on our task. We used
all 7 models of Qwen2.5 along with GPT-4o and
FeynMan in both "with knowledge" and "without
knowledge" settings. Experimental results demon-
strate that the with-knowledge setting yields signif-
icant improvements across all evaluation metrics
(DSLEM, EX, and VES) compared to the without-
knowledge setting. The average results in Table 6

Figure 3: Trend of Model Performance with Increasing
Difficulty.

show improved performance on all three metrics
with knowledge, with EX and VES increasing by
about 10%.

5.4.5 Error Analysis

Figure 4: Distribution of error types.

To guide future research on LLMs in text-to-ES
tasks, we analyze 100 error samples from FeynMan
and DeepSeek-R1. After manual review, we cate-
gorized three error types: (a) generating the wrong
post-processing code(GWPC), (b) using the wrong
keywords (UWK), and (c) index join error (IJE).
The error distribution is shown in Figure 4. In the
LED dataset, the main error type for DeepSeek-R1
and FeynMan is UWK. In the BirdES dataset, the
primary error types for DeepSeek-R1 and Feyn-
Man are IJE and UWK. Detailed examples of each
category are provided in the Appendix D.7.

19774



Models without knowledge with knowledge

DSLEM EX VES DSLEM EX VES

Qwen2.5-7B-Instruct 1.24 9.61 12.04 1.68 13.36 15.13
Qwen2.5-14B-Instruct 1.62 16.96 19.68 2.56 22.02 24.21
Qwen2.5-32B-Instruct 2.05 23.34 26.74 3.02 33.77 38.49
Qwen2.5-72B-Instruct 2.93 25.03 26.74 5.07 35.09 38.20
Qwen2.5-Coder-7B-Instruct 1.91 12.99 13.36 2.86 14.83 16.27
Qwen2.5-Coder-14B-Instruct 3.34 22.32 22.96 4.91 31.57 33.16
Qwen2.5-Coder-32B-Instruct 3.30 24.81 28.16 5.72 37.59 40.32
GPT-4o 2.35 25.75 35.12 7.78 42.80 44.89

Qwen2.5-14B-Coder-FeynMan 4.04 25.25 23.19 7.05 40.61 37.82

Table 6: Performance comparison on LED and BirdES benchmarks. The best results are highlighted in bold. The
base model is Qwen2.5-Coder-14B-Instruct. In the Qwen2.5-14B-Coder-FeynMan results, the left side denotes
training without knowledge, while the right side indicates training with knowledge.

6 Conclusion

In this paper, we first propose the text-to-ES task
and leverage large language models to generate
Domain-Specific Language and post-processing
code to support multi-index Elasticsearch query.
Based on our constructed LED and BirdES datasets,
we introduce a comprehensive text-to-ES bench-
mark. Additionally, we conduct extensive eval-
uations and analyses using ten advanced LLMs
and six code-focused LLMs. Our trained model
achieved outstanding results. Furthermore, we per-
form manual sampling assessments on our datasets.
We hope that our work will contribute to advancing
real-world applications of text-to-ES research.

Limitation

(1) Our dataset labeling requires collaboration be-
tween humans and GPT-4o, and we cannot fully
rely on GPT-4o for automated labeling yet. (2)
We explored methods to improve text-to-ES per-
formance on models in the 14B parameter range,
but we also focused on enhancement methods for
smaller models, such as those in the 7B range. (3)
When constructing the Value Pool, many field val-
ues are manually generated, which is inefficient.
We can directly generate these values based on the
ES index descriptions using LLMs. (4) In the pro-
cess of converting SQL to ES, we are currently
using prompts for an end-to-end conversion, which
is a somewhat singular approach. Given that both
SQL and DSL are structured query formats, we
could enhance efficiency by combining LLMs with
heuristic methods for the conversion.

Ethical Considerations

Our dataset does not involve any task privacy issues.
Additionally, the dataset was verified by ES experts
to ensure high quality. We will release the datasets
publicly for research purposes in the future. To our
knowledge, we are not aware of any other potential
ethical implications of the proposed dataset.

Acknowledgments

We would like to express our sincere gratitude to
the anonymous reviewers for their valuable feed-
back. We also thank the Chairs and the orga-
nizing staff for their dedicated efforts in facili-
tating this work. We especially thank Yongqi
Fan for his thoughtful guidance on the motivation
and dataset design. This paper was supported by
the National Natural Science Foundation of China
(No. 62306112), Shanghai Sailing Program (No.
23YF1409400), and Shanghai Pilot Program for
Basic Research (No. 22TQ1400100-20).

References
Berkay Akdal, Zehra Gül Çabuk Keskin, Erdem Eser

Ekinci, and Geylani Kardast. 2018a. Model-driven
query generation for elasticsearch. In 2018 Federated
Conference on Computer Science and Information
Systems (FedCSIS), pages 853–862. IEEE.

Berkay Akdal, Zehra GÃijl ÃĞabuk Keskin, Er-
dem Eser Ekinci, and Geylani Kardast. 2018b.
Model-driven query generation for elasticsearch. In
2018 Federated Conference on Computer Science
and Information Systems (FedCSIS), pages 853–862.

Anthropic. 2024. Hello anthropic,. Technical report,
Claude.

19775

https://www.anthropic.com


Nastaran Bassamzadeh and Chhaya Methani. 2024.
Plan with code: Comparing approaches for robust nl
to dsl generation. arXiv preprint arXiv:2408.08335.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and
Denny Zhou. 2023. Teaching large language models
to self-debug. arXiv preprint arXiv:2304.05128.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiy-
ong Wu, Baobao Chang, Xu Sun, Jingjing Xu, and
Zhifang Sui. 2022. A survey on in-context learning.
arXiv preprint arXiv:2301.00234.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2023.
Text-to-sql empowered by large language mod-
els: A benchmark evaluation. arXiv preprint
arXiv:2308.15363.

Aibo Guo, Xinyi Li, Guanchen Xiao, Zhen Tan, and Xi-
ang Zhao. 2022. Spcql: A semantic parsing dataset
for converting natural language into cypher. In Pro-
ceedings of the 31st ACM International Conference
on Information & Knowledge Management, pages
3973–3977.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. 2024. Qwen2. 5-coder
technical report. arXiv preprint arXiv:2409.12186.

Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye,
Wayne Xin Zhao, and Ji-Rong Wen. 2023. Struct-
gpt: A general framework for large language model
to reason over structured data. arXiv preprint
arXiv:2305.09645.

Haemin Jung and Wooju Kim. 2020. Automated con-
version from natural language query to sparql query.
Journal of Intelligent Information Systems, 55(3):501–
520.

Siqi Kou, Lanxiang Hu, Zhezhi He, Zhijie Deng, and
Hao Zhang. 2024. Cllms: Consistency large lan-
guage models. arXiv preprint arXiv:2403.00835.

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xi-
aokang Zhang, Jun Zhu, Renjie Wei, Hongyan Pan,
Cuiping Li, and Hong Chen. 2024a. Codes: Towards
building open-source language models for text-to-sql.
Proceedings of the ACM on Management of Data,
2(3):1–28.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua
Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying
Geng, Nan Huo, et al. 2024b. Can llm already serve
as a database interface? a big bench for large-scale
database grounded text-to-sqls. Advances in Neural
Information Processing Systems, 36.

Yuan-Lin Liang, Chih-Yung Chang, and Shih-Jung Wu.
2024. Kei-cql: A keyword extraction and infilling
framework for text to cypher query language trans-
lation. International Journal of Design, Analysis &
Tools for Integrated Circuits & Systems, 13(1).

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, et al. 2024.
Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437.

Luming Lu, Jiyuan An, Yujie Wang, Cunliang Kong,
Zhenghao Liu, Shuo Wang, Haozhe Lin, Mingwei
Fang, Yaping Huang, Erhong Yang, et al. 2024. From
text to cql: Bridging natural language and corpus
search engine. arXiv preprint arXiv:2402.13740.

Fabiano Ferreira Luz. 2019. Deep neural semantic pars-
ing: translating from natural language into SPARQL.
Ph.D. thesis, Universidade de São Paulo.

Mayank Mishra, Matt Stallone, Gaoyuan Zhang, Yikang
Shen, Aditya Prasad, Adriana Meza Soria, Michele
Merler, Parameswaran Selvam, Saptha Surendran,
Shivdeep Singh, et al. 2024. Granite code models:
A family of open foundation models for code intelli-
gence. arXiv preprint arXiv:2405.04324.

Ansong Ni, Srini Iyer, Dragomir Radev, Veselin Stoy-
anov, Wen-tau Yih, Sida Wang, and Xi Victoria Lin.
2023. Lever: Learning to verify language-to-code
generation with execution. In International Con-
ference on Machine Learning, pages 26106–26128.
PMLR.

OpenAI. 2024. Hello gpt-4o. Technical report, OpenAI.

Mohammadreza Pourreza and Davood Rafiei. 2024a.
Din-sql: Decomposed in-context learning of text-to-
sql with self-correction. Advances in Neural Infor-
mation Processing Systems, 36.

Mohammadreza Pourreza and Davood Rafiei. 2024b.
Dts-sql: Decomposed text-to-sql with small large
language models. arXiv preprint arXiv:2402.01117.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Freda Shi, Daniel Fried, Marjan Ghazvininejad, Luke
Zettlemoyer, and Sida I Wang. 2022. Natural lan-
guage to code translation with execution. arXiv
preprint arXiv:2204.11454.

19776

https://openai.com/index/hello-gpt-4o/


Yu-Zhe Shi, Haofei Hou, Zhangqian Bi, Fanxu Meng,
Xiang Wei, Lecheng Ruan, and Qining Wang. 2024.
Autodsl: Automated domain-specific language de-
sign for structural representation of procedures with
constraints. arXiv preprint arXiv:2406.12324.

Tommaso Soru, Edgard Marx, Diego Moussallem, Gus-
tavo Publio, André Valdestilhas, Diego Esteves, and
Ciro Baron Neto. 2017. Sparql as a foreign language.
In SEMANTiCS (Posters & Demos).

Michael Staniek, Raphael Schumann, Maike Züfle, and
Stefan Riezler. 2024. Text-to-overpassql: A natural
language interface for complex geodata querying of
openstreetmap. Transactions of the Association for
Computational Linguistics, 12:562–575.

Chang-You Tai, Ziru Chen, Tianshu Zhang, Xiang Deng,
and Huan Sun. 2023. Exploring chain-of-thought
style prompting for text-to-sql. arXiv preprint
arXiv:2305.14215.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Xiaoqian Wu, Yong-Lu Li, Jianhua Sun, and Cewu Lu.
2024. Symbol-llm: leverage language models for
symbolic system in visual human activity reasoning.
Advances in Neural Information Processing Systems,
36.

Yuanzhen Xie, Xinzhou Jin, Tao Xie, MingXiong Lin,
Liang Chen, Chenyun Yu, Lei Cheng, ChengXiang
Zhuo, Bo Hu, and Zang Li. 2024. Decomposition
for enhancing attention: Improving llm-based text-
to-sql through workflow paradigm. arXiv preprint
arXiv:2402.10671.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, et al. 2024. Qwen2
technical report. arXiv preprint arXiv:2407.10671.

Xiaoyu Yin, Dagmar Gromann, and Sebastian Rudolph.
2021. Neural machine translating from natural lan-
guage to sparql. Future Generation Computer Sys-
tems, 117:510–519.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
arXiv preprint arXiv:1809.08887.

Hanchong Zhang, Ruisheng Cao, Lu Chen, Hongshen
Xu, and Kai Yu. 2023a. Act-sql: In-context learning
for text-to-sql with automatically-generated chain-of-
thought. arXiv preprint arXiv:2310.17342.

Peitian Zhang, Zheng Liu, Shitao Xiao, Zhicheng Dou,
and Jian-Yun Nie. 2024. A multi-task embedder for
retrieval augmented llms. In Proceedings of the 62nd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 3537–
3553.

Tianyi Zhang, Tao Yu, Tatsunori Hashimoto, Mike
Lewis, Wen-tau Yih, Daniel Fried, and Sida Wang.
2023b. Coder reviewer reranking for code generation.
In International Conference on Machine Learning,
pages 41832–41846. PMLR.

Ziyu Zhao, Wei Liu, Tim French, and Michael Stewart.
2023a. Cyspider: A neural semantic parsing corpus
with baseline models for property graphs. In Aus-
tralasian Joint Conference on Artificial Intelligence,
pages 120–132. Springer.

Ziyu Zhao, Wei Liu, Tim French, and Michael Stewart.
2023b. Cyspider: A neural semantic parsing cor-
pus with&nbsp;baseline models for&nbsp;property
graphs. In AI 2023: Advances in Artificial Intelli-
gence: 36th Australasian Joint Conference on Ar-
tificial Intelligence, AI 2023, Brisbane, QLD, Aus-
tralia, November 28âĂŞDecember 1, 2023, Proceed-
ings, Part II, page 120âĂŞ132, Berlin, Heidelberg.
Springer-Verlag.

Ziyu Zhao, Wei Liu, Tim French, and Michael Stew-
art. 2023c. Rel2graph: Automated mapping from
relational databases to a unified property knowledge
graph. arXiv preprint arXiv:2310.01080.

Ziyu Zhao, Michael Stewart, Wei Liu, Tim French, and
Melinda Hodkiewicz. 2022. Natural language query
for technical knowledge graph navigation. In Aus-
tralasian Conference on Data Mining, pages 176–
191. Springer.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries from
natural language using reinforcement learning. arXiv
preprint arXiv:1709.00103.

Alex Zhuang, Ge Zhang, Tianyu Zheng, Xinrun Du,
Junjie Wang, Weiming Ren, Stephen W Huang,
Jie Fu, Xiang Yue, and Wenhu Chen. 2024.
Structlm: Towards building generalist models for
structured knowledge grounding. arXiv preprint
arXiv:2402.16671.

19777

https://doi.org/10.1007/978-981-99-8391-9_10
https://doi.org/10.1007/978-981-99-8391-9_10
https://doi.org/10.1007/978-981-99-8391-9_10


A Details of Our Datasets

A.1 Text-to-ES

Text: Identify the names and IDs of meteorites that belong to the class H4 and have a longitude between 
138.187 and -88.049.

# Query DSL
query = {
    "query": {
        "bool": {
            "must": [
                {"term": {"class.keyword": "H4"}},
                {"geo_bounding_box": {
                        "geolocation": {
                            "top_left": {
                                "lat": 90.0,
                                "lon": 138.187},
                            "bottom_right": {
                                "lat": -90.0,
                                "lon": -88.049}}
                    }
                }
            ]
        }},
    "_source": ["name", "id"]
}
index_name = "nasa_meteorites"
# Post Process Code
response = esclient.search(index=index_name, body=query)
result = [(hit['_source']['name'], hit['_source']['id']) for hit in response['hits']['hits']]

ES:

Figure A1: Example of LED text-to-ES

Text: Provide a list of titles together with its publisher name for all publishers located in the USA.

# Query DSL1
# Step 1: Query the `book_publishing_company_publishers` index to get documents where `country` is 'USA'
query_publishers = {
    "query": {"term": {"country.keyword": "USA"}}}
response_hits = [doc["_source"] for doc in scan(client=esclient, index="book_publishing_company_publishers", body=query_publishers, 
size=10000)]
# Extract fields for future use
publishers_data = [(hit["pub_id"], hit["pub_name"]) for hit in response_hits]

# Convert to DataFrame for ease of handling
publishers_df = pd.DataFrame(publishers_data, columns=["pub_id", "pub_name"])
# Query DSL2
# Step 2: Query the `book_publishing_company_titles` index to get all documents
query_titles = {
    "query": {"match_all": {}}}
response_hits = [doc["_source"] for doc in scan(client=esclient, index="book_publishing_company_titles", body=query_titles, size=10000)]
# Extract fields for future use
titles_data = [(hit["pub_id"], hit["title"]) for hit in response_hits]
# Post Process Code
# Convert to DataFrame for ease of handling
titles_df = pd.DataFrame(titles_data, columns=["pub_id", "title"])

# Step 3: Perform the inner join between the two DataFrames on `pub_id`
result_df = pd.merge(titles_df, publishers_df, on="pub_id", how="inner")

# Step 4: Convert the result into a list of tuples format
result = [(row["title"], row["pub_name"]) for _, row in result_df.iterrows()]

ES:

Figure A2: Example of BirdES text-to-ES

Figures A1 and A2 illustrate common queries for Single-Index and Cross-Index queries, respectively.
The paradigm we propose is to convert users’ natural language queries, which express their intent, into
DSL and Post Process Code.

19778



A.2 LED
A.2.1 Template Construction

SYSTEM:
Your task is to help me construct a query template for elasticsearch based on the information related to the elasticsearch index.
The template consists of two parts, one part is the question template composed of natural language and the other part is the es query
template composed of DSL+python.
My ultimate goal is to construct the real data by filling the template with values.
When a DSL query is executed using python code, the result of the query is stored into the 'response' variable, which is then parsed using the
tuple list [(),()...] to parse out the content mentioned in the question from the response.
Please generate as many templates as possible, with the requirement to cover as many types of DSL queries as possible.
Generate {size} pairs of template data.
Question should be expressed in a variety of ways, rather than using a single question.
If a join type field exists, generate a query corresponding to the has_child and has_parent types.
# index name：
{index_name}
 
# index data summary:
{index_introduction}
 
# index mappings information:
{index_mappings}
 
# index field description:
{index_field_descritpion}
 
# An example of index fields value:
{index_field_value}
 
# Please refer to the example given to you below for your output format
[START]
question_template : "Locate and retrieve all meteorites whose mass falls within the range of [template_min_mass] to [template_max_mass] ,
belong to the category [template_category], and are located within a circular region centered at the coordinates (template_lat, template_lon)
with a radius of [template_X] kilometers.",
query_template:
```py
query="{{
  "query": {{
    "bool": {{
      "must": [
        {{
          "range": {{
            "mass": {{
              "gte": template_min_mass,
              "lte": template_max_mass
            }}
          }}
        }},
  {{
          "match": {{
            "class": template_category
          }}
        }}
      ],
      "filter": {{
        "geo_shape": {{
          "geolocation": {{
            "shape": {{
              "type": "circle",
              "coordinates": [template_lon, template_lat],
              "radius": "template_Xkm"
            }},
            "relation": "within"
          }}
        }}
      }}
    }}
  }},
  "_source": ["geolocation"]
}}
index_name="nasa_meteorites"
response = esclient.search(index=index_name,body=query)
result = [(hit['_source']['geolocation'],) for hit in response['hits']['hits']]"
```
[END]
 
# Your answer goes here:
[START]
question_template:
query_template:
[END]

Figure A3: The prompt used to construct templates of LED dataset

The prompt defines templates for the LED dataset, combining natural language questions and Elastic-
search DSL queries. It supports complex queries, for generating diverse and structured data.

19779



A.2.2 Question Rewrite

INSTRUCTION:
Please rewrite the following question while maintaining its original semantics. The rewritten question should convey the same core information
but explore different sentence structures, such as statements, questions, commands, or other creative formats. Avoid starting with fixed
formats, and try to employ diverse sentence structures and expressions. Aim to enhance the diversity of expressions while ensuring the
question’s intent and clarity remain intact, and strive for a unique and creative phrasing.

Original question: {question}
Rewritten question:

EXAMPLE:
Original question: Retrieve all cities located in Latvia within the Europe region that have a latitude greater than -4.620975614106303 and less
than 88.99647265103685.
Rewritten question:
# Here are some examples of rewriting given as references. Based on these examples, create more ways of rewriting divergently, but you only
need to reply with one rewriting answer.
1. I would like to know which cities in Latvia, Europe, have latitudes between -4.620975614106303 and 88.99647265103685.
2. List every city in Latvia, part of the Europe region, whose latitude falls between -4.620975614106303 and 88.99647265103685.
3. In european region, which cities locate in Latvian region with latitudes ranging from -4.620975614106303 to 88.99647265103685?

NOTE:
1. Do not add any other extra information.
2. Your answer only needs to provide a rewritten question, do not reply with any additional information.

Figure A4: Prompt for rewriting the questions in the LED dataset

This prompt is designed to rewrite questions in the LED dataset to maintain original meaning while
enhancing diversity.

A.3 BirdES
A.3.1 Single index

INSTRUCTION:
Convert the SQL query statement into a complete Elasticsearch query based on the Python client.The Elasticsearch's version is 8.11.2

CONSTRAINT:
1. Prohibit the use of bucket scripts
2.There is no need to define the Elasticsearch client in the generated code as the Elasticsearch client "esclient" is already provided, use
"esclient" directly.
3.The index name of Elasticsearch is lowercase of the SQL table name,using underline '_' to replace space ' ' in table name.
4.The final result should be stored in the "result" variable without printing it.
5.The equality sign in SQL is equivalent to an exact match (use field.keyword) in query.
6. If the return result of SQL involves addition, subtraction, multiplication, and division operations, please implement it in Python code.
7. When calculating the total quantity using count (*), use "field": "_index" instead of "_id"
8.Use script when judgment logic occurs.
9.When encountering nested queries, convert step by step.
10.Using the SCAN function for querying instead of search function, the scan function has been declared and can be used directly.

EXAMPLE:
sql:```sql{SQL_Example}```    ES:```py{ES_Example}```

Please provide the above information to convert this SQL into a query using Elasticsearch+Code.Don't generate other content.
SQL:{sql}
ES:

Figure A5: Prompt for transforming single table data from the Bird dataset into the BirdES dataset

The prompt provides instructions and constraints for converting single-table SQL queries from the Bird
dataset into Elasticsearch queries to generate the BirdES dataset.

19780



A.3.2 Multiple indexes

### Task Description:
You need to convert the following MySQL query into an equivalent Elasticsearch query and implement it using the Python client. During the
conversion process, consider the data model, query conditions, and result processing to ensure the final results are consistent with the
behavior of the MySQL query.

### MySQL Query:
{sql}
### Data Model
{data_model}

### Conversion Steps:
Please follow these steps to complete the conversion:
1. **Parse the MySQL Query**:
    - Extract SELECT, FROM, JOIN, WHERE, GROUP BY, HAVING, ORDER BY, LIMIT clauses from the MySQL query.
    - Identify the tables involved and their join conditions.

2. **Construct the Elasticsearch Query**:
    - Build the equivalent Elasticsearch query JSON structure based on the MySQL query clauses.
    - Consider using the scan API to handle pagination and large data sets.

3. **Implement the Python Client Code**:
    - Use the elasticsearch Python client to construct and execute the query, and process the query results.
      - Firstly, use the ES query statement to filter out documents that meet the where criteria, and then use the Pandas library method to
convert the ES query results to DataFrame format and perform an inner join operation. Then, use the methods provided by the Pandas library
to implement group by and order by operations in SQL statements, and finally store the results in a list tuple data structure, with each tuple
representing a row of data that meets the criteria.
    - Handle possible null values (None) and duplicate values to ensure the final result is consistent with the MySQL query.

### Example:
#### MySQL Query:
sql:
```sql
{SQL_Example}
```

### Data Model
Data Model:
```data model
**Index Name 1**:`public_review_platform_days`
{{
    "mappings": {{
        "properties": {{
            "day_id": {{
                "type": "long"
            }}
        }}
    }}
}}
...
```
Elasticsearch Implementation in Python:
{ES_Example}
### Notes
1. Ensure to handle null values (None) and duplicate values to avoid calculation errors.
...
### Your Answer:

Figure A6: Prompt for transforming multi-table data from the Bird dataset into the BirdES dataset

The prompt provides instructions and constraints for converting multiple-table SQL queries from the
Bird dataset into Elasticsearch queries to generate the BirdES dataset.

A.4 Human Annotation
We hired 25 annotators, including 5 ES experts and 20 students who are familiar with ES. The annotations
mentioned in the article are first performed by the students, and then the experts check whether the
annotation accuracy reaches 90%. If it does not reach 90%, the students continue annotating. The total
cost for the annotations was $5,000.

A.5 Sql-to-ES
Figure A7 shows an example of converting SQL to ES. On the left side, the single table query’s SQL
WHERE conditions are mapped to the "query" section of the DSL query, while AVG(list_followers)
is mapped to the "aggregation" section of the DSL query. On the right side, multiple table query are
converted into ES queries in a Cross-index Query scenario. The two SQL tables, "lists" and "lists_user,"
correspond to the two ES indexes, "lists" and "lists_user."The WHERE conditions from the original SQL
are used to query both indexes separately, and then the JOIN conditions from the original SQL are applied
to perform an Index_JOIN using the pandas merge method, ultimately returning the results.

19781



SELECT AVG(list_followers) FROM lists WHERE list_movie_number > 200

SQL:

ES:

# Query DSL
query = {
    "query": {
        "range": {
            "list_movie_number": {
                "gt": 200
            }
        }
    },
    "aggs":{
        "avg_list":{
            "avg":{
                "field":"list_followers"
            }
        }
    }
}
#Post Process Code

index_name = "lists"

response = esclient.search(index=index_name,body=query)

result=(response['aggregations']['avg_list']['value'],)

SQL:

ES:

SELECT T2.user_trialist FROM lists AS T1 INNER JOIN lists_users AS T2 ON T1.list_id = 
T2.list_id AND T1.user_id = T2.user_id WHERE T1.list_title = '250 Favourite Films'

# Step 1: Query the `movie_platform_lists` index to get documents where `list_title` is '250 Favourite 
Films'
query_movie_platform_lists = {"query": {"term": {"list_title.keyword": "250 Favourite Films"}}\
}
response_hits_lists = [doc["_source"] for doc in scan(client=esclient, index="movie_platform_lists", 
body=query_movie_platform_lists, size=10000)]

# Extract necessary fields for further processing
data_lists = [(hit["list_id"], hit["user_id"]) for hit in response_hits_lists]

# Step 2: Convert the extracted data into DataFrame format
df_lists = pd.DataFrame(data_lists, columns=["T1_list_id", "T1_user_id"])

# Step 3: Query the `movie_platform_lists_users` index to get all documents
query_movie_platform_lists_users = {
    "query": {
        "match_all": {}}
}
response_hits_lists_users = [
doc["_source"] for doc in scan(client=esclient, index="movie_platform_lists_users", 
body=query_movie_platform_lists_users, size=10000)]
# Extract necessary fields for further processing
data_lists_users = [(hit["list_id"], hit["user_id"], hit["user_trialist"]) for hit in response_hits_lists_users]

# Step 4: Convert the extracted data into DataFrame format
df_lists_users = pd.DataFrame(data_lists_users, columns=["T2_list_id", "T2_user_id", "user_trialist"])

# Step 5: Use Pandas to perform the inner join on DataFrames
joined_data = pd.merge(df_lists, df_lists_users, left_on=
["T1_list_id", "T1_user_id"], right_on=["T2_list_id", "T2_user_id"], how="inner")

# Step 6: Extract the 'user_trialist' field from the joined data and store it in the result list of tuples
result = [(row["user_trialist"],) for index, row in joined_data.iterrows()]

Figure A7: Example of transform SQL into ES

A.6 Other Notes
We strictly adhered to the usage guidelines of the Bird (Li et al., 2024b) dataset while constructing BirdES,
and the dataset we created does not contain any offensive content.

19782



B Supplement of Evaluation Metrics

B.1 DSLEM

1(Qn, Q̂n) =

{
1, Qn = Q̂n

0, Qn ̸= Q̂n

If Qn exactly matches Q̂n, the result is assigned a value of 1; otherwise, it is assigned a value of 0.

B.2 EX

1(On, Ôn) =

{
1, On = Ôn

0, On ̸= Ôn

If On and Ôn are exactly equal, the function 1(·) returns 1; otherwise, it returns 0.

B.3 VES

1(Vn, V̂n) =

{
1, Vn = V̂n

0, Vn ̸= V̂n

If Vn and V̂n are equal, the function 1(·) returns 1; otherwise, it returns 0. R(·) is defined as follows:

R
(
Yn, Ŷn

)
=

√√√√ E (Yn)

E
(
Ŷn

)

E(·) is a metric for calculating the execution time of ES queries. By comparing the actual execution time
of an ES query with the time taken to generate the ES query, we determine whether the model-generated
ES queries are more efficient.

19783



C Experimental Prompt

C.1 zero-shot

SYSTEM:Please write the necessary Elasticsearch query and Python code based on the given question and 
Elasticsearch index mapping information. Ensure that the syntax is correct and that the query fulfills the 
question's requirements and can be executed. The esclient=Elasticsearch() has already been defined, so 
there is no need to define it again; use esclient directly for querying. I'll provide the relevant mapping 
information in markdown format, where is_keyword denotes if a field is defined as a keyword type as well. 
Generate only code and nothing else.Code format sample:
```py
#Elasticsearch DSL query
query={{}}

#Use search or scan to get data 
response = esclient._()

#Store the final query execution result in tuple list format in the result variable
result =[(),]
```

INDICES DESCRIPTION:
{indices_desc}
QUESTION:{question}
ANSWER:

Figure A8: Prompt of zero-shot for LED, BirdES

C.2 few-shot

SYSTEM:Please write the necessary Elasticsearch query and Python code based on the given question and 
Elasticsearch index mapping information. Ensure that the syntax is correct and that the query fulfills the question's 
requirements and can be executed. The esclient=Elasticsearch() has already been defined, so there is no need to 
define it again; use esclient directly for querying. I'll provide the relevant mapping information in markdown format, 
where is_keyword denotes if a field is defined as a keyword type as well. Code format sample:
```py
#Elasticsearch DSL query
query={{}}
#Use search or scan to get data 
response = esclient._()

#Store the final query execution result in tuple list format in the result variable
result =[(),]
```
Examples:
INDICES DESCRIPTION:
{indices_desc1}
QUESTION:{question1}
ANSWER:{answer1}

INDICES DESCRIPTION:
{indices_desc}
QUESTION:{question}
ANSWER:

Figure A9: Prompt of few-shot for LED, BirdES

Figure A8 and Figure A2 are the prompt templates used in our experiments, where indices_desc refers
to the description information of the indexes.

19784



D Supplement of Experiment

D.1 zero-shot results

Models LED BirdES

DSL-EM EX VES DSL-EM EX VES

Advanced Models

LLaMA2-7B 0 0 0 0 0 0
LLaMA2-7B-Chat 0 0 0 0 0 0
LLaMA2-13B 0 0 0 0 0 0
LLaMA2-13B-Chat 0 0 0 0 0 0
LLaMA3-8B 0 0 0 0 0 0
LLaMA3-8B-Instruct 0 0 0 0 0 0
LLaMA3.1-8B 0 0 0 0 0 0
LLaMA3.1-8B-Instruct 0.06 0.12 0.13 0 0.07 0.13
Qwen2.5-7B-Instruct 0.13 2.92 0.19 0 0 0
Qwen2.5-14B-Instruct 0 5.84 6.59 0 0.44 0.51
Qwen2.5-32B-Instruct 0 9.74 10.88 0 3.67 4.53
Qwen2.5-72B-Instruct 0.83 17.86 20.14 0.29 12.33 17.68
Qwen1.5-7B 0 0 0 0 0 0
Qwen1.5-7B-Chat 0 0 0 0 0 0
Claude3.5 Sonnet 3.19 19.17 20.66 1.24 16.82 29.73
DeepSeek V3 5.32 21.96 23.24 1.83 13.21 21.42
DeepSeek R1 2.01 19.36 21.53 2.43 27.83 46.40
GPT4o 3.15 25.05 26.08 0.98 11.93 18.69

Code Models

CodeLLaMA-7B 0 0 0 0 0.13 0.41
CodeLLaMA-7B-Instruct 0 0 0 0.06 0.13 0.43
CodeLLaMA-13B 0 0.06 0.15 0 0 0
CodeLLaMA-13B-Instruct 0 0 0 0 0 0
CodeLLaMA-34B-Instruct 0 3.19 3.25 0 0 0
CodeQwen1.5-7B 0 0 0 0 0.52 1.15
CodeQwen1.5-7B-Chat 0 0.06 0.06 0 0 0
Deepseek-Coder-6.7B-Base 0 0 0 0 0 0
Deepseek-Coder-6.7B-Instruct 0 0 0 0 0 0
Qwen2.5-Coder-7B-Instruct (Hui et al., 2024) 0.19 7.53 7.66 0 0 0
Qwen2.5-Coder-14B-Instruct 0 5.84 6.59 0 1.46 3.60
Qwen2.5-Coder-32B-Instruct 0.38 15.72 17.83 0 4.91 5.41

Fine-tuning

Qwen2.5-14B-Coder-FeynMan 6.88 23.52 24.19 1.54 4.47 3.68

Table A1: Performance of zero-shot on LED and BirdES

D.2 three-shot results

D.3 Training Details and Hyper-parameters

We fine-tuned the Qwen2.5-Coder-14B-Instruct model on the training datasets of LED and BirdES,
resulting in our model Qwen2.5-Coder-14B-FeynMan. We trained on four A100 (40GB) GPUs for
approximately 16 hours, with the final loss reduced to around 0.09. We trained for one epoch with a
learning rate of 5× 10−5, utilizing a cosine scheduler.

19785



Models LED BirdES

DSL-EM EX VES DSL-EM EX VES

Advanced Models

DeepSeek R1(three-shot) 39.33 53.72 52.69 4.79 32.77 52.18

Fine-tuning

Qwen2.5-14B-Coder-FeynMan(three-shot) 47.59 63.74 65.89 4.34 26.12 26.69

Table A2: Performance of three-shot on LED and BirdES

D.4 Details types introduction

We have categorized the data into six groups based on the functionality of keywords, referencing the
classification method from the official documentation, which is noted in the main text as footnote 2.
TermLevel involves precise search categories, such as range searches and exact matches. Fulltext
pertains to ES queries aimed at strings, commonly used for full-text search. Geograph focuses on ES
queries related to geographic data structures, such as Geo-grid searches. Joining relates to ES nested and
parent/child type queries. Specialized includes specific queries, such as using scripts in DSL for querying.
Finally, Aggregation refers to ES queries aimed at statistical analysis, such as max and min.

D.5 Specialized example

The script type under the Specialized category allows for writing complex painless code in DSL statements,
as shown in Figure A10.

Figure A10: Example of Specidalized

D.6 Details for ablation

As illustrated in Table A4 Without the provided knowledge information, the model cannot know to use ’h’
and ’c’ to represent carbon and hydrogen.

D.7 Error examples

For detailed examples, see A5.

19786



Models without knowledge with knowledge

DSLEM EX VES DSLEM EX VES

Qwen2.5-7B-Instruct (Yang et al., 2024) 1.24 9.61 12.04 1.68 13.36 15.13
Qwen2.5-14B-Instruct (Yang et al., 2024) 1.62 16.96 19.68 2.56 22.02 24.21
Qwen2.5-32B-Instruct 2.05 23.34 26.74 3.02 33.77 38.49
Qwen2.5-72B-Instruct 2.93 25.03 26.74 5.07 35.09 38.20
Qwen2.5-Coder-7B-Instruct (Hui et al., 2024) 1.91 12.99 13.36 2.86 14.83 16.27
Qwen2.5-Coder-14B-Instruct 3.34 22.32 22.96 4.91 31.57 33.16
Qwen2.5-Coder-32B-Instruct 3.30 24.81 28.16 5.72 37.59 40.32
GPT-4o (OpenAI, 2024) 2.35 25.75 35.12 7.78 42.80 44.89

Qwen2.5-14B-Coder-FeynMan 4.04♣ 25.25♣ 23.19♣ 7.05♠ 40.61♠ 37.82♠

Table A3: Performance comparison on LED and BirdES benchmarks. The best results are highlighted in bold. The
base model is Qwen2.5-Coder-14B-Instruct. The symbol ♣ denotes training without knowledge, while ♠ indicates
training with knowledge.

Type Question Knowledge
with knowledge Calculate the total atoms consisting

of the element carbon and hydro-
gen.

consisting of element carbon and hydrogen
refers to element in(’c’, ’h’)

without knowledge Calculate the total atoms consisting
of the element carbon and hydro-
gen.

-

Table A4: Example of with or without knowledge

D.8 Details for rewrite
The rewriting criteria require strict semantic preservation while enhancing expression diversity. Our
quality assessment mandates: (1) Sentence-BERT similarity score âL’ě0.85 between original and rewritten
texts; (2) manual evaluation of 2,000 randomly sampled pairs meeting this threshold; (3) for texts below
0.85 similarity, GPT-4o regeneration (maximum two attempts) with expert rewriting if still substandard -
ensuring semantic consistency throughout the rewriting process.

19787



Type Question Ground Truth Error of LLMs
UWK Calculate the average rating and the

total number of ratings for all books
published by Friedman/Fairfax Pub-
lishing in the year 1961.

#DSL query = { "size":
0, "query": { "bool": {
"must:̈ [ {"match": {"Pub-
lisher.keyword": "Friedman/-
Fairfax Publishing"}}, {"term":
{"Year-Of-Publication": 1961}}
] } }, "aggs": { "average_rating":
{"avg": {"field": "Book-
Rating"}}, "total_ratings":
{"value_count": {"field":
"Book-Rating"}} } }
#Post-processing Code [...]

#DSL query = { "size": 0, "query": {
"bool": { "must:̈ [ {"match": {"Pub-
lisher.keyword": "Friedman/Fairfax
Publishing"}}, {"term": {"Year-Of-
Publication": 1961}} ] } }, "aggs":
{ "average_rating": {"avg": {"field":
"Book-Rating"}}, "sum_rating": "sum":
"field": "Book-Rating" } }
#Post-processing Code [...]
##"sum" must be "value_count".

IJE Calculate the average number of
oxygen atoms in single-bonded
molecules.

#DSL1
query_toxicology_bond={
"query": { "term":{
"bond_type.keyword": "-
" } } } #Post-processing
code [...] #DSL2
query_toxicology_atom={
"query": { "term": { "ele-
ment.keyword": "o" } } }
#Post-processing code [...]
#index-join
joined_data=pd.merge(df_bond,
df_atom,
on="molecule_id",how="inner")
# Post-processing code [...]

#DSL1
query_toxicology_bond={ "query": {
"term": { "bond_type.keyword": "-" } }
}
#Post-processing code [...]
#DSL2 query_toxicology_atom={
"query": { "term": { "element.keyword":
"o" } } }
#Post-processing code [...]
# index-join
{NULL}
# Post-processing code [...]
##comment: No index-join was per-
formed.

GWPC Calculate the average score for each
post category, and list the categories
with an average score not less than
47 along with their corresponding
average scores.

# DSL query={...}
#Post-processing code
index_name=
"movies_posts_comments"
response=esclient.search (in-
dex=index_name, body=query)
result=[(bucket[’key’],
bucket[’avg_score’][’value’])
for bucket in response [’aggre-
gations’] [’tags’][’buckets’]]

# DSL query={...}
#Post-processing code
index_name= "movies_posts_comments"
response=esclient.search (in-
dex=index_name, body=query)
result=[(bucket[’key’],) for bucket
in response [’aggregations’]
[’tags’][’buckets’]]
##comment: should be (bucket[’key’],
bucket[’avg_score’][’value’])

Table A5: Examples of three main error types. correct, incorrect, and ## comment is colored.

19788



E Elasticsearch VS MySQL

E.1 Feature Comparison: ES vs SQL
Elasticsearch differs from traditional relational databases (RDBMS) in several key ways, as illustrated
in Table A6. In Elasticsearch, data is stored in indexes, whereas SQL databases organize data in
tables.An index in Elasticsearch is equivalent to a table in SQL, and query can only be directed to a single
index. Instead of using key-value pairs, Elasticsearch stores documents in JavaScript Object Notation
(JSON) format, which means that query statements are also expressed in JSON Query Domain Specific
Language. Additionally, Elasticsearch is schema-free, allowing two documents within the same index
to have different schemas, while rows in an RDBMS must adhere to an identical schema. In the SQL
WHERE clause corresponds to the Pre-Process stage, which is analogous to the "query" section in a
DSL query, responsible for filtering documents. The GROUP BY and HAVING clauses represent the
Intermediate-Process stage, equivalent to the "aggs" (aggregations) part in a DSL query, which handles
data aggregation. The SELECT clause corresponds to the Post-Process stage, akin to the "_source" section
of a DSL query, determining the final output fields. Special functions in MySQL, such as "CAST" and
"CASE," require handling through post-processing code.

Elasticsearch element SQL element

Index Database
Mapping Schema

Document type Table
Document Row

Schema-Free Schema-Fixed

Table A6: Features Comparison between Elasticsearch and MySQL

E.2 Efficiency Analysis: ES vs SQL
Our experimental setup includes equivalent query Q_sql and Q_dsl for SQL and DSL. We measured the
average execution time of the query executed three times on the MySQL single table Table_mysql and the
Elasticsearch single index Index_es with the same scale of data. We inserted the original size of data each
time for T_mysql and T_es. We recorded the trend of SQL query time T_sql and ES query time T_es as
the data scale increases linearly. As shown in Figure A11, initially, the execution time of ES was higher
than that of SQL. However, as the data increased, the execution time of SQL increased linearly, while
the execution time of ES increased logarithmically. Eventually, after the number of returned documents
reached our set limit of 5000, both reached a stable trend.

E.3 Detail for Schema-Free
ES features a schema-free index structure that allows for highly flexible data storage, enabling completely
different structures for any two pieces of data within the same index. In contrast, SQL uses a schema-fixed
table structure, which only permits data storage according to the initially defined schema. Figure A12
shows the SQL table structure on the left, where each row has a uniform schema. On the right is the ES
index structure, where each row can have a different schema; for example, the first row includes Elo rating,
ActorID, and TEXT, while the second row uses a different schema with ActorID replaced by Fach.

19789



Figure A11: Query time trend chart for SQL and ES with equivalent query statements as data scale grows

SQL

Schema-Fixed Schema-Free

...

ActorID

...

ActorID

ActorID

ActorID

ActorID

Biography

Biography

Biography

Biography

Biography

...

...

...

...

...

...

ES

...

Elo rating

Elo rating

Elo rating

Elo rating

Elo rating

...

armament

cathedral

affiliation

Fach

ActorID

...

TEXT

TEXT

Fach

TEXT

TEXT

...

...

...

TEXT

...

...

Figure A12: Schema-Free and Schema-Fixed

19790


