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Abstract

Retrieval-augmented generation (RAG) helps
address the limitations of parametric knowl-
edge embedded within a language model (LM).
In real world settings, retrieved information can
vary in complexity, yet most investigations of
LM utilisation of context has been limited to
synthetic text. We introduce DRUID (Dataset of
Retrieved Unreliable, Insufficient and Difficult-
to-understand contexts) with real-world queries
and contexts manually annotated for stance.
The dataset is based on the prototypical task
of automated claim verification, for which au-
tomated retrieval of real-world evidence is cru-
cial. We compare DRUID to synthetic datasets
(CounterFact, ConflictQA) and find that arti-
ficial datasets often fail to represent the com-
plexity and diversity of realistically retrieved
context. We show that synthetic datasets ex-
aggerate context characteristics rare in real re-
trieved data, which leads to inflated context
utilisation results, as measured by our novel
ACU score. Moreover, while previous work
has mainly focused on singleton context char-
acteristics to explain context utilisation, correla-
tions between singleton context properties and
ACU on DRUID are surprisingly small compared
to other properties related to context source.
Overall, our work underscores the need for real-
world aligned context utilisation studies to rep-
resent and improve performance in real-world
RAG settings.

1 Introduction

Retrieval-augmented generation (RAG) can be
used to alleviate problems arising from imperfect
parametric knowledge of language models (LMs),
which may encode limited and potentially outdated
information (Gao et al., 2024; Vu et al., 2024).
However, the benefits of RAG are only realised if 1)
the retrieval module retrieves helpful information
and 2) the generative model successfully leverages
the retrieved information. As a consequence, there
have been many studies looking at the performance
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Figure 1: Datasets for context usage investigations.

and interaction of these two components and how
to improve them (Gao et al., 2024).

However, existing research has mainly studied
RAG in a disjoint manner, where studies of the
quality and relevance of the retrieved information
are detached from studies of LM context usage (Shi
et al., 2023; Xie et al., 2023; Tan et al., 2024; Du
et al., 2024). Hence, little is understood about 1)
the characteristics of retrieved contexts and 2) their
impact on LM context usage. Most notably, studies
of LM context usage have leveraged controlled
datasets using synthesised context to emulate a
limited set of context characteristics (see Figure 1,
left). For example, CounterFact and its variants
are template-based, lending a controlled albeit very
artificial and simplistic setup (Yu et al., 2023; Du
et al., 2024). ConflictQA, on the other hand, is
based on a mix of generated and retrieved contexts
to study context usage in a more realistic setup
with coherent and convincing contexts (Xie et al.,
2024). Nevertheless, the scenarios described by
these datasets are not representative of real-world
RAG scenarios, as the context types do not reflect
the diversity and complexity of the ones returned
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by an actual retriever present in RAG (Longpre
et al., 2021; Ravaut et al., 2024; Ortu et al., 2024).

This work studies context usage for RAG in real-
world scenarios with real-world queries and con-
text, as opposed to artificial samples. To this end,
we focus on the prototypical information-seeking
task of fact verification, where retrieving and util-
ising real-world information is vital. For the task,
an agent is provided with a statement about the
world – a claim – and needs to decide whether it
is true or false using context retrieved from an ex-
ternal source – evidence (Guo et al., 2022). We
take real fact-checked claims as ‘queries’ and the
retrieved evidence as ‘context’ to evaluate RAG in
this real-world setting, which naturally facilitates
our goal of studying real-world context properties
in RAG (Samarinas et al., 2021; Atanasova et al.,
2022; Chrysidis et al., 2024; Glockner et al., 2024).

In particular, this work makes three main con-
tributions. First, we introduce DRUID (Dataset of
Retrieved Unreliable, Insufficient and Difficult-to-
understand context) with real-world (query, con-
text) pairs to facilitate studies of context usage
and failures in real-world scenarios (§3). Sec-
ond, we introduce a novel context-usage mea-
sure, ACU, which rectifies issues in previous mea-
sures. Thirdly, we highlight major differences be-
tween popular synthetic datasets and real-world
data (DRUID): both in over-arching characteristics
(§4), as well as how the provided context is used
across different popular LMs (§5).

We show that synthetic datasets oversell the
impact of certain context characteristics (e.g.
knowledge conflicts), which are rare in retrieved
data. Furthermore, synthetic data exaggerates the
‘context-repulsion’ seen for LMs, as we rarely see
this behaviour in realistic data. Finally, we show
that there is no singleton context characteristic (e.g.
context length or perplexity) indicating RAG fail-
ure in real-world settings. Altogether, our work
provides a reality check on LM context usage and
points to the need for real-world aligned studies
to fully understand and improve context utilisation
for RAG. We also provide tools and resources to
facilitate such studies.1

2 Related Work

Claim Verification Datasets Claim verification
datasets typically measure an LM’s ability to assess

1https://github.com/copenlu/
context-utilisation-for-RAG

the veracity of a claim based on retrieved context
(evidence). Importantly, the information require-
ments of this task can be challenging, resulting in
retrieved evidence that is noisy (Samarinas et al.,
2021; Atanasova et al., 2022; Fajcik et al., 2023;
Chrysidis et al., 2024; Glockner et al., 2022; War-
ren et al., 2025). Furthermore, as LMs fine-tuned
for claim verification have been shown to ignore
evidence (Schuster et al., 2019, 2021), it is im-
portant to understand the causes of this behaviour.
Therefore, with DRUID, we are the first to collect
annotations for a range of ‘noisy’ characteristics
of retrieved real-world contexts to assess how they
affect LMs. Furthermore, unlike concurrent claim
verification datasets, which either present artificial
samples or a limited or less realistic scenario for
context retrieval (Thorne et al., 2018; Augenstein
et al., 2019; Diggelmann et al., 2020; Schlichtkrull
et al., 2023), DRUID includes contexts automatically
retrieved from the web to assess their impact on
RAG, leading to a wide diversity of context prop-
erties including insufficient and leaked evidence.
No other existing fact-checking datasets fulfil all
of these properties (see Table 4 in the Appendix).

Datasets for Context Usage Investigations Two
popular datasets used for context usage investiga-
tions are CounterFact and ConflictQA (Meng et al.,
2022; Xie et al., 2024). These datasets contain syn-
thesised queries based on fact triplets from LAMA
(Petroni et al., 2019) (e.g. Thomas Ong-citizen of-
Singapore) for which some contexts have been syn-
thesised to induce knowledge conflicts by promot-
ing answers in conflict with the parametric memory
of the studied LM (e.g. ‘Pakistan’ as opposed to
‘Singapore’). The datasets have found widespread
use for work on mechanistic interpretability and
the evaluation of context utilisation (Meng et al.,
2022; Geva et al., 2023; Ortu et al., 2024).

Similarly to CounterFact and ConflictQA, DRUID
contains queries and corresponding contexts to-
gether with gold labels to facilitate evaluations of
context utilisation. The main difference between
DRUID and the two other datasets lies in how the
queries and contexts were produced. For Counter-
Fact and ConflictQA, the queries have been auto-
matically synthesised based on WikiData subject-
relation-object knowledge triplets (e.g. ⟨George
Larkin, occupation, lawyer⟩ to produce “George
Larkin is a lawyer.”) and the contexts have either
been synthesised based on an edited knowledge
triplet or generated by an LLM prompted to pro-
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duce alternative context supporting some edited
knowledge triplet. This makes it easy to infer the
gold labels for the synthesised contexts, while it
is not representative of a real-world context usage
scenario. DRUID, on the other hand, is based on
queries sampled from naturally occurring claims
and contexts from the web, retrieved by automated
retrieval methods representative of a real-world
RAG setup.

Impact of Context Characteristics for RAG
Work in information retrieval and RAG has iden-
tified several qualities in retrieved or synthesised
contexts that impact context utilisation by humans
and/or LMs. Retrievers typically provide overly
long or corrupted text, which are difficult to un-
derstand, and impact LM output (Gao et al., 2024;
Vladika and Matthes, 2023). Similarly, typos (Cho
et al., 2024) and high perplexity (Gonen et al.,
2023) have been identified as potential disruptors
for RAG systems. Furthermore, implicit contexts,
lacking an explicit connection to the query, have
been identified as a prevalent failure cause in RAG
(Li et al., 2024b). For automated retrieval situa-
tions, the rate of implicit contexts can be high due
to chunking of text (Wang et al., 2024a). Instead,
LMs have been shown to prefer context with high
query-context similarities (Wan et al., 2024).

Most studies on RAG have focused on open-
domain question answering (Kasai et al., 2023; Wu
et al., 2024). Yoran et al. (2023); Shi et al. (2023)
found that LMs are fragile to irrelevant informa-
tion in the context, harming performance. Further-
more, in the case of knowledge conflicts, when
context conflicts with parametric knowledge, LMs
have been shown to ignore the conflicting context
(Longpre et al., 2021), while other studies show
that models prefer contextual information, as long
as it is coherent and convincing (Xie et al., 2023).
Sun et al. (2025) also connect knowledge conflicts
to prediction uncertainty in fact-checking settings.
Recently, Xu et al. (2024) have proposed more
granular categories for knowledge conflicts, using
context-memory conflict to denote the aforemen-
tioned phenomenon, and inter-context conflict to
refer to different contexts contradicting each other.
Marjanovic et al. (2024) further study real-world
knowledge conflicts caused by dynamic facts, find-
ing that RAG struggles the most with these.

Unreliable contexts have been studied by Chry-
sidis et al. (2024) in a fact-checking setup, for
which misinformation is prevalent. This type of

Source #claims #samples IAA

checkyourfact 220 890 0.77
science.feedback 220 913 0.64
factcheckni 109 429 0.50
factly 180 739 0.80
politifact 220 931 0.74
srilanka.factcrescendo 156 598 0.75
borderlines 224 990 0.53

Total 1,329 5,490 0.71

Table 1: Statistics for the DRUID dataset. IAA denotes
inter-annotator agreement measured by Krippendorff’s
alpha. science.feedback also includes claims from cli-
mate.feedback and health.feedback.

information is typically overlooked in more generic
RAG QA setups, potentially because the retrieval
corpora usually are based on Wikipedia or pre-
curated datasets. References to external sources
may convince a human reader of the credibility
of some context, yet LMs seem to be impervi-
ous (Wan et al., 2024). However, expressed cer-
tainty/uncertainty in text and its impact on LM
context usage has recently been studied by Du et al.
(2024), where assertive contexts are found to be
more convincing.

In our creation of DRUID we combine all these
aforementioned insights to annotate naturally oc-
curring context characteristics of interest.

3 DRUID

Previous studies of context utilisation leverage syn-
thetic datasets with synthesised claims and con-
texts, ignoring the retrieval part in RAG (Yu et al.,
2023; Xie et al., 2024). We develop the datasets
DRUID (5,490 samples) and DRUID+ (48,517 sam-
ples) to enable studies of context utilisation for
real-world scenarios. To this end, we collect real-
world claims from fact-checking sites and use au-
tomated retrieval to fetch corresponding evidence
from the web. DRUID is a high-quality subset of
DRUID+ manually annotated for evidence relevance
and stance. A DRUID sample consists of a ⟨claim,
evidence, labels⟩ triple. More details on the dataset
can be found in Table 1 and Appendix C.

3.1 Claim Collection

We sample claims verified by fact-checkers using
Google’s Factcheck API.2 We only sample claims
in English. The claims are collected from 7 diverse

2https://developers.google.com/fact-check/
tools/api/reference/rest.
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fact-checking sources, representing science, pol-
itics, Northern Ireland, Sri Lanka, the US, India,
France, etc. All claims have been assessed by hu-
man fact-checkers. Further details on the claim
collection can be found in Appendix D.

3.2 Evidence Collection

For each claim in DRUID and DRUID+, we retrieve
up to 5 and 40 snippets of evidence, respectively.
First, a gold-standard evidence document is re-
trieved from the original fact-checking site, which
is the ‘summary’ of the fact-checking article writ-
ten by the author of the article. For the remaining
snippets of evidence, we use an automated retrieval
method (Appendix D). We collect the top 20 search
results for each of the Google and Bing search
engines. The found webpages are then chunked
into paragraphs and reranked by the Cohere rerank
model.3 Evidence corresponding to the top-ranked
chunks is included in DRUID.

3.3 Relevance and Stance Annotation

Since the evidence is collected using automated re-
trieval, as opposed to controlled synthesis, we need
to assess the relevance of the retrieved information
to the claim, and, if it is relevant, what stance it
represents (Wang et al., 2024c). For this, we crowd-
source evidence-level annotations using Prolific4

and Potato (Pei et al., 2022). Each evidence piece
in DRUID is double annotated for relevance (rele-
vant or not relevant) and stance to the claim (sup-
ports, insufficient-supports, insufficient-neutral,
insufficient-contradictory, insufficient-refutes or re-
futes). More details on the annotation, guidelines
and examples from the annotation interface can be
found in Appendix M.

The annotator compensation was approximately
9 GBP/hour (the compensation was fixed for each
task while the annotator completion time varied).

4 Context Characteristics

To understand the gap between the context pro-
vided in current diagnostic datasets for context us-
age and real RAG scenarios, we compare the char-
acteristics present within our real-world dataset
DRUID to the synthetic datasets CounterFact (Ortu
et al., 2024) and ConflictQA (Xie et al., 2024). By
virtue of their controlled setup, these and similar

3rerank-english-v3.0 from https://docs.cohere.
com/v2/docs/rerank-2.

4https://www.prolific.com/

datasets have seen much use for the study of con-
text utilisation and mechanisms thereof (Jin et al.,
2024; Du et al., 2024; Tan et al., 2024; Kortukov
et al., 2024).

To ensure adequate comparison, we recast all
samples in CounterFact and ConflictQA to a claim-
evidence format (see Appendix E). This can be
done without loss of information as all datasets
represent a binary task for the LM (answer in align-
ment with the evidence or not). Furthermore, we
show in Appendix F that the analysis of context util-
isation and mechanisms thereof are unaffected by
the format of the task being either answer comple-
tion or claim verification – the reformatting leads
to no change in the mechanism employed by the
model and its manipulation results.

In addition to the aforementioned datasets, we
also present the characteristics of DRUID+ to better
understand the impact of only collecting the top-
ranked evidence for DRUID.

4.1 Detection of Context Characteristics
Several context characteristics impacting context
utilisation by humans and/or LMs have been iden-
tified by previous work (Section 2). As opposed to
synthesising contexts with certain properties, we
detect those in existing datasets. Along with man-
ual annotation of relevance and stance, we lever-
age automated methods. We experiment with two
types of automated detection methods to assess
context characteristics: 1) rule-based methods and
2) prompt-an-LLM methods. For the latter we zero-
shot prompt the Cohere Command R+ model.5

Initial trials leveraging human annotations of
context characteristics showed high annotator dis-
agreements, potentially due to the subjective na-
ture of some of the characteristics, and were con-
sequently abandoned. Instead, we opted to op-
erationalise the properties, as we further describe
below. This allows us to explore more model-based
measures of context characteristics, which can be
expected to have a greater impact on model context
usage vis-a-vis subjective human perception of the
same characteristics.

Relevance and stance For DRUID, we use the
manual relevance and stance annotations. For
CounterFact and ConflictQA we infer those as fol-
lows. CounterFact contains counterfactual claims,
for which the evidence is either the claim repeated
(supports) or the claim but with the correct object

5command-r-plus (chat-only mode)
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restored (refutes). For each ConflictQA entry, we
have a model-generated claim and two types of ev-
idence – parametric memory aligned (supports) or
counter memory aligned (refutes).

Claim-evidence similarity This is measured us-
ing Jaccard similarity (see Appendix G), which
outputs values between [0, 1], where 1 signifies
maximum similarity. The overlap of claim words
with evidence words, scaled by the number of claim
words (‘Claim-evidence overlap’) is also measured.
In addition, we detect if the evidence repeats the
claim verbatim (‘Repeats claim’).

Difficult to understand We measure the Flesch
reading ease score, claim length (number of char-
acters), evidence length (number of characters) and
model context perplexities for our studied mod-
els (Llama 3.1 8B and Pythia 6.9B) to proxy how
‘difficult to understand’ is the context. Generally,
we may consider samples that correspond to high
model perplexities to be confusing to the model.

Implicit We detect named entities (NEs) in the
claim and measure the overlap with entities found
in the evidence (‘Claim entity overlap’). spaCy
en_core_web_trf (based on RoBERTa-base) is
used for the NE detection. Values are ∈ [0, 1]
where 0 means that no NEs reappear in the evidence
(maximum implicitness) and 1 means that all NEs
were found in the evidence.

Refers to external source Command R+ is
prompted to tell whether some evidence contains a
reference to an external source or not (‘Detection
by LLM’). Initial evaluation results show this detec-
tion method to align well with human annotations
of the characteristic.

Uncertain We use a lexicon-based approach pro-
posed by Islam et al. (2020) to detect hedge words
and hedging discourse markers in the evidence to
proxy ‘uncertain’ (‘Contains hedging’ and ‘Con-
tains hedging discourse’). If a hedge word or hedg-
ing discourse marker is detected in the evidence, it
is marked as ‘uncertain’ according to that method.

Unreliable We use manually curated lists by Me-
dia Bias/Fact Check6 (MBFC) to automatically de-
tect whether the evidence piece originates from a
web page marked as using questionable sources,
promoting conspiracy/pseudoscience or being a
satire site (‘Unreliable source’). However, due to

6https://mediabiasfactcheck.com/

the sparsity of the MBFC lists, we are unable to
detect unreliability for all evidence in DRUID and
DRUID+, lacking results for 26% and 34% of the
samples, respectively. For CounterFact and Con-
flictQA there are no evidence sources to analyse.

Additional characteristics We check whether
the evidence can be seen as directly pointing out
a verdict by measuring whether the evidence con-
tains the word ‘True’ or ‘False’. For the DRUID
and DRUID+ datasets, we also record whether the
evidence was published after the claim was made,
as this allows to measure the occurrence of and
effects of leaked information (‘Pub after claim’)
(Schlichtkrull et al., 2023). Similarly, we mea-
sure whether the evidence comes from a fact-check
webpage as this can be expected to contain addi-
tional leaked information (‘Fact-check source’) and
whether it comes from the original fact-checking
site summary (‘Gold source’).

4.2 Analysis of Context Characteristics
Relevance and stance Relevance and stance an-
notations for all datasets are shown in Tables 8
and 9 in the Appendix. Most contexts are annotated
as relevant; however, given the more ambiguous
nature of real-world queries, especially in claim
verification, there is more variety in the kinds of
stances presented by the context provided in DRUID:
the majority of the automatically retrieved contexts
(50%) do not have a clear stance or are not suffi-
cient for addressing the query. This is the conse-
quence of using automated retrieval, for which not
even state-of-the-art methods based on commercial
search engines and Cohere modules are capable of
consistently retrieving ‘gold standard context’. Ad-
mittedly, the retrieval setup is used in a zero-shot
fashion and performance may improve somewhat
with additional fine-tuning, while it would not solve
all insufficiency issues stemming from automated
retrieval. Conversely, synthesised samples always
assume sufficient context. Our results show a clear
discrepancy between synthesised and real-world
datasets, proving the need for real-world aligned
datasets for studies of context usage.

DRUID in comparison with other RAG datasets
The detected context characteristics for the syn-
thetic datasets and DRUID are shown in Figure 2.
More detailed results can be found in Appendix I.
The synthetic CounterFact dataset has the highest
Flesch reading ease scores, significantly shorter ev-
idence lengths, frequent repetitions of the claim in
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Figure 2: Average values for the context characteristics
in CounterFact (Yu et al., 2023), ConflictQA (Xie et al.,
2024) and DRUID datasets. The characteristics and their
detection are described in Sections 2 and 4.1, respec-
tively.

the evidence, significantly higher Jaccard similarity
values and very few uncertainty markers relative
to the other investigated datasets. CounterFact was
designed to showcase simple knowledge conflict
scenarios, causing much greater perplexity for both
investigated LMs. In general, CounterFact is tai-
lored to a specific type of context usage that is not
indicative of real, retrieved context, as shown by
the comparison to DRUID. The generated evidence
for ConflictQA has characteristics more similar to
those of DRUID. However, we can see that DRUID
has much longer claims and evidence than seen in
either of the other datasets; furthermore, there are
more uncertainty markers and a greater degree of
implicitness in the naturally occurring context in
the DRUID dataset.

Memory conflicts are less prevalent in real-
world scenarios. We measure context-memory

conflicts by comparing the parametric model pre-
diction (no context or evidence provided) with the
stance of the provided evidence. We have a conflict
if the prediction and stance are either ‘Refutes’ or
‘Supports’ and do not align. For Llama 3.1 8B we
record memory conflicts on 97.41% of the support-
ing evidence from CounterFact and on 71.16% of
the refuting evidence from ConflictQA. For DRUID,
we identify memory conflicts for 58.09% of the sup-
porting evidence. Evidently, the rate of memory
conflict is lower in real-world scenarios compared
to artificial scenarios. More detailed results and the
results for Pythia can be found in Table 21.

5 Context Utilisation

We aim to assess the transferability of insights
based on synthesised scenarios to real-world sce-
narios. To this end, we evaluate and compare LM
context utilisation results on synthetic datasets to
results on DRUID.

5.1 Method
We measure the context utilisation of Pythia 6.9B
and Llama 3.1 8B, two models from two model
families widely used in RAG-evaluation studies
(Biderman et al., 2023; Grattafiori et al., 2024; Ortu
et al., 2024; Xie et al., 2024; Jin et al., 2024), on the
CounterFact, ConflictQA and DRUID datasets. To
measure context utilisation, the models are evalu-
ated in two modes: 1) without evidence and 2) with
evidence. In both modes, the models are prompted
to assess the veracity of a given claim (True, False,
or None), without and with evidence respectively.
More details on the prompting can be found in Ap-
pendix J. We evaluate context utilisation using the
softmaxed model logits, which we describe further
in the next section. In the main paper, we only
show results for supporting and refuting evidence;
behaviour for all forms of ‘insufficient’ evidence
(where ‘None’ is the expected model output) can
be found in Appendices K and L.

5.2 Evaluation
There is no consistent measure for context usage
across similar work; many studies look simply at
changes in overall output distributions (Du et al.,
2024; Marjanovic et al., 2024), which does not
guarantee that the change is relevant to the pro-
vided context. Works in mechanistic interpretabil-
ity often rely on logit differences for a specific
token given evidence (Ortu et al., 2024; Yu et al.,
2023), which are not normalised, do not factor in
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desired change, and limit comparisons. Due to
these issues, we introduce a novel measure (ACU),
which 1) uses softmax-normalised probabilities,
to ensure meaningful comparison, 2) focuses on
probabilities of specific tokens, to ensure relevant
change, and 3) scales these values by the amount
of possible increase in probability. To measure
context usage for a model M , we consider the
re-scaled difference in salient token probability
t ∈ T = {True,None,False} for a claim C be-
tween settings with and without evidence E, as
follows.

∆PM (t|C,E) =





PM (t|C,E)−PM (t|C)
1−PM (t|C)

if PM (t|C,E)≥PM (t|C),

PM (t|C,E)−PM (t|C)
PM (t|C)

otherwise.

(1)

Here, PM (t|C) and PM (t|C,E) denote the output
probabilities for token t ∈ T by model M given a
claim C and evidence E, respectively. The rescal-
ing ensures that our metric is less sensitive to the
original P (t|C) value. We expect high positive
values of ∆PM (t|C,E) for t that align with the
stance of E and the opposite for t that conflict with
the stance. For example, given an evidence piece
with the stance refutes we should ideally measure
a high value for ∆PM (False|C,E) and low values
for ∆PM (True|C,E) and ∆PM (None|C,E).

We define a score of accumulated context usage
(ACU) per sample {C,E} with stance SE for a
model M as follows.

ACU(C,E, SE ,M) = (2)

=
1

|T |
∑

t∈T
D(t, SE)∆PM (t|C,E)

D(t, SE) denotes the desirable change in ∆PM for
maximum context usage, which is either {-1,1},
depending on the annotated stance of the evidence.
For example, D(False, refutes) = 1, whereas
D(True, refutes) = D(None, refutes) = −1.
This limits the range of ACU between [−1, 1].

5.3 How do LMs utilise real-world retrieved
context compared to synthesised context?

We inspect the context usage behavior of Pythia
and Llama on CounterFact, ConflictQA and DRUID
to understand how LMs utilise real-world context
compared to synthetic contexts. Accumulated con-
text usage scores (Equation (2)) can be found in

CounterFact ConflictQA DRUID
refutes supports refutes supports refutes supports

0.4

0.2

0.0

0.2

0.4

0.6

0.8

AC
U

model
Llama
Pythia

Figure 3: ACU (Equation (2)) for each model and
dataset. The error bars indicate the standard devia-
tion. Negative ACU values indicate ‘context-repulsion’:
changes in probability away from the annotated evi-
dence stance. The dashed horizontal lines indicate aver-
age ACU scores for each model and dataset.

Figure 3. See Appendix K for more granular con-
text usage results. We structure the analysis around
a set of main findings, listed below.

Synthetic datasets suggest an over-preference
of supporting evidence. While we see varia-
tions in model behaviour for our two synthetic
datasets, ConflictQA and CounterFact, there are
also some over-arching similarities: context utili-
sation is much greater for supporting evidence. In
the case of refuting evidence, we often see neg-
ative ACU scores, indicating ‘context-repulsion’,
changes in probability away from the stance of the
provided context, which indicates low robustness;
this is strongest for ConflictQA, which also has the
greatest ACU scores for supporting context. This
may be the consequence of the ConflictQA claims
having been generated by Llama 2 7B and some of
the supporting contexts having been generated by
ChatGPT (they are aligned with parametric mem-
ory, which has been shown to increase context utili-
sation (Xie et al., 2024; Tan et al., 2024)). However,
this preference for supporting evidence is also seen
in CounterFact, which is surprising as the refuting
evidence should align with LM parametric mem-
ory. This may be explained by the synthetic and
confusing nature of CounterFact samples, leading
to high model perplexities (See Figure 2.)

We see a different behaviour with our real-world
dataset DRUID: we rarely see context repulsion, and
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we see reduced ACU scores for supporting evi-
dence. These lower ACU scores for supporting evi-
dence may stem from the lack of generated context
(vis-a-vis ConflictQA), and the increased ACU for
refuting evidence may be due to the lower perplex-
ities of the context (vis-a-vis CounterFact). This
highlights the need for real-world contexts for stud-
ies of context utilisation: automatically generated
contexts, by automated template-filling or LLM
generation, inevitably induce properties that inter-
fere with studies of context utilisation.

Different models show different context usage.
Notably, Llama and Pythia behave very differently
on all datasets studied. Potentially, this owes to
CounterFact having been designed to elicit knowl-
edge conflicts in Pythia and ConflictQA having
been based on claims generated by Llama 2 7B.
However, DRUID has not been customised to a spe-
cific model and results on this dataset clearly show
how context usage varies across models. More-
over, we find that Llama on average is more faith-
ful to the contexts of all datasets (and demonstrates
less context-repulsion), yet remains understudied
in context-utilisation studies (Ortu et al., 2024; Du
et al., 2024). These results are further corroborated
in Hagström et al. (2025), for which multiple LMs
of different model family and size are benchmarked
for their context utilisation.

5.4 Does LM context usage depend on
characteristics of the evidence/context?

We evaluate the influence of different context char-
acteristics (see §4.1) on model context usage. For
this, we calculate Spearman correlations between
each context property and our context usage met-
ric, ACU (Equation (2)), stratified by the evidence
stance for each dataset. The results for Llama are
shown in Figure 4. Results for Pythia, insufficient
evidence from DRUID and additional fine-grained
correlation results can be found in Appendix L.
While we see a limited effect of any one character-
istic, we highlight overarching findings below.

Context from fact-check sources have greater
ACU scores. Llama and Pythia are more likely to
be faithful to refuting context from a fact-checking
source. Most likely, this general property captures
a characteristic not fully captured by the more fine-
grained detection methods. Previous manual in-
spection of fact-check articles indicates a higher
rate of assertive and to-the-point language, which
may explain these observations. Moreover, the fact-
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Evidence length
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Pythia: Perplexity

Claim entity overlap

Detection by LLM

Unreliable source

Contains hedging

Contains hedging disc.

Contains "True"

Contains "False"

Fact-check source

Gold source

Pub. after claim

Fact-check verdict
P(False|C)

P(None|C)

P(True|C)

Memory conflict

0.0

-0.0

-0.0 0.0

-0.0

0.0 0.1

0.0

-0.0

0.0

-0.0 0.0

0.0

-0.0 0.0 -0.0 0.0

-0.0

-0.1

0.0

-0.3 0.2 0.3 0.2 0.1

0.0 -0.2 0.5 -0.2 -0.1

-0.0 0.0 0.1

0.1 0.1 0.1 -0.2 0.2

0.1 0.1 -0.0 0.2

0.1 -0.4 -0.1 -0.4 -0.2

0.0 -0.0 -0.2 0.2

0.1 -0.0 0.0 -0.2 0.2

-0.1 -0.1 0.4 -0.1

-0.1 0.2 -0.0 0.2

-0.2

-0.1 -0.1 -0.1 -0.1

0.0 -0.1 0.2 0.1 -0.1

0.0 0.3 -0.1

0.6 0.2

0.4 0.2

0.5 0.1

-0.1 0.3

-0.3 -0.3 -0.3 0.4 -0.1 0.1

0.1 0.2 -0.3 0.3 0.3 0.2

0.3 0.3 0.3 -0.4 -0.1

0.1 -0.0 0.2 0.2 -0.1
0.6

0.4

0.2

0.0

0.2

0.4

0.6

Figure 4: Spearman correlations between context usage
measured by ACU (Equation (2)) and different context
characteristics for Llama. Significant correlation values
(p-value < 0.05) are marked in bold.

check articles are more likely to directly discuss
the claims in a one-hop manner with multiple argu-
ments, possibly making them more convincing to
the LM. We hypothesise that a similar case holds
for ‘Pub. after claim’ and ‘Gold source’. Simi-
lar results are observed for Pythia. The restricted
generation process of the synthetic datasets makes
similar investigations impossible.

Previous studies of context utilisation have fo-
cused on the effects of singular context character-
istics in isolation. Our work hints at the relevance
of including aggregates of features in the analysis,
as these may better explain context utilisation in
real-world scenarios. For example, contexts from
a certain source, like fact-checking articles, may
express aggregates of features.

References to external sources show low corre-
lations with ACU. We measure low correlations
with whether the evidence refers to an external
source on both ConflictQA and DRUID. Our results
on ConflictQA and DRUID show slightly greater
importance of references for supporting contexts,
while the values measured are fairly low. Using
a synthetic dataset, Wan et al. (2024) found LM
context usage to be insensitive to references to ex-
ternal sources. Our results on the real-world DRUID
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dataset support this conclusion.

Correlations with claim-evidence similarity
properties are low for DRUID. For ConflictQA
we measure the highest correlation with context us-
age for claim-evidence overlap for supporting con-
texts. The same does not hold for DRUID. Previous
work by Tan et al. (2024) on controlled context-
conflicting datasets found LMs to prioritise con-
texts with high similarities between query and con-
text. Our results indicate that real-world queries
and contexts come with a greater complexity for
which context usage cannot be predicted solely
based on query-context similarity.

LMs are less faithful to long contexts. Llama is
less likely to be faithful to long refuting contexts
on both DRUID and ConflictQA. We note how the
results do not generalise to CounterFact, which
might be explained by the more synthetic nature of
CounterFact compared to ConflictQA.

6 Conclusion

In this work, we ground studies of context utili-
sation to real-world RAG scenarios. We develop
DRUID and compare it to synthesised datasets previ-
ously used to study context-utilisation. DRUID is a
claim-verification dataset which contains naturally
occurring claims and manually annotated evidence
automatically retrieved from the web. We find fun-
damental differences in dataset characteristics be-
tween DRUID and synthetic datasets (CounterFact
and ConflictQA). We also introduce a novel ACU
score to consistently measure context utilisation
across LMs and datasets. On DRUID, correlations
between singleton context properties and ACU are
surprisingly small compared to other properties
related to context source (e.g. contexts coming
from specific types of websites). We hypothesise
that, rather than singleton features, this owes to
an aggregation of several characteristics contribut-
ing to context usage. This suggests the common
factors impacting RAG success are broader than
previously expected, and further work needs to be
done to identify fine-grained causes of RAG failure.
Furthermore, given the use of synthetic datasets to
identify mechanistic components of context usage
(Ortu et al., 2024; Yu et al., 2023), our results call
into question the generalisability of the findings.
With DRUID, we provide resources that better facili-
tate mechanistic and behavioural studies of context
usage in real-world scenarios.

7 Limitations

Our work leverages claim verification as a vehi-
cle for studies of realistic context utilisation. It is
not fully clear whether insights related to context
utilisation on this task will transfer to other RAG
tasks, such as question-answering, which is overly
represented in RAG evaluations. However, claim
verification is a complex information-seeking task
and we expect other tasks to have a large overlap or
subset of properties with it. For example, as seen
in this work, the QA format for CounterFact and
ConflictQA is easily recast as a claim verification
task. Furthermore, we show that intervention meth-
ods developed for QA tasks easily transfer to the
same datasets when recast to a claim-verification
setting in Appendix F. This suggests that some
findings can be generalisable across tasks. Future
work could expand on this work to incorporate
other RAG-specific tasks to better understand the
generalisability of context utilisation behaviours.

In our creation of DRUID we leverage an au-
tomated retrieval method based on commercial
search engines and the Cohere Rerank model.
While this method builds on state-of-the-art de-
velopments within the field of information re-
trieval, there are many other methods and tools we
could have chosen, which could impact the context
characteristics and model behaviour (Wang et al.,
2024b; Katsimpras and Paliouras, 2024; Chen et al.,
2024). A comprehensive comparison of different
retrieval methods and their impact on context utili-
sation would be an interesting direction for future
work.

In our creation of DRUID, we ensure to source
claims from many different fact-checking sites to
increase the representation of our dataset to the
entire English-speaking world. However, it is not
a uniform distribution, and the amount of context
gathered per claim as well as the inter-annotator
agreement for the context stances differs across
claim sources. This could be due to unintentional
cultural biases within our retrieval system or our an-
notators. Future work could investigate the impact
of these cultural biases in the retrieval process on
model output. DRUID, given its wide distribution of
claim and evidence sources, would be an excellent
dataset for such an investigation.
DRUID is based on a fact-checking task, meaning

that it covers a limited set of domains. This may
affect the conclusions based on the dataset, com-
pared to other datasets situated in different domains.
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Meanwhile, it is worth noting that no dataset is free
of this problem – both CounterFact and ConflictQA
have a limited scope by only focusing on WikiData
triplets. DRUID is in comparison to these datasets
better at covering different domains. Other more
realistic datasets would also be limited by the char-
acteristics of the domains they are situated in. For
future work it would be interesting to investigate
whether one can control for and disentangle do-
main effects on context utilisation, something the
DRUID dataset should be useful for.

While we investigate the impact of many char-
acteristics on context utilisation, it is not exhaus-
tive. Future work could look into the impact of
other context characteristics on context utilisation.
For example, our study and dataset omit interest-
ing context characteristics related to propaganda,
simplified or manipulated content, anecdotal, mix
of languages, multimodality, multi-hop reasoning,
preciseness etc. (Piskorski et al., 2023; Wan et al.,
2021; Jiang et al., 2020; Dufour et al., 2024). These
properties would be relevant to study in future
work.

In this work, we study the context utilisation be-
haviours of Llama 3.1 8B and Pythia 6.9B, two pop-
ular LMs used for RAG-evaluation studies. With
this selection, we represent two families of mod-
els and can already reveal great disparities in con-
text utilisation between synthetic and real-world
datasets. For future work, it would be interesting to
further investigate the context utilisation of more
model families and different model sizes. All fu-
ture studies are well-facilitated by the dataset and
evaluation framework we introduce in this work.

While we include a comprehensive correlation
analysis to identify the dependence between our
studied characteristics and context usage, it does
not give any information about causality. Future
work could include a more comprehensive causal
analysis. A causal analysis is necessary to fully
understand the effects of different context charac-
teristics on context utilisation (Feder et al., 2022).
Given that our findings indicate that context utilisa-
tion cannot be predicted by one singleton character-
istic, there are likely many potential confounders
within DRUID, and all real, retrieved text. Future
work on this could take inspiration from the studies
by Gui and Veitch (2023). While our work provides
a good starting point for RAG evaluations of con-
text characteristics, our findings show that more
work is needed to fully understand the complex
behaviours governing context usage.

8 Ethical Considerations

Our work concerns the evaluation of RAG-based
models on veracity prediction in a real-world set-
ting. In the creation of the dataset, while we tried
to maintain representativeness of the real world by
including sources of data from different parts of the
world, we introduced biases by selecting only En-
glish language sources. Consequently, our results
only stand for claims and corresponding evidence
sentences in English. For the annotation tasks, we
do not retain any information about the annotators
and pay them a fair wage as determined by the an-
notation platform. We also informed the annotators
about how their data would be used and received
their consent. However, for ease of understand-
ing the subject matter and increasing chances of
agreement, we screened the annotator pool to only
include participants with at least an undergraduate
degree, English fluency, no language-related disor-
ders, and UK, US or Irish nationality. While this
helped achieve higher-quality annotations, it limits
the perspectives embedded in the dataset and may
reinforce cultural biases, which we acknowledge
as a potential risk.

Otherwise, we do not foresee any pressing po-
tential risks with this work. We performed founda-
tional research focused on evaluation, which should
come with few implications for malicious use, en-
vironmental impact, security violations, etc.
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A Computational resources

All models are evaluated without fine-tuning on
one A40 Nvidia GPU per evaluation. The total
computational budget for the evaluation was about
100 GPU hours.

B Use of AI assistants

AI assistants like Copilot and ChatGPT were in-
termittently used to generate template code and
rephrase sentences in the paper, etc. However, no
complete paper sections or code scripts have been
generated by an AI assistant. All generated content
has been inspected and verified by the authors.

C DRUID

Dataset statistics for DRUID+ can be found in Ta-
ble 2 and statistics for claims with inter-context
conflicts can be found in Table 3. Inter-context con-
flicts are measured based on the annotated stance
of each evidence piece; if we find evidence pieces
with different stance (‘Refutes’ or ‘Supports’) for
the same claim, we mark the claim as having con-
flicting evidence.

A comparison of DRUID to other fact-checking
datasets can be found in Table 4. FEVER is marked
as synthetic and not representative of realistic sce-
narios for context retrieval as the samples in the
dataset have been artificially generated by the fol-
lowing process: 1) take a random sentence from
Wikipedia, 2) give this sentence to an annotator
and ask them to make up a set of claims based on

the sentence, 3) ask annotators to produce addi-
tional mutations of the claims and 4) fetch match-
ing contexts mainly from the matching Wikipedia
pages. This process is not representative of a re-
alistic use case for context augmentation, as the
claims do not match real information needs and the
evidence is sourced from nearly perfect Wikipedia
page matches. VitaminC and SciFact have been
synthesised in a similar fashion, and are therefore
also marked as synthetic.

Source #claims #samples

checkyourfact 300 6,653
climate/health/science.feedback 293 6,983
factcheckni 137 3,124
factly 299 6,443
politifact 300 7,954
srilanka.factcrescendo 173 4,093
borderlines 503 3,124

Total 2,005 48,517

Table 2: Statistics for the DRUID+ dataset.

#confl.
Source #claims claims

checkyourfact 220 112
climate/health/science.feedback 220 77
factcheckni 109 25
factly 180 65
politifact 220 70
srilanka.factcrescendo 156 61
borderlines 224 41

Total 1,329 451

Table 3: Inter-context conflict statistics for the DRUID
dataset (Xu et al., 2024). ‘#confl. claims’ denotes the
number of claims for which we find inter-context con-
flicts, i.e. conflicting evidence pieces for which at least
one evidence piece supports the claim and at least an-
other refutes it.

D Dataset creation

D.1 Claim collection

Different fact-check organisations use different no-
tations for the fact-check verdicts, ranging from
‘Pants on Fire’ to ‘Inaccurate’ (Augenstein et al.,
2019). We only collect claims for which the ver-
dict could be mapped to ‘True’, ‘False’ or ‘Half-
true’ (See Appendix D). We collect claims from
7 fact-checking sources, with varying themes and
countries of origin:

• checkyourfact.com
• (climatefeedback.org, healthfeedback.org, sci-

ence.feedback.org)
• factcheckni.org
• factly.in
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Dataset Claim Evidence

Source Type Sufficient Unleaked Retrieved

FEVER (Thorne et al., 2018) W Synthetic ✓ N/A ✓
VitaminC (Schuster et al., 2021) W Synthetic ✓ N/A ✓
SciFact (Wadden et al., 2020) S Synthetic ✓ N/A ✓

Liar-Plus (Alhindi et al., 2018) FC Real ✓ ✗ ✗
MultiFC (Augenstein et al., 2019) FC Real ✗ ✗ ✓
WatClaimCheck (Khan et al., 2022) FC Real ✗ ✓ ✗
ClaimDecomp (Chen et al., 2022) FC Real ✗ ✓ ✗
Snopes (Hanselowski et al., 2019) FC Real ✗ ✓ ✗
QABrief (Fan et al., 2020) FC Real ✗ ✓ ✗
CHEF (Hu et al., 2022) FC Real ✓ ✗ ✓
AVeriTeC (Schlichtkrull et al., 2023) FC Real ✓ ✓ ✓
Factcheck-Bench (Wang et al., 2024c) LLM Real/Synthetic ✓✗ ✓ ✓

DRUID W, FC Real ✓✗ ✓✗ ✓

Table 4: Comparison of related fact-checking datasets. Source indicates where the claims are collected from, such
as Wikipedia, Fact-Checking articles, Scientific sources or LLM responses. Type indicates whether the claims
are synthetic or real-world.Sufficient indicates whether the evidence can provide sufficient information. Unleaked
means whether the evidence contains leaks from the future. Retrieved denotes whether the dataset involves evidence
retrieval instead of relying on pre-retrieved passages e.g. the fact-checking article. ✓✗ indicates that both properties
can be found and are annotated for.

• politifact.com
• srilanka.factcrescendo.com
• borderlines from Li et al. (2024a)

The method for sampling the claims is adapted to
balance out the precedence of False and US-centric
fact-checked claims. To this end, we sample the
claims to ensure, to the extent possible, (1) an even
distribution across the 7 fact-checking sources, (2)
an even distribution across True, False and Half-
true claims, and (3) an even distribution of claims
posted before and after 2023 (to ensure we also
obtain claims and evidence unlikely to be present in
the assessed LM’s training data). For the sampling,
we first prioritise (1), followed by (2) etc. Due
to a shortage of some claims, we cannot achieve
completely uniform distributions.

We remove all claims that mention a ‘photo’ or a
‘video’ to limit fact-verification to a single media.

D.2 Claim veracity mappings

We map the claim veracity labels to ‘True’, ‘False’
or ‘Half-true’ as shown in Table 5.

D.3 Automated evidence retrieval

Given a claim, the method is as follows:

Use search engines to search the web for relevant
web pages. Fetch the top 20 search results for the
claim from the Google and Bing search engines,

Our label Incoming label

True True
TRUE
ACCURATE
ACCURATE WITH CONSIDERA-
TION
Correct
Mostly accurate
Accurate

Half-true Half True
PARTLY TRUE
Correct But...
Mostly_Accurate
Partially correct

False False
FALSE
MISLEADING
Misleading
Inaccurate
Incorrect, Flawed_Reasoning
INACCURATE
INACCURATE WITH CONSIDERA-
TION

Table 5: The claim veracity label mappings used for the
creation of DRUID and DRUID+. Claims corresponding
to verdict labels not listed in the table are dropped.

respectively.7 The results are de-duplicated as they
may overlap. From this step on, no regard is paid
to the search engine ranks, while they are stored

7We used their respective APIs customsearch.
googleapis.com/customsearch/v1 and api.bing.
microsoft.com/v7.0/search. Search results were retrieved
in October 2024.
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for potential future use cases.

Chunk the content of each web page. The
search results consist of full web pages, for which
not all page content can be expected to be immedi-
ately useful for the claim verification. Similarly to
Diggelmann et al. (2020) we use an extractive ap-
proach based on chunking to get concise evidence
that fits into the model context window. Each para-
graph on the web page forms a chunk if it contains
fewer than 200 words. Paragraphs longer than 200
words are split into multiple chunks of up to 200
words. This approach is based on manual tuning
and inspection of some retrieved evidence.

Get reranker scores for the chunks. The search
engines provide a quite coarse filter for relevant in-
formation with high recall but low precision. More-
over, the search engines cannot extract the rele-
vant snippets from the search results. To get more
precise and accurate retrieved contexts we use a
reranker (Diggelmann et al., 2020). Specifically,
we use the Cohere Rerank model8 to get reranker
scores for each chunk with respect to a claim.

To avoid claim repeats in the evidence, we also
filter out sentences from paragraphs corresponding
to RougeL(sentence, claim) > 0.8 in the chunk-
ing step (step 3). Otherwise, the Cohere Rerank
model was prone to fetch evidence that more or
less only repeated the claim.

Select web pages for evidence retrieval. For
DRUID we have a limited annotation budget and
therefore select the four web pages for which we
record the maximum reranker chunk scores and col-
lect evidence from each of these. To represent the
situation of not having access to fact-checking arti-
cles published after the claim was made, we adapt
this selection to collect at minimum two pieces of
evidence posted before the publication of the claim.
This way, we ensure that at least half of the dataset
contains unleaked information. For DRUID+ we se-
lect all webpage search results for the evidence
collection.

Collect evidence from the selected web pages.
Collect an evidence piece from each of the web
pages selected in the previous step. This is done by
aggregating the three top-ranked chunks from the
web page via simple concatenation. If necessary,
the number of chunks is decreased to ensure that

8rerank-english-v3.0 from https://docs.cohere.
com/v2/docs/rerank-2.

no evidence piece is longer than 300 words. As
a result, we have several pieces of evidence per
claim, each representative of one web page.

E Additional dataset details

E.1 CounterFact

Column Value

Claim Geoffrey Hinton is employed by
BBC.

Verdict False

Evidence #1 Geoffrey Hinton is employed by
BBC.

Relevant True
Evidence stance Supports

Evidence #2 Geoffrey Hinton is employed by
Google.

Relevant True
Evidence stance Refutes

Table 6: A sample from CounterFact that has been recast
to match the format of DRUID.

The CounterFact dataset referred to in this paper
has been developed by Ortu et al. (2024) to study
context usage under knowledge conflicts. It con-
tains 10,000 samples based on fact triplets from
WikiData. An example of a sample from the Coun-
terFact dataset is “Redefine: Geoffrey Hinton is em-
ployed by BBC. Geoffrey Hinton is employed by”.
A knowledge conflict is induced by the replace-
ment of the correct answer (Google) with BBC in
the context. We use the CounterFact split based on
Pythia 6.9B.

To ensure alignment between the investigations
for CounterFact and DRUID we first recast the Coun-
terFact samples to a format that aligns with the
DRUID dataset. This is exemplified in Table 6. The
queries are recast to claims and we retain both the
new knowledge conflicting context as well as the
original correct context as evidence. By virtue of
the synthetic nature of the dataset, we know before-
hand that all claims are incorrect and that the new
contexts support the claims. The opposite holds for
the original, correct, contexts. We also know that
all contexts are relevant to the claims.

E.2 ConflictQA
We also inspect the ConflictQA dataset developed
by Xie et al. (2024). The dataset contains ‘mem-
ory answers’ from an LM (based on its parametric
memory) to prompts from PopQA (also based on
WikiData fact triplets) together with ‘counter an-
swers’ generated by an LLM instructed to produce
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Column Value

Memory answer George Rankin is a lawyer.
Memory aligned evidence George Rankin graduated from Harvard Law School in 2005 and has been

practicing law for the past 15 years. He is a member of the American Bar
Association and has been recognized as a leading lawyer in the field of intellectual
property law by several prestigious legal publications. In addition, he currently
serves as a partner at one of the top law firms in the country.

Counter memory aligned evidence George Rankin Major General George James Rankin, (1 May 1887 - 28 Decem-
ber 1957) was an Australian soldier and politician. He served in both the House
of Representatives and the Senate, representing the Country Party of Australia.
Rankin was born at Bamawm, Victoria, the tenth child of Irish farmer James
Rankin and Sarah, né Gallagher. He attended the local state school and became
a farmer. In 1907, he joined the Militia, and was commissioned in the 9th Light
Horse Regiment in 1909. He married Annie Isabella Oliver at Rochester, Victoria
on 7 July 1912. In 1914, he was appointed a

Table 7: A sample from the ConflictQA dataset.

an answer that conflicts with the model answer.
Each entry also contains corresponding evidence,
one that is ‘parametric memory aligned’ and an-
other that is ‘counter memory aligned’. These evi-
dence pieces have been generated or sourced from
Wikipedia/human annotation. We use the Conflic-
tQA split based on Llama 2 7B. An example from
the ConflictQA dataset can be found in Table 7.

We use the ‘memory answer’ (generated by
Llama 2 7B) as the claim and the ‘parametric mem-
ory aligned evidence’ and ‘counter memory aligned
evidence’ as supporting and refuting evidence cor-
responding to the claim.

The generated origin of the evidence is revealed
at multiple instances (see below). Moreover, the
generated evidence is many times directly on point
which cannot expected to be found in real-world
scenarios.

F Attention manipulation results on
CounterFact after Reformatting

Figure 5 shows the results of pruning attention
heads in Pythia for the original sentence comple-
tion task as studied by Ortu et al. (2024) compared
to the same approach but recast to a claim verifica-
tion task. The effects of attention head pruning are
largely unaffected by the reformatting to a claim
verification task, showing that LMs can be inter-
preted and manipulated for the claim verification
task just as well as for the sentence completion
task.

Figure 5: The results of pruning attention heads in
Pythia for the original sentence completion task and
for when the task has been recast to a claim verification
task.

G Jaccard similarity to proxy
claim-evidence similarity

We use Jaccard similarity to proxy claim-evidence
similarity. This is measured as follows.

J(C,E) =
|W (C) ∩W (E)|
|W (C) ∪W (E)| (3)

W denotes the set of unique words, lowercased and
ignoring punctuation or special characters like ‘-’,
found in a claim C or evidence E.

H Cohere: Refers to external source

The prompt used for the detection of references
to external sources with Cohere Command R+ is
as follows: “Does the following text refer to an
external source or not? Admissible external sources
are for example ‘a study’, ‘[1]’, ‘the BBC’, a news
channel etc. Answer with a ‘Yes’ or ‘No’.\n\nText:
<text>”.
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Relevant CounterFact ConflictQA DRUID

True 20,000 16,046 5,399
False 0 0 91

Table 8: Evidence relevance for each of the investigated
datasets.

Evidence stance CounterFact ConflictQA DRUID

refutes 10,000 8,023 1,760
insufficient 0 0 2,730
-refutes 0 0 557
-contradictory 0 0 410
-neutral 0 0 1,078
-supports 0 0 685

supports 10,000 8,023 909

Table 9: Evidence stance for each of the investigated
datasets.

I Context characteristics

The full statistics on the context characteristics for
all datasets considered can be found in Tables 8
to 10.

J Prompts

For each mode and model, we manually tune a
prompt on 390 samples from DRUID to maximise
context usage, using the balanced mean absolute
error9 as the objective function to be minimised.
For mode (1) the gold labels are given by the
claim veracity and for (2) the annotated evidence
stances. We experimented with around 21 differ-
ent prompts (0-shot, 2-shot and 3-shot) in total.
The best-performing prompts were found to be 3-
shot. All prompts request the model to say whether
the claim, with or without evidence, is ‘True’ or
‘False’. Moreover, the model is instructed to re-
spond ‘None’ if it is uncertain or cannot answer.

The tuned prompts used to evaluate Llama and
Pythia can be found in Tables 12 to 14. The tables
also list the prompts used for the 0-shot experi-
ments described in the appendix.

K Additional context usage results

Some cherry- and lemon-picked samples from the
investigated datasets and corresponding model pre-
dictions can be found in Tables 15 to 20. Addi-
tional ACU scores for insufficient evidence from
DRUID can be found in Figure 6c. We also investi-

9We used sci-kit learn’s mean_absolute_error with sam-
ple weights given by compute_sample_weight for the ‘bal-
anced’ setting.

gate model context usage under zero-shot prompts.
The context usage results for Llama and Pythia can
be found in Figures 6b and 6d. We note that the
ACU results change significantly under the zero-
shot prompt compared to under the tuned 3-shot
prompt.

We study the overarching trends shown by the
averaged ACU scores in Table 11. We note how
Llama shows better context usage scores compared
to Pythia under both prompts, while Llama sees
the greatest benefits from switching to the 3-shot
prompt. Moreover, all models show improved av-
erage context usage under the 3-shot prompt com-
pared to the 0-shot prompt, Pythia on CounterFact
being the only exception.

We also look at changes in model prediction
when the model is provided with evidence of a
particular stance in Table 21 compared to when the
model is provided with no evidence. In Table 22
we also list averaged ∆PM (t|C,E) stratified by
evidence stance.

L Dependence on context characteristics
results

The results for Pythia corresponding to Figure 4
can be found in Figure 8a. Similarly, the results
corresponding to insufficient evidence from DRUID
for Llama and Pythia can be found in Figures 7c
and 8c.

We also measure correlations between ACU and
context characteristics under a 0-shot prompt. The
results for Llama and Pythia can be found in Fig-
ures 7b and 8b. Similarly, we plot the zero-shot
results for insufficient evidence from DRUID in Fig-
ures 7d and 8d. We note that while the ACU val-
ues changed significantly in Figure 6b under the
0-shot prompt compared to the 3-shot prompt, the
dependencies on context characteristics are largely
unchanged.

M Annotation

M.1 More details on the annotation

We screened the annotator pool to only include
participants with at least an undergraduate degree,
English fluency, no language-related disorders, and
UK, US or Irish nationality. We were unable to ob-
tain any additional details on e.g. the demographics
of the annotation pool from Prolific as the group
was too small to ensure anonymity if the informa-
tion was shared.
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Property CounterFact ConflictQA DRUID+ DRUID

Claim-evidence similarity
Jaccard similarity 0.89 ± 0.12 0.09 ± 0.04 0.09 ± 0.06 0.12 ± 0.08
Claim-evidence overlap 0.93 ± 0.08 0.76 ± 0.23 0.58 ± 0.25 0.66 ± 0.26
Repeats claim (%) (50.00) 5.55 1.25 4.57
Difficult to understand
Flesch reading ease score 61.65 ± 22.50 56.25 ± 12.00 53.17 ± 24.74 53.54 ± 16.60
Claim length 44.70 ± 11.90 43.64 ± 15.69 84.08 ± 46.37 89.25 ± 46.15
Evidence length 44.63 ± 11.90 570.46 ± 158.61 775.64 ± 407.40 745.39 ± 406.33
Llama: Perplexity 172.94 ± 537.58 7.55 ± 5.00 17.22 ± 124.59 16.08 ± 43.82
Pythia: Perplexity 113.43 ± 1030.10 9.29 ± 4.51 19.35 ± 122.17 18.13 ± 32.55
Implicit
Claim entity overlap 0.75 ± 0.27 0.69 ± 0.36 0.46 ± 0.39 0.56 ± 0.40
Refers external source
Detection by LLM (%) (0.00) 27.37 - 40.55
Unreliable
Unreliable source (%) - - 5.00 3.50
Uncertain
Contains hedging (%) 0.06 15.34 36.61 36.54
Contains hedging discourse (%) 0.03 40.29 48.00 52.33
Additional properties
Contains ‘True’ 0.00 1.99 2.57 4.06
Contains ‘False’ 0.00 0.10 4.27 9.02
Fact-check source (%) - - 14.41 41.44
Gold source (%) - - 4.13 17.21
Pub. after claim (%) - - 53.37 50.26

Total instances 20,000 16,046 48,517 5,490

Table 10: Statistics for the context characteristics in CounterFact (Yu et al., 2023), ConflictQA (Xie et al., 2024)
and DRUID datasets. The characteristics and their detection are described in Sections 2 and 4.1, respectively. The
values indicate the mean ± the standard deviation or the percentage of claim-evidence samples affected, denoted
with (%). The LLM-detected properties for CounterFact indicated with a (parenthesis) were not LLM detected but
automatically detected for each sample, leveraging its synthetic nature. Outliers are marked in bold.

Dataset Model Prompt ACU

CounterFact Llama 3-shot 0.74
0-shot 0.57

Pythia 3-shot -0.05
0-shot 0.32

ConflictQA Llama 3-shot 0.71
0-shot 0.56

Pythia 3-shot 0.55
0-shot 0.50

DRUID Llama 3-shot 0.84
0-shot 0.34

Pythia 3-shot 0.25
0-shot 0.15

Table 11: The averaged ACU scores across all evidence
stances for each dataset, model and prompt. The better
performing prompt and corresponding ACU value is
marked in bold.

For the annotation of relevance, the annotators
can choose between the labels ‘relevant‘ or ‘not
relevant‘. Relevant evidence is double annotated
for stance, where the annotators can choose be-
tween ⟨supports, insufficient-supports, insufficient-
neutral, insufficient-contradictory, insufficient-
refutes, refutes⟩. Insufficient evidence denotes evi-
dence lacking sufficient information to assess the
veracity of a given claim (Atanasova et al., 2022).
There may be different levels of insufficiency, e.g.
some evidence may not be sufficient, while it can
lean towards being in support of a given claim
(insufficient-supports). The stance labels found

in most fact-checking datasets are ⟨supports, not
enough info, refutes⟩, for which ‘not enough info’
is essentially the same as ‘insufficient’ (Thorne
et al., 2018). Schlichtkrull et al. (2023) also include
the label ‘conflicting evidence/cherry-picking’ for
their annotation task, which has some similarities to
our label ‘insufficient-contradictory’. We expand
on the labels by adding more nuances to insuffi-
cient evidence, and find this to improve annotator
agreement.

M.2 Annotation guidelines and annotation
interface

The annotation guidelines and two examples anno-
tation pages from the annotation interface can be
found in Figures 9 to 18.
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Model #shots Prompt

Llama 3 Are the following claims True or False? Answer None if you are not sure or cannot answer.

Claimant: Joe Biden
Claim: "“One quarter” of today’s $31.4 trillion federal debt “was accumulated in the four years of my predecessor,” Donald
Trump."
Answer: True

Claimant: Viral post
Claim: "the new coronavirus has HIV proteins that indicate it was genetically modified in a laboratory."
Answer: False

Claimant: Sara Daniels
Claim: "Blackpink released the single ’You me too’ in 2026."
Answer: None

Claimant: <claimant>
Claim: "<claim>"
Answer:

Pythia 3 Are the following claims True or False? Answer None if you are not sure or cannot answer.

Claimant: Joe Biden
Claim: "“One quarter” of today’s $31.4 trillion federal debt “was accumulated in the four years of my predecessor,” Donald
Trump."
Answer: True

Claimant: Viral post
Claim: "5G causes cancer."
Answer: False

Claimant: Sara Daniels
Claim: "Blackpink released the single ’You me too’ in 2026."
Answer: None

Claimant: <claimant>
Claim: "<claim>"
Answer:

Llama &
Pythia

0 Is the following claim True or False? Answer None if you are not sure or cannot answer.

Claimant: <claimant>
Claim: "<claim>"
Answer:

Table 12: Prompts used to evaluate Pythia and Llama in a claim-only setting. Values in <brackets> are replaced by
the actual entry for the evaluated sample. For CounterFact and ConflictQA we omit the ‘Claimant’ lines as there are
no claimant entries for these datasets.
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Model #shots Prompt

Llama 3 Here are some claims and corresponding evidence. Does the evidence Support or Refute the claim? Answer None if there is
not enough information in the evidence to decide.

Claimant: Joe Biden
Claim: "“One quarter” of today’s $31.4 trillion federal debt “was accumulated in the four years of my predecessor,” Donald
Trump."
Evidence: "Biden’s number is accurate; about one-fourth of the total debt incurred to date came on Trump’s watch. However,
assigning debt to a particular president is tricky, because so much of the spending was approved by decades-old, bipartisan
legislation that set the parameters for Social Security and Medicare. A different calculation shows more debt stemming from
former President Barack Obama, with whom Biden served as vice president."
Answer: Support

Claimant: Viral post
Claim: "the new coronavirus has HIV proteins that indicate it was genetically modified in a laboratory." Evidence:
"Microbiologists say the spike proteins found in the new coronavirus are different from the ones found in HIV. [...] There is
no evidence to suggest the coronavirus was genetically modified."
Answer: Refute

Claimant: Sara Daniels
Claim: "Blackpink released the single ’You me too’ in 2026."
Evidence: "Blackpink released their album ’Born Pink’ in 2022."
Answer: None

Claimant: <claimant>
Claim: "<claim>"
Evidence: "<evidence>"
Answer:

Table 13: Prompts used to evaluate Pythia and Llama in a setting with provided claim and evidence. Values in
<brackets> are replaced by the actual entry for the evaluated sample. For CounterFact and ConflictQA we omit the
‘Claimant’ lines as there are no claimant entries for these datasets.

Model #shots Prompt

Pythia 3 Are the claims True or False based on the accompanying evidence? If you are not sure or cannot answer, say None.

Claimant: Joe Biden
Claim: "“One quarter” of today’s $31.4 trillion federal debt “was accumulated in the four years of my predecessor,” Donald
Trump."
Evidence: "Biden’s number is accurate; about one-fourth of the total debt incurred to date came on Trump’s watch. However,
assigning debt to a particular president is tricky, because so much of the spending was approved by decades-old, bipartisan
legislation that set the parameters for Social Security and Medicare. A different calculation shows more debt stemming from
former President Barack Obama, with whom Biden served as vice president."
Answer: True

Claimant: Viral post
Claim: "the new coronavirus has HIV proteins that indicate it was genetically modified in a laboratory." Evidence:
"Microbiologists say the spike proteins found in the new coronavirus are different from the ones found in HIV. [...] There is
no evidence to suggest the coronavirus was genetically modified."
Answer: False

Claimant: Sara Daniels
Claim: "Blackpink released the single ’You me too’ in 2026."
Evidence: "Blackpink released their album ’Born Pink’ in 2022."
Answer: None

Claimant: <claimant>
Claim: "<claim>"
Evidence: "<evidence>"
Answer:

Llama, Pythia 0 Based on the provided evidence, is the claim True or False? If you are not sure or cannot answer, say None.

Claimant: <claimant>
Claim: "<claim>"
Evidence: "<evidence>"
Answer:

Table 14: Prompts used to evaluate Pythia and Llama in a setting with provided claim and evidence. Values in
<brackets> are replaced by the actual entry for the evaluated sample. For CounterFact and ConflictQA we omit the
‘Claimant’ lines as there are no claimant entries for these datasets.
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Dataset CounterFact
Claim Danish Outdoor Council is headquartered in Perth.
Evidence Danish Outdoor Council is headquartered in Copenhagen.
Evidence stance refutes
ACULlama 1.51
PLlama(False|C) 0.69 PLlama(False|C,E) 0.84
PLlama(None|C) 0.17 PLlama(None|C,E) 0.15
PLlama(True|C) 0.14 PLlama(True|C,E) 0.01
ACUPythia 0.13
PPythia(False|C) 0.36 PPythia(False|C,E) 0.34
PPythia(None|C) 0.03 PPythia(None|C,E) 0.26
PPythia(True|C) 0.58 PPythia(True|C,E) 0.34

Dataset CounterFact
Claim Yahoo! Screen is owned by Sony.
Evidence Yahoo! Screen is owned by Sony.
Evidence stance supports
ACULlama 1.77
PLlama(False|C) 0.65 PLlama(False|C,E) 0.05
PLlama(None|C) 0.10 PLlama(None|C,E) 0.09
PLlama(True|C) 0.25 PLlama(True|C,E) 0.84
ACUPythia 0.16
PPythia(False|C) 0.51 PPythia(False|C,E) 0.12
PPythia(None|C) 0.04 PPythia(None|C,E) 0.47
PPythia(True|C) 0.42 PPythia(True|C,E) 0.36

Dataset CounterFact
Claim The Voice debuted on CNN.
Evidence The Voice debuted on CNN.
Evidence stance supports
ACULlama 1.44
PLlama(False|C) 0.58 PLlama(False|C,E) 0.09
PLlama(None|C) 0.13 PLlama(None|C,E) 0.17
PLlama(True|C) 0.28 PLlama(True|C,E) 0.73
ACUPythia 1.01
PPythia(False|C) 0.43 PPythia(False|C,E) 0.12
PPythia(None|C) 0.09 PPythia(None|C,E) 0.19
PPythia(True|C) 0.45 PPythia(True|C,E) 0.66

Table 15: Cherry-picked ACU samples for Llama and/or Pythia on CounterFact.

Dataset CounterFact
Claim Satchel Paige is a professional basketball.
Evidence Satchel Paige is a professional baseball.
Evidence stance refutes
ACULlama 0.04
PLlama(False|C) 0.75 PLlama(False|C,E) 0.55
PLlama(None|C) 0.10 PLlama(None|C,E) 0.39
PLlama(True|C) 0.14 PLlama(True|C,E) 0.05
ACUPythia -0.14
PPythia(False|C) 0.46 PPythia(False|C,E) 0.35
PPythia(None|C) 0.04 PPythia(None|C,E) 0.27
PPythia(True|C) 0.47 PPythia(True|C,E) 0.31

Dataset CounterFact
Claim Honda SFX, produced by Airbus.
Evidence Honda SFX, produced by Honda.
Evidence stance refutes
ACULlama -0.73
PLlama(False|C) 0.64 PLlama(False|C,E) 0.37
PLlama(None|C) 0.16 PLlama(None|C,E) 0.42
PLlama(True|C) 0.20 PLlama(True|C,E) 0.20
ACUPythia -0.73
PPythia(False|C) 0.44 PPythia(False|C,E) 0.18
PPythia(None|C) 0.14 PPythia(None|C,E) 0.52
PPythia(True|C) 0.36 PPythia(True|C,E) 0.25

Dataset CounterFact
Claim iPad, developed by Douglas.
Evidence iPad, developed by Douglas.
Evidence stance supports
ACULlama 0.44
PLlama(False|C) 0.49 PLlama(False|C,E) 0.14
PLlama(None|C) 0.17 PLlama(None|C,E) 0.46
PLlama(True|C) 0.33 PLlama(True|C,E) 0.38
ACUPythia -0.10
PPythia(False|C) 0.40 PPythia(False|C,E) 0.10
PPythia(None|C) 0.15 PPythia(None|C,E) 0.60
PPythia(True|C) 0.36 PPythia(True|C,E) 0.24

Table 16: Lemon-picked ACU samples for Llama and/or Pythia on CounterFact.
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Dataset ConflictQA
Claim The screenwriter for Highway was Imtiaz Ali.
Evidence Highway is a 2014 Indian Hindi-language road drama film written and directed by Imtiaz Ali and produced by Sajid

Nadiadwala. The film stars Alia Bhatt and Randeep Hooda. Screened in the Panorama section of the 2014 Berlin
International Film Festival, the film released worldwide on 21 February 2014. The film is based on the episode of the same
name from the Zee TV anthology series Rishtey, starring Aditya Srivastava and Kartika Rane, which was also written and
directed by Imtiaz Ali. It tells the story of a girl (Alia Bhatt) who, for reasons later revealed, discovers freedom after being
kidnapped.

Evidence stance supports
ACULlama 1.94
PLlama(False|C) 0.37 PLlama(False|C,E) 0.03
PLlama(None|C) 0.07 PLlama(None|C,E) 0.05
PLlama(True|C) 0.55 PLlama(True|C,E) 0.90
ACUPythia 0.89
PPythia(False|C) 0.39 PPythia(False|C,E) 0.22
PPythia(None|C) 0.09 PPythia(None|C,E) 0.07
PPythia(True|C) 0.47 PPythia(True|C,E) 0.59

Dataset ConflictQA
Claim The composer of The Nose was Dmitri Shostakovich.
Evidence Michael Figgis is indeed the composer of The Nose. Figgis is a highly respected composer, having won numerous awards

for his film scores, and his work on The Nose has been praised by both critics and audiences. In an interview with Film
Score Monthly, Figgis stated that he was inspired by the surrealism of the story and the absurdist humor in Gogol’s writing,
and that he wanted to create a score that captured the feeling of disorientation and confusion that is so prevalent in the story.
He also discussed the challenges of translating the story’s unique tone and atmosphere into music, but ultimately felt that
he was able to find the right balance. Overall, Figgis’s work on The Nose is a testament to his skill as a composer and his
ability to bring unique and complex stories to life through music.

Evidence stance refutes
ACULlama 1.01
PLlama(False|C) 0.46 PLlama(False|C,E) 0.65
PLlama(None|C) 0.05 PLlama(None|C,E) 0.31
PLlama(True|C) 0.48 PLlama(True|C,E) 0.03
ACUPythia -0.66
PPythia(False|C) 0.37 PPythia(False|C,E) 0.11
PPythia(None|C) 0.05 PPythia(None|C,E) 0.01
PPythia(True|C) 0.54 PPythia(True|C,E) 0.84

Table 17: Cherry-picked ACU samples for Llama and/or Pythia on ConflictQA.

Dataset ConflictQA
Claim The Canada women’s national field hockey team plays field hockey.
Evidence Contrary to popular belief, the Canada women’s national field hockey team plays football as well. In fact, many field hockey

players also have a background in football, as the two sports share similar skills such as agility, speed, and endurance.
According to a recent interview with team captain Sarah Jullien, she stated that "I started playing football when I was young
and it has definitely helped me improve my performance on the field hockey pitch." Additionally, the team’s official website
lists football as one of the recommended cross-training sports for players looking to improve their game.

Evidence stance refutes
ACULlama 0.48
PLlama(False|C) 0.16 PLlama(False|C,E) 0.34
PLlama(None|C) 0.03 PLlama(None|C,E) 0.20
PLlama(True|C) 0.80 PLlama(True|C,E) 0.46
ACUPythia -0.29
PPythia(False|C) 0.40 PPythia(False|C,E) 0.29
PPythia(None|C) 0.05 PPythia(None|C,E) 0.04
PPythia(True|C) 0.51 PPythia(True|C,E) 0.64

Dataset ConflictQA
Claim Domašov is located in the Czech Republic.
Evidence not live in these communities, but they are members of the Miles Jesu family. It was reported in 2004 that there were 27

Miles Jesu houses in 14 countries. The latest (January 2012) information indicates that there are domus communities in 9
countries and vinculum members in an additional 3 countries. Domus communities are found in the following countries
(with date of first foundation): United States (1964), India (1984), Spain (1985), Nigeria (1987), Italy (1988) Czech Republic
(1990), Ukraine (1990), Poland (1991), and Slovakia (2004). The three additional countries are Puerto Rico, England and
Austria. The members in the Ukraine

Evidence stance supports
ACULlama -0.53
PLlama(False|C) 0.15 PLlama(False|C,E) 0.14
PLlama(None|C) 0.04 PLlama(None|C,E) 0.31
PLlama(True|C) 0.81 PLlama(True|C,E) 0.54
ACUPythia 0.03
PPythia(False|C) 0.39 PPythia(False|C,E) 0.23
PPythia(None|C) 0.05 PPythia(None|C,E) 0.16
PPythia(True|C) 0.54 PPythia(True|C,E) 0.40

Table 18: Lemon-picked ACU samples for Llama and/or Pythia on ConflictQA.
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Dataset DRUID
Claim Vandana Tiwari, Sister of Bageshwar Dham Dhirendra Shastri, is marrying a Muslim man
Evidence A photo of a couple in traditional attire is viral on social media, claiming that the woman seen in it is Bageshwar Dham

Dhirendra Shastri’s sister ‘Vandana Tiwari’. A post that shares this photo claims that she is marrying a Muslim man without
the knowledge of her brother. Let’s verify the truth behind these claims through this fact-checking article. [...] According to
BBC, Bageshwar Dham’s Dhirendra Shastri has a sister named Rita Garg, and she is already married. Regarding this issue,
Bageshwar Dham’s PRO, Kamal Awasthi, told Aaj Tak that she married a Hindu man called Kamlesh Chauraha in 2015. All
of this makes it evident that the viral photo is being misquoted as a picture of Dhirendra Shastri’s sister and her Muslim
husband while it actually features Actress Gehana Vasisth and her husband.

Evidence stance refutes
ACULlama 2.04
PLlama(False|C) 0.42 PLlama(False|C,E) 0.78
PLlama(None|C) 0.36 PLlama(None|C,E) 0.19
PLlama(True|C) 0.20 PLlama(True|C,E) 0.01
ACUPythia -0.12
PPythia(False|C) 0.55 PPythia(False|C,E) 0.52
PPythia(None|C) 0.04 PPythia(None|C,E) 0.08
PPythia(True|C) 0.33 PPythia(True|C,E) 0.34

Dataset DRUID
Claim Sapodilla Cay is a territory of Guatemala
Evidence Guatemala recalls in its application for permission to intervene that on November 16, 2022, Belize initiated proceedings

against the Republic of Honduras over "sovereignty over the Sapodilla Cays or Cayes, a cluster of islands in the Gulf of
Honduras, which Guatemala also claims." Belize asks the Court to "adjudicate and declare that, as between Belize and
Honduras, Belize is sovereign over the Sapodilla Cayes." [...] (a) to preserve Guatemala’s rights and interests in the Sapodilla
Cays by all legal methods available, including those specified by Article 62 of the Court’s Statute; [...] Belize stated in its
Application for Initiation of Proceedings that the Sapodilla Cayes have been part of the territory of Belize since the early
nineteenth century, first as part of the settlement of Belize and later as part of the colony of British Honduras, and since 1981
as part of the independent State of Belize.

Evidence stance insufficient-neutral
ACULlama 0.75
PLlama(False|C) 0.63 PLlama(False|C,E) 0.19
PLlama(None|C) 0.17 PLlama(None|C,E) 0.41
PLlama(True|C) 0.20 PLlama(True|C,E) 0.39
ACUPythia 1.25
PPythia(False|C) 0.37 PPythia(False|C,E) 0.05
PPythia(None|C) 0.03 PPythia(None|C,E) 0.12
PPythia(True|C) 0.57 PPythia(True|C,E) 0.40

Table 19: Cherry-picked ACU samples for Llama and/or Pythia on DRUID.

Dataset DRUID
Claim Blocks of color printed on toothpaste tubes indicate whether the toothpaste is made of safe ingredients
Evidence The truth is: the toothpaste color-coding system simply doesn’t exist. Oral care companies don’t mark their toothpastes with

colored squares to try to trick consumers and hide ingredients from them. We’re sure you’re wondering, so why are there
color blocks on toothpaste tubes then? We’re happy to report that they do, in fact, have a purpose! They actually help in the
manufacturing of the toothpaste tubes by telling light sensors where the end of the tube is so that it can be cut and sealed
properly. We know, it’s not as exciting as a secret code, but we think the truth is pretty cool too. [...] If you want to know
what kind of ingredients your toothpaste has, don’t look for a colored block at the end of the tube. Instead, take a look at the
packaging for a comprehensive list of ingredients. You can talk with your dentist to learn more about how each ingredient
works to keep your mouth healthy and what kind of toothpaste would be best to meet your needs.

Evidence stance refutes
ACULlama 1.16
PLlama(False|C) 0.64 PLlama(False|C,E) 0.76
PLlama(None|C) 0.21 PLlama(None|C,E) 0.21
PLlama(True|C) 0.14 PLlama(True|C,E) 0.02
ACUPythia -0.75
PPythia(False|C) 0.49 PPythia(False|C,E) 0.29
PPythia(None|C) 0.03 PPythia(None|C,E) 0.07
PPythia(True|C) 0.42 PPythia(True|C,E) 0.60

Dataset DRUID
Claim CO2 concentrations are increasing in Earth’s atmosphere faster than they have in the last 50,000 years.
Evidence Atmospheric CO2 concentrations rising faster today than the last 50,000 years, as accurately claimed in recent social media

posts Atmospheric carbon dioxide (CO2) concentrations and their current rate of increase is unprecedented in the last
50,000 years, based on ice core data. The highest increase in CO2 in that period occurred over the span of 50 years, but the
same increase occurred in only the last five years – which is 10 times faster. As human emissions of CO2 increase, global
temperatures rise in response through the greenhouse effect. [...] In May 2024, a number of articles and Facebook posts
claimed that carbon dioxide (CO2) concentrations are increasing in Earth’s atmosphere faster than they have in the last
50,000 years. So what sparked this claim?

Evidence stance supports
ACULlama -1.09
PLlama(False|C) 0.15 PLlama(False|C,E) 0.35
PLlama(None|C) 0.16 PLlama(None|C,E) 0.37
PLlama(True|C) 0.67 PLlama(True|C,E) 0.26
ACUPythia -0.86
PPythia(False|C) 0.40 PPythia(False|C,E) 0.49
PPythia(None|C) 0.02 PPythia(None|C,E) 0.12
PPythia(True|C) 0.56 PPythia(True|C,E) 0.23

Table 20: Lemon-picked ACU samples for Llama and/or Pythia on DRUID.
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Figure 6: Accumulated context usage (Equation (2)) each model on sufficient evidence from all datasets (Figures 6a
and 6b) and insufficient evidence from DRUID (Figures 6c and 6d) under different prompts. Figure 3 is included
again for comparison (Figure 6a). The error bars indicate the standard deviation. The maximum and minimum
context usage value possible is 3 and -3, respectively. Values under the red line indicate ‘context-repulsion’.
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Prediction Evidence stance
Dataset Model stance False None True

∑
∆ND Memory conflict (%)

CounterFact Llama False ↑↓↓ 7,166 (-2575) 2,826 (+2,826) 8 (-251) -5,150 2.59
True ↓↓↑ 0 (-9,741) 2,557 (+2,557) 7,443 (+7,184) 14,358 97.41

Pythia False ↑↓↓ 1,608 (-2,364) 4,026 (+3,967) 4,366 (-1,591) -4,740 59.57
True ↓↓↑ 0 (-3,972) 4,095 (+4,036) 5,905 (-52) -116 39.72

ConflictQA Llama False ↑↓↓ 1,048 (-1,265) 4,149 (+4,148) 2,826 (-2,883) -2,530 71.16
True ↓↓↑ 5 (-2,308) 350 (+349) 7,668 (+1,959) 3,918 28.83

Pythia False ↑↓↓ 170 (-1,890) 78 (+42) 7,766 (+1,839) -3,771 73.88
True ↓↓↑ 17 (-2,043) 29 (-7) 7,972 (+2,045) 4,095 25.68

DRUID Llama False ↑↓↓ 1,528 (-86) 202 (+181) 30 (-95) -172 7.10
None ↓↑↓ 600 (-1,126) 1,226 (+1,199) 219 (-73) 2,398 0.00
True ↓↓↑ 124 (-404) 285 (+274) 500 (+130) 260 58.09

Pythia False ↑↓↓ 1,212 (-101) 2 (0) 543 (+98) -199 25.28
None ↓↑↓ 450 (-509) 20 (+20) 1,569 (+483) 46 0.00
True ↓↓↑ 83 (-242) 3 (+2) 822 (+239) 479 35.75

Table 21: Model predictions for the task of claim verification based on provided evidence, stratified by evidence
stance. Values in (parenthesis) indicate the change in model predictions compared to when the model is prompted
without context. The arrows indicate the desirable direction for maximum context usage for each of the possible
output labels (False, None, True). For example, given that a model has predicted ‘False’, we ideally want it to do
this only on evidence with the stance ‘False’. Numbers in green indicate that the model generally is following the
context and numbers in red indicate the opposite, based on whether the total model predictions change to align more
with the desirable direction when evidence is introduced.

∑
∆ND indicates the accumulated number of desirable

switches minus the number of undesirable switches in model prediction when provided with evidence of a certain
stance. ‘Memory conflict’ indicates the share of samples for which the stance of the provided evidence conflicts
with the parametric model prediction (no context or evidence provided). ‘None’ evidence stances or parametric
predictions are not considered to correspond to memory conflicts.

Dataset Model Evidence stance ∆PM (False|C,E) ∆PM (None|C,E) ∆PM (True|C,E) ACU

CounterFact Llama refutes ↑↓↓ −0.13 ± 0.24 0.31 ± 0.13 −0.84 ± 0.18 0.40

supports ↓↓↑ −0.83 ± 0.07 0.18 ± 0.19 0.45 ± 0.20 1.10

Pythia refutes ↑↓↓ −0.30 ± 0.19 0.27 ± 0.11 −0.27 ± 0.17 −0.30

supports ↓↓↑ −0.62 ± 0.11 0.33 ± 0.12 −0.10 ± 0.20 0.19

ConflictQA Llama refutes ↑↓↓ −0.28 ± 0.34 0.33 ± 0.17 −0.39 ± 0.44 −0.22

supports ↓↓↑ −0.81 ± 0.22 −0.26 ± 0.39 0.58 ± 0.38 1.65

Pythia refutes ↑↓↓ −0.51 ± 0.20 −0.11 ± 0.28 0.26 ± 0.29 −0.66

supports ↓↓↑ −0.70 ± 0.17 −0.47 ± 0.33 0.58 ± 0.26 1.75

DRUID Llama refutes ↑↓↓ 0.35 ± 0.41 −0.22 ± 0.37 −0.71 ± 0.35 1.28

insufficient-refutes ↑↑↓ −0.07 ± 0.46 0.07 ± 0.34 −0.40 ± 0.44 0.40

insufficient-contra. ↓↑↓ −0.41 ± 0.33 0.25 ± 0.23 −0.13 ± 0.37 0.79

insufficient-neutral ↓↑↓ −0.35 ± 0.29 0.31 ± 0.20 −0.30 ± 0.37 0.96

insufficient-supports ↓↑↑ −0.37 ± 0.29 0.16 ± 0.27 −0.08 ± 0.38 0.45

supports ↓↓↑ −0.40 ± 0.30 0.05 ± 0.32 0.04 ± 0.39 0.39

Pythia refutes ↑↓↓ −0.07 ± 0.27 0.07 ± 0.10 −0.17 ± 0.33 0.03

insufficient-refutes ↑↑↓ −0.25 ± 0.26 0.03 ± 0.13 0.04 ± 0.29 −0.26

insufficient-contra. ↓↑↓ −0.40 ± 0.21 0.04 ± 0.11 0.06 ± 0.26 0.38

insufficient-neutral ↓↑↓ −0.33 ± 0.21 0.01 ± 0.13 0.13 ± 0.25 0.21

insufficient-supports ↓↑↑ −0.35 ± 0.22 −0.03 ± 0.17 0.19 ± 0.24 0.51

supports ↓↓↑ −0.42 ± 0.22 −0.06 ± 0.20 0.26 ± 0.24 0.74

Table 22: Averages and standard deviations for differences in prediction probabilities (scaled) when evidence is
introduced for all datasets. The arrows indicate the desirable direction for maximum context usage. Numbers in
green indicate that the model generally is following the context and numbers in red indicate the opposite, based on
the total change in prediction probability as evidence is introduced. ACU is defined in Equation (2).
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Figure 7: Spearman correlations between ACU and different sample features for Llama under a tuned 3-shot prompt
and a zero-shot prompt. We also show the results on insufficient evidence from DRUID. Significant correlation values
(p-value 0.05) are marked in bold.
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Figure 8: Spearman correlations between ACU and different sample features for Pythia under a tuned 3-shot prompt
and a zero-shot prompt. We also show the results on insufficient evidence from DRUID. Significant correlation values
(p-value 0.05) are marked in bold.
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Figure 9: Page 1 of 10 depicting the annotation interface.
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Figure 10: Page 2 of 10 depicting the annotation interface.
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Figure 11: Page 3 of 10 depicting the annotation interface.
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Figure 12: Page 4 of 10 depicting the annotation interface.
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Figure 13: Page 5 of 10 depicting the annotation interface.
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Figure 14: Page 6 of 10 depicting the annotation interface.
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Figure 15: Page 7 of 10 depicting the annotation interface.
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Figure 16: Page 8 of 10 depicting the annotation interface.
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Figure 17: Page 9 of 10 depicting the annotation interface.
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Figure 18: Page 10 of 10 depicting the annotation interface.
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