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Abstract

In this paper, we propose contextualized and
situated text-to-speech (CS-TTS), a novel
TTS task to promote more accurate and cus-
tomized speech generation using prompts with
Dialogues, Narratives, and Actions (DNA).
While prompt-based TTS methods facilitate
controllable speech generation, existing TTS
datasets lack situated descriptive prompts
aligned with speech data. To address this
data scarcity, we develop an automatic an-
notation pipeline enabling multifaceted align-
ment among speech clips, content text, and
their respective descriptions. Based on this
pipeline, we present DNASpeech, a novel CS-
TTS dataset with high-quality speeches with
DNA prompt annotations. DNASpeech con-
tains 2,395 distinct characters, 4,452 scenes,
and 22,975 dialogue utterances, along with
over 18 hours of high-quality speech record-
ings. To accommodate more specific task sce-
narios, we establish a leaderboard featuring two
new subtasks for evaluation: CS-TTS with nar-
ratives and CS-TTS with dialogues. We also de-
sign an intuitive baseline model for comparison
with existing state-of-the-art TTS methods on
our leaderboard. Experimental results indicate
the quality and effectiveness of DNASpeech,
validating its potential to drive advancements
in the TTS field. Dataset is available at https:
//github.com/steven-ccq/DNASpeech.

1 Introduction

Text-to-speech (TTS) aims to convert input text
into human-like speech, attracting significant at-
tention in the audio and speech processing com-
munity (Shen et al., 2018; Ren et al., 2020; Shen
et al., 2023; Ju et al., 2024). Previous studies have
shown that incorporating more detailed descrip-
tions of the input text is crucial for improving the
accuracy of speech synthesis (Guo et al., 2023; Li

†Corresponding author: Rui Yan (ruiyan@ruc.edu.cn)

et al., 2022b; Yang et al., 2024). The speaker’s
contextual information, such as dialogue history,
significantly impacts the generated speech (Li et al.,
2022a; Guo et al., 2021; Liu et al., 2023). Addi-
tionally, situated descriptions are also beneficial to
enhance the expressiveness of the speech by provid-
ing environmental background (Lee et al., 2024).
Consequently, we propose a new TTS task termed
Contextualized and situated Text-To-Speech (CS-
TTS), which considers the impact of contextual-
ized and situated descriptions on speech synthesis.
By integrating these detailed descriptions, CS-TTS
enables more accurate and expressive speech gener-
ation, improving the applicability of TTS systems
across diverse scenarios.

Recently, prompt-based TTS methods have
gained increasing research interest, providing tech-
nical support for customized speech generation (Li
et al., 2024). While formulating detailed descrip-
tions as prompts can potentially address the CS-
TTS task, current datasets lack comprehensive
prompts that align with text and speech. Their
limitations include: (1) Existing prompts with sev-
eral key phrases lack sufficient contextual descrip-
tions (Kim et al., 2021; Guo et al., 2023); (2)
Dialogue-only prompts fail to incorporate multi-
faceted situated descriptions required for precise
speech customization (Lee et al., 2023; Li et al.,
2022a); (3) Limited speaker characters restrict the
exploration of various acoustic characteristics in
TTS generation.

These constraints render existing datasets insuf-
ficient for CS-TTS research. Therefore, we aim
to construct a new CS-TTS dataset incorporating
more comprehensive contextualized and situated
descriptions. As illustrated in Figure 1, we system-
atically summarize the necessary descriptions into
three categories, abbreviated as “DNA”: Dialogues
provide the conversational context of speech con-
tent; Narratives describe the environmental scenes
surrounding the speaker’s speech; and Actions de-
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Andy Dufresne Red Samuel Norton Byron Hadley

ANDY DUFRESNE is on the witness stand, hands 
folded, suit and tie pressed, hair meticulously combded.

He picks up a revolver, spins the cylinder before their 
eyes like a carnival barker spinning a wheel of fortune.

soft, measured tones suspicious, aggressive hesitate showing the gun to 
JUROUS 

Scene: COURT - DAY
TimeStamp: 00:02:19-00:05:50
Shots: {�0, �1, �2⋯��}
Sub-Script: Andy Dufresne in court, facing the lawyer's 
questioning...

Scene: A CORNER OF THE PRISON - DAY
TimeStamp: 01:40:45-01:45:56
Shots: {�0, �1, �2⋯��}
Sub-Script: ANDY curled up in a corner and RED 
came to comfort him...

Scene: ANDY'S PRISON CELL - NIGHT
TimeStamp: 01:53:22-02:00:25
Shots: {�0, �1, �2⋯��}
Sub-Script: Norton was furious because of ANDY's 
disappearance. At this time, ANDY had escaped from the 
prison...

Andy Dufresne, a banker wrongly convicted of murdering his wife and 
her lover, who is sent to Shawshank State Penitentiary. There, he forms 
a close friendship with Ellis "Red" Redding, a lifer who helps him 
adjust to prison life. Over the years, Andy uses his banking skills to 
help the prison staff with financial matters and becomes involved in 
money-laundering schemes. Despite the corruption around him, Andy 
maintains hope and works secretly on an escape plan. After decades of 
enduring hardship, Andy escapes Shawshank through a tunnel he dug 
over 19 years, and he ultimately finds freedom in Mexico.
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Figure 1: An illustration of DNASpeech Dataset. “DNA” descriptions for our proposed CS-TTS task. Dialogues,
Narratives, and Actions are annotated to capture the contextualized and situated background essential for TTS
generation.

tail the speaker’s actions and expressions during
speech production.

Among various data sources, movies offer a nat-
ural solution due to their rich speech content and
diverse character timbres. Movie scripts include
not only conversational lines but also environmen-
tal scenes that guide the speaker’s performance,
aligning well with our “DNA” descriptions. Taking
advantage of this, we develop an automated anno-
tation pipeline for multifaceted alignment among
content text, speech clips, and their correspond-
ing “DNA” descriptions. Based on our efforts in
processing movie videos and scripts through this
pipeline, we finally collect a new CS-TTS dataset
DNASpeech that contains 2,395 distinct charac-
ters, 4,452 scenes, and 22,975 dialogue utterances,
along with over 18 hours of high-quality speech
recordings.

To accommodate more specific task scenarios,
we establish a leaderboard featuring two new sub-
tasks: CS-TTS with narratives and CS-TTS with

dialogues. Both subtasks are used to evaluate the
ability of TTS systems to leverage environmen-
tal scenes and dialogue context, along with the
speaker’s actions, to customize speech. We also
introduce an intuitive CS-TTS baseline model for
comparison with existing representative TTS meth-
ods on our leaderboard. Extensive experimental
results validate the effectiveness and quality of
DNASpeech, contributing to the advancements of
prompt-based TTS.

Our main conclusions can be summarized as
follows:

(1) To support research in CS-TTS, we collect a
novel dataset DNASpeech, containing high-quality
speech recordings annotated with comprehensive
“DNA” prompts: dialogues, narratives, and actions.

(2) We elaborately present an automatic anno-
tation pipeline for multifaceted alignment among
content text, speech clips, and their corresponding
descriptions, enabling the efficient collection of
high-quality aligned TTS data.
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(3) We establish a leaderboard featuring two new
subtasks: CS-TTS with narratives and CS-TTS
with dialogues. We also propose an intuitive base-
line model for the CS-TTS task. Comprehensive
experimental results indicate the quality and effec-
tiveness of DNASpeech.

2 Related Work

2.1 Text-to-speech without prompts
Text-to-speech (TTS) systems have been signif-
icantly propelled by the availability of diverse
and extensive speech datasets. LJSpeech (Ito and
Johnson, 2017) stands out with its 13,100 high-
quality short speech clips of a single speaker, de-
rived from readings of passages from seven non-
fiction books. Another key resource is the Lib-
riSpeech corpus (Panayotov et al., 2015), an exten-
sive collection encompassing approximately 1,000
hours of audiobook recordings from the LibriVox
project (Kearns, 2014).

To expand these resources, LibriTTS (Zen et al.,
2019) offers a multi-speaker English corpus with
around 585 hours of read speech, recorded at a
24kHz sampling rate, enhancing the variability and
richness of the speech data available for TTS re-
search. The CSTR VCTK Corpus further diversi-
fies the available data with contributions from 110
English speakers exhibiting various accents, each
providing approximately 400 sentences sourced
from diverse texts, such as newspapers and accent
elicitation passages. Moreover, the Hi-Fi Multi-
Speaker English TTS Dataset (Hi-Fi TTS) (Bakh-
turina et al., 2021) delivers a robust multi-speaker
dataset, consisting of approximately 291.6 hours
of speech from 10 speakers, with each contributing
at least 17 hours of recordings. These datasets col-
lectively furnish a rich foundation for developing
and refining TTS systems, enabling significant im-
provements in the naturalness and intelligibility of
synthetic speech.

2.2 Text-to-speech with prompts
With the advancement of TTS technology, there has
been an increasing emphasis on using prompts to
guide speech generation, enabling a more diverse
and customized generation process. Initially, semi-
nal works (Adigwe et al., 2018; Livingstone and
Russo, 2018; Zhou et al., 2021) identify the pres-
ence of emotional information in speech and con-
struct corresponding datasets by annotating speech

https://datashare.ed.ac.uk/handle/10283/3443

with emotions. However, these datasets primar-
ily focus on emotional labels within speech and
categorize them into a limited number of classes.
To achieve more comprehensive representations,
FSNR0 (Kim et al., 2021) introduces 327 differ-
ent labels covering a variety of emotions, inten-
tions, tones, and speech rates. To further advance
prompt-based TTS, the PromptSpeech dataset from
PromptTTS (Guo et al., 2023) utilizes continuous
text to describe speech across multiple dimensions,
including gender, pitch, loudness, speech rate, and
emotion. Similarly, NLSpeech (Yang et al., 2024)
and TextrolSpeech (Ji et al., 2024) employ continu-
ous text descriptions of speech, incorporating more
detailed and daily expressions.

The datasets mentioned above mainly focus on
describing the speech, lacking contextual informa-
tion crucial for speech generation. Despite these
advancements, datasets with contextual prompts re-
main relatively scarce. DailyTalk (Lee et al., 2023)
is a highly popular dataset consisting of 20 hours
of speech data from 2,541 dialogues, spoken by
two fluent English speakers, a male and a female.
The dialogues in DailyTalk are sampled from an-
other dialogue dataset DailyDialog (Li et al., 2017).
ECC (Li et al., 2022a) collects 24 hours of speeches
from 66 conversational videos from YouTube. Each
dialogue has a duration of 79.3 seconds and fea-
tures around 2.9 speakers on average. In contrast,
MM-TTS (Li et al., 2024) highlights the influence
of environmental information on speech, amassing
expressive speech from film and television data,
aligned with corresponding facial expressions and
actions.

Unlike existing contextual prompt-based TTS
datasets (Lee et al., 2023; Li et al., 2022a, 2024),
our DNASpeech systematically integrates and
aligns three distinct types of descriptive prompts,
providing more comprehensive contextualized and
situated information to enhance the richness and
relevance of the generated speech. Moreover,
DNASpeech presents a substantial enhancement
in speaker diversity, enabling the exploration of
various acoustic characteristics in TTS generation.

3 DNASpeech Dataset

3.1 Overview

What is DNASpeech? We aim to construct a pio-
neering prompt-based TTS dataset tailored for the
CS-TTS task. The proposed dataset DNASpeech
aggregates a significant corpus of speech clips
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Figure 2: The DNASpeech Dataset. Pie Chart: Proportion of movie categories. Histograms, from left to right:
Distribution of the number of scenes, sentences, and speech clip duration in movies. Best viewed online and zoomed
in.

sourced from movies and their accompanying
scripts. Each speech clip is aligned with three
types of prompts: dialogues (D), narratives (N), and
actions (A). These prompts, collectively referred
to as “DNA”, are intricately intertwined with the
corresponding speeches, enhancing the contextual
richness and situational relevance of the dataset.
Specifically, dialogues contain the conversational
context preceding the speech; narratives depict the
environmental scenes surrounding the speech; and
actions describe the speaker’s actions and expres-
sions during speech production.

Why are contextualized and situational
prompts necessary? Textual prompts serve as
crucial directives for controlling speech generation,
guiding the extraction of emotional and acoustic
features necessary for speech synthesis. However,
current datasets typically employ direct prompts,
which explicitly describe the desired speech at-
tributes such as "Angry, High pitch, Low speed,
Loudly." These prompts essentially function as
speech annotations and may not always be readily
available, particularly in scenarios like audiobooks
where detailed prompts are lacking (Anguera et al.,
2011). In contrast, contextual prompts are closely
associated with speech and reflect the situational
context in which the speech occurs. For instance,
the speech in a spooky and fearful scene is expected
to convey low-pitched and tense tones. Despite
their prevalence, datasets incorporating such con-
textualized and situated prompts remain scarce in
the field of TTS. Moreover, contextualized prompts
require TTS systems to identify subtle nuances of
the surrounding context. Therefore, the inclusion
of contextual prompts holds promise for driving ad-
vancements in TTS by enabling more contextually
appropriate and natural speech synthesis.

3.2 Dataset Construction Pipeline

To efficiently and automatically annotate descrip-
tive prompts aligned with text and speech, we
develop a new annotation pipeline. Fig 3 illus-
trates the overview of this pipeline for DNASpeech,
which consists of five fundamental steps: (1) data
collection, (2) information extraction, (3) cross-
modal alignment, (4) speech denoising, and (5)
automatic speech recognition. Data collection and
information extraction provide and preprocess the
raw movie materials. Cross-modal alignment in-
tegrates speech and textual descriptions through
both coarse-grained and fine-grained alignment pro-
cesses. Speech denoising and automatic speech
recognition ensure the quality of the speeches.

Step 1: Data Collection Movies serve as an in-
valuable resource for TTS research due to their
rich speech data and detailed contextual informa-
tion found in corresponding scripts, such as dia-
logue lines, narrative scenes, and action depictions.
Therefore, we choose movies as the primary data
source to construct DNASpeech.

Inspired by the Condensed Movies Dataset
(CMD) (Bain et al., 2020) compiling a substan-
tial collection of licensed movie clips from the
MovieClip YouTube channel , we augment our
dataset by collecting newly uploaded movies from
the MovieClip channel and purchasing additional
movies from legitimate sources. Eventually, we col-
lect a total of 126 movies released between 1940
and 2023, spanning up to 14 common movie cate-
gories, to enrich the diversity of our dataset.

Step 2: Information Extraction Following col-
lecting the raw movie videos, the next step is to
extract the necessary information, including the

https://www.youtube.com/c/MOVIECLIPS
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speaker’s voice and its corresponding lines. Subti-
tles in SRT format contain the content text along
with timestamps for the start and end of each
speech segment. We leverage timestamps to ob-
tain aligned text-speech pairs. For other subtitles
in image format, we employ SubtitleEdit, a widely
used software to convert image subtitles into text
format using Optical Character Recognition (OCR)
technology. Once all subtitles are converted into
SRT format, we extract the corresponding speech
clips from the movie soundtracks, sampled at a rate
of 16,000 Hz, thus obtaining both the speech clips
and their associated content text.

Next, our focus shifts to movie scripts obtained
from the Internet Movie Script Database (IMSDb),
a comprehensive repository of thousands of movie
scripts. However, original movie scripts are lengthy
and unstructured, necessitating parsing into struc-
tured units. Following the script writing paradigm,
we extract four key elements from each movie
script: Dialogues Narratives, Actions, and Charac-
ters. Dialogues denote the speaker’s conversational
context and line content of their speech within a
scene. Narratives represent the basic units defining
the overall setting of a shot in the movie. Actions
provide supplementary details about characters, de-
scribing their actions and expressions. Characters
denote the actors for each conversational session.
This process allows us to gather the contextualized
and situated information of speeches in movies.

Step 3: Cross-modal Alignment Prompt-based
TTS tasks necessitate aligning each speech with
its corresponding prompts, which is crucial for ef-
fective speech synthesis. Leveraging the shared
content text between speeches and lines provides
a foundation for tackling this alignment challenge.
However, while it is theoretically straightforward,
aligning speeches with lines directly from the script
encounters discrepancies in the content text. To
address this issue, we implement a two-stage align-
ment module combining coarse-grained and fine-
grained alignment.

coarse-grained alignment. To match each
speech with its corresponding line in the script,
more than 800 million potential matches are re-
quired, which is computationally intensive and in-
creases the cost of manual verification. Hence, we
initially filter out pairs with low textual similar-

https://docs.fileformat.com/video/srt/
https://www.nikse.dk/subtitleedit
https://imsdb.com/

ity by performing coarse-grained matching. To be
more specific, we preprocess both speech and script
content by removing stop words, punctuation, and
lemmatizing words. We then employ the Longest
Common Subsequence (LCS) method to compute
textual similarity, retaining (speech, text) pairs with
a similarity score of 0.9 or higher for subsequent
fine-grained alignment.

fine-grained alignment. After coarse-grained
alignment, we obtain approximately 30,000
(speech, text) pairs. However, the overlap be-
tween textual strings may not adequately capture
the alignment degree between speech and text.
Therefore, in this stage, we utilize the official
sentence model all-mpnet-base-v2 presented by
sentence-transformers group to calculate the se-
mantic similarity between speech and text. Pairs
with a semantic similarity score of 0.7 or higher
are retained. Finally, this process yields 22,975
(speech, text) pairs, totaling 18.37 hours of speech
data.

Step 4: Speech Denoising The speech clips ex-
tracted from the movies in Step 2 usually contain
background noises that degrade the quality of the
human voice. Therefore, it is essential to separate
the human voice from the background noise. Ad-
ditionally, the speech may sometimes be unclear
due to the filming environment, which makes it
also important to further enhance the human voice.
To eliminate these disturbing noises, we employed
Resemble Enhance, a common tool designed for
noise reduction and speech enhancement. This
tool comprises a denoiser and an enhancer, which
extract human voices from complex background
noise and further improve perceived audio quality
by restoring audio distortions and extending the
audio bandwidth. Both models are trained using
high-quality 44.1kHz voice data, ensuring superior
speech enhancement.

Step 5: Automatic Speech Recognition Al-
though speech clips are extracted from movies
based on their corresponding subtitle timestamps,
discrepancies in duration and clarity may arise, es-
pecially in complex dialogue scenes and extended
speeches. In addition, denoising speeches can
sometimes distort human voices, making them chal-
lenging to recognize amidst background noise. To

https://huggingface.co/sentence-transformers/
all-mpnet-base-v2

https://github.com/resemble-ai/
resemble-enhance
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Figure 3: The automatic annotation pipeline for DNASpeech consists of five fundamental steps: (1) data collection
of movie materials, (2) information extraction of textual content, (3) cross-modal alignment among “DNA” prompts,
text, and speech, (4) speech denoising to reduce background noises and (5) automatic speech recognition to ensure
the speech quality. An illustrative example from DNASpeech is provided on the right side.

ensure the quality and accuracy of the extracted
speeches, it is necsssary to verify them against two
criteria: (1) their recognizability and (2) alignment
between their content text and the corresponding
subtitles. We employ Automatic Speech Recogni-
tion (ASR) technology and make the reasonable
assumption that if a speech clip can be accurately
transcribed by an ASR model, it can also be recog-
nized by humans. We use OpenAI’s whisper-large-
v3 for automatic speech recognition. Samples that
do not match their corresponding subtitles after the
ASR transcription are eliminated. With this valida-
tion process, we finish the construction pipeline of
DNASpeech, ensuring its integrity and reliability
for subsequent research.

3.3 Manual Assessment

After a series of rigorous filtering and screening
processes in the pipeline, the quality of samples
in DNASpeech generally meets our requirements.
Next, further manual assessment is implemented
to ensure the high quality of the data and consis-
tency in the subjective evaluation of multiple eval-
uators. We manually evaluate each sample and
assign scores ranging from 1 to 3 based on the
overall quality of the sample. The specific criteria
for scoring include (1) clarity; (2) emotional rich-
ness; (3) speech speed, avoiding excessively fast or
slow pacing and (4) the relevance of the speech to
the contextual information. Evaluators first score
the samples based on each criterion independently,
disregarding the other factors. Subsequently, we

https://huggingface.co/openai/
whisper-large-v3

aggregate the evaluators’ scores to obtain an overall
quality assessment of each sample and the mean
evaluation score for DNASpeech is 2.57. For de-
tailed information about the evaluators, please refer
to Appendix H.1.

3.4 Data Quality Verification

Although the primary purpose of DNASpeech is
to aid in CS-TTS task, its inherent text-to-speech
mappings make it also suitable for general TTS
tasks. Therefore, we can verify its quality by exam-
ining the performance of DNASpeech on general
TTS tasks. To demonstrate this, we select two
TTS models: Tacotron2 and FastSpeech2, along
with our baseline model DNA-TTS. Besides, we
choose LJSpeech (Ito and Johnson, 2017) and Dai-
lyTalk (Lee et al., 2023) as the comparison datasets.
For DNASpeech, we first clustered the data by
speaker, then randomly sampled 90% of the exam-
ples from each speaker for the training set, with the
remaining 10% forming the test set. By comparing
the performance of these models on DNASpeech
with their performance on the comparison datasets,
we can assess the effectiveness of DNASpeech as
a general TTS dataset.

Following the same setting as DailyTalk, we use
mean opinion score (MOS) test as our evaluation
metrics. MOS requires evaluators to rate the over-
all quality of the speech from 1 to 5, with higher
scores representing better quality. Three listeners
participated in the evaluation process, each holding
a master’s degree and having completed prior train-
ing. After each round of testing, we calculate the
Kendall’s W coefficient for the scores provided by
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the three listeners. The results are accepted only
when the Kendall’s W coefficient ≥ 0.5, ensuring
consistency in the ratings. Results in Table 1 show
that models trained on DNASpeech sound as natu-
ral as those trained on other datasets, which proves
the data quality of DNASpeech.

Model LJSpeech DailyTalk DNASpeech

GT 4.07 ± 0.08 3.97 ± 0.07 4.05 ± 0.08
Tacotron2 3.87 ± 0.09 3.85 ± 0.10 3.90 ± 0.07

FastSpeech2 3.98 ± 0.07 3.97 ± 0.08 4.01 ± 0.07

Table 1: TTS integrity test result for DNASpeech. Score
from 1 to 5. A higher score indicates better speech qual-
ity. GT refers to the speeches converted from ground
truth mel-spectrograms.

4 Experiments

4.1 Existing Baselines
To evaluate the CS-TTS task, we select several
representative text-to-speech methods as baselines
for comparison. Based on the input data format
and the architecture of models, we categorize these
baselines into 3 types:

None-Prompt TTS, including Tacotron2 (Shen
et al., 2018), FastSpeech2 (Ren et al., 2020),
StyleTTS (Li et al., 2022b) and StyleSpeech (Min
et al., 2021).

Prompt based TTS, including PromptTTS2
(Leng et al., 2023), PromptTTS++ (Shimizu
et al., 2024), InstructTTS (Yang et al., 2024) and
VoiceLDM (Lee et al., 2024).

Codec TTS, including VALL-E (Wang et al.,
2023), NaturalSpeech2 (Shen et al., 2023) and
VoiceCraft (Peng et al., 2024).

More details about these baselines are introduced
in Appendix G.

4.2 Proposed Baseline
Since previous works are not tailored for the
CS-TTS task, we design an intuitive baseline
model to better evaluate the proposed benchmark.
Our baseline model draws from the structure of
PromptTTS (Li et al., 2022b) and consists of five
main modules: Phoneme Encoder, Context En-
coder, Style Fusion, Variance Adaptor, and Genera-
tor. Please refer to Appendix D for more details.

4.3 Leaderboard
To comprehensively evaluate baseline models’ per-
formance on CS-TTS benchmark, we use a combi-
nation of objective and subjective metrics.

4.3.1 Objective Metrics
Since ground truth waveform is available, follow-
ing (Wang et al., 2023; Peng et al., 2024), we
use four different objective metrics: MCD (Ku-
bichek, 1993), F0, WER and PESQ (Rix et al.,
2001). Please refer to Appendix E for detailed
definitions.

4.3.2 Subjective Metrics
CS-TTS with Narratives Previous work has
been limited by the form of prompts, typically only
considering prompts that directly describe speech
and lacking the ability to utilize environment infor-
mation (Guo et al., 2023; Leng et al., 2023; Yang
et al., 2024). Therefore, we propose CS-TTS with
narratives as our first benchmark. We maintain
the same training and testing sets as mentioned
in Chapter 3.4. For each sample, its environment
description is adopted as the input prompt.

To better assess speech quality, our MOS eval-
uations focus on different aspects: MOS-E em-
phasizes the alignment of the speech with the en-
vironment description, including volume, timbre,
and conveyed emotion, aiming to test the ability
to utilize information within the environment de-
scription. MOS-C focuses on the consistency of
the speech itself, with the goal of evaluating the
stability of the model when generating speech with
the environment description. Please refer to Ap-
pendix H.2 for detailed evaluation guidelines.

CS-TTS with Dialogues Although previous
work has explored the use of dialogue to control
speech generation (Li et al., 2022a; Guo et al.,
2021; Liu et al., 2023), they primarily focus on
the content of the dialogue itself, neglecting the
influence of the conversational scenario (e.g., the
speaker’s actions and expressions). Therefore, we
propose CS-TTS with dialogues, which utilizes the
speaker’s action states as supplementary informa-
tion to simulate the scenario of live conversations.

We first use MOS-D to assess the coherence be-
tween the speech and the dialogue context. During
the evaluation, we primarily consider two factors:
the overall emotional tone of the dialogue and the
content of the most recent dialogue turn. To evalu-
ate the impact of the action states on the speech, we
employ MOS-S to determine whether the speech
aligns with the action states. In this assessment,
evaluators are initially provided with the dialogue
context and action states to infer the speech’s emo-
tion, pitch, volume, etc., before listening to the
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Model Narrative Dialogue Objective Metrics

MOS-E ↑ MOS-C ↑ MOS-D ↑ MOS-S ↑ PESQ ↑ MCD ↓ F0 ↓ WER ↓
None-Prompt TTS Models

Tacotron2 3.86 ± 0.05 3.92 ± 0.09 3.73 ± 0.06 3.65 ± 0.07 3.67 8.25 76.29 10.10
FastSpeech2 3.84 ± 0.08 3.97 ± 0.13 3.75 ± 0.09 3.69 ± 0.09 3.49 8.45 78.26 11.94

StyleTTS 3.92 ± 0.11 3.93 ± 0.07 3.78 ± 0.07 3.72 ± 0.06 3.22 8.34 69.57 9.76
StyleSpeech 3.89 ± 0.08 3.90 ± 0.09 3.77 ± 0.09 3.72 ± 0.11 3.70 8.06 71.04 8.63

Prompt-based TTS Models

PromptTTS2 3.93 ± 0.07 3.92 ± 0.11 3.83 ± 0.11 3.80 ± 0.07 3.89 7.92 72.77 8.02
PromptTTS++ 3.93 ± 0.09 3.99 ± 0.10 3.78 ± 0.08 3.70 ± 0.09 3.68 7.82 74.59 8.69

InstructTTS 3.94 ± 0.09 4.12 ± 0.08 3.83 ± 0.13 3.75 ± 0.08 3.89 7.50 72.65 7.56
VoiceLDM 3.94 ± 0.07 3.86 ± 0.06 3.83 ± 0.09 3.72 ± 0.08 3.75 7.57 76.83 6.74

DNA-TTS (Ours) 3.96 ± 0.09 4.01 ± 0.13 3.85 ± 0.06 3.83 ± 0.07 4.10 7.35 71.45 6.36

Codec TTS Models

VALL-E 3.89 ± 0.06 3.95 ± 0.09 3.76 ± 0.05 3.74 ± 0.09 4.27 7.39 67.05 6.40
NaturalSpeech2 3.92 ± 0.04 4.03 ± 0.07 3.82 ± 0.05 3.79 ± 0.06 4.38 7.47 66.20 6.22

VoiceCraft 3.94 ± 0.08 4.16 ± 0.10 3.88 ± 0.06 3.89 ± 0.07 4.18 7.16 68.90 6.03

Table 2: Leaderboard results of DNASpeech. MOS-E and MOS-C are metrics of CS-TTS with narratives. MOS-D
and MOS-S are metrics of CS-TTS with dialogues. The best results are highlighted in bold.

generated speech. They then evaluate the degree
of alignment between the two and provide a final
score. Please refer to Appendix H.2 for detailed
evaluation guidelines.

4.4 Discussions

The evaluation results are presented in Table 2.
Based on the results, we find that:

MOS-E and MOS-C metrics are generally
correlated. This correlation suggests that models
adept at capturing and integrating environmental
descriptions—such as volume, timbre, and con-
veyed emotion—tend to maintain a high degree
of consistency in their speech generation. This
alignment underscores the importance of robust
environmental context integration mechanisms in
TTS systems to achieve both expressive and reli-
able speech synthesis.

Prompt-based methods perform better in
terms of MOS-D, highlighting the efficacy of in-
corporating dialogue context in speech synthesis.
This improvement is likely attributable to the mod-
els’ ability to leverage contextual information from
preceding dialogue turns, thereby producing more
contextually appropriate and emotionally resonant
speech. This advantage underscores the importance
of dialogue-aware mechanisms in TTS systems,
particularly for applications requiring dynamic and
context-sensitive interactions. We further explore
the influence of dialogue turns in Appendix F.

Codec TTS Models lead in both subjective
and objective evaluations. The superior perfor-

mance of Codec TTS models can be attributed to
their advanced encoding mechanisms, which effec-
tively capture and reproduce intricate speech nu-
ances, including prosody, intonation, and emotional
subtleties. These sophisticated encoding strategies
enable Codec TTS systems to generate speech that
not only aligns closely with environmental and con-
textual descriptions but also maintains high fidelity
and naturalness, thereby setting a benchmark for
future advancements in text-to-speech technology.

5 Conclusion

In this work, we introduce Contextualized and Sit-
uated Text-to-Speech (CS-TTS), aiming to gener-
ate speech that adapts to its surrounding context.
To address the limitations of existing datasets, we
collected a new dataset called DNASpeech to fa-
cilitate the development of CS-TTS. This dataset
contains high-quality speech recordings annotated
with "DNA" prompts that consist of Dialogues, Nar-
ratives, and Actions.

Furthermore, we establish a leaderboard to com-
pare the performance of various TTS models on
the CS-TTS task and propose a baseline method
to serve as a reference for future research in this
area. The results indicate that incorporating con-
textual and situated information can further en-
hance the performance of TTS models. We be-
lieve that DNASpeech can drive progress in TTS
research, moving toward generating smooth and
natural speech without manual intervention.
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Limitations

There are two main key aspects we aim to address
in our future work. Firstly, DNASpeech collects
speech data from movie scenes rather than from
real-world scenarios, which might affect the char-
acteristics of the speech. We plan to diversify our
dataset by incorporating speech data from more
varied and real-world contexts to better reflect au-
thentic speech patterns. Additionally, although we
define more comprehensive contextualized and sit-
uated prompts than previous TTS datasets, it does
not cover all possible prompt types. We intend to
explore and integrate additional types of textual
prompts to further enrich the dataset, enhancing its
utility for a wider range of TTS applications.
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A License

The dataset is available for free download and
non-commercial use under the CC BY-NC-SA 4.0
license.

B Social Impact

Given the sensitive nature of biometric data,
particularly vocal recordings, all data undergo
anonymization to protect personal privacy. How-
ever, despite these measures, there exists a potential
risk of misuse. To prevent unauthorized usage or
dissemination, access to the dataset is subject to a
rigorous review process. Regarding the intended
use, users are permitted to define their own tasks
in our dataset under the license, upon advanced
contact with us.

C Statistics

We analyze the statistics of speeches, focusing on
both pitch and speed to overall present DNASpeech.
We extract the F0 fundamental frequency from
speeches to obtain their pitch. As shown in Fig 4,
the pitch distribution range for female speakers
is wider than that for male speakers, evenly dis-
tributed from 70Hz to 150Hz; in contrast, the pitch
for male speakers is more concentrated, mostly ap-
pearing in the 65Hz-95Hz range. Overall, the pitch
of female speakers is generally higher than that of
male speakers. To more accurately measure the
speed of a speech, we calculate the syllables per
second (SPS) after removing its silent segments.
The distribution shown in the figure indicates that
the speakers’ speech speed ranges from 6 SPS to 22
SPS, with the 12-15 SPS being the most frequent.

D Proposed Baseline

D.1 Model Architecture

We propose a specific baseline for CT-TTS task,
as shown in Fig 5. The Phoneme Encoder uses
BERT (Devlin et al., 2019) to encode the phonemes
of the speech. The Context Encoder shares the
same structure as the Phoneme Encoder but in-
cludes classification tasks for emotion, pitch, en-
ergy, and speed during training. To ensure that
the generated speech accurately reflects the con-
textualized and situated descriptions provided in
the prompts, we introduce a Style Fusion module

https://anonymous.4open.science/r/
DNASpeech-FDCD

that employs a cross-attention mechanism for fine-
grained feature fusion.

Given that prompts in the CS-TTS task do not
include descriptions of acoustic features, we insert
a speaker embedding into the fused representation
to control the characteristics of the speech. Inspired
by the setup of FastSpeech2 (Ren et al., 2020), we
incorporate a Variance Adaptor module following
the Style Fusion. This module predicts informa-
tion such as duration, pitch, and loudness, further
clarifying the speech characteristics and address-
ing the one-to-many problem in prompt-based TTS
tasks. The final output of our baseline model is a
mel-spectrogram, which is transformed into speech
using a pre-trained HiFiGAN (Kong et al., 2020),
ensuring high-fidelity speech synthesis.

D.2 Effect of Modules

In our proposed baseline (DNA-TTS), the Con-
text Encoder and Style Fusion module collec-
tively serve as the core dialogue-aware components.
Specifically:

• Classification Task of Context Encoder:
This module employs BERT to encode con-
textual features. More importantly, during
training, it performs auxiliary classification
tasks for emotion, pitch, and energy, enabling
it to capture nuanced conversational cues (e.g.,
shifts in tone or intent across dialogue turns).

• Style Fusion: Leveraging cross-attention, this
module dynamically aligns the encoded dia-
logue context with the current input phonemes.
This ensures that synthesized speech reflects
the inferred emotional trajectory and speaker
intentions from prior dialogue turns, thereby
improving coherence (MOS-D).

To quantify the impact of these two components,
we add ablation experiments, where we progres-
sively remove these two components during both
training and inference stages. The results are as
follows:

Stage MOS-D PESQ MCD F0 WER

Original Model 3.85 4.10 7.35 71.45 6.36
- CLS Task 3.80 3.86 7.78 72.37 7.78

- Style Fusion 3.74 3.59 8.29 74.38 8.03

Based on the experimental results, it can be ob-
served that the model’s performance gradually de-
clines as components are disabled. Specifically,
when only the classification task is removed, there
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Figure 4: The statistical distribution of the mean F0 and SPS. Each point in the scatter figure represents a speaker.
The top and right figures are stacked histograms of mean F0 and SPS by gender.

(a) DNA-TTS

Figure 5: Illustration of the architecture of the proposed
baseline for CS-TTS tasks.

is a noticeable drop in performance. This may
be because the contextual information was not su-
pervised and aligned during training, leading to
insufficient handling of detailed features such as
emotion, pitch, and speed. When style fusion is fur-
ther removed, the model’s performance degrades
to a level comparable to that of None-Prompt TTS
models, at which point the contextual information
can not be integrated with the text input.

E Definition of Objective Metrics

MCD (Mel-Cepstral Distortion) (Kubichek, 1993)
measures the difference of Mel Frequency Cep-
strum Coefficients (MFCC) between generated and

ground truth, defined as

MCD =
10

ln 10

√√√√1

2

L∑

i=1

(mg
i −mr

i )
2

where L is the order of MFCC, which we set to be
13. mg

i is the ith MFCC of ground truth recording
and mr

i is the ith MFCC of the generated speech.
We use the pymcd package for calculating MCD.

F0 is measured by estimating the fundamental
frequency of the audio and calculating the F0 dis-
tance between the grounding truth and the gener-
ated speech. A smaller F0 distance indicates that
the generated speech is closer to the grounding
truth. For F0 estimation, we use the pYIN algo-
rithm implemented in librosa, with a minimum
frequency of 65 Hz and a maximum frequency of
200 Hz.

WER (Word Error Rate) is used to measure the
difference between the predicted and actual tran-
scription of speech by calculating the minimum
number of substitutions, deletions, and insertions
required to change the system’s output into the ref-
erence text:

WER =
S +D + I

N

where S refers to substitutions, D refers to dele-
tions, I refers to insertions and N is the total num-
ber of words in the reference transcription. We use
whisper-large-v3 as our ASR model.

https://github.com/chenqi008/pymcd
https://huggingface.co/openai/

whisper-large-v3
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PESQ (Perceptual Evaluation of Speech Qual-
ity) (Rix et al., 2001) is an objective metric de-
veloped by the International Telecommunication
Union (ITU) in recommendation P.862 and is com-
monly used for evaluating the quality of speech
in telecommunication systems, such as voice over
IP (VoIP) and TTS. It models the human auditory
system’s perception of speech. We use the pesq
package for calculating PESQ.

F Influence of Dialogue Turns

To assess the impact of contextual information
quantity on speech quality, we conduct additional
experiments. Specifically, we further divided the
DNASpeech test set into four categories based on
the number of dialogue turns: 1-3 turns, 4-6 turns,
7-8 turns, and 8 turns or more. We then test both
DNA-TTS (Prompt-based TTS Models) and VALL-
E (Codec TTS Models) on these subsets, and the
results are shown in Table 3:

The results show that contextual information has
a positive effect on speech quality within a certain
range, with the model performance typically peak-
ing around the 4-6 dialogue turns. However, as
the number of dialogue turns increases, the speech
quality begins to decline. When the contextual
information becomes too lengthy (i.e., beyond 8
turns), the speech quality significantly deteriorates.
This may be due to the contextual information be-
coming too dispersed, losing its supervisory effect
on speech generation. This serves as a reminder to
be cautious when using contextual information to
avoid such issues.

G Baseline details

G.1 Introduction of Baselines
Tacotron2 (Shen et al., 2018) leverages an end-to-
end deep learning framework, where the input is a
sequence of text and the output is a spectrogram,
which is then used to generate natural-sounding
speech. The model uses a sequence-to-sequence
architecture with attention mechanisms, allowing it
to learn a direct mapping between textual features
and audio characteristics.
FastSpeech2 (Ren et al., 2020) designed to en-
hance the efficiency, reliability, and flexibility of
speech synthesis systems. Unlike traditional autore-
gressive models that generate audio sequentially,
FastSpeech employs a non-autoregressive architec-
ture, enabling parallel generation of speech outputs.

https://github.com/ludlows/PESQ

Additionally, FastSpeech incorporates mechanisms
to improve robustness against input variations and
allows for greater controllability over speech char-
acteristics such as prosody and intonation.
PromptTTS2 (Leng et al., 2023) incorporates a
variation network that predicts voice variability not
captured by text prompts, and a prompt genera-
tion pipeline that leverages large language models
(LLMs) to compose high-quality text prompts au-
tomatically. The variation network in PromptTTS
2 works by predicting the representation from ref-
erence speech based on the text prompt represen-
tation, allowing for the sampling of diverse voice
variability.
PromptTTS++ (Shimizu et al., 2024) designed to
synthesize the acoustic characteristics of various
speakers based on natural language descriptions.
This method employs an additional speaker prompt
to efficiently map natural language descriptions to
the acoustic features of different speakers.
PromptTTS++ (Shimizu et al., 2024) builds upon
the concept of prompt-based TTS, where voice
characteristics can be manipulated through descrip-
tive prompts. A key innovation in PromptTTS++ is
the introduction of "speaker prompts", which are
designed to describe voice attributes like gender-
neutral, young, old, and muffled, and are intended
to be independent of speaking style. To facilitate
this, the authors constructed a dataset based on
the LibriTTS-R corpus with manually annotated
speaker prompts, as no large-scale dataset with
such annotations existed. The system employs a
diffusion-based acoustic model along with mixture
density networks to capture diverse speaker charac-
teristics from the training data.
InstructTTS (Yang et al., 2024) is designed to syn-
thesize speech with varying speaking styles by us-
ing natural language as style prompts. This model
introduces an insightful approach to controlling the
expressiveness of synthetic speech, such as emo-
tion and speaking rate, through natural language
descriptions, which can include detailed instruc-
tions. It models acoustic features in a discrete la-
tent space, using a discrete diffusion probabilistic
model to generate vector-quantized (VQ) acoustic
tokens instead of the traditional mel spectrogram.
StyleSpeech (Min et al., 2021) is designed to gen-
erate high-quality, personalized speech for multiple
speakers with minimal audio samples from the tar-
get speaker. This model is particularly adept at
adapting to new speakers with short-duration audio
samples. StyleSpeech introduces a novel Style-
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Model Turns MOS-D↑ MOS-S↑ PESQ↑ MCD↓ F0↓ WER↓

DNA-TTS

1-3 3.87 3.85 4.16 7.03 69.53 6.03
4-6 3.89 3.85 4.23 7.25 68.90 6.29
7-8 3.84 3.83 4.12 7.52 71.45 6.43
>8 3.80 3.79 3.89 7.60 75.87 6.69

VALL-E

1-3 3.77 3.78 4.28 7.45 66.69 6.28
4-6 3.79 3.76 4.31 7.38 67.19 6.45
7-8 3.73 3.73 4.24 7.62 67.75 6.55
>8 3.68 3.65 4.15 7.94 68.27 6.72

Table 3: The performance of DNA-TTS and VALL-E using different dialogue turns. The best results are highlighted
in bold, while the worst results are marked with underline.

Adaptive Layer Normalization (SALN) technique
that aligns the text input’s gain and bias according
to the style extracted from a reference speech audio.
This allows the model to synthesize speech in the
style of the target speaker effectively.

StyleTTS (Li et al., 2022b) focuses on generating
natural and diverse speech. StyleTTS is designed
to overcome the challenges of producing speech
with realistic prosodic variations, speaking styles,
and emotional tones. A key innovation of StyleTTS
is the integration of style-based generative model-
ing into a parallel TTS framework, which allows it
to synthesize speech that captures the stylistic nu-
ances of reference audio. This is achieved through
the use of a novel Transferable Monotonic Aligner
(TMA) and duration-invariant data augmentation,
enhancing the model’s ability to produce speech
with natural prosody and speaker similarity.

VoiceLDM (Lee et al., 2024) sets a new standard in
audio generation by incorporating environmental
context into the synthesis process. Unlike tradi-
tional TTS models that focus solely on linguistic
content, VoiceLDM is designed to respond to two
types of natural language prompts: a description
prompt that outlines the environmental setting of
the audio, and a content prompt that specifies the
linguistic content of the speech.

VALL-E (Wang et al., 2023) represents a signif-
icant shift in the approach to TTS. Unlike tradi-
tional methods that treat TTS as a continuous sig-
nal regression problem, VALL-E frames TTS as a
conditional language modeling task. This model
leverages discrete codes derived from an off-the-
shelf neural audio codec model, which allows it to
synthesize high-quality, personalized speech with
minimal acoustic prompts. VALL-E outperforms
existing state-of-the-art zero-shot TTS systems in

terms of speech naturalness and speaker similarity.
Additionally, VALL-E is capable of preserving the
speaker’s emotion and acoustic environment in the
synthesized speech.
NaturalSpeech2 (Shen et al., 2023) aims to syn-
thesize natural and human-like speech with high
quality and diversity. NaturalSpeech 2 employs
a neural audio codec that converts speech wave-
forms into sequences of latent vectors and a diffu-
sion model that generates these vectors based on
text input. A key feature of NaturalSpeech 2 is
its zero-shot capability, which allows the system to
synthesize diverse speech even for unseen speakers,
demonstrating superior prosody/timbre similarity,
robustness, and voice quality compared to previous
TTS systems.
VoiceCraft (Peng et al., 2024) is a token-infilling
neural codec language model that excels in both
speech editing and zero-shot text-to-speech appli-
cations. VoiceCraft is designed to work with vari-
ous audio sources, including audiobooks, internet
videos, and podcasts. It utilizes a Transformer de-
coder architecture and employs a unique token re-
arrangement process that combines causal masking
and delayed stacking. This innovative approach
allows the model to generate speech that is nearly
indistinguishable from original recordings in terms
of naturalness, as evaluated by human listeners.

G.2 Training Parameters
Training parameters are listed in Table 4 and Ta-
ble 5.

H Evaluation Details

H.1 Evaluator Information
A total of eight evaluators participated in the man-
ual evaluation process of this work. All evaluators
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Model Optimizer β1 β2 ϵ Batch size Training steps Learning rate

Tacotron2 Adam 0.9 0.99 10−6 16 2 epochs 10−4

FastSpeech2 Adam 0.9 0.98 10−9 16 2 epochs 10−5

StyleTTS AdamW 0 0.99 10−7 16 2 epochs 10−4

StyleSpeech Adam 0.9 0.98 10−9 16 2 epochs 2× 10−4

PromptTTS2 Adam 0.9 0.99 10−7 16 2 epochs 10−5

PromptTTS++ Adam 0.9 0.99 10−7 16 2 epochs 10−5

InstructTTS AdamW 0.9 0.94 10−7 16 2 epochs 3× 10−6

VoiceLDM AdamW 0.9 0.99 10−7 16 2 epochs 2× 10−5

Table 4: Training configurations for different models

Model Schedule Other params

Tacotron2 / /
FastSpeech2 Linear schedule Warm up step=200
StyleTTS OneCycleLR Weight decay=10−4, λs2s = 0.2, λadv = 1, λmono = 5,

λfm = 0.2, λdur = 1, λf0 = 0.1, λn = 1
StyleSpeech / /
PromptTTS2 / /
PromptTTS++ / /
InstructTTS Linear schedule Warm up step=200
VoiceLDM / Drop rate of cdesc=0.1, Drop rate of ccont=0.1

Table 5: Training configurations for different models

held a graduate degree or higher, including three
individuals of Asian descent and five native English
speakers. Prior to the evaluation, all participants
were thoroughly briefed on the evaluation methods
and specific guidelines.

H.2 Guidelines
H.2.1 MOS-E
Purpose. MOS-E evaluates how well the sys-
tem’s speech aligns with the environment descrip-
tion, taking into account volume, timbre, and the
emotion conveyed. The focus is on how effectively
the system incorporates the environmental context
into its speech, ensuring that the output feels con-
textually appropriate, emotionally consistent, and
well-matched to the described surroundings.

Criteria.

1. Volume Appropriateness: Does the system
adjust its volume in a way that matches the de-
scribed environment? For instance, if the envi-
ronment is a quiet room, is the speech soft and
subtle? If the setting is a loud, bustling street,
does the system compensate with louder or
more intense speech?

2. Timbre Alignment: Does the system adjust
the tone or texture of its voice to fit the en-
vironment? For example, in a serene setting
like a forest, is the voice calm and soothing,

whereas in a high-energy environment like a
sports stadium, does the voice reflect excite-
ment or intensity?

3. Emotion Conveyed: Is the emotional tone of
the speech consistent with the environment
description? If the environment is described
as tense or somber (e.g., a dark alley or a
funeral), does the speech reflect that tension or
sadness? If the environment is happy or lively,
does the voice convey a matching positive
emotion?

4. Contextual Adaptation: How well does the
system integrate information from the environ-
ment description into its speech output? Does
the system fully utilize the given context, or
does it fail to adapt its voice appropriately?

Scoring Instructions.

1. Very Poor (1): The speech is completely out
of sync with the environment description. Vol-
ume, timbre, and emotion are inappropriate,
making the system’s output feel disconnected
from the described surroundings.

2. Poor (2): The speech shows some effort to
match the environment but is still significantly
mismatched. There may be a lack of emo-
tional depth or incorrect volume/timbre ad-
justments that detract from the immersion.
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3. Moderate (3): The speech aligns to some de-
gree with the environment, but it is inconsis-
tent. Volume and timbre might be correct in
some cases, but emotional expression or con-
textual adaptation could be improved.

4. Good (4): The speech is generally well-
aligned with the environment. Volume, timbre,
and emotion are appropriately adjusted most
of the time, with only minor discrepancies.

5. Excellent (5): The system’s speech perfectly
matches the environment description. It seam-
lessly adjusts volume, timbre, and emotion
to create a highly immersive and contextually
accurate experience.

Considerations. Evaluate the system’s ability to
adapt dynamically to the environmental cues. Pay
attention to the subtlety of the system’s voice ad-
justments: a high-quality system should be able to
make these adjustments in a natural, unobtrusive
way that enhances the realism of the interaction.

H.2.2 MOS-C
Purpose. MOS-C evaluates the consistency of
the system’s speech when generating responses
based on the given environment description. The
focus is on assessing how stable the system is in
maintaining a steady and coherent output through-
out the interaction, ensuring that the speech re-
mains consistent in terms of tone, style, and quality,
regardless of environmental shifts or changes in the
context.

Criteria.

1. Tone Consistency: Is the system’s tone con-
sistent throughout the interaction? Does the
system maintain a coherent style (e.g., formal,
informal, casual, etc.) without unnecessary
fluctuations in tone?

2. Volume Stability: Does the system keep a
stable volume level during the interaction?
Even if the environment description changes,
is there an appropriate, but consistent, volume
level maintained without abrupt changes?

3. Timbre Consistency: Is the timbre (quality of
the voice) stable and consistent across multi-
ple turns? Does it retain its distinct character-
istics, or does it fluctuate in a way that feels
unnatural?

4. Emotional Consistency: Does the system
maintain a stable emotional tone, or does it
randomly fluctuate? Emotional shifts should
occur only when the environment changes in
a way that justifies them (e.g., a shift from a
happy environment to a sad one).

5. Stylistic Continuity: Does the system main-
tain consistency in its speaking style, such
as formality, in line with the environment de-
scription?

Scoring Instructions.

1. Very Inconsistent (1): The system’s speech
is highly unstable, with frequent and notice-
able shifts in tone, volume, timbre, or emotion
that do not match the environment or create a
jarring user experience.

2. Inconsistent (2): There are noticeable fluctu-
ations in the speech output that disrupt the
flow of the interaction. These shifts may seem
unnatural or out of place in the context of the
environment.

3. Moderately Consistent (3): The system main-
tains an overall stable speech output, but some
inconsistencies are present. There may be oc-
casional fluctuations in tone or volume, but
they don’t significantly impact the coherence
of the speech.

4. Consistent (4): The speech remains fairly sta-
ble throughout the interaction, with minor in-
consistencies that do not detract from the over-
all experience. The system maintains an ap-
propriate tone, volume, timbre, and emotional
consistency.

5. Highly Consistent (5): The system’s speech
is completely stable, with no noticeable fluc-
tuations. Tone, volume, timbre, and emotion
remain coherent and aligned with the environ-
ment description throughout the entire inter-
action.

Considerations. Evaluate the uniformity of the
speech characteristics. A consistent system will
adapt to environmental changes subtly without sud-
den shifts that could break immersion or distract
from the user experience.
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H.2.3 MOS-D
Purpose. MOS-D evaluates the coherence of the
system’s speech in relation to the ongoing dialogue
context. The goal is to assess how well the system’s
responses align with the previous conversation his-
tory and whether they maintain logical flow and
relevance. This score focuses on the system’s abil-
ity to stay on-topic, build on prior exchanges, and
provide responses that are contextually appropriate
within the dialogue.

Criteria.

1. Relevance to Previous Turns: Does the sys-
tem’s response directly address the most re-
cent user input? Are there clear connections
to prior exchanges, or does the response seem
disconnected or out of place?

2. Logical Flow: Does the system’s speech fol-
low a natural progression from previous dia-
logue? Are responses structured in a way that
makes sense given what has been discussed
so far?

3. Turn-taking and Timing: Does the system un-
derstand and respect the natural flow of con-
versation, responding at appropriate moments
and allowing for smooth turn-taking? Does
it avoid interrupting or providing responses
that feel out of sync with the timing of the
conversation?

Scoring Instructions.

1. Very Incoherent (1): The system’s response
is completely disconnected from the previous
dialogue. It may ignore or misunderstand the
context, resulting in responses that feel irrele-
vant or random.

2. Incoherent (2): The response is partially rele-
vant but lacks clear connection to the ongoing
conversation. There are significant gaps in
logical flow or misunderstandings of the con-
text.

3. Moderately Coherent (3): The system’s re-
sponse is somewhat relevant, but there may
be minor lapses in coherence. It addresses the
user’s input, but the response could be more
fluid or better integrated with the context.

4. Coherent (4): The response is mostly rele-
vant and logically follows from previous turns.

There are minor inconsistencies, but the over-
all flow of the conversation is maintained.

5. Highly Coherent (5): The system’s response
is seamlessly integrated into the ongoing di-
alogue. It builds naturally on previous ex-
changes, remains relevant, and maintains
a logical and smooth conversational flow
throughout.

Considerations. Pay close attention to how well
the system recognizes the dialogue history and con-
text. The response should not only be appropriate
to the immediate previous turn but also reflect un-
derstanding of the overall direction of the conver-
sation. A highly coherent system will effectively
navigate and build on the evolving dialogue while
keeping responses consistent and contextually rele-
vant.

H.2.4 MOS-S
Purpose. MOS-S evaluates how well the sys-
tem’s speech aligns with the action states described
in the given dialogue context. This assessment fo-
cuses on determining whether the speech accurately
reflects the inferred emotion, pitch, volume, and
other relevant qualities based on the action states
provided to the evaluator. The goal is to assess the
system’s ability to generate speech that is consis-
tent with the intended emotional tone, energy level,
and contextual cues.

Criteria.

1. Emotion Alignment: Does the speech accu-
rately reflect the emotion inferred from the
action states and dialogue context? For exam-
ple, if the action state indicates anger, is the
speech delivered with an appropriate intensity
and emotional weight?

2. Pitch Consistency: Is the pitch of the speech
consistent with the emotional tone and action
state? A heightened pitch might be expected
for excitement, while a lower pitch may suit a
calm or serious environment.

3. Volume Appropriateness: Does the volume
of the speech align with the inferred action
state? For example, if the action state sug-
gests an intense or confrontational situation,
should the speech be louder or more forceful,
as opposed to a quiet, subdued volume for a
calm or intimate setting?
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4. Timbre Alignment: Is the timbre (quality of
the voice) consistent with the action states?
For example, a high-energy situation might
require a brighter, more vibrant voice, while a
somber situation could demand a more muted,
heavy tone.

Scoring Instructions.

1. Very Poor (1): The speech is completely mis-
matched with the action states. Emotion,
pitch, volume, and timbre are completely
off, making the generated speech feel discon-
nected from the described action states.

2. Poor (2): The speech has some attempt at
matching the action states, but significant dis-
crepancies exist. The emotional tone, volume,
or pitch are not fully aligned with the intended
action states, resulting in a noticeable mis-
match.

3. Moderate (3): The speech aligns moderately
well with the action states. There are some no-
ticeable differences in emotion, pitch, volume,
or timbre, but the overall speech still corre-
sponds with the intended context and action
states.

4. Good (4): The speech is generally well-
aligned with the action states. The emotion,
pitch, volume, and timbre are mostly consis-
tent with the inferred context, with only minor
inconsistencies.

5. Excellent (5): The speech perfectly aligns
with the action states. The emotion, pitch,
volume, and timbre are precisely matched to
the action states and the overall dialogue con-
text, enhancing the realism and immersion of
the interaction.

Considerations. Evaluate how well the system
translates the inferred action states (emotion, vol-
ume, pitch, etc.) into speech characteristics. The
more closely the generated speech matches the ac-
tion states, the higher the alignment score. Pay
special attention to subtle aspects like the emo-
tional tone and how the system handles shifts in the
action state across different turns.
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