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Abstract
Existing visual perception systems focus on
region-level segmentation in single-turn dia-
logues, relying on complex and explicit query
instructions. Such systems cannot reason at the
pixel level and comprehend dynamic user intent
that changes over interaction. Our work tackles
this issue by introducing a novel task, Pixel-
level Reasoning Segmentation (Pixel-level RS)
based on multi-turn conversations, tracking
evolving user intent via multi-turn interactions
for fine-grained segmentation. To establish
a benchmark for this novel task, we build a
Pixel-level ReasonIng Segmentation Dataset
Based on Multi-Turn Conversations (PRIST),
comprising 24k utterances from 8.3k multi-turn
conversational scenarios with segmentation tar-
gets. Building on PRIST, we further propose
MIRAS, a Multi-turn Interactive ReAsoning
Segmentation framework, integrates pixel-level
segmentation with robust multi-turn conversa-
tion understanding, generating pixel-grounded
explanations aligned with user intent. The
PRIST dataset and MIRSA framework fill the
gap in pixel-level reasoning segmentation. Ex-
perimental results on the PRIST dataset demon-
strate that our method outperforms current
segmentation-specific baselines in terms of seg-
mentation and LLM-based reasoning metrics.
The code and data are available at: https:
//github.com/ccccai239/PixelRIST.

1 Introduction

Existing general multimodal large language mod-
els (MLLMs) (Bai et al., 2023; Zhu et al., 2023;
Liu et al., 2024b) exhibit exceptional visual percep-
tion, enabling both image segmentation and textual
reasoning, while they primarily rely on explicit
human instructions for region-level grounding. Al-
though some segmentation-specific works have ex-
plored grounded reasoning responses (Peng et al.,

†Corresponding author.
*
Equal contribution.

Figure 1: RS vs. Pixel-level RS. Pixel-level RS refines
intent understanding and segmentation (e.g., "oil bot-
tle") through multi-turn interactions, while RS produces
rough segmentation (e.g., "all ingredients") and handles
implicit single-turn queries poorly.

2023; You et al., 2023; Pi et al., 2023; Zhang et al.,
2023b), they depend on user-provided regions to
trigger reasoning. These perception systems still
cannot actively comprehend user’s nuanced intent
in real-world scenarios. To alleviate this problem,
Lai et al. (2023) proposes the reasoning segmenta-
tion task that aims to achieve segmentation based
on a implicit reasoning query. Recent studies (Ren
et al., 2024; Xia et al., 2024; Yuan et al., 2024)
have extended this region-level task to encompass
multi-object segmentation scenarios to advance de-
velopment. However, these methods have two lim-
itations: 1) They rely on single-turn ambiguous
queries and cannot fully understand users’ evolv-
ing intent. 2) They lack pixel-level segmentation
and only achieve region-level segmentation through
one-step explanations (e.g., segment roughly all in-
gridients in Figure 1(a)). In contrast, multi-turn in-
teractions can progressively clarify vague and gen-
eralized instructions such as "make a bread". As
illustrated in Figure 1(b), the system through multi-
turn interactions first guide to clarify the user’s
desired type of bread, providing targeted responses,
and ultimately focuses on the user’s specific needs,
achieving pixel-level segmentation in final.
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To address these challenges, we propose a novel
task, Pixel-level Reasoning Segmentation (Pixel-
level RS) based on multi-turn conversations, that
refines both reasoning and segmentation through
multi-turn interactions, requiring the system to un-
derstand the evolving user intent and generating
pixel-level explanations, and segmentation masks.
Given the lack of benchmarks for pixel-level seg-
mentation based on multi-turn reasoning, we build
a Pixel-level ReasonIng Segmentation Dataset
Based on Multi-Turn Conversation (PRIST), con-
sisting of 24k utterances, 8.3k multi-turn conversa-
tional scenarios with specific segmentated targets,
which provides a valuable resource for advancing
Pixel-level RS research. PRIST focuses on pixel-
level segmentation tasks while introducing new
challenges in multi-turn reasoning and evolving in-
tent comprehension. We design a progressive three-
step dialogue automatic generation pipeline based
on a reasoning tree to iteratively guide and gener-
ate dialogue content, inspired by Tree-of-Thought
(ToT) (Yao et al., 2024). By integrating a multi-step
reasoning chain with a tree structure, this approach
facilitates deeper and broader reasoning in pixel-
level segmentation training.

To further advance this novel task, we propose
a Multi-turn Interactive ReAsoning Segmentation
framework, MIRAS, that enables pixel-level seg-
mentation through progressive reasoning. MIRAS
incorporates a dual-vision encoder that fuses multi-
scale features to capture detailed visual informa-
tion. To improve segmentation performance, we
introduce a semantic region alignment strategy to
inject semantic information into the mask decoder.
Additionally, the framework supports multi-turn
interactions to iteratively clarify user intent and
ambiguous regions. Given the inherent subjectiv-
ity in reasoning tasks, manual assessments can be
influenced by personal preferences. To ensure fair-
ness, we develop comprehensive evaluation met-
rics leveraging Large Language Models (LLMs)
to assess multi-turn reasoning segmentation across
coherence, consistency, and accuracy dimensions.
Our contributions can be summarized as follows:
• We propose a novel task, Pixel-level Reasoning

Segmentation, that aims to achieve fine-grained
segmentation through multi-turn conversations.
Then, we build the PRIST dataset, including 8.3k
high-quality multi-turn conversational scenarios
and pixel-level segmentation targets.

• We develop a multi-turn reasoning segmenta-
tion framework, MIRAS, that facilitates pixel-

level intentional understanding and segmentation
through multi-turn interactions.

• Comprehensive experimental results of our pro-
posed method on different metrics demonstrate
both the utility of the PRIST dataset and the ef-
fectiveness of the model.

2 Related Work

2.1 Datasets for Reasoning Segmentation

Current reasoning segmentation datasets (Lai et al.,
2023; Rasheed et al., 2024; Yuan et al., 2024)
mainly focus on region-level segmentation and
single-step reasoning, which fail to meet the com-
prehensive requirements of the pixel-level RS task.
Traditional region-level segmentation datasets (Yu
et al., 2016; Krishna et al., 2017) rely on simple and
explicit instructions, lacking complex user intents
understanding. To bridge this gap, ReasonSeg (Lai
et al., 2023) is the first to propose a segmentation
dataset based on complex queries, which is a small
scale and does not support multi-turn interactions.
While recent datasets (Yuan et al., 2024; Rasheed
et al., 2024; Ren et al., 2024) have expanded in size
and diversity, they remain focused on multi-object
segmentation and provide limitations for multi-step
reasoning and fine-grained grounding. In contrast,
our PRIST dataset utilizes conversation to simulate
a human-like multi-step reasoning process, which
innovatively combines multi-turn reasoning with
pixel-level segmentation. Detailed dataset compar-
isons are shown in Table 8 in Appendix B.3.

2.2 MLLMs for Region-level Segmentation

MLLMs have advanced vision-language perception
tasks, with recent works (Peng et al., 2023; You
et al., 2023; Zhang et al., 2023b) focusing on image-
level visual dialogue. Some (Chen et al., 2023;
Peng et al., 2023; Pi et al., 2023) achieve region-
level understanding by incorporating positional in-
formation and boundary boxes, mainly relying on
LLMs for region interpretation. Several models
(Lai et al., 2023; Ren et al., 2024; Rasheed et al.,
2024; Zhang et al., 2024) integrate segmentation-
specific modules with LLMs for end-to-end train-
ing, enabling a more comprehensive understanding
of regions. While these methods address pixel-level
grounding, they still face limitations in complex
reasoning. More comparison between models in
Appendix A.2. Our proposed MIRAS overcomes
these challenges by enhancing segmentation accu-
racy through interactive reasoning, progressively
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Figure 2: The Generation Pipeline of PRIST Dataset. i) Step 1 extracts visible elements from images, establishing
a semantic foundation for subsequent steps. ii) Step 2-1 generates complex reasoning questions from these elements,
while Step 2-2 iteratively refines the questions through a reasoning tree, ensuring rigorous reasoning. iii) Step 3
organizes the nodes in reasoning tree into a multi-turn dialogue format.

refining the boundaries.

3 PRIST

The pixel-level RS task takes an image I and a
multi-turn dialogue D as input, then simultaneously
generates a target segmentation mask M along
with a textual reasoning chain {a1, a2, . . . , aN}
that captures the complete dialogue history, where
ai denotes the system’s response in the i-th turn. It
is defined as follows:

(M, {a1, a2, . . . , aN}) = Model(I,D). (1)

Furthermore, we construct the pixel-level reasoning
segmentation dataset based on the multi-turn con-
versation (PRIST) using a three-step progressive
annotation pipeline, capturing fine-grained details
through context-aware multi-turn dialogue.

3.1 Data Preparation

Given the focus on pixel-level segmentation, we
select TextCaps

*
(Sidorov et al., 2020) as the image

source due to its detailed visual information. To en-
sure a diverse range of scenes, we randomly select
280 images from each of the 10 major categories,
resulting in a total of 2.8k images.

*
TextCaps contains a total of 28k images.

3.2 Generation Pipeline

We propose a three-step progressive automated an-
notation pipeline to create the PRIST Dataset, as
illustrated in Figure 2. Appendix B.2 details the
pipeline’s prompts and output formats.

3.2.1 Visual Elements Extraction (Step-1)
We first extract N visible objects O = {oi}Ni=1 ,
from the input image I. Each object oi represents
a distinct target for generating a dialogue. Specif-
ically, we automatically identify visible elements
with detailed attributes (e.g., color, position) to
each object using GPT-4o (Achiam et al., 2023),
along with corresponding textual descriptions (see
Figure 7a). This step ensures that visual and se-
mantic details are fully represented.

3.2.2 Reasoning Process Construction (Step-2)
Pixel-level RS addresses complex scenarios requir-
ing multi-turn reasoning with implicit user instruc-
tions. To simulate such scenarios, we implement a
"question-first, problem-solving" strategy as shown
in Figure 2, where the reasoning process is refined
after first forming the reasoning problem and then
constructing the reasoning tree. To align with multi-
turn reasoning, we propose a hierarchical reasoning
tree that recursively decomposes complex ques-
tions into smaller subquestions, progressively fo-
cusing on segmentation targets. Each reasoning
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tree path connects related elements to build a logi-
cal chain for pixel-level segmentation.

Reasoning Question Formation (Step 2-1) This
step expands a complex reasoning question Qi for
each target oi, serving as the overall origin for
next question decomposition and the theme for
multi-turn dialogues in Step-3. To balance pro-
cessing efficiency, we randomly select K objects
(2 ≤ K ≤ min(N, 4)) from the element set O in
Step-1 as targets, as fewer may missing essential
interactions while more escalate complexity.

Qi = Formation(I, oi), i = {1, ...,K}. (2)

Reasoning Tree Construction (Step 2-2) The
construction process (see Figure 7b) with GPT-
4o initiates by establishing the elements oi as
leaf nodes, allowing their corresponding reasoning
problems Qi to develop a distinct path Pi within
the reasoning tree T . Through iterative decomposi-
tion, each Qi evolves into a sequence of progressive
QA pairs (qn, an), with the tree’s depth directly cor-
responding to the granularity of subquestions. This
hierarchical expansion refines the problem-solving
framework and progressively narrows pixel-level
target localization. The resulting reasoning tree T
explicitly captures the logical progression of com-
plex questions, providing a structural foundation
for the multi-turn dialogues in Step-3.

Pi = Construction(Qi, oi),

= {(q1, a1), · · · , (qn, an)},
T = {P1,P2, · · · ,Pi}Ki=1,

(3)

where n is the depth of the reasoning path. To man-
age computational resources and logical flexibility,
we impose a constraint limiting each reasoning tree
layer to a maximum of three child nodes.

3.2.3 Multi-turn Dialogue Generation (Step-3)
We further build multi-turn dialogue Di based
on the hierarchical reasoning tree from Step-2.
Specifically, we integrate all nodes in each rea-
soning path Pi, where each node represents a QA
pair, to form the progressive multi-turn dialogue
Di. Thus, each image can form K conversations,
{D1, · · · ,Di}Ki=1. To ensure responses fully in-
tegrate contextual information, prompts are de-
signed to incorporate key elements and relation-
ships from Step-1 (see Figure 7c), expanding un-
derstanding of landmarks, historical context, and
scene interactions. Furthermore, pixel-level RS is
designed to guide the model in performing fine-
grained segmentation, with the final query in each

dialogue being a segmentation-related instruction
(e.g., "Please segment the core objects according
to the above dialogue").

G1 G2 G3 G4 G5

IoU 0.82 0.88 0.91 0.86 0.81
Kappa 0.79 0.82 0.80 0.78 0.75

Table 1: Consistency Analysis Results for Mask Anno-
tators. Gx denotes the x-th expert group.

3.3 Quality Assurance
We employ manual annotation to generate the true
segmentation masks for each sample. Ten experts,
selected through qualification tests, annotate masks
and correct any commonsense errors in the dia-
logues. To ensure the quality of PRIST, we imple-
ment a double-check process. Specifically, experts
are organized into five groups, with each group an-
notating the same set of samples. This set ensures
that two annotators independently annotate every
sample. More details are in Appendix B.1. The
reliability of annotations across the five groups is
assessed using IoU (Girshick et al., 2014), which
measures the overlap between two annotators, and
Cohen’s Kappa (Cohen, 1960), which quantifies
their consistency. As shown in Table 1, all groups
achieve a result of IoU > 0.80 and Kappa > 0.75,
demonstrating high annotation quality and strong
consistency across the groups.

3.4 Dataset Analysis
As shown in Table 2, we provide detailed statis-
tics of the PRIST dataset. PRIST contains 24k
high-quality utterances, and 8.3k multi-turn conver-
sational scenarios, with each scenario focusing on
a single, fine-grained object. The dataset is divided
into three subsets: train / validation / test splits,
containing 7,312 / 500 / 508 samples, respectively.

To quantify pixel-level segmentation, we adopt
the COCO mask size standard

*
for measuring tar-

get scales, aligning with existing datasets (Chen
et al., 2015; Caesar et al., 2018) and providing a
quantitative basis for fine-grained segment eval-
uation. Statistics in Table 2, fine-grained targets
(the scaling factor s is 1.6) account for 53% of
PRIST, surpassing the 41% of small targets in
COCO (Chen et al., 2015). With a minimum mask
area of 304px and a standardized image size of
1024 × 1024, PRIST meets the fine-grained re-

*
https://cocodataset.org/#detection-eval
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33%

41%
15%

11%

Individuals & Characters (6%)

Player, Child, Coach,  
Man, Woman 

…
Locations & Setting (4.3%)

Stop sign, Road,
Building, Tree

…

Graphic Elements (15.4%)

Sign, Logo, Icon,
Illustration, 

Marking, Pattern 
Symbol, Badge,

…

Color Schemes & Design (2.3%)

 

 

 

Design, Scheme,
Layout, Style, 

Triangle, Circle

Text, Word, Title, 

…

Headline, Note, 
Phrase, Message,

Slogan, Letter, 
Content, Signage, 

Code 
…

Text Labels (25%)

Branding & 
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Brand, Display,

Cover, Poster
Banner, 

Billboard,      
Tag, Emblem, 

Page
…

Numeric Information 
(7.7%)

   

Number, Time,
Date, Price

…

Vehicles & Transportation (2.8%)

Car, Bike, Bus, 
Airplane, Traffic Lights 

…
Person & Clothing (3.4%)

Shirt, Uniform, Jersey,
Hat, Gloves 

…

Electronic Devices (5.3%)

 
Phone, Screen, Watch,

Keyboard, Laptop 
…

Containers & Packaging (6.8%)

 
 

Packaging, Container
Bottle, Glass, Can, 

…

Items & Props (13.3%)

Book, Box, Button, 
Clock hands, Wine, Coin, Panel,

Card, Ball, Table
…

(b) Adjective

 Properties (28.6%)
digital, bold, free, multiple, old, 

vintage …

 Position (21.7%)
left, right, top, front, central …

 Size (16.3%)
large,  small, mini, tall …

 Color (12.2%)
red, blue, dark, light, colorful …

 Shape (7.5%)
circular, round, vertical, floral …

 Cultural (6.8%)
American, Chinese, Japanese …

 Material (5.3%)
wooden, metallic, plastic ...

(c) Preposition

near

19%

above

14%

between

10%

under

8%

around

8%

below

8%

about

8%

behind

6%

over

6%

towards

4%

through

3%

inside
3%

outside
3%

(a) Noun

Figure 3: The focus distribution of PRIST. We analyze focus objects across 3 dimensions: noun, adjective and
preposition, which capture fine granularity, diversity, and close spatial relationships between objects.

Statistic Number

Total Images 2,800
Total Samples 8,320

Segmentation
- Focus Classes 12
- Granularity (Coarse: Med.: Fine) 22%: 25%: 53%
Multi-turn Dialogue
- Number of Utterances 24k
- Avg. / Max. Turns 4 / 7
- Avg. / Max. Dialogue Length 477.6 / 518

Table 2: PRIST Statistics. According to COCO’s im-
age standard (640 vs. 1024), mask granularity is catego-
rized as "Fine" (< (s× 32)2 px), "Med." ((s× 32)2 to
(s× 96)2 px), and "Coarse" (> (s× 96)2 px).

quirements of pixel-level segmentation. We em-
phasizes exhibiting high diversity in categories
and descriptions to enhance expressiveness. Illus-
trated the focus distribution of PRIST in Figure
3, the categories include four types: Textual Con-
tent, Physical Objects, Visual Elements, and People
& Environment, which are further refined into 12
subcategories that cover objects from coarse- to
fine-grained levels. At the descriptive level, a com-
bination of Noun, Adjective, and Preposition is
employed: nouns provide basic category informa-
tion (e.g., "tree"), adjectives enrich focus details
(e.g., "worn-out chair"), and prepositions describe

spatial relationships (e.g., "a book under the table").
PRIST delivers rich semantic-spatial annotations,
establishing a benchmark resource for Pixel-level
RS advancement.

4 MIRAS

To further research the novel pixel-level RS task,
we propose MIRAS, a framework that refines user
intent through multi-turn interactions to achieve
pixel-grounded explanations and segmentation.

4.1 Architecture
The architecture of MIRAS is illustrated in Figure
4, consisting of three core components: Visual En-
coder, MLLM (F , (Liu et al., 2024a)), and Mask
Decoder (Dm, (Kirillov et al., 2023)). To seam-
lessly connect reasoning with segmentation, we
introduce a special token [SEG] as a placeholder
for segmenting regions and enabling end-to-end
processing. Two key modules are proposed for
pixel-level RS. First, we integrate dual visual en-
coders (Li et al., 2023) to extract enriched visual
features. Then, the semantic region alignment strat-
egy is designed to further refine the model’s focus
by incorporating target semantic information.

Dual Visual Encoders We train the dual visual
encoder using a high-resolution image (XH , 768
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Figure 4: Overview Architecture of MIRAS. The model integrates MLLM and SAM modules by introducing a
special token [SEG]. MIRAS can perform both (a) Multi-turn Response and (b) Segmentation tasks end-to-end.

× 768 pixels) processed by ConvNext-L (Liu et al.,
2022) paired with its low-resolution counterpart
(XL, 336 × 336 pixels) processed by CLIP-L/14
(Radford et al., 2021), downsampled from XH .
Then, different resolutions are fused by a cross-
attention module (Lin et al., 2022) to enhance vi-
sual detail capturing. Note that XH equals Ximg.

X′
H = ConvNext(XH), X′

H ∈ RH×W×3,

X′
L = CLIP(XL), X′

L ∈ RH′×W ′×3,

E′
img = CrossAtten(Q = X′

L,K = X′
H , V = X′

H),

Eimg = MLP(E′
img) +E′

img,

(4)

Semantic Region Alignment We employ the
SAM to obtain the pixel-level image features.

Eseg = Vpixel(Ximg), Eseg ∈ RN×256. (5)

To provide clear segmentation intent, we de-
sign a novel segmentation prompt template
[OBJ]{CLASS}[SEG], where {CLASS} is the ob-
ject description (e.g., [OBJ] a bunch of grapes
[SEG] in Figure 4). We further utilize special to-
kens [OBJ] to extract relevant sub-sequence Hseg
from H for segmentation and employ the cross-
attention module to capture sufficient semantic
information, which is crucial for efficient fine-
grained segmentation. The method resolves poten-
tial mismatches in dimensions caused by varying
lengths of {CLASS}, denoted as N sub.

H′
seg = CrossAtten(Q,K, V |Hseg),

Hseg ∈ RNsub×256,H′
seg ∈ R1×256,

(6)

The mask decoder Dm combines region features
from the pixel encoder with the hidden features of
[SEG] to produce the final mask.

M̂ = Dm(Eseg,H′
seg), (7)

4.2 Training Process
We employ a two-stage training process to achieve
efficient pixel-level reasoning segmentation. In
Stage-1, mask-text alignment pretraining based on
various datasets is conducted, followed by instruc-
tion fine-tuning using the PRIST dataset in Stage-2
(more details in Appendix C.2). The objectives
remain consistent across both stages: the text gen-
eration loss Lt and a linear combination of per-
pixel BCE loss Lbce and DICE loss Ldice for seg-
mentation. Only the mask decoder and projection
layer are trainable to balance efficiency and per-
formance while keeping the image encoder and
MLLM frozen. The training loss is formulated as:

L = λtLt(R, R̂) + λbceBCE(M,M̂)

+λdiceDICE(M,M̂)
(8)

where λt, λbce and λdice values 1.0, 2.0 and 0.5
separately, following LISA (Lai et al., 2023).

5 Experiment

Experiments evaluate our model’s adaptability to
the novel pixel-level RS task and its general per-
formance in the classical referring expression seg-
mentation (RES) task (Kazemzadeh et al., 2014;
Yu et al., 2016). Appendix C shows backbone se-
lection and more implementation details.

5.1 Evaluation Metrics
We establish a benchmark for Pixel-level RS across
three evaluation aspects: pixel-level segmentation,
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Model CIoU Pixel-wise Response

Prec. Recall F1 BLEU-4 Dist-1/2 ROU_L. MET. BERTS.

Zero-shot

InternVL2-8B* (Chen et al., 2024b) 8.26 7.59 11.55 9.16 1.20 7.5 / 41.0 18.44 23.98 84.78
Qwen2-VL-7B* (Wang et al., 2024a) 10.64 10.30 15.88 12.50 3.00 9.3 / 41.2 26.28 28.26 86.73
LLaVA-v1.5-7B* (Liu et al., 2024b) 11.25 11.35 25.90 15.68 3.21 5.6 / 27.5 16.02 18.41 78.81
LLaVA-v1.6-7B* (Liu et al., 2024a) 11.84 11.90 34.78 17.69 1.07 5.5 / 27.5 20.60 25.00 84.26
GPT-4o* (OpenAI, 2024) 14.13 17.35 35.01 23.18 4.30 9.1 / 42.9 26.35 28.55 87.62

LISA (Lai et al., 2023) 10.45 15.33 43.07 15.09 1.97 6.2 / 28.4 18.21 26.59 85.67
PixelLM (Ren et al., 2024) 9.87 17.21 35.36 14.68 1.34 6.7 / 30.1 14.93 21.26 85.13
OMG-LLaVA (Zhang et al., 2024) 9.67 16.67 77.80 27.46 8.70 11.2 / 42.0 23.47 27.90 87.30
MIRAS (Stage-1) 13.12 15.64 45.11 23.22 4.17 6.9 / 28.4 25.94 28.18 87.54

Fine-tuning

LISA (Lai et al., 2023) 11.23 26.23 29.22 27.64 7.81 14.2 / 40.7 27.84 30.74 86.75
PixelLM (Ren et al., 2024) 10.32 20.95 18.84 11.71 9.97 11.6 / 38.0 30.63 32.99 87.80
OMG-LLaVA (Zhang et al., 2024) 13.84 21.54 49.31 29.98 11.21 12.3 / 35.3 30.59 39.18 88.76
MIRAS (Stage-2) 14.72 24.22 40.61 30.34 8.51 15.7 / 49.2 30.82 40.06 88.47

Table 3: Results on Pixel-level RS. MIRAS employs LLaVA v1.6 as its backbone due to its superior zero-shot
performance. * denotes the general MLLMs, others are 7B segmentation-specific MLLMs.

conversation response, and reasoning quality. For
segmentation, we employ the CIoU metric (Zheng
et al., 2020) and propose pixel-wise mask precision,
recall, and F1 metrics. The precision measures the
accuracy of segmentation while recall evaluates
the coverage. For response, the metrics includ-
ing BLEU-4 (Papineni et al., 2002), ROUGE-L
(Kingma, 2014), Dist-n (Li et al., 2015), and ME-
TEOR (Banerjee and Lavie, 2005). Considering
the subjectivity of reasoning, we introduce LLM
as a scoring tool using four metrics: Progressive-
ness (PR), Logical Coherence (LC), Content Con-
sistency (CC), and Target Relevance (TR), with
higher scores reflecting better performance across
aspects. Meanwhile, we employ GPT-4o as a judge
to assess dialogue reasoning quality. The model
wins when its score surpasses that of the human
response, as reflected by the Win Rate (%) metric.
Evaluation criteria are detailed in Appendix C.4.

5.2 Baselines

We compare with three types of baselines: 1) Gen-
eral MLLMs. We take advanced close- and open-
source MLLMs to evaluate zero-shot on PRIST
for pixel-level RS capability. 2) Segmentation-
specific MLLMs. LISA (Lai et al., 2023), Pix-
elLM (Ren et al., 2024) and OMG-LLaVA (Zhang
et al., 2024) are evaluated under zero-shot and fine-
tuning settings to show PRIST’s task-specific en-
hancement. 3) Segmentation-specific Models. We
compare three semantic segmentation models (e.g.,
LVIT (Yang et al., 2022)) on the RES task with

MIRAS to verify its advantage of the architecture.

5.3 Experimental Results and Analysis

As shown in Table 3, we comprehensively com-
pare model performance across two critical dimen-
sions: pixel-level segmentation and conversation
response. Our proposed MIRAS demonstrates ro-
bust performance in pixel-level RS task, surpassing
baselines and the closed-source GPT-4o in both
segmentation and response metrics, establishing a
new benchmark for the PRIST dataset. Notably, the
performance improvement from PRIST fine-tuning
exhibits universal applicability across different ar-
chitectures. Table 4 further validates the enhanced
reasoning capabilities of our method, with evalua-
tion results approaching human expert proficiency.

5.3.1 Pixel-level Segmentation
As illustrated in the left part of Table 3, GPT-4o
achieves CIoU 14.13 and precision 17.35, surpass-
ing open-source models. While it surpasses stage-
1 MIRAS, it remains below fine-tuned MIRAS
(stage-2), indicating our framework can achieve
closed-source model competency with efficient
resource utilization. To enhance pixel-level per-
formance, all segmentation-specific MLLMs are
fine-tuned on the PRIST dataset under a consis-
tent setting. Fine-tuning results in an increase in
terms of CIoU and Precision, with OMG-LLaVA’s
CIoU ↑43%, Precision ↑29%, and LISA’s Preci-
sion from 15.33 to 26.23 (↑71%), respectively. MI-
RAS (stage-2) establishes new benchmarks with
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precision 24.22, F1 30.34, and CIoU 14.72, demon-
strating exceptional boundary delineation capabil-
ities. Notably, this performance enhancement ac-
companies a precision-recall trade-off, i.e., recall
decreases (LISA ↓32%, OMG-LLaVA ↓37%).

In zero-shot settings, all general MLLMs ex-
hibit limited pixel-level segmentation, with GPT-
4o slightly outperforming segmentation-specific
MLLMs like PixelLM (Precision 17.35 vs. 17.21).
This indicates that general MLLMs emphasize
cross-task adaptability, while task-specific improve-
ments rely on design-specific architecture (e.g.,
Mask Decoder). Additionally, the precision-recall
trade-off observed in fine-tuned models reflects a
strategic prioritization of segmentation specificity
over generalizability in fine-grained tasks, which
avoids the overgeneralization issues encountered in
zero-shot settings, aligning with the objectives of
pixel-level RS. An optimization choice validated
by case studies in Appendix D.

5.3.2 Conversation Response
In the right of Table 3, GPT-4o demonstrates
near-expert dialogue competence across metrics,
approaching fine-tuned MLLMs, such as OMG-
LLaVA, while outperforming open-source general
MLLMs like Qwen2-VL-7B. MIRAS achieves
the best performance in metrics such as Dist-1/2
(15.7/49.2), ROUGE_L (30.82), and METEOR
(40.06), validating its ability to generate high-
quality textual responses. GPT-4o’s strong baseline
performance underscores its inherent dialogic in-
telligence; however, domain adaptation remains
essential for optimal performance. Most fine-tuned
models show improvements in text metrics, high-
lighting PRIST’s effectiveness in bridging visual-
textual semantic gaps. This demonstrates the frame-
work’s dual competence in simultaneously optimiz-
ing mask-text alignment and response coherence.

5.3.3 Reasoning Quality
Table 4 presents the reasoning quality evaluation
based on LLMs (human scores detailed in Ap-
pendix C.4.3). Fine-tuning on the PRIST dataset
led to improvements across all models, with an
average Win Rate increase of approximately 10%.
MIRAS achieved the SOTA with a Win Rate of
42% and the highest scores in all four reasoning
metrics, closely approaching human expert lev-
els. The overall improvement in four fine-tuned
MLLMs’ reasoning quality shows the substantial
potential of PRIST dataset in enhancing reasoning

capabilities, stemming from the extensive concep-
tual vocabulary it provides during fine-tuning.

Model PR LC CC TR Win Rate(%)

Human 4.03 4.04 4.26 4.28 -

LISA(ft) 3.76 3.69 3.71 3.58 36 (↑11)
PixelLM(ft) 3.35 3.48 3.32 3.28 32 (↑13)
OMG-LLaVA(ft) 2.60 2.48 2.58 2.33 24 (↑8)
MIRAS(Stage-2) 3.90 3.76 3.83 3.69 42 (↑11)

Table 4: Comparison of the reasoning quality of domain-
specific MLLMs fine-tuned on PRIST.

5.4 Generalization Segmentation

We compare segmentation-specific baselines on
classical referring expression segmentation bench-
marks to evaluate the generalizability of MIRAS.
As detailed in Table 5, MIRAS’ base configura-
tion (last row) outperforms segmentation-specific
models and demonstrates competitiveness against
other MLLMs, even surpassing the latest OMG-
LLaVA. Two findings emerge in results: (1) While
fine-tuned MIRAS (Stage-2) shows a decline in
general performance due to task-specific optimiza-
tion, it retains advantages over Next-Chat and re-
mains comparable to OMG-LLaVA. (2) The ca-
pacity of the base model determines the system’s
potential, evidenced by consistent improvements
in MIRAS when evolving the foundational model
from LLaVA-v1 (row 6) to LLaVA-v1.6 (row 9).

Model refCOCO refCOCO+ refCOCOg

Val TestA TestB Val TestA TestB Val Test

GRIS (Wang et al., 2022) 70.5 73.2 66.1 65.3 68.1 53.7 59.9 60.4
LAVT (Yang et al., 2022) 72.7 75.8 68.8 62.1 68.4 55.1 61.2 62.1
GRES (Liu et al., 2023) 73.8 76.5 70.2 66.0 71.0 57.7 65.0 66.0

LISA (v1) (Lai et al., 2023) 74.1 76.5 72.3 65.1 70.8 58.1 67.9 70.6
PixelLM (v1) (Ren et al., 2024) 73.0 76.5 68.2 66.3 71.7 58.3 69.3 70.5
MIRAS (Stage-1) (v1) 75.3 78.9 70.2 66.7 74.3 61.5 73.2 71.9
OMG-LLaVA (Zhang et al., 2024) 78.0 80.3 74.1 69.1 73.1 63.0 72.9 72.9
MIRAS (Stage-2) (v1.6) 76.9 79.8 72.8 68.8 74.4 62.5 71.8 70.8
MIRAS (Stage-1) (v1.6) 78.4 80.5 73.4 72.1 74.8 63.4 72.6 72.0

Table 5: Results on the RES benchmark. "v1/v1.6"
indicates LLaVA version.

These impressive results are mainly attributed
to MIRAS’s convolutional backbone (i.e., Con-
vNeXt), which supports larger input images and en-
ables semantic-assisted mask generation. This pro-
vides a solid foundation for achieving fine-grained
segmentation in the next stage. However, this focus
on task-specific patterns inherently introduces a
trade-off, sacrificing some degree of generalization.
We demonstrate in Appendix C.5 that MIRAS ex-
hibits less degradation in generalized segmentation
performance compared to other baseline models.
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5.5 Ablation Study
To validate the effectiveness of the modules in MI-
RAS, we conduct the following ablation experi-
ments on the general RES task, ensuring compati-
bility with the following framework by maintain-
ing the base model as LLaVA-v1. (1) Dual-visual
Encoder Table 6 illustrates that the dual-visual
encoder improves performance (Val ↓ 2.6%, Test
↓ 0.9%) by supporting a higher resolution, which
enhances the density of visual features and the abil-
ity to capture finer details. (2) Semantic Region
Alignment The alignment strategy of injecting
semantic information has achieved positive results,
as shown in Table 6. When applied to the half
dataset, it decreases Val by 1.4% and Test by 0.5%.
Reducing the application to the full leads to further
decline (Val ↓0.7%, Test ↓0.4%), highlighting its
effectiveness in enhancing segmentation.

Architecture refCOCOg

Val (U) Test (U)

MIRAS (v1) 73.2 71.9
w/o Dual-visual Encoder 70.6 70.8
w/o Semantic Region Alignment (50%) 71.8 71.4
w/o Semantic Region Alignment 71.1 (↓) 71.0 (↓)

Table 6: Ablation. The metric is CIoU. 50% means half
of the samples randomly added semantic information.

6 Conclusion

In this paper, we propose a novel task, Pixel-level
Reasoning Segmentation, which focuses on fine-
grained segmentation. To further advance, we con-
struct a pixel-level reasoning segmentation dataset,
PRIST, consisting of 24k utterances and 8.3k pixel-
level segmentation targets, generated through a
carefully designed three-stage progressive auto-
matic annotation pipeline. Additionally, we present
MIRAS, a framework designed for this task that
combines segmentation with multi-turn interaction,
along with LLM-based reasoning quality evalua-
tion metrics. Comprehensive experiments on seg-
mentation and reasoning demonstrate the effective-
ness of the PRIST dataset and the superior per-
formance of MIRAS, which advances research in
pixel-level reasoning segmentation meaningfully.

Limitations

Although our research has achieved certain ad-
vancements in the pixel-level RS task, some limi-
tations remain. PRIST is designed only for single-

target segmentation, making it difficult to adapt to
more complex scenarios, such as those with empty
targets (i.e., no objects requiring segmentation) or
multiple targets (i.e., simultaneously involving mul-
tiple distinct objects). Further exploring reasoning
trees to model relationships among image elements
and constructing datasets for multi-object, multi-
level segmentation hold research potential. Addi-
tionally, we utilize the SAM model to efficiently as-
sist MLLM in integrating text reasoning to achieve
pixel-level segmentation. However, their integra-
tion of separate visual encoding modules creates
structural redundancy, reducing efficiency. Devel-
oping a streamlined and efficient model architec-
ture is an important direction for future work.

Ethics Statement

Pixel-level reasoning segmentation technology is
a double-edged sword. On one hand, it demon-
strates immense potential in fields (e.g., medical
image analysis, autonomous driving, and intelli-
gent surveillance), contributing to technological
advancement and societal development. On the
other hand, it is crucial to rigorously guard against
risks related to privacy infringement and potential
misuse. In our research, we meticulously selected
key image features for constructing the training
dataset to ensure the safety and representativeness
of all samples. We employed an annotation process
that aligns closely with ethical values for data col-
lection, aiming to eliminate privacy breaches and
the generation of harmful content. Before releasing
the PRIST dataset, human experts will rigorously
review all annotations and filter out inappropriate
or risky data. Furthermore, users must agree to
strict licensing terms to govern dataset usage. Im-
portantly, although this technology excels in fine-
grained visual understanding, it is not a substitute
for human judgment. Its applications must always
operate under human supervision, balancing inno-
vation with ethical responsibility.
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A Segmentation Task

A.1 Referring Expression Segmentation
(RES)

The referring expression segmentation (RES) task
(Kazemzadeh et al., 2014) involves receiving an
image and a natural language expression referring
to a specific object in the image (e.g., "Please seg-
ment the apple in the image.") as input, and then
outputting the segmentation mask of that object.
As a classic task in the field of semantic segmen-
tation, it intuitively reflects the model’s ability in
visual localization. Refcoco, Refcoco+, and Ref-
cocog provide mature evaluation benchmarks for
this task. To ensure fairness in the comparison, we
choose to compare segmentation-specific baseline
models and conduct ablation studies of the model
architecture on the RES task. This is because all
segmentation-specific baselines support this task
and are trained on the aforementioned datasets.

A.2 Comparisons of Segmentation-specific
MLLMs

Table 7 provides a comprehensive comparison of
recent segmentation-specific MLLMs in terms of
model architecture, pixel-level capabilities, and
conversation capabilities. A few works (Zhang
et al., 2023b; Lai et al., 2023; Ren et al., 2024;
Rasheed et al., 2024) integrate specialized vision
modules and LMMs, as indicated by the Region
Enc. / Dec. The End-End Model (Pi et al., 2023;
Chen et al., 2023; Peng et al., 2023) distinction
separates models that leverage LMMs for region-
level understanding from those employing external
modules.

Method Region Pixel-Level Conversation End-End
Enc. / Dec. Seg. / Cap. Multi-turn / Reason

VisionLLM (Wang et al., 2024b) ✗/✗ ✗/✗ ✗/✗ ✗
DetGPT (Pi et al., 2023) ✗/✗ ✗/✗ ✓/✓ ✓
Shikra (Chen et al., 2023) ✗/✗ ✗/✓ ✗/✗ ✓
Kosmos-2 (Peng et al., 2023) ✗/✗ ✗/✓ ✗/✗ ✓
GPT4RoI (Zhang et al., 2023b) ✓/✗ ✗/✓ ✓/✗ ✓
LISA (Lai et al., 2023) ✗/✓ ✓/✗ ✗/✓ ✗
PixelLM (Ren et al., 2024) ✗/✓ ✓/✗ ✗/✓ ✓
GLaMM (Rasheed et al., 2024) ✓/✓ ✓/✓ ✗/✓ ✓
OMG-LLaVA (Zhang et al., 2024) ✗/✓ ✓/✓ ✗/✓ ✓
MIRAS (Ours) ✗/✓ ✓/✓ ✓/✓ ✓

Table 7: Comparison of recent Segmentation-specific
MLLMs.

B More Details about PRIST

B.1 Data Annotation
We recruit experts from the Computer Science de-
partment as annotators for our project, as they are
familiar with the task requirements and objectives.
Each annotator is compensated at a rate of 30 euros
per hour for their work. Before starting annotation,
all annotators underwent training and a small subset
of data was pre-annotated, which was only consid-
ered a pass if the accuracy rate was at least 80%.
The subsequent annotation process was carried out
once the pre-annotation results met the required
standards. Additionally, We used the open-source
tool Labelme

*
, which supports precisely outlining

objects in arbitrary shapes and extracting masks,
meeting the project’s needs for accuracy.
Annotation process: To avoid hallucinations and
errors in the model-generated dialogues, we en-
forced strict quality control on the texts generated
by GPT-4o. A total of 10 annotators were recruited,
with a two-layer pyramid structure employed to re-
duce subjective bias and enhance quality. First, six
annotators were divided into three pairs, each inde-

*
https://github.com/wkentaro/labelme
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Figure 5: Wordcloud of the 200 popular focus-related
words in PRIST.

pendently annotating different data subsets. Next,
an additional annotator per group resolved incon-
sistencies and checked the quality of consistent
labels. Finally, an experienced annotator consoli-
dated and reviewed all data to ensure high quality
and consistency. Each annotator’s main tasks in-
cluded generating masks for target objects in im-
ages and correcting any commonsense errors in the
dialogue content, such as mismatches in time or
numbers between text and images.

B.2 Data Generation Process

We design a fully automated dataset annotation
pipeline, leveraging multiple hierarchical levels in
the visual domain to construct the PRIST dataset.
The pipeline, entirely based on GPT-4o (gpt-4o-
2024-08-06), incorporates CoT into a feedback
loop to generate relevant multi-turn reasoning di-
alogues for various images. Each dialogue’s final
query is a segmentation-related instruction (e.g.,
"Please segment the core objects according to the
above dialogue"), making PRIST suitable for pixel-
level segmentation tasks and extending to general
VQA (when ignoring the final instruction), provid-
ing a versatile foundation for multimodal dialogue
research. The data is used to fine-tune MLLMs.
We will release the PRIST dataset and the imple-
mentation of its automated annotation pipeline to
support further research. For detailed information
on the implementation of LLM prompts and output
formats at three levels, refer to Figure 7.

B.3 Dataset Statistics and Analysis

As shown in Table 8, PRIST is compared with exist-
ing segmentation and multimodal reasoning bench-
marks. PRIST combines the double advantages of
pixel-level segmentation and multi-turn reasoning.
In comparison with segmentation benchmarks (Yu
et al., 2016; Krishna et al., 2017; Lai et al., 2023;
Rasheed et al., 2024), the focus is on the granularity

and richness of the segmentation targets. Figure 5
illustrates a visual word cloud of the 200 most pop-
ular focus-related terms extracted from PRIST. The
prominence of each word in the cloud represents
its frequency of occurrence in the dataset.

Compared to existing multimodal reasoning
benchmarks (Lu et al., 2022; Zhang et al., 2023c;
Chen et al., 2024a), PRIST enables a more in-depth
and detailed reasoning process for each segmented
object. The average text length per sample is 477
tokens, significantly higher than the 294 tokens in
M3CoT (Chen et al., 2024a). Each conversation
contains an average of 4 turns, with a maximum of
7, surpassing ScienceQA’s average of 2.5 (Lu et al.,
2022). PRIST better simulates real-world interac-
tions and human thought processes while ensuring
more coherent and detailed reasoning chains for
pixel-level reasoning segmentation, presenting a
new challenge for the RS field.

C Experiment Setups

C.1 Implementation Details

Our experiments are all conducted on 2 NVIDIA
A6000 (48G) GPUs. Aligned with region-level
segmentation models (Rasheed et al., 2024; Zhang
et al., 2024), we adopt LLaVAv1.6-7B

*
as the

backbone F and ViT-H SAM
*

to instantiate pixel-
level encoder Vpixel and mask decoder Dm. The
visual-language projection layer is implemented
through 2-layer MLP and GELU activation follow-
ing LLaVA-v1.6. The implementation is carried
out in PyTorch, with Deepspeed Zero-2 optimiza-
tion applied during two-stage training, and LoRA
fine-tuning with r = 8 for the LLM. Different ex-
perimental setups are adopted at each training stage
to facilitate model convergence. Detailed training
configurations are provided in Table 9.

Backbone Selection In our framework, we
adopt LLaVA v1.6 as the backbone due to its su-
perior zero-shot performance compared to LLaVA
v1.5

*
. However, to ensure a fair comparison with

other segmentation-specific MLLMs (Lai et al.,
2023; Zhang et al., 2023a, 2024), we also con-
duct experiments using LLaVA v1.5 as the back-
bone. As shown in Table 10, the results indicate

*
https://huggingface.co/llava-hf/llava-v1.

6-vicuna-7b-hf
*
https://github.com/facebookresearch/

segment-anything
*
https://huggingface.co/liuhaotian/llava-v1.

5-7b
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Benchmark #Img. #Reg. #Samp. Caption Conversation Segmentation Reasoning #StepSingle. / Multi. Region. / Pixel.

Segmentation Benchmark
RefCOCO (Yu et al., 2016) 20K 142K 142K ✓ ✓/✗ ✓/✗ ✗ -
VG (Krishna et al., 2017) 82.4K 3.8M 3.8M ✓ ✓/✗ ✓/✗ ✗ -
ReasonSeg (Lai et al., 2023) 1.2K 1.2K 1.2K ✓ ✓/✗ ✓/✗ ✓ -
Osprey (Yuan et al., 2024) 100K 503K 724K ✓ ✓/✗ ✓/✓ ✓ -
GranD (Rasheed et al., 2024) 11M 810M 7.5M ✓ ✓/✓ ✓/✓ ✗ -
MUSE (Ren et al., 2024) 246K 910K 246K ✓ ✓/✗ ✓/✓ ✓ -

Multimodal Reasoning Benchmark
ScienceQA (Lu et al., 2022) 5.6K - 5.6K ✓ ✓/✓ ✗/✗ ✓ 2.5
MMMU (Yue et al., 2024) 11.5K - 11.5K ✓ ✓/✗ ✗/✗ ✓ 1.0
M3COT (Chen et al., 2024a) 11K - 11K ✓ ✓/✗ ✗/✗ ✓ 10.9

PRIST (Ours) 2.8K 8.3K 8.3K ✓ ✓/✓ ✓/✓ ✓ 4.0

Table 8: Comparison of existing segmentation and multimodal reasoning benchmarks. #X: the size of X, Img.:
Image; Reg.: Segmentation Regions; Samp.: Conversational Samples; Step: Steps in the reasoning chain, averaged
over all samples.

Config Stage 1 Stage 2

Optimizer AdamW
Optimizer momentum β1 = 0.9, β2 = 0.95
Learning rate schedule WarmipDecayLR
Warmup iterations 100
Weight decay 0
Gradient accumulation steps 10

Learning rate 3e-4 1e-5
Batch size 16 32
Training steps 50k 20k

Table 9: The training settings of MIRAS.

that the performance difference between the two
versions is marginal, suggesting that both back-
bones are equally effective for our task. This con-
sistency allows us to proceed with the latest LLaVA
v1.6 while maintaining comparability with existing
methods.

C.2 Two-Stage Training

We employ a two-stage training process to achieve
efficient pixel-level reasoning segmentation. The
specific details of each stage are as follows:

Stage 1: Mask-Text Alignment Pre-training
The objective of this stage is to align mask-based
region features with language embeddings. We
collect mask-text pairs from various publicly avail-
able object-level datasets, including COCO (Chen
et al., 2015), Ade20k (Zhou et al., 2019), and Map-
illary (Neuhold et al., 2017), as well as region-level
datasets like the RefCOCO series (Yu et al., 2016;
Kazemzadeh et al., 2014) and PACO (Ramanathan
et al., 2023). Additionally, we incorporate VQA

and caption data, such as LLaVA-Instruct-80k (Liu
et al., 2024a), COCO Caption(Chen et al., 2015).
We mix these data in a 9:6:2:2 ratio and convert
them into an instruction-following format for train-
ing, thereby enhancing its perceptual and conversa-
tional abilities.

Stage 2: Pixel-level Segmentation Fine-tuning
At this stage, we maintain fixed model weights
while fine-tuning our PRIST dataset to enhance
fine-grained segmentation and reasoning capabil-
ities. Subsequently, we integrate VQA data (Liu
et al., 2024a) to enable MIRAS to follow user in-
structions (i.e., PRIST combined with VQA at a
4:1 ratio), enhancing its ability to handle complex
pixel-level segmentation with precision.

Segmentation Prompt

Output Format:
<box>(x1, y1), (x2, y2)</box>

Please box out the position of focus and out-
put the detection box in <box>(x1, y1), (x2,
y2)</box> format, with coordinates repre-
senting the top-left and bottom-right corners
of the detected area. If no focus is detected,
return "no detected", and ensure a blank
space follows all outputs.

C.3 General MLLMs Baselines

To evaluate the advanced general MLLMs on our
task, we guide them with a unified segmentation
prompt. Since these models do not directly gener-
ate masks, we first extract the bounding box coor-
dinates and convert them into masks using a con-
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Model CIoU Pixel-wise Response

Prec. Recall F1 BLEU-4 Dist-1/2 ROU_L. MET. BERTS.

Stage-1

MIRAS(v1.5) 12.35 15.42 49.93 22.53 3.98 7.0 / 28.6 26.84 27.98 87.32
MIRAS(v1.6) 13.12 15.64 45.11 23.22 4.17 6.9 / 28.4 25.94 28.18 87.54

Stage-2

MIRAS(v1.5) 14.54 23.01 40.59 31.86 8.47 14.9 / 49.2 30.66 41.15 88.38
MIRAS(v1.6) 14.72 24.22 40.61 30.34 8.51 15.7 / 49.2 30.82 40.06 88.47

Table 10: The MLLM backbone selection of MIRAS.

sistent function. The generated masks are then
compared with ground truth masks. For fairness,
we exclude the last round of dialogue in the final
evaluation, as the models were not trained with
identical segmentation instructions.

C.4 Evaluation

C.4.1 Pixel-level Segmentation Metrics
We adopt traditional methods for calculating pre-
cision and recall, applying them to the pixel-wise
task. Specifically, each pixel is treated as a binary
classification (i.e., 0,1) to quantify the model’s abil-
ity in pixel-level segmentation.
Pixel-wise Precision measures the proportion of
true positive samples among the pixels predicted as
positive, reflecting the model’s prediction accuracy.
Its increase indicates the model can predict the
pixels of the target region with higher confidence,
thereby capturing the target more precisely.

Precision =
TP

TP + FP

where TP represents pixels correctly predicted as
the target, while FP represents non-target pixels
incorrectly predicted as the target.
Pixel-wise Recall measures the proportion of ac-
tual positive samples that are correctly predicted
as positive, reflecting the model’s coverage of the
target area. Its decrease indicates that the model
is more strictly segmenting according to the target
boundaries, thereby avoiding overgeneralization.

Recall =
TP

TP + FN

where TP represents the pixels correctly predicted
as the target, while FN represents the non-target
pixels that are incorrectly predicted as the target.

C.4.2 LLM-based Metrics
Traditional metrics (e.g., BLEU-n, METEOR) of-
ten fail to capture deep semantics and logical coher-
ence in dialogue. To address this, we employ GPT-
4 as a scoring tool to evaluate the model’s reasoning

quality using four key metrics: 1) Progressiveness
(PR): Whether the current turn effectively sets up
and guides the next. 2) Logical Coherence (LC):
Whether there is a smooth logical connection be-
tween the current and subsequent turns. 3) Content
Consistency (CC): Whether the dialogue revolves
around the overall topic. 4) Target Relevance (TR):
Whether the dialogue stays focused on the target.
We carefully designed prompts for each metric to
ensure fairness and consistency. To ensure fairness
and consistency, we carefully designed prompts
for each metric. Ratings are assigned on a 5-point
scale divided into three intervals (0-1, 2-3, 4-5),
with clearly defined criteria for each range. The fi-
nal score is calculated as the average across all four
metrics, minimizing randomness and bias. Higher
scores indicate better performance, reflecting over-
all improvement across evaluated aspects. GPT-
4 strictly adheres to these guidelines, evaluating
each dimension step by step. Notably, when us-
ing an LLM for scoring, to eliminate randomness,
we repeat the scoring for each metric 5 times and
calculate the average to determine the final score.
Detailed evaluation prompts are shown in Figure 8.

C.4.3 Human Response
We randomly select 100 multi-turn conversations
from the PRIST test set and invite three experts in
computer science to respond masking the original
answers. They all possess solid analytical skills and
a deep understanding of model reasoning tasks. To
ensure fairness in the evaluation, we also used the
LLM-based evaluation criteria to score the three
responses (as shown in Table 11). Finally, the av-
erage score from the three experts is used as the
human evaluation value for each metric.

Additionally, we leverage GPT-4 as a judge to
design an adversarial evaluation framework, us-
ing Win Rate (%) to assess reasoning quality in
multi-turn dialogues. Human responses serve as the
standard for model output comparison, the model
is considered to achieve a win when its score sur-
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PR LC CC TR

Expert 1 4.06 4.10 4.38 4.29
Expert 2 3.98 4.02 4.21 4.31
Expert 3 4.05 4.00 4.19 4.24

Human 4.03 4.04 4.26 4.28

Table 11: The reasoning scores of three human experts
based on LLM-based metrics.

Figure 6: Qualitative results of the performance of MI-
RAS on Pixel-level RS. Top: Stage-1 segments the
entire bottle. vs. Bottom: Stage-2 only segments the
label and provides more accurate and comprehensive
interpretations of the “UTIEL-REQUENA” label.

passes the human response score.

C.5 Generalization Trade-off

Compared with other baselines, MIRAS exhibits
a relatively smaller decline in Tabel 12, which in-
dicates that our method has a better generalization
ability than other baselines. This is primarily due
to the increased complexity of pixel-level RS com-
pared to traditional referring segmentation tasks,
which drives the model to prioritize precise bound-
ary refinement during fine-tuning. General seg-
mentation models typically emphasize detection
comprehensiveness, sometimes at the expense of
precision (e.g., segmenting a wine bottle label as
the entire bottle). In contrast, our PRIST dataset
focuses on fine-grained targets, enhancing segmen-
tation accuracy by refining complex boundaries.
However, this task-specific fine-tuning slightly re-
duces the model’s generalization ability to broader
segmentation tasks. We will further explore this
trade-off in future research.

D Case Study

To reflect the high quality of our constructed
dataset, we present examples of PRIST test data in
Figure 9, which effectively combine coherent and
logically structured multi-turn conversations with
fine-grained segmentation. We fine-tuned MIRAS
on the PRIST dataset to enhance its understanding

and localization of image details. As shown in Fig-
ure 6, the fine-tuned MIRAS (Stage-2) segments
only the label, replacing the entire bottle in Stage-
1, demonstrating stronger segmentation specificity
(with a significant improvement in precision) while
effectively mitigating the issue of overgeneraliza-
tion (with a slight decrease in recall). This result
also highlights the potential of PRIST in improving
pixel-level reasoning capabilities.

To more intuitively demonstrate the advantages
of our model in the pixel-level reasoning segmen-
tation task, we also present several cases of user
interactions with the chatbot. As shown in Figure
10, these cases illustrate MIRAS’s coherence and
consistency in multi-turn interactions and show-
case its ability to achieve more precise fine-grained
object segmentation.
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    # Role: Visual Extractor
    ## Requirements and Goals：

1. identify and list the elements visible in an image. \
2. Provide detailed descriptions of each element, with text, numbers, and other information.
3. List at least 3 elements visible in the image.

    ## Output Format：
{"elements": [{

            "name": "The name of the element1",
            "text": "Text description of the element1",
            "number": (optional)"Number of the element",
            "caption": "Caption of the element"},
            ...]}

(a) Illustration of the visual elements extraction (step-1).

   # Role: Visual Reasoning Expert
   ## Scoring Criteria:
  1 Point (Avoid these): Abstract or vague questions, or too simple or too complex (not intuitive).\
  2 Points: Direct questions that can be answered through basic reasoning based on visible elements. \
  3 Points: Clear questions that require reasoning using details and commonsense, focusing on specific objects.
   ## Requirements and Goals：

1. Design 3 reasoning questions based on the listed elements and details from the image and caption, with scores of 2-3 points.
    2. Each question must involve reasoning and use common sense to analyze visible elements.
    3. Display a reasoning tree structure: Present the reasoning tree structure showing the progression of reasoning for each question. 
 Highlight any overlapping nodes or steps among the three questions to reflect common reasoning pathways.
    4. Output the corresponding reasoning questions for each of the three paths.
   ## Output Format：

{"root_node": "Root Node A",
 "levels": ["First Level: Level 1", 
            "Second Level: Level 2"],
 "inference_nodes": [{
           "node_name": "Inference Node 1",
           "overlap": "Overlap of Path 1 and 3",    // "Overlap of Path x and y" or "Path x Independent"
           "reasoning_paths": [{
                        "path_name": "Path 1",
                        "path_description": "Reasoning Path 1 Description", 
                        "reasoning_question": "Reasoning Question for Path 1" }],
                    ...

},{
"node_name": "Inference Node n",
"overlap": "Path 2 Independent", 
"reasoning_paths": [{
            "path_name": "Path 2",
            "path_description": "Reasoning Path 2 Description", 
            "reasoning_question": "Reasoning Question for Path 2" }]
}]

}

(b) Illustration of the reasoning tree construction (step-2).

# Role: Multi-Turn Reasoning Dialogue Generator
        ## Requirements and Goals：

1. Each dialogue must consist of 4 to 8 turns of questions and answers.
        2. Each question should focus on a single, specific object visible in the image, with reasoning directly tied to the elements listed 
 in the title and the image details.
    3. Expand each reasoning path into a multi-round dialogue format according to the provided reasoning tree, demonstrating the 
 logical progression of thought based on the identified paths.

## Output Format：
{"Question1": {
        "Q1": "<First Question>",
        "A1": "<Answer to First Question>",
        "Q2": "<Second Question>",
        "A2": "<Answer to Second Question>",
        "Q3": "<Third Question>",
        "A3": "<Answer to Third Question>",
        ...},
 "Focus": "<Final Focus Object1>"},
...
}   

(c) Illustration of the multi-turn dialogue generation (step-3).
Figure 7: The prompts and output formats of our dataset annotation pipeline.
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Model refCOCO refCOCO+ refCOCOg

Val TestA TestB Val TestA TestB Val Test

LISA 74.1 76.5 72.3 65.1 70.8 58.1 67.9 70.6
PixelLM 73.0 76.5 68.2 66.3 71.7 58.3 69.3 70.5
OMG-LLAVA 78.0 80.3 74.1 69.1 73.1 63.0 72.9 72.9
MIRAS 78.4 80.5 73.4 72.1 74.8 63.4 72.6 72.0

Fine-tuned

LISA 72.9 (↓1.2) 75.2 (↓1.3) 72.0 (↓0.3) 64.3 (↓0.8) 68.2 (↓2.6) 56.9 (↓1.2) 67.5 (↓0.4) 69.4 (↓1.2)

PixelLM 71.2 (↓1.8) 75.8 (↓0.7) 66.5 (↓1.7) 63.2 (↓3.1) 70.5 (↓1.2) 57.0 (↓1.3) 69.0 (↓0.3) 68.9 (↓1.6)

OMG-LLAVA 77.3 (↓0.7) 79.1 (↓1.2) 73.5 (↓0.6) 68.0 (↓1.1) 72.2 (↓2.6) 62.7 (↓1.3) 71.3 (↓1.6) 70.0 (↓2.9)

MIRAS 76.9 (↓1.5) 79.8 (↓0.7) 72.8 (↓0.6) 68.8 (↓3.3) 74.4 (↓0.4) 62.5 (↓0.9) 71.8 (↓0.8) 70.8 (↓1.2)

Table 12: Comparsion of baselines’s generalization trade-off.

 # Role: A Multiturn Dialogue Reasoning Evaluator
 ## Requirements:
    1. Please analyze the following multi-turn conversation and score it based on the following dimensions:

    - Progression: Does the conversation build logically from one turn to the next? Is the topic being developed effectively?
    - Logical Coherence: Is there a clear and natural logical connection between each turn in the conversation?
    - Content Consistency: Does each turn align with the overall topic and conversation goal?
    - Focal Goal Relevance: Does each turn focus on and contribute towards achieving the focal goal of the conversation?
    After providing scores for each dimension, include a summary that captures the strengths and weaknesses of the conversation.

    2. Only output the reasoning scores in the above format.
    3. Please evaluate the entire process to the content of the image.
    4. Please focus on linking the dimensions between each round of conversation.
 ## Evaluation Criteria:
    1. Progression Score:
        4-5 points: Smoothly transitions to the next turn with sufficient setup for subsequent content.

2-3 points: Partially advances the dialogue, but the connection feels somewhat awkward.
0-1 points: Fails to advance the dialogue or is disconnected from the next turn.

    2. Logical Coherence Score:
        4-5 points: Perfectly connected with rigorous logic.

2-3 points: Generally clear logic, but with minor gaps or weak links.
0-1 points: No logical connection or logically incoherent.

    3. Content Consistency Score:
        4-5 points: Content is fully aligned and tightly focused on the goal.

2-3 points: Generally consistent, but with a slight deviation.
0-1 points: Deviates from the topic, losing the direction of the dialogue.

    4. Focal Goal Relevance Score:
        4-5 points: Highly relevant and continuously advances the goal.

2-3 points: Somewhat relevant, but with limited contribution.
0-1 points: Deviates from the goal, failing to advance it.

 ##  Output in JSON Format: 
Your output should be a JSON object containing scores for each dimension, as well as the total score and a brief summary of the evaluation.

{
    "scores":    [
            {"name": "progression_score", "score": 4.5},
            {"name": "logical_coherence_score", "score": 4.0},
            {"name": "content_consistency_score", "score": 4.2},
            {"name": "focal_goal_relevance_score", "score": 4.8},
            {"name": "total_score", "score": 17.5},
       ],
    "summary": "The conversation demonstrates excellent progression and relevance to the focal goal. \

However, there are some minor coherence issues and slight deviations from the main topic."
    }

Figure 8: Illustration of the LLM-based evaluation of reasoning quality.

17677



Name: Traffic cones

Text: Two orange-and-white traffic cones 

placed on the road near a road construction or 

manhole.

Caption: Orange-and-white traffic cones at a 

construction site.

Number: 2

Q1: What elements are present near the bus that suggest a road safety feature?

A1: Traffic cones are present near the bus, suggesting a road safety feature.

Q2: How do these traffic cones indicate an area of maintenance or hazard?

A2: Traffic cones are typically used to signal areas under maintenance or potential hazards, warning pedestrians and 

drivers to be cautious.

Q3: Please use the conversation above to outline a segmentation that aligns with the answers provided.

A3: The result is [OBJ]traffic cones[SEG].

Name: Bus

Text: A white bus on route number 12 with 'PARQUE 

PRINCIPADO - CAU SA-HOSPITAL' displayed on 

the front panel. It has logos for ALSA and BYS on it 

and is crossing a zebra crossing.

Caption: White bus with route information crossing 

the street.

Number: 12

Q1: What information is displayed on the bus's front panel?
A1: The front of the bus displays the route number '12' and the destination 'CARISA-
HOSPITAL'.
Q2: How can the route number and destination help identify the bus's route?
A2: The route number '12' and the destination 'CARISA-HOSPITAL' indicate the specific path 
the bus takes, which is directed towards the Carisa Hospital.

Q3: Using the conversation above, create a segmentation that validates the answers.

A3: The result is [OBJ]bus front display[SEG].

Q1: What text is 

visible on the bus that 

indicates its destination?

A1: The text 

'CARISA-HOSPITAL' 

is visible on the bus, 

which indicates its 

destination.

Q2: Why is this 

information important 

for passengers?

A2: This information 

helps passengers 

identify the correct bus 

that will take them to 

Carisa Hospital.

Q3: Segment the 

provided conversation 

to match the answers 

accordingly.

A3: The segmentation 

is [OBJ]text 'CARISA-

HOSPITAL'[SEG].

Name: 10, 20 Euro Cent Coin

Text: Two gold colored Euro cent coins with an image of 

Europe and the values are 10 and 20.

Caption: Two Euro cent coins of 10 and 20.

Number: 2

Q1: What numbers are prominently displayed on each gold-colored coin?

A1: The gold-colored coins have the numbers 20 and 10 prominently displayed.

Q2: Which unique design element helps identify the value of these coins?

A2: The specific numbers and the Euro cent symbol help identify their value.

Q3: How does the unique design confirm the coin values?

A3: The design and numbers indicate the coins are 20 and 10 Euro cents.

Q4: Please segment the conversation above to align with the provided answers.

A4: Segmented as [OBJ]gold-colored coins with numbers 20 and 10[SEG].

Name: 2 Euro Cent Coin

Text: Two copper colored 2 Euro cent coins showing the number 

2 and an image of Europe.

Caption: 2 Euro Cent Coin

Number: 2

Q1: What is displayed on the larger silver-colored coin?

A1: The number 2 is prominently displayed on the 

largest silver-colored coin.

Q2: What does this number indicate regarding the 

coin's value?

A2: It indicates that the coin has a value of 2 Euros.

Q3: How does the prominent number assist in 

determining the value across all coins?

A3: The prominent number signifies the denomination 

directly, aiding in value identification.

Q4: Use the above conversation to create a 

segmentation that justifies the answers.

A4: The segmentation is [OBJ] 2 Euro silver-colored 

coin[SEG].

Q1: What color are the smallest coins visible on the table?

A1: The smallest coins are copper-colored.

Q2: How does the size of these copper coins relate to their value?

A2: Typically, smaller copper coins have lower values.

Q3: Which specific copper coin is the smallest in size?

A3: The 1-cent coin is the smallest copper-colored coin.

Q4: Please divide the conversation above to correspond with the given answers.

A4: Segmented as [OBJ] 1-cent copper coin[SEG].
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Figure 9: PRIST Samples. The figure displays the PRIST dataset, created through the automated annotation
pipeline. It offers a range of semantic labels, multi-turn conversations and attributes for the identified objects.
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Figure 10: Pixel-level segmentation and multi-turn conversational interactions facilitated by MIRAS. Left: The
model segments only the watch face instead of the entire watch, and identifies the three sub-dials and the "SINCE
1953" logo. Center: The model segments only the emblem on the coin instead of the whole coin, and infers that it
is related to Soviet communism. Right: The model segments only the road sign, and accurately recognizes the text
"Plaza de San Lorenzo".
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