
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 17588–17605
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Meta-Learning Neural Mechanisms rather than Bayesian Priors

Michael Eric Goodaleιϵ, Salvador Mascarenhasιϵ, Yair Lakretzλϵ,
ιInstitut Jean Nicod

λLaboratoire de Sciences Cognitives et Psycholinguistique
ϵDépartement d’études cognitives, ENS, EHESS, CNRS, PSL University.

{michael.goodale,salvador.mascarenhas}@ens.fr, yair.lakretz@gmail.com

Abstract

Children acquire language despite being ex-
posed to several orders of magnitude less data
than large language models require. Meta-
learning has been proposed as a way to inte-
grate human-like learning biases into neural-
network architectures, combining both the
structured generalizations of symbolic models
with the scalability of neural-network models.
But what does meta-learning exactly imbue the
model with? We investigate the meta-learning
of formal languages and find that, contrary to
previous claims, meta-trained models are not
learning simplicity-based priors when meta-
trained on datasets organised around simplicity.
Rather, we find evidence that meta-training im-
prints neural mechanisms (such as counters)
into the model, which function like cognitive
primitives for the network on downstream tasks.
Most surprisingly, we find that meta-training on
a single formal language can provide as much
improvement to a model as meta-training on
5000 different formal languages, provided that
the formal language incentivizes the learning
of useful neural mechanisms. Taken together,
our findings provide practical implications for
efficient meta-learning paradigms and new the-
oretical insights into linking symbolic theories
and neural mechanisms.

1 Introduction

In the past decade, enormous advances in neural
network models have led to a novel neural-network
orthodoxy perhaps best exemplified by Richard
Sutton’s Bitter Lesson (Sutton, 2019). The now
prevailing view has been to eschew purpose-built
architectures in favour of scale in larger models and
larger training datasets rather than narrow purpose-
built architectures. Nevertheless, humans’ capacity
to generalize from very few examples has remained
an elusive and intriguing goal for both AI practi-
tioners and cognitive scientists sympathetic to con-
nectionism.

Yang and Piantadosi (2022) introduced a sym-
bolic model to capture aspects of humans’ basic
generalisations from small data on simple formal
languages. They use a “language of thought” model
which combines simple cognitive “primitives” (e.g.
simple functions like logical AND, getting the first
element of a list, and so on) into symbolic pro-
grams explored via Bayesian-inference techniques.
The model can then “learn”, given some data, by
finding a program which generates the underlying
data, potentially generalizing correctly into out-
of-distribution data. Crucially, the model has a
Bayesian prior for simpler (e.g. shorter) programs.
The model can only learn effectively with toy for-
mal grammars, for example it perfectly generalizes
from the minuscule dataset, {a, aa, aaa}, to the
formal grammar an. Despite the model’s perfor-
mance on simple grammars, its symbolic nature
makes it difficult to scale up to more complicated
material such as natural language, because the non-
differentiable search over programs is intractable
and cannot exploit gradient-descent.

One potential way to square the circle of sym-
bolic modeling’s theoretically-motivated general-
izations with neural-network approaches’ scaleable
learning is meta-learning. Meta-learning is an in-
creasingly popular approach among cognitively-
minded researchers to address humans’ capacity
for systematic generalization while staying within
the familiar realm of mainstream neural-network
techniques (Lake and Baroni, 2023; Binz et al.,
2024; McCoy and Griffiths, 2023; McCoy et al.,
2020). This approach has models learn baseline
expectations, in the form of “Bayesian priors” or
“inductive biases,” approximating and hopefully re-
producing the language-readiness of the human
child’s brain. Meta-learning approaches thus avoid
the challenges of selecting and hard coding an ap-
propriate a priori architecture, while leveraging the
remarkable learning abilities of neural networks.
Consequently, several cognitive scientists have pro-
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posed that meta-learning of one form or another
may provide solutions to the problems of out-of-
distribution generalization on the basis of limited
data (Lake and Baroni, 2023; Binz et al., 2024).

McCoy and Griffiths (2023) use meta-learning
in the special case of language learning: they use
meta-learning techniques to, as they put it, “distill”
a Bayesian prior for a particular kind of simplicity
into a neural network. They use model-agnostic
meta-learning (MAML; Finn et al., 2017) to meta-
train LSTMs to learn simple formal languages from
small amounts of data in the same schema as Yang
and Piantadosi (2022). Their model is meta-trained
on formal languages sampled with preference for
simplicity, and then trains on datasets like those
from Yang and Piantadosi (2022).

Their model shows impressive improvements in
performance compared to an un-metatrained neural
network, with generalizations from small data com-
parable to Yang and Piantadosi’s (2022) symbolic
model. They describe their model as distilling a
Bayesian prior for simplicity into a connectionist
model, thus benefiting from the flexibility provided
by neural networks. In other words, they claim the
model learns to mimic its meta-training distribution
when trained on later tasks, thereby following the
simplicity prior of its meta-training dataset.

Here we examine McCoy and Griffiths’s (2023)
proposal for meta-learning in the case of formal lan-
guages in detail, and demonstrate that their conclu-
sion is premature. We provide an alternative mecha-
nistic view, which, in contrast to the simplicity-bias
view, suggests that meta-training encourages mod-
els to learn useful neural mechanisms (e.g. coun-
ters) and that meta-learning does not distill simplic-
ity biases. The neural mechanisms then function
as available “neural primitives” during task acqui-
sition.

We contrast the mechanistic and simplicity-bias
views by testing each of their predictions, as spelled
out in Table 1, and find converging evidence in sup-
port of the mechanistic view, but not the simplicity-
bias one: First, models can achieve the same behav-
ioral outcomes using meta-learning datasets that in
no way follow a Bayesian simplicity prior, in con-
trast to the prediction of the simplicity-bias view.
Crucially, second, we find that a single formal lan-
guage can serve as a sufficiently rich meta-learning
dataset in certain cases. These can be explained
by the mechanistic view but not the simplicity-bias
view. Finally, manipulating the types of mecha-
nisms a neural architecture can develop (e.g., pre-

venting counting by replacing LSTMs by GRU
units), we show that meta-learning effects disap-
pear, as predicted by the mechanistic but not the
simplicity-bias view.

2 Meta-Learning a simplicity prior?

The received wisdom today is that the best kinds
of generalizations are those that are implied by the
Kolmogorov complexity of the data (Solomonoff,
1964; Kolmogorov, 1963; Chater, 1999; Chater and
Vitányi, 2003). The idea is roughly that the shortest
program which can generate your data will have the
right kinds of generalizations. While Kolmogorov
complexity itself is non-computable, different ap-
proximations of it have been used before for neural-
networks such as Minimum Description Length
(Lan et al., 2022). Unfortunately, these approxi-
mations tend themselves to be non-differentiable,
leading them to be unsuitable for gradient-descent
and large-scale connectionist approaches.

Within cognitive science, Bayesian priors for
simplicity are deeply connected to a popular view
of human cognitive processes, Rational Analysis
(Anderson, 1991). On this view, psychological
functions are seen as adaptive solutions to chal-
lenges faced by organisms in their environment.
Under Rational Analysis, the idea that minds are
adapted to their environment is identified with
the claim that mental processes are rational (in
other words, for Rational Analysis, they follow a
Bayesian prior). This crucially entails that mental
processes cannot just be fitting representations to
their environment, they must also take into account
the prior probabilities of said representations, in-
cluding in particular a measure of the simplicity
of those representations. Yang and Piantadosi’s
(2022) model sits squarely within this tradition.

Consequently, the Bayesian view of cognition
is suspicious of approaches to learning which lack
a rational analysis in this sense, as mainstream
neural-network approaches do. This suspicion is
warranted on independent cognitive grounds: main-
stream techniques are not only not Bayesian, in
that they have no rationally-analyzable nor eas-
ily interpretable priors, they also require massive
amounts of data to achieve the impressive behav-
ioral results we’ve come to expect of them. This
relentless hunger for data is impossible to square
with how children learn. For example, in the case
of natural language, the data is five to six orders of
magnitude lower for children than the amount of
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Simplicity-bias view Mechanistic-complexity view
Meta-trained models learn to learn with a
Bayesian simplicity prior.

Meta-trained models learn useful neural-
mechanisms.

1a) Simplicity-focus datasets will help the
model learn to make the simplest gener-
alization in later training.

1b) Datasets without a prior for simplicity
will make incorrect generalizations and
perform worse.

2a) For formal tasks, data-diversity is not par-
ticularly important as long as the dataset
requires a useful mechanism.

2b) A meta-training dataset is useful only if
the neural-architecture is able to acquire
the relevant mechanisms.

Table 1: Predictions of the simplicity-bias view and the mechanistic view. We find evidence in support of the
mechanistic-complexity view (predictions (2a) and (2b)) and against the simplicity-bias view (predictions (1a) and
(1b)).

data required to train modern language models (Hu
et al., 2024). In sum, the idea that human learners
come into the world equipped with a sophisticated
prior probability reflecting, among other things, a
bias for simplicity is often taken to provide both
a straightforward explanation of why minds are
as they are from an adaptationist perspective, and
a promising avenue to address the age-old puzzle
of how humans manage to learn so much from so
little.

But there is a catch. Bayesian update as rec-
ommended by rational analysis in this sense is in-
tractable (and perhaps impossible in the case of
infinite hypothesis spaces). Even tractable approx-
imations of Bayesian inference can only be done
usefully within extremely restricted, orderly do-
mains. Despite Yang and Piantadosi’s (2022) great
success on simple formal languages, their model’s
reliance on intractable, non-differentiable search
makes it impossible to scale up to the full complex-
ity of natural language.

The field is left in a frustrated position. On
the one hand, Bayesian inference offers a promis-
ing way of reproducing and explaining in one fell
swoop both why minds are the way they are and
how minds manage to draw sweeping generaliza-
tions on the basis of extremely limited data. On
the other hand, this approach is currently com-
pletely impracticable for the kinds of data that hu-
man minds do indeed handle, while altogether non-
Bayesian machine-learning approaches achieve im-
pressive behavioral accuracy, crucially with serious
issues in out-of-distribution generalization.

To resolve this tension, one could hope that a
neural network could still be forced to follow some
kind of simplicity prior. This could be done by ar-

chitectural constraints, but meta-learning provides
a tantalising possibility: what if the simplicity prior
could be meta-learned (Binz et al., 2024)? Perhaps
by meta-training on a dataset which follows that
simplicity prior, the model could learn to follow it.
This is how McCoy and Griffiths (2023) describe
what their model is doing. In particular, the view
claims the successes of meta-learning are born out
of this bias from simplicity that is learnt from the
training datasets’ own bias for simplicity.

2.1 Meta-learning a prior or the prior?

One justification for the view that meta-learning is
distilling a prior comes from a theoretical result by
Grant et al. (2018). The authors shows that MAML
can be interpreted as a hierarchical Bayesian model
where MAML estimates a prior which is parame-
terized by the weights of the neural network being
used. A crucial detail about this theoretical result is
that it is not guaranteed that this prior will approx-
imate the data distribution nor that this prior will
be interpretable. Rather, the learnt prior depends
entirely on the specific neural architecture used and
simply reflects the ideal initialisation for the spe-
cific neural network given the data provided, rather
than an approximation of the underlying task dis-
tribution. In other words, Grant et al. (2018) have
shown that a prior is learnt, but not necessarily the
desired prior.

Within Rational Analysis, this could be useful
for some kinds of tasks, such as categorization.
When recognising animals in images, for example,
we could learn a prior about underlying frequencies
of features of animals. MAML could model this
and produce an uninterpretable prior over image
recognition models (with the important caveat that
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such priors depend on the neural architecture).
Our focus, however, is on the thornier issue of

generalization. While meta-learning could be inter-
preted as a way of imbuing various kinds of priors
(Binz et al., 2024; Grant et al., 2018), if one is in-
terested in generalization or higher-order cognitive
processes, the received view is that the best prior
would be for simplicity (Binz et al., 2024; Chater,
1999). Conversely, other priors (such as a prior for
extra complexity) should lead the models to worse
performance. As such, it is crucial that the meta-
learned model is acquiring the prior that the model
is exposed to, rather than just any old prior if we
want to attribute the success of MAML models to
their distillation of a specific prior (in this case, a
simplicity prior).

3 Meta-learning neural mechanisms!

We have a different interpretation, whereby the
model is not learning to follow a prior for simplic-
ity, but is instead learning basic neural mechanisms
which are useful on later tasks. Neural mechanisms
are basic circuits; an example could be counters
which have been found in LSTMs (Weiss et al.,
2018; Suzgun et al., 2019). These basic neural
mechanisms can be learned from simple datasets
provided the data require using these computational
tools. Since the meta-learned weights already con-
tain useful mechanisms, they are much more easily
found in parameter space when training than in
randomly-initialized networks, enabling learning
on smaller datasets with better generalizations.

Rather than organizing a meta-learning dataset
around a simplicity bias as recommended by the
Bayesian view of human cognition, we suggest or-
ganising it around mechanistic complexity. We
define mechanistic complexity as the amount of
expressive power required to do a task as is done
in formal language theory or automata theory. For
example, the formal language ab, abab, ababab, . . .
can be considered simpler than the formal language,
ab, aabb, aaabbb, . . . because the former can be
done with a finite-state machine, while the latter
requires a pushdown automaton. From an informa-
tion complexity point of view, these two languages
may be roughly equivalent in their complexity, but
in terms of mechanistic complexity, they are drasti-
cally different.

While neural architectures vary in terms of their
expressive power, sometimes the mechanisms re-
quired to maximally utilise this expressive power

can be hard to find in the parameter space. For ex-
ample, LSTMs are capable of counting (Gers and
Schmidhuber, 2001), but there is no guarantee that
a given LSTM will learn a counting mechanism
if the provided data aren’t sufficiently rich (and
gradient-desscent made lead to suboptimal mecha-
nisms (Lan et al., 2024)). We hypothesise that meta-
learning on tasks with greater mechanistic complex-
ity will lead to better models than meta-learning on
less mechanistically complex tasks. This would be
because meta-learning encourages learning mecha-
nisms (e.g. for counting) which then become easily
accessible when training after meta-training.

4 Methods

We created two kinds of meta-learning datasets
organised according to each principle. For the
simplicity-bias view, we created a collection of
datasets varying in their information-complexity
ranging from a simplicity prior to a complexity-
prior. For the mechanistic-complexity view, we
used different formal languages as datasets and cat-
egorised them according to the Chomsky-hierarchy.

All our models were 2-layer 1024-dimensional
LSTMs, following the parameters of McCoy and
Griffiths (2023). Full hyperparameters can be
found in Section A of the appendix.

4.1 Simplicity bias with
informationally-complex datasets

To test whether simplicity is important for deter-
mining the quality of a meta-learning dataset, we
created a dataset of 5000 formal languages. These
languages were generated using the Minimalist
Grammar formalism (Stabler, 1997) and consisted
of simple formal languages à la Yang and Pianta-
dosi (2022). Crucially, these languages were uni-
formly distributed in terms of their model descrip-
tion length (MDL; Rissanen (1978)) from 0 to 100.
MDL was calculated as a function of the number of
bits required to encode all features in the underly-
ing grammar representation as in Ermolaeva (2021)
(full details in Figures 7 and 8).

Under the assumption that a preference for sim-
plicity drives generalisation, we should expect
Bayesian models with a preference for complexity
to perform worse. For example, Yang and Pianta-
dosi (2022) point out that a prior for simplicity
could drive the learning of an rather than a{1,2,3}

given the dataset {a, , aa, aaa}. This is because
memorisation (a{1,2,3}) is more complex than the
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generalised rule (an). A Bayesian model with a
preference for some complexity would not make
the right generalisation in this case and so they
would perform worse than a model with a bias for
simplicity. Therefore, if the meta-trained model is
really acquiring the prior, the models trained on a
complexity prior should perform much worse than
the ones trained on a simplicity prior.

Each meta-learning model was trained by sam-
pling formal languages from this dataset. Cru-
cially, we could manipulate the frequency of sim-
ple or complex languages seen in training by sam-
pling according to the MDL score of each grammar
(see Figure 1 for details). This allowed us to test
whether models performed better when they were
trained to have a simplicity bias or a complexity
bias.1

4.2 Mechanistically-complex datasets

The mechanistic-complexity datasets were much
more restricted than the information-complexity
datasets. Each meta-learning training regimen con-
sisted of a single language chosen according to its
mechanistic complexity. If MAML really is dis-
tilling a prior into the model, then meta-learning a
single language should lead to catastrophic perfor-
mance as all the probability mass of the prior will
be on that language. Conversely, if MAML leads
to the acquisition of neural mechanisms, then a sin-
gle language could provide a useful meta-learning
dataset, provided it encourages the learning of rele-
vant mechanisms.

The datasets we constructed to test this predict
consist of 9 formal languages. These formal lan-
guages are described in Figure 1b. The 9 languages
were selected to vary in terms of their position
in the Chomsky hierarchy, a classic measure of
computational expressiveness, with three regular
languages, three context-free languages and three
context-sensitive languages.2 The languages were
also organised into “families”, informal groupings
to capture underlying similarities and shared vo-
cabularies.

Languages were also chosen so that their strings
had natural “lengths”, corresponding roughly to the
number of steps necessary to generate the string.

1Since complexity is right-unbounded, this is really more
of a bias for “medium” complexity.

2Technically, all regular languages are also context-free
and context-sensitive and likewise all context-free languages
are also context-sensitive. For brevity, we describe a language
by the least expressive position in the hierarchy that can ex-
press the language.

For example, the string aabb in anbn has a length of
two, while the string ((()())) in the Dyck language
has a length of four. Full definition of length for
each language can be found in the appendix.

During meta-training, each training string is sam-
pled as follows. First, a length is sampled uni-
formly from 1 to 10, then from each length, a ran-
dom string is sampled uniformly for that length.
The meta-learning test strings (used at the end of
the inner loop) are sampled in the same manner but
with lengths from 11 to 20. This was done to help
length generalization and as an easy way to ensure
the inner-loop test and training set do not overlap.

Finally, during meta-learning, the symbols were
randomly assigned to different vocabulary indices
for each inner loop (excluding [START], [STOP]
and [PAD] tokens which had consistent indices).
So, while a might correspond to an index of 3 in
one batch, it could correspond to 5 in another batch.
This was done to encourage generalisation, to en-
sure that each word-embedding was initialised and
to allow the model to learn languages with larger
vocabularies than their meta-learning language. By
shuffling vocabulary indices from batch to batch,
each batch is like a different task albeit on the same
basic language, showing how we are meta-training
rather than pretraining on a single language.

4.3 Training after meta-training
After meta-training, all models were trained on the
same data. Rather than evaluate on the 56 formal
languages used by Yang and Piantadosi (2022), we
used the same target languages as in Figure 1b
because of their various formal properties. This
allowed us to define a more precise evaluation
scheme, described in the following section.

To train models, we followed the exact same
scheme as McCoy and Griffiths (2023), where the
meta-trained model is trained for n epochs using
SGD and then m epochs using Adam. The full
details are available in Table 3 in the appendix.

All models were trained with the same sampled
data from each formal language where n strings
were sampled by first uniformly sampling a length,
and then uniformly sampling a string for that length
for a formal language.

4.4 Evaluation
Yang and Piantadosi’s F1 To evaluate the differ-
ent models, we used a slightly different technique
than Yang and Piantadosi (2022) or McCoy and
Griffiths (2023). Yang and Piantadosi (2022) in-
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(a) The distribution of grammar complexity with different priors.

Language Examples Family Chomsky hierarchy

aˆn a, aa, aaa Growing Regular
aˆnbˆn ab, aabb, aaabbb Growing Context-Free
aˆnbˆncˆn abc, aabbcc, aaabbbccc Growing Context-Sensitive

kleene a, b, cba Copy Regular
wwR a|a, b|b, abab|baba Copy Context-Free
ww abc|abc, abab|abab, abac|abac Copy Context-Sensitive

()ˆn (), ()(), {}{}{} Dyck Regular
dyck (), ({}), ()() Dyck Context-Free
cross-dependency dyck (), {(})(), {()} Dyck Context-Sensitive

(b) All formal languages evaluated in this work.

Figure 1: Methodological Approach: (a) Simplicity-Bias View: We created several datasets where we manipulated
the Minimum Description Length (MDL) of the languages. The probability of sampling a grammar was calculated
by taking the softmax of all the MDL scores of all 5000 grammars and the simplicity/complexity preference
was set by manipulating the temperature. The MDL calculation and example grammars are in the appendix. (b)
Mechanistic-Complexity View: We created several datasets based on the Chomsky hierarchy to manipulate the
mechanistic complexity required to learn the language. Languages were grouped into “families” based on superficial
similarities and shared alphabets.

troduced a modified F1 score as a metric to track
the acquisition of a formal language. Since many
formal languages are defined by infinite sets, it is
tricky to determine whether a model has correctly
acquired a language without a formal parser for
each language. Rather than formally proving a lan-
guage has been acquired, Y&P simply took the 25
most probable strings from both the model and tar-
get language and used them to create a modified
F1 score. ‘Precision’ was defined as the propor-
tion of the 25 most likely strings in the model that
were members of the target language (defined as a
very large corpus of sampled strings). ‘Recall’ was
the proportion of the 25 most likely strings in the
target language that the model had sampled after
sampling many strings from the model.

This metric is not sensitive to length and cannot
allow us to tell if a model has generalised (since
sufficiently long strings will simply not be in the

top 25). Furthermore, it presupposes a probabilis-
tic ordering of strings. While it seems natural to
assume that a is more likely than aaaaa in an, this
needn’t be the case, and for other grammars it is
less straightforward to decide on an appropriate dis-
tribution. Technically, formal languages are simply
sets of strings so imposing an ordering on them
amounts to making extra assumptions which may
not be warranted.

Continuations Our solution is to use a different
metric which looks at the degree to which the
model correctly continues strings. Given a formal
language, we can look at each string, token by
token, and see what are valid next tokens in the
formal language. For example, given the language
anbn, if the string so far is aa, the next valid token
could be a or b. However, if the string is aab,
the only valid token is b. A similar strategy has
been used to great effect in analysing language
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String Length Valid continuations

( 1 (, {, )
() 1 (, {, [STOP]
(){ 2 (, {, }
(){( 3 (, {, )
(){() 3 (, {, }
(){()} 3 (, {, [STOP]

Table 2: All valid continuations generated from the
string (){()} in the Dyck language.

models’ acquisition of grammatical rules in natural
language (Linzen et al., 2016).

Our evaluation corpus was built by sampling 10
strings for each of our target languages from each
length from 1 to 40. For every generated string, we
included all possible continuations for each token
in the string (see Table 2 for an example).

For each continuation, we can then formalize
various metrics to determine a model’s acquisition
of a language. We designed our metrics to be anal-
ogous to Yang and Piantadosi’s (2022) variant of
the F1 score.

For precision, the most natural definition is the
likelihood of a model choosing a valid token. Let
s be a string and VAL(s) be the set of valid contin-
uations given s. Finally, let P (x | s) be the prob-
ability the model assigns to token x given string
s.

PVal(s) =
∑

x∈VAL(s)

P (x | s)

This will not be a sufficient metric since a de-
generate model can still have perfect precision (for
example, a model which always predicts “(” could
have perfect precision in Table 2).

For an analogy to recall, we defined a metric
we call “better-than.” It is defined simply as the
proportion of valid moves which have a higher
probability than all invalid moves combined. We
considered alternative metrics as well; these can be
found in the appendix.

BT(s) =

∑
x∈VAL(s)

[
P (x | s) > ∑

c̸∈VAL(s)

P (c | s)
]

|VAL(s)|

Finally, we define our variant of F1 as the har-

monic mean of these two measures:

F1(s) =
2PVal(s) · BT(s)
PVal(s) + BT(s)

Note that this term is defined for each continuation,
rather than for an entire language.

5 Results

Overall, we found that models meta-trained on
context-free and context-sensitive languages out-
performed models meta-trained on regular lan-
guages (see Figure 2). Against Bayesian intu-
itions, we found that models meta-trained with a
simplicity-bias did not outperform models meta-
trained with a complexity-bias, or for that matter
models meta-trained on a single context-free or
context-sensitive language. This is despite the fact
that the informationally-complex datasets consist
of 5000 languages whereas the mechanistically-
complex datasets had a single language. This result
indicates that, for this meta-training scenario, more
diverse data does not necessarily entail more per-
formant models.

5.1 Simplicity bias does not predict
performance

We found that there was no real distinction between
meta-learning models that were trained on a dataset
with a simplicity-bias or with a complexity-bias
(Figure 2). The meta-trained models do perform
much better than unmetatrained models, but there
do not appear to be any significant differences on
whether the model is meta-trained on simple or
complex data. This directly contradicts the predic-
tions of the simplicity-bias view (Table 1).

5.2 Mechanistic-complexity does predict
performance

Contrary to the simplicity-bias view, we found a
clear differentiation among models meta-trained
with different mechanistic complexity. The models
meta-trained on regular languages performed worse
than those meta-trained on context-free or context-
sensitive languages. In fact, the regular models
were not consistently better than unmetatrained
models (Figures 2 and 3). Figure 3 shows how
meta-training on languages higher in the Chomsky-
hierarchy helps learning languages lower in the
Chomsky-hierarchy but the converse is not true.
This goes with the prediction (2a; Table 1) as going
up each level in the Chomsky-hierarchy necessarily
requires a more expressive mechanisms.
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Figure 2: The mechanistic view but not the simplicity-bias view accounts for meta-learning effects. Mean F1 for
each target language for continuations with length ≤ 10 (averaged over three meta-learning runs). All models were
trained on the same data sampled from each target language after meta-training. Mechanistic complexity excludes
cases where the target language is the same as the meta-training language. Variant figures with different metrics are
available in the appendix. Preferring simple or complex languages shows no difference in model performance
whereas meta-training on more mechanistically-complex languages (context-sensitive/context-free languages)
is more helpful than meta-training on less mechanistically-complex ones (regular languages).

The success of meta-training on a single-
language vindicates prediction (2a) of the
mechanistic-complexity view. If meta-learning in-
culcates useful neural mechanisms, then a single,
sufficiently complex language (such as anbncn)
should suffice to learn it. Conversely, meta-learning
mechanistically-simple languages does not seem to
help, as regular languages do not bestow any useful
mechanisms.

In particular, we hypothesise that the LSTMs
are learning mechanisms for counters, as this has
been previously shown (Weiss et al., 2018), and this
is sufficient for anbncn. To test this, we looked at
GRU models which cannot acquire counters (Weiss
et al., 2018), and we found they had no benefit from
meta-training on the same datasets as the LSTMs
(Figure 4). This follows the prediction (2b) of the
mechanistic-complexity view (table 1) where we
expect neural architectures that cannot acquire the
relevant neural mechanisms to not benefit from
meta-training on that task.

6 Discussion

Our results indicate that meta-trained models don’t
directly mimic the statistical properties of their
meta-training dataset. Whether meta-trained on
informationally-simple or informationally-complex
datasets, they perform equally well on later train-
ing tasks. This casts doubt on the idea that meta-
trained models succeed due to the acquisition of a

simplicity-bias and implies that MAML does not
bestow a specific prior on a neural network.

Conversely, meta-training on mechanistic-
complex languages does seem to be vital in encour-
aging models to acquire useful neural-mechanisms.
Despite being a single language dataset, the
context-free and context-sensitive models were bet-
ter than the simplicity-bias models which were
trained on 5000 languages. We hypothesise this
is the result of the context-sensitive/context-free
languages providing a computationally richer base
than informationally-complex languages (which
can be complicated yet be a regular or even finite
languages) prompting the meta-learned models to
learn basic neural mechanisms.

While we found a clear differentiation between
regular languages and context-free or context-
sensitive languages, we did not between context-
sensitive and context-free languages. This likely
has to do with the relative imprecision of the Chom-
sky hierarchy; there are many important differ-
ences between languages that aren’t captured by
the Chomsky hierarchy. For example, anbn and
anbncn, require only tracking the number of items
on the stack (and whether we have moved from
b’s to c’s for anbncn), rather than actually keeping
track of the specific items and the order they occur
in.

Conversely, the copy languages require perfectly
recording each symbol on the stack. The mod-
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Figure 3: Meta-learning on languages high in the Chomsky hierarchy helps learning those lower in the
Chomsky hierarchy but not vice-versa. Here we show the generalisation of different models across levels of
the Chomsky hierarchy. Of particular interest, with ten training strings, models meta-trained on context-free and
context-sensitive languages are better at learning regular grammars compared to models meta-trained on regular
grammars. Conversely, meta-training on regular grammars do not seem to provide very much improvement over
unmetatrained models. Each value is the mean F1 across target languages for continuations with length ≤ 10.

Figure 4: GRUs do not show the same meta-learning
effect as LSTMs. GRUs do not show improvement
from meta-training. As GRUs cannot express counters
in constrast to LSTMs (Weiss et al., 2018), they might
not learn useful neural mechanisms during meta-training

els failed to completely learn the copy language,
despite succeeding on anbncn. The relative diffi-
culties of these languages corresponds with what
we know about the capacities of LSTMs. LSTMs
can acquire counters to keep track of cardinali-
ties (Weiss et al., 2018), whereas learning a fully-
fledged stack may prove more difficult or practi-
cally impossible (Delétang et al., 2023).

As such, the Chomsky-hierarchy may not be the
best way to characterise the cognitive “primitives”
(i.e. basic neural mechanisms enabling generaliza-
tion) that are most useful for a neural architecture.
Indeed, GRUs show no improvement from meta-
training at all, since they cannot acquire the count-
ing mechanisms that LSTMs are able to exploit

after learning anbncn. This follows previously the-
oretical and empirical work showing that, while
LSTMs can acquire counting languages (Fischer
et al., 1968), GRUs cannot (Weiss et al., 2018).

Future work could examine what alternative the-
oretical hierarchies like the Chomsky-hierarchy
best correspond to the neural mechanisms that
are useful in an architecture. For example, many
recent works have looked at the expressivity of
Transformer models (Hao et al., 2022; Strobl et al.,
2024; Yang and Chiang, 2024; Yang et al., 2024;
Zhou et al., 2024), allowing one to define a “circuit-
complexity hierarchy.” Outside of meta-learning,
previous works have found that pre-training on
formal languages or other sources of structure
(e.g. music) can help later learning of natural lan-
guage (Papadimitriou and Jurafsky, 2020, 2023);
this may be due to similar reasons.

Given a better understanding of the mechanisms
that can be learnt by different neural architectures,
meta-learning could be used to initialise models
with initial parameters that make useful general-
isations more accessible in the parameter-space.
Just as languages like anbncn encourage LSTMs
to learn a counting mechanism, different meta-
learning tasks might, for example, encourage Trans-
formers to learn how to use their positional encod-
ings ahead of actual training. Work like RASP
(Weiss et al., 2021) which define different possi-
ble circuits in neural architecture can provide an
interesting basis for seeing what kinds of neural
mechanisms would be useful to meta-learn in a
specific neural architecture.
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Limitations

This article addresses meta-learning in a fairly
narrow domain, formal language learning, with-
out looking at more complicated domains such
as natural language. While we argue that neu-
ral mechanisms explain our results, and counters
have been previously found in LSTMs (and not
in GRUs) (Weiss et al., 2018), we do not explic-
itly look at hidden layers to find the presence of a
neural counter. Future work could look to inves-
tigate different architectures beyond LSTMs and
GRUs—Transformers being an obvious possibility,
but more exotic architectures such as Stack-RNNs
remain intriguing. It would also be of vital interest
to develop computational hierarchies akin to the
Chomsky hierarchy but defined in terms of specific
neural architectures and the neural mechanisms that
can be found in them.
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A Meta-learning hyperparameters

All models were 2-layer LSTMs trained with a vo-
cabulary size of 10 (including 3 tokens for [START],
[STOP] and [PAD]) and an embedding and hid-
den dimension of 1024. Models were trained with
first-order MAML and were presented with 25 000
inner-loops with a batch-size of 1 and two gradient-
accumulation steps.

The inner-loop had a learning rate of 1.0 us-
ing SGD, while the outer-loop was optimized with
Adam and a learning rate of 0.0001. Each inner-
loop consisted of 200 training strings presented in
20 batches of 10. The inner-loop test set consisted
of 2 batches of 10 test strings.

Our hyperparameters were selected by a grid
search over different parameters for hidden-size
({4, 16, 64, 256, 1024}) and outer learning rate
({0.001, 0.0001, 0.00001}), and inner learning rate
({0.1, 1.0}). The best parameters were chosen
based on the perplexity of each meta-trained model
on its own meta-trained language (e.g. a model
meta-trained on anbncn’s perplexity after being
trained on anbncn). We could not evaluate all pos-
sible parameters due to VRAM limitations; in par-
ticular we were limited in batch-size and forced to
use first-order MAML.

Our total compuational consumption was
roughly 5000 hours of GPU time on Nvidia V100s.
The code was developed using PyTorch 2.4 (Ansel
et al., 2024), PyTorch Lightning 2.1 (Falcon and
The PyTorch Lightning team, 2019) as well as
Higher (Grefenstette et al., 2019) for the MAML
implementation. This paper was written without
the aid of AI assistants.

n strings SGD Epochs Adam Epochs

1 5 1
10 5 1

100 10 5

Table 3: Hyperparameters for down-stream training with
batch-size of 32, SGD learning rate of 1.0 and Adam
learning rate of 0.0005. These hyperparameters were
copied from (McCoy and Griffiths, 2023)
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Family
Chomsky

Regular Context-Free Context-Sensitive

Growing
an anbn anbncn

Any number of a’s Any number of a’s. followed
by an equal number of b’s.

Any number of a’s followed
by an equal number of b’s,
then an equal number of c’s.

a, aa, aaa, . . . ab, aabb, aaabbb, . . . abc, aabbcc, aaabbbccc, . . .

Dyck
()n Dyck Cross-dependency Dyck

Any number of ()
or {} repeating.

Balanced parentheses or
brackets

Dyck but treating brack-
ets and parentheses indepen-
dently.

(), ()(), {}{}{}, . . . (), (()), {()}, . . . {(}), ({)}, ()(), . . .

Copy
Kleene Mirrored Copy

The Kleene star of
{a, b, c}

A string from Kleene fol-
lowed by “|” and then the
string reversed

A string from Kleene re-
peated twice and separated by
“|”

a, bcd, cd, . . . a|a, ab|ba, bcd|dcb a|a, ab|ab, bcd|bcd

Table 4: Detailed descriptions of each formal language used in this study.

Language Length definition

aˆn Number of a’s
aˆnbˆn Number of a’s

aˆnbˆncˆn Number of a’s

kleene Number of characters
wwR Number of characters prior to |
ww Number of characters prior to |

()ˆn Number of parentheses/bracket pairs
dyck Number of parentheses/bracket pairs

cross-dependency dyck Number of parentheses/bracket pairs

Table 5: Definition of length for each language
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Figure 5: Length generalization for each meta-trained model when trained on its own language. Counting languages
in family “grow” are learnt, while stack-based families “dyck” and “copy” suffer.
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(a) 1 strings

(b) 10 strings

(c) 100 strings

Figure 6: Mean F1 for all continuations with length ≤ 10 for all formal languages
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MDL(g) =
∑

s::F∈g
NOT-ϵ(s) log p+ |F | log (5c(g))

Figure 7: MDL calculation for MGs adapted from Ermolaeva (2021) and Katzir (2014). c(g) is a function which
gives the number of categories in grammar, g. s and F are the string and the features of a lexical entry respectively.
NON-ϵ(s) is 1 if s is not empty and 0 otherwise. p is the number of possible lemmas for a grammar (7 in our case).
The 5 comes from the number of kinds of MG features (e.g. {=c, c=, c, -c, +c} where c is some category).

(a) MDL of approximately 7

Grammar
0::0= 0
ϵ::0

Top strings
{ϵ, 0, 00, 000, 0000, 00000,

000000, 0000000, 0000000,

00000000, . . .}

(b) MDL of approximately 52

Grammar

4::0
3::1= 0
4::1= 0
3::1= 0
6::1= 0

6::=0 0
6::=0 0

5::1
4::1

Top strings
{4, 46, 35, 34, 64, 44, 45, 65, 466,

346, 356, 646, 456, 656, 446, . . .}

(c) MDL of approximately 96

Grammar

0::3= 0= +1 0
4::0= +2 +1 0

2::3
6::=4 =4 =0 0= 0 -2

1::0= 0= 0 -2
3::4 -2 -2

3::4
6::0 -1

Top strings
{602, 616024, 66023364, 63366024,

616160244, 66160243364, 61660233644,

6660233643364, 61633660244,

63366160244, . . .}

Figure 8: A comparison of different grammars of different complexity used to train the simplicity-biased models.
In MGs (Stabler, 1997), grammars are defined as a set of lexical items. Each lexical item has a string associated
with it (to the left of the “::”) as well as a sequence of features. These features determine which lexical items can
merge with what. For example, the simple grammar defines an where the first lexical item merges other items of the
category 0 to its right. When merging, one can also move internal items with selectee features (e.g. -c) to selector
features (+c). In the complex grammar, the “6” in front of all strings is the result of moving the lexical item 6::0 -1
to satisfy a +1 feature.
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BT(s) =

∑
x∈VAL(s)

[
P (x | s) > ∑

c̸∈VAL(s)

P (c | s)
]

|VAL(s)|
Proportion of valid tokens which are more likely than all invalid tokens.

BC(s) =
∑

x∈VALID(s)

√
P (x|s)

|VALID(s)|

Bhattacharyya coefficient with uniform distribution over continuations.

WORST(s) = |VALID(s)| · Minx∈VALID(s)P (x|s)
Least likely continuation scaled by number of continuations.

POSSIBLE(s) =
1

|VALID(s)|
∑

x∈VALID(s)

{
1 if P (x|s) ≥ α

|VALID(s)|
0 if P (x|s) < α

|VALID(s)|

}

Proportion of continuations with probability of at least α over the number of valid continuations.

Figure 9: Variant metrics: In this paper, we evaluated our continuations using the “better-than” metric that we
developed. However, there were alternative metrics we considered to replace recall in the F1 score. These metrics
showed the same qualitative result, except for the WORST metric. This is unsurprising as that metric is sensitive
only to least likely token, and so does not reflect partial successes well. We reproduced Figure 2 with the different
metrics in Figure 10.
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(a) F1 calculated with BC

(b) F1 calculated with POSSIBLE with α = 0.5

(c) F1 calculated with WORST

Figure 10: Results for the variant metrics defined in Figure 9
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