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Abstract

Large Language Models (LLMs) memorize,
and thus, among huge amounts of uncontrolled
data, may memorize Personally Identifiable In-
formation (PII), which should not be stored and,
consequently, not leaked. In this paper, we in-
troduce Private Memorization Editing (PME),
an approach for preventing private data leakage
that turns an apparent limitation, that is, the
LLMs’ memorization ability, into a powerful
privacy defense strategy. While attacks against
LLMs have been performed exploiting previ-
ous knowledge regarding their training data,
our approach aims to exploit the same kind
of knowledge in order to make a model more
robust. We detect a memorized PII and then
mitigate the memorization of PII by editing
a model knowledge of its training data. We
verify that our procedure does not affect the un-
derlying language model while making it more
robust against privacy Training Data Extrac-
tion attacks. We demonstrate that PME can
effectively reduce the number of leaked PII in
a number of configurations, in some cases even
reducing the accuracy of the privacy attacks to
zero.

1 Introduction

Large Language Models (LLMs) can accurately
perform many tasks by extracting information and
distilling capabilities from their training data. How-
ever, as their size increases, training data becomes
more difficult to control and may inadvertently
include Personally Identifiable Information (PII)
from unaware individuals (Miranda et al., 2025;
Italiano et al., 2024; Yao et al., 2024a). Hence,
emails, phone numbers, and credit cards can be
extracted at inference time by executing privacy at-
tacks (Carlini et al., 2021, 2023; Huang et al., 2022).
Moreover, as LLMs grow in size, their chance to
verbatim memorize training information increases
(Nasr et al., 2023; Ranaldi et al., 2024; Kiyomaru
et al., 2024).

Despite the importance of protecting private in-
formation, it is impossible to retrain LLMs from
scratch by removing private information once it
has been identified in the training set, since the
training phase is massive and expensive. Therefore,
methods that can alter the knowledge of an LLM
without further training may help to protect users
privacy: machine unlearning techniques (Yao et al.,
2024b; Kassem et al., 2023) have been success-
fully applied to preserve users privacy. Among the
most data-efficient ones, model editing methods
like Private Association Editing (PAE) (Venditti
et al., 2024) can be targeted to protect a private
piece of information. In particular, PAE addresses
the protection of multiple users with a single edit,
breaking the association between a user name and
its private information.

Interestingly, the success of privacy attacks
based on verbatim memorized prompts suggests
that LLMs tend to memorize PII rather than asso-
ciate it with individuals’ identity. Indeed, Training
Data Extraction attacks (Carlini et al., 2021, 2023;
Huang et al., 2022; Nasr et al., 2023) or attacks
based on other measures of overfitting like Mem-
bership Inference Attacks (Mireshghallah et al.,
2022; Mattern et al., 2023) are incredibly effective.
For this reason, we propose to preserve privacy by
directly editing memorized training examples.

In this paper, we propose Private Memorization
Editing (PME) that turns the memorization of train-
ing examples with PII into an effective defense
strategy 1. Unlike previous works that try to break
an association between a user name and some piece
of private information (Venditti et al., 2024), we
propose to directly edit the memorized training se-
quence to avoid privacy leakage and to minimally
impact the general language modeling abilities of
an LLM. The memorized training data and the gen-
eration of verbatim memorized sequences in PME

1Code is available at https://github.com/elenasofia98/PME.
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directly inform the editing strategy.
PME is an efficient parameter editing technique

that focuses on Feed Forward layers, as they have
been shown to work as memories for the Trans-
former architecture (Geva et al., 2021, 2022; Meng
et al., 2023a,b). Unlike other model editing tech-
niques, which aim to locate a subset of layers that
are responsible for a certain generation (Meng et al.,
2023b), PME computes the contribution of each
layer to the generation of a PII. Since the computa-
tion of a Transformer model can be interpreted as a
sum of its component outputs (Mickus et al., 2022;
Ferrando et al., 2024), we adopt a geometric inter-
pretation of this sum to define the importance of
each layer during a generation: with an additional
forward pass, PME estimates how similar the out-
put of each layer is to the representation that leads
to the prediction of the next token for a PII, and
the greater the similarity, the larger the contribu-
tion of the layer to the sum, and consequently, the
greater the edit should be (we discuss our method
in Section 2).

We extract different types of PII from three mod-
els, varying in size, adopting black-box Training
Data Extraction Attacks (Section 3.1). Then, we
test the effectiveness of PME in obscuring the gen-
eration of various PII the generation of different PII
(Section 3.2). Additionally, PME should preserve
model utility on prompts that do not contain private
information, and we ensure that the edit does not
affect the general language modeling abilities of
the target LLM, maintaining the post-edit model
as similar as possible to the pre-edit one (Section
3.3). PME not only demonstrates its effectiveness
in obscuring different PII across all tested models,
but also robustly preserves models’ utility (Section
4).

2 Method: PME turns Memorization into
a Defense Strategy against Privacy
Attacks

Our Private Memorization Editing (PME) edits
memorized training examples, removing thousands
of private pieces of information stored in the model
weights. PME stems from model editing tech-
niques to remove private information memorized
into model weights: with an additional forward
pass, PME identifies for each memorized piece of
information which layers contribute most to its gen-
eration and then edits them to ensure the generation
of privacy-preserving information instead.

2.1 Preliminaries and Background
We aim to edit a decoder-only Transformer-based
large language model M of L layers to remove a
set of memorized training examples S that lead to
the leakage of some PII.

Verbatim Memorized PII We define S as a set
of training examples composed by a prompt p and
a PII t that the model verbatim generate when
prompted with p. Formally, S is defined as:

S = {(p, t)| s.t. M(p) = t}

To define PME, we need to describe how the
forward pass M(p) can be decomposed as sums of
components’ outputs, how Feed Forward blocks are
responsible of the storing information, and, finally,
define the target to edit.

Language Model Predictions as Sums of Compo-
nents’ outputs The forward pass M(p), which
leads to the computation of the target t given the
prompt p, can be rewritten as a sum of different
model components (Mickus et al., 2022; Ferrando
et al., 2024). In the discussion, we suppose that a
PII t is composed of a single token for simplicity.

First, the tokens of the prompt p are initially
converted in X = [x1, ...xn] by a first embedding
matrix WE ∈ R|V |×d where d is the hidden dimen-
sion, V is the vocabulary of tokens, and xi ∈ Rd.

At each layer, the representation for each of the
tokens is updated; for a layer l let X l = [xl1, ...x

l
n]

be the hidden representation for that layer. From
now on, we will focus on the last input position
n. At the last layer L, the hidden representation
xLn is projected by an un-embedding matrix WU ∈
Rd×|V | and those scores, normalized by a softmax
function σ, predict a token in the vocabulary V .
For verbatim memorized examples in S, that is:

M(p) = argmaxσ
(
xLnWU

)
= t

Mickus et al. (2022) discussed that the compu-
tation for a Transformer based model can be inter-
preted as a sum of its sub-components outputs. In
particular, let aln ∈ Rd be the output of the Atten-
tion Block and hln ∈ Rd the output of the Feed
Forward Block for each level l ∈ [1, .., L]. The for-
ward pass that computes the unnormalized hidden
states xLn can be written as:

xLn = xn +

L∑

l=1

aln +

L∑

l=1

hln (1)
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This decomposition of the forward pass makes the
deeply linear nature of Transformers computation
evident and we will use it to estimate the contribu-
tion of each layer to the model output.

Feed Forward Blocks Interpretation A large
body of research has identified the Feed Forward
blocks as responsible for the storage of information
within the Transformer network (Geva et al., 2021,
2022; Meng et al., 2023a,b). Hence, we focus on
the Feed Forward blocks in each model’s layer
whose outputs are hln.

In particular, a Feed Forward block at layer l is
composed of two matrices W l

in,W
l
out

T ∈ Rd×d1

and an activation function f . The Feed Forward
block processes each position i ∈ [1, ..., n] of the
input independently. Given the output of the At-
tention Block al−1

n and the output of the previous
level xl−1

n , the output hln at position n is computed
as follows: hln = f

(
(aln + xl−1

n )W l
in

)
W l

out .
It is possible to interpret the last matrix W l

out di-
rectly as an associative memory: Geva et al. (2021)
introduced the idea that the matrix W l

in and the
non-linear function f are building keys to retrieve
the corresponding values in the matrix W l

out. As
a matter of fact, any linear transformation can be
interpreted as a mapping of a set of keys to val-
ues (Meng et al., 2023a,b; Kohonen, 1972). Meng
et al. (2023b) in particular observe that a matrix
W0 can memorize mappings (k, v) by minimizing
the following quantity:

W0 = argmin
Ŵ

∑

(k,v)

||Ŵk − v||2

If the matrix W l
out is interpreted as such a map-

ping, it is also possible to edit the memorized map-
ping in closed form, assuming that it memorizes
a set of keys and their corresponding values repre-
sented, respectively, as lines in the matrix K0 and
lines of a matrix V0, Meng et al. (2023b) show that,
given a matrix representing a new set of keys K∗

and a matrix representing a new set of correspond-
ing values V ∗, the optimal update matrix ∆l can
be computed as:

∆l = (V ∗−W l
outK

∗)K∗T (K0K0
T +K∗K∗T )−1

(2)
A complete derivation for ∆l is discussed in Ap-
pendix 6.1.

The first term V ∗−W l
outK

∗ is interpreted as the
residual between the new values V ∗ and the values
actually corresponding to the keys in K∗. Since

in our application K∗ ⊆ K0, being the new keys
derived from a subset of prompts already observed
in the training phase, we define V ∗

0 ⊆ V0 as the
values associated with K∗, that is W l

outK
∗ = V ∗

0 .
The equation for ∆l can be written as:

∆l = (V ∗−V ∗
0 )K

∗T (K0K0
T +K∗K∗T )−1 (3)

We will use the matrix ∆l to edit the memorized
mapping at layer l, without retraining.

2.2 PME Algorithm
The objective of the PME is to compute an update
to the model weights {∆l}Ll=1 so that ∀(p, t) ∈ S:

M{W l
out+∆l}Ll=1

(p) = t∗

where t∗ is a dummy PII, which, unlike t, causes
no privacy leakage if generated but preserves
the semantics of the training example – that
is for example mail@domain.com for mails and
phone_number for phone numbers. Therefore, it
is necessary to find, at each layer that needs to be
edited, the correct representation for the set of keys
– K0 and K∗ – and values – V ∗

0 and V ∗.
PME approach is a geometric approach: given

the above decompositions, it is possible to observe
that the hidden representation at the last layer L
of the Transformer stack is given by the contribu-
tion of each block to a sum that spans across all
layers. The PME then initially optimizes the last
hidden representation so that it is predictive of the
privacy-preserving dummy PII, t∗, rather than the
original t. Then, this update should be distributed
across the network layers that are responsible for
that generation.

Previous work tried to identify those layers in
advance, for a batch of examples, via Causal Anal-
ysis, and then edit the identified layers (Meng et al.,
2023b). While this is a substantial computational
overhead, it has also been discussed that the local-
ization techniques developed so far do not actually
inform the edit (Chang et al., 2024; Hase et al.,
2023).

PME, instead, estimates layer contributions for
each example with a single additional forward pass,
building on the geometric interpretation of the
Equation 1.

Hence, to find the correct representation for the
set of keys – K0 and K∗ – and values – V ∗

0 and V ∗

at each layer, we first find the optimal representa-
tion at layer L and then estimate the contribution
for each layer.

16574



Optimal representation at layer L The first step
of the PME algorithm is to optimize with gradient
descent the representation of the output of the layer
L such that the probability P of the generation of
the dummy PII t∗ is maximized. For each prompt
p, the privacy-preserving value is x∗ defined as:

x∗ = xLn + δ∗ where

δ∗ = argmax
δ
P
(
t∗ |Mδ̂(p)

)
=

= argmax
δ̂
P
(
t∗ | σ

(
(xLn + δ̂)WU

))

Given x∗, we hypothesize that each layer has to
contribute to the representation of x∗, and that the
extent of this contribution must be estimated.

Estimating Contribution for each Layer In par-
ticular, each of the values memorized by a layer
should be edited to a certain degree to obtain the
new dummy PII t∗ in place of the original t. To
do that, PME aims to mimic the generation of xLn
as much as possible while generating x∗ instead.
PME adopts a geometric approach: we estimate the
contribution of each layer to the final representation
as a projection-based contribution.

First, we simplify Equation 1 by only consider-
ing in the sum the contribution of the Feed Forward
block:

xLn ≃
L∑

l=1

hln (4)

The prevalence of memorized information in this
model component is largely studied (Geva et al.,
2021, 2022; Meng et al., 2023b) and further dis-
cussed in our experiments in Appendix 6.2.

Then, to understand how much the llayer is
influential in the construction of the xLn we con-
sider the sum truncated up to the layer l: we in-
dicate this quantity as xln, which can be defined
as: xln ≃

∑l
i=1 h

i
n The contribution of each xln in

the direction of xLn can be measured by projecting
xln onto xLn and this gives a scalar weight for each
layer:

wl
p =

xln · xLn
||xLn ||2

The scalar wl
p describes how much xln aligns with

xLn . Finally, to estimate the degree by which each
layer contributes to the final representation rela-
tively to all other layers, PME computes the contri-
bution coefficient wl as:

wl =
wl
p∑L−1

i=1 wi
p

This geometric approach allows us to estimate
the contribution of each layer to the representations
constructed at the end of the network without rely-
ing on localization techniques that have been shown
to fail to inform the edit. Given a privacy leak, the
generation of the leaked PII is observed and the
influence of each layer is estimated independently
for each example.

Computing the Keys and Values at each Layer
Then, the right representations of the keys and val-
ues at each layer have to be found.

As described above, the set of keys K∗ is given
by the input of the matrix W l

out. That is, for each
verbatim memorized example in S, the represen-
tation of the last token in the prompt p is a key:
k∗l = f

(
W l

in(a
l−1
n + xl−1

n )
)
. For a batch of ex-

amples, the matrix K∗ stores the keys as rows.
The old keys are present in Equation 3 only in

the K0K
T
0 term: this is a correlation matrix that

we estimate at each layer computing K l
0 from a

random subset of Wikipedia, also included in the
training data of the target models.

The new privacy-preserving values v∗ are com-
puted as the relative contribution vector of the layer
l to the complete representation of x∗. To spread
the representation of x∗ across the entire network,
PME mimics what the edited layer computes when
the model generates xLn : the scalar contribution
coefficient wl that describes how much of the old
xln contributes to the representation of xLn , is used
to estimate the contribution vector to x∗, that is the
fraction of x∗ that the layer l should encode. At
each layer, the new values are computed as:

v∗ = wlx∗

and stacked in the matrix V ∗.
Finally, the old values V ∗

0 are then simply ob-
tained as the current output of the matrix W l

out, that
is each row of V ∗

0 is defined as v∗0
l = k∗lW l

out.
PME edits all layers following the above de-

scription. The result of PME is therefore a set of
{∆l}Ll=1 computed as in Equation 3, which is used
to edit the corresponding W l

out at each layer so
that the model weights at the end of the edit are
Ŵ l

out = W l
out+∆l. In Appendix 6.5 the complete

algorithm can be found, as well as some additional
considerations regarding the importance of intro-
ducing the correct contribution coefficient.
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3 Experiments: Evaluating PME
effectiveness and Robustness

PME is tested to measure its ability to protect user’s
privacy. However, a privacy-preserving technique
should not only be effective but also robust, mean-
ing that it does not disrupt other kinds of knowledge
and capabilities that the target LMM has acquired
during pre-training. Hence, we employ a three-step
evaluation procedure:

• first, given a target LLM, we identify memo-
rized PII by the pre-edit model via Training
Data Extraction attacks (Sec. 3.1);

• then, we apply PME and obtain post-edit
LLMs (Sec. 2); in this phase, PME effective-
ness is tested, also with respect to a number
of baselines;

• finally, we perform tests on post-edit LLMs to
assess that the edit did not disrupt the utility
of the edited LLM (Sec. 3.3).

In our experiments, we test the GPT-J model (Wang
and Komatsuzaki, 2021) – a 6B model – and the
GPT-Neo 1.3B and 2.7B models (Black et al.,
2021). This set of models was chosen not only
for their different scale in terms of number of pa-
rameters, but also for their common characteristic
of being trained on the Pile (Gao et al., 2020). The
Pile is a huge text corpus (around 800GB of texts)
that has been developed to be a large-scale, diverse
dataset created for training language models.

A completely open training corpus – as also dis-
cussed in Section 3.1 – allows us for a rigorous
evaluation of the privacy leaks of those models
both in pre-edit and in post-edit. It is necessary to
observe the training data, otherwise the evaluation
of the privacy risks will be underestimated when an
indirect evaluation is performed (Nasr et al., 2023).
Moreover, our defense strategy requires the knowl-
edge of the training data: a model owner would
have no limitation in applying PME, but for all our
experiments we need to freely access the training
material.

For the above reasons, we focus on fully open
models with not only open parameters but also
open training data.

3.1 Training Data Extraction Attacks to
recover Sensitive Information

Training Data Extraction (TDE) attacks (Carlini
et al., 2021) are black-box attacks to extract ver-
batim memorized information. We perform TDE

attacks against open LLMs to generate different
types of PII that were inadvertently included in the
training data. To perform and evaluate TDE attacks,
we extracted three types of PII from the Pile: email,
phone numbers, and URLs2. Email addresses were
extracted from the Enron subcorpus by Huang et al.
(2022), and we similarly extract phone numbers
and URLs from the Pile-CC, a subcorpus of Pile
that is derived from Common Crowl. In total, we
collected 3333 email addresses, 4503 phone num-
bers, and 4550 URLs. Ground truth information
on PII in the dataset allows us to quantify the real
risks of violating an individual’s privacy.

Attack Methodology In our experiments, we
adopt the attack pipeline originally proposed by
Huang et al. (2022): they define two types of extrac-
tion, one based on memorization ability of LLMs
and the other based on association. A model mem-
orizes a PII if there exists a prompt that is included
in the training data – and that in the original train-
ing material is followed by that PII – that causes
the model to generate the PII when conditioned to
that prompt. For a model to associate a PII to an
individual, instead, a model is asked to generate
the target PII when its generation is conditioned to
a prompt not seen during the training phase but that
contains a reference to the individual’s identity.

It is therefore possible to construct attack
prompts based on the two definitions. In a Mem-
orization Attack, model generation is conditioned
to a prompt from the pre-training material. Since
this prompt is what precedes the PII in the pre-
training data, we will refer to it as context. Fol-
lowing Huang et al. (2022), we simulate that an
attacker is more or less informed about the training
material controlling for the token length of the con-
text. It has already been discussed that the larger
the context (that in our experiments is 50, 100, or
200 tokens long) the more effective those attacks
are (Huang et al., 2022; Venditti et al., 2024). For
the Association Attacks, Huang et al. (2022) de-
fined four zero-shot prompts templates. We adopt
their attack prompt templates to retrieve emails,
and define similar prompts for the other PII in our
dataset. In those attacks, the model is always fed
the identifier of the individual that is associated
with the potentially leaked PII in the training data
(more details in in Appendix 6.3). We identify

2While URLs are not directly to be interpreted as PII, they
may contain information regarding a user logging in, as well
as session ids and form data.
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template-based prompts by letters from a to d. In
both Memorization and Association attacks, the at-
tack succeeds if the model generates the target PII
in the subsequent tokens. In our experiments, the
success of TDE attacks is measured by generating
the 100 subsequent tokens, both in the pre-edit and
in the post-edit scenarios. While different decod-
ing strategies may also affect the accuracy of the
results (Hayes et al., 2025), in our experiments no
significant difference has been found with different
decoding strategies (more details in Appendix 6.4).

Attacks based on memorized prompts can extract
a larger number of PII than those based on asso-
ciation (Huang et al., 2022). However, we adopt
both evaluations, since the proposed framework in-
cludes both an informed attacker – who has some
information about the training material – and an
attacker with almost no information other than the
name of the person whose PII is to be extracted.

3.2 PME Application

PME is applied to defend against privacy attacks. A
defense strategy should be flexible against different
types of privacy attacks: that is, should defend both
against Memorization and Association Attacks.

For this reason, we perform the edit only in the
more informative setting: the edit is conditioned to
the model being fed with batches of prompts p with
a fixed length of 200 tokens and should produce the
dummy t∗ instead of the original PII t. Although it
is a limited effort for the model owner to retrieve
200 tokens from the training dataset, modifying the
memory of the target LLM should make the model
more resistant to Memorization Attacks—with con-
texts of 50, 100, and 200 tokens—as well as Asso-
ciation Attacks. We hence measure the capability
of PME to preserve user privacy against all types
of attacks described in Section 3.1.

Measuring PME effectiveness with Baselines
The robustness of PME is measured as a decrease
in privacy leakage also compared to baseline meth-
ods. All baselines are fed equally with the more
informative prompt of 200 tokens.

MEMIT (Meng et al., 2023b) is applied as base-
line: in MEMIT formulation of factual knowledge
editing, a subject is associated with a object in a
certain proposition, that in our case is the training
prompt p. In our experiments, the object is the
leaked PII t, while the subject is the name of the
individual associated with that PII: the name is iden-
tified as for Association Attacks, as described in

Appendix 6.3. As done for the Association Attacks
–fully described in 6.3– we identify the closest en-
tity in the prompt tagged as person via NER. The
new object is the dummy t∗i for each prompt pi.

We also test GRACE (Hartvigsen et al., 2023), a
parameter-preserving editing method that operates
on the LLM’s activations to correct the final pre-
diction. GRACE consists of an adaptor for a single
layer that, for a prompt p, retrieves an edited layer
output that leads to the generation of t∗ instead of
the original t.

Finally, we adopt DeMem (Kassem et al., 2023),
an unlearning approach that utilizes reinforcement
learning: a model is fine-tuned with a negative sim-
ilarity score with respect to the verbatim generated
PII, and a reward signal is used to make the model
learn a paraphrasing policy to avoid privacy leak-
ages. We exclude Fine-Tuning as a baseline since it
seems to easily disrupt model’s performance (Ven-
ditti et al., 2024).

3.3 Evaluating PME Reliability

The model edit should not influence the general LM
abilities of the target LLM. To prove the reliability
of PME, we test the accuracy of each target LLM
on a subset of tasks from EleutherAI Language
Model Evaluation Harness (Gao et al., 2024). If a
model editing technique can preserve model accu-
racy on those tasks, then we claim that the editing
is reliable. We report results on the tasks used to
ufficially evaluate GPT-J and GPT Neo, that is Hel-
laswag (Zellers et al., 2019), LAMBADA (Paperno
et al., 2016), PIQA (Bisk et al., 2020), Winogrande
(Sakaguchi et al., 2021) and WikiText (Merity et al.,
2017) on a subset of 500 examples each.

We also adopt the evaluation proposed by Ven-
ditti et al. (2024) to ensure a minimum distance in
generations between the pre-edit and post-edit mod-
els: in this test, both the pre-edit and post-edit mod-
els are fed the same prompt, and the subsequent 50
tokens are generated. The similarity between the
generations is then measured through the ROUGE
and METEOR scores: a high similarity score in-
dicates that, for an external annotator, the privacy-
preserving model is no different from the pre-edit
model when the model is tested. For these exper-
iments, 100 tokens long examples from the Pile
were used, obtained by sampling 300 texts from its
subdatasets Books3 (Rae et al., 2022), Wikipedia,
and Pile-CC.
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Pre Edit PME MEMIT GRACE DeMem
Model Attacks Leak Tot Acc % Leak ∆ Acc % Leak ∆ Acc % Leak ∆ Acc % Leak ∆ Acc %

G
PT

N
eo

1.
3B

em
ai

l 50 96 2789 3.4 0 100 0 100 89 7.29 59 38.54
100 148 2876 5.1 0 100 2 98.65 136 8.11 77 47.97
200 179 2899 6.2 0 100 1 99.44 0 100 88 50.84

ph
on

e 50 16 2790 0.6 0 100 3 81.25 16 0 6 62.5
100 27 2809 1 1 96.3 3 88.89 26 3.7 4 85.19
200 34 2849 1.2 1 97.06 2 94.12 0 100 8 76.47

U
R

L 50 53 2002 2.6 11 79.25 30 43.4 53 0 40 24.53
100 74 2012 3.7 15 79.73 25 66.22 70 5.41 56 24.32
200 75 2017 3.7 16 78.67 11 85.33 5 93.33 56 25.33

G
PT

N
eo

2.
7B

em
ai

l 50 176 2884 6.1 0 100 0 100 156 11.36 77 56.25
100 246 2973 8.3 0 100 1 99.59 207 15.85 96 60.98
200 286 2973 9.6 1 99.65 1 99.65 2 99.3 102 64.34

ph
on

e 50 35 2935 1.2 0 100 8 77.14 35 0 7 80
100 60 2977 2 0 100 6 90 57 5 10 83.33
200 74 2983 2.5 2 97.3 3 95.95 0 100 12 83.78

U
R

L 50 74 2088 3.5 7 90.54 35 52.7 74 0 56 24.32
100 100 2124 4.7 8 92 25 75 93 7 63 37
200 106 2131 5 6 94.34 13 87.74 9 91.51 61 42.45

G
PT

-J
6B

em
ai

l 50 353 2827 12.5 1 99.72 1 99.72 313 11.33 25 92.92
100 476 2932 16.2 1 99.79 1 99.79 386 18.91 33 93.07
200 537 2951 18.2 0 100 0 100 7 98.7 33 93.85

ph
on

e 50 99 3132 3.2 1 98.99 1 98.99 99 0 0 100
100 125 3166 3.9 3 97.6 2 98.4 121 3.2 0 100
200 161 3240 5 5 96.89 1 99.38 0 100 5 96.89

U
R

L 50 112 2288 4.9 2 98.21 39 65.18 112 0 9 91.96
100 148 2327 6.4 3 97.97 23 84.46 139 6.08 7 95.27
200 168 2333 7.2 2 98.81 16 90.48 2 98.81 8 95.24

Table 1: TDE Memorization Attacks in pre-edit and post-edit GPT Neo 1.3B, GPT Neo 2.7B, and GPT-J 6B models.
In the pre-edit configuration, the number of leaked PII Leak, the total number of generated PII Tot and the accuracy
of the attack Acc % are reported. For the post-edit attacks, the number of leaked PII Leak and the percentage of
initially leaked PII that have been successfully removed ∆ Acc % is reported for each method.

4 Results and Discussion

4.1 LLMs leak Private Information

Unfortunately, GPT-J and GPT Neo models make
no exception to the general tendency of LLMs to
verbatim generate PII, especially when prompted
with sequences already observed during the train-
ing phase. Accuracy of Memorization Attacks can
be found in Table 1, while the Association Attacks
are presented in the Appendix Table 7.

Training Data Extraction Attacks that are based
on Memorization are effective, especially against
the larger model GPT-J: on average, the model
tends to accurately predict the mail observed during
training the 16% of the times. For the other types of
PII, the attack success rate is more modest but still
worrying: 4.03% of the generated phone numbers
are correct and the leaked URLs are 6.17% on aver-
age. The smaller models, GPT Neo 1.3B and GPT
Neo 2.7B demonstrate similar patterns, with rela-
tively smaller percentages of correctly leaked PII.
These results further corroborate the previously ob-
served correlation between memorization capacity
and model size (Nasr et al., 2023).

Moreover, as the attacker gets more information,
the accuracy of the attacks increases. Across all
models and PII types, it can be observed an in-
crease in the number of PII leaked as the length of
the prompt increases; for example, GPT Neo 1.3B
leakes 96 emails with a prompt of 50 tokens, while
the the number of leaked emails almost doubles
with a prompt of 200 tokens.

The accuracy of Association attacks (in Table 7)
is considerably lower. The maximum number of
leaked email addresses from this attack is 68, which
is relatively small compared to the accuracy ob-
served in memorization attacks. However, even
attacks with low accuracy can still be harmful in
an adversarial context. We will illustrate how PME
effectively mitigates both types of attack.

4.2 PME mitigates Privacy Risks

PME is effective in protecting privacy: Table 1
and Table 7 show the results of TDE attacks after
the edit, and it is possible to observe that PME
sensibly decreases the number of leaked PII. On av-
erage, PME decreases the accuracy of the attack by
96.03% in Memorization Attacks. PME also suc-
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Model PII Edit
Books3 Wikipedia Pile-CC

BLEU METEOR BLEU METEOR BLEU METEOR

G
PT

N
eo

1.
3B email

PME 0.925(±0.103) 0.93(±0.102) 0.941(±0.097) 0.946(±0.094) 0.897(±0.119) 0.907 (±0.111)
MEMIT 0.92(±0.102) 0.924(±0.103) 0.904(±0.135) 0.916(±0.118) 0.896(±0.114) 0.905(±0.108)

phone
PME 0.95(±0.096) 0.953(±0.095) 0.966(±0.084) 0.965(±0.09) 0.927(±0.117) 0.936 (±0.106)
MEMIT 0.881(±0.12) 0.89(±0.12) 0.92(±0.124) 0.93(±0.107) 0.895(±0.122) 0.902(±0.117)

URL
PME 0.957(±0.089) 0.959(±0.089) 0.975(±0.068) 0.977(±0.066) 0.938(±0.113) 0.943 (±0.106)
MEMIT 0.882(±0.116) 0.891(±0.117) 0.887(±0.136) 0.899(±0.123) 0.862(±0.136) 0.864(±0.131)

G
PT

N
eo

2.
7B email

PME 0.906(±0.112) 0.912(±0.113) 0.922(±0.111) 0.931(±0.104) 0.87(±0.123) 0.879 (±0.123)
MEMIT 0.895(±0.123) 0.897(±0.127) 0.914(±0.101) 0.925(±0.095) 0.885(±0.121) 0.882(±0.128)

phone
PME 0.942(±0.093) 0.944(±0.094) 0.946(±0.102) 0.957(±0.076) 0.905(±0.127) 0.908 (±0.123)
MEMIT 0.905(±0.115) 0.91(±0.114) 0.925(±0.11) 0.937(±0.095) 0.872(±0.128) 0.878(±0.125)

URL
PME 0.928(±0.101) 0.931(±0.103) 0.912(±0.123) 0.931(±0.095) 0.872(±0.134) 0.879 (±0.132)
MEMIT 0.89(±0.116) 0.894(±0.117) 0.907(±0.11) 0.922(±0.094) 0.833(±0.116) 0.84(±0.12)

G
PT

-J
6B

email
PME 0.945(±0.093) 0.947(±0.096) 0.954(±0.094) 0.959(±0.09) 0.946(±0.096) 0.95 (±0.095)
MEMIT 0.902(±0.108) 0.91(±0.107) 0.906(±0.124) 0.916(±0.117) 0.912(±0.118) 0.914(±0.112)

phone
PME 0.953(±0.092) 0.955(±0.09) 0.962(±0.082) 0.966(±0.081) 0.951(±0.096) 0.956(±0.088)
MEMIT 0.858(±0.116) 0.864(±0.119) 0.869(±0.136) 0.883(±0.126) 0.849(±0.121) 0.859(±0.117)

URL
PME 0.935(±0.093) 0.939(±0.093) 0.904(±0.123) 0.917(±0.111) 0.898(±0.125) 0.907(±0.119)
MEMIT 0.853(±0.112) 0.856(±0.115) 0.878(±0.127) 0.895(±0.114) 0.833(±0.122) 0.84(±0.124)

Table 2: Reliability of post-edit LLMs: the generations of PME are similar to the generations of the pre-edit models,
as evidenced by the average BLEU and METEOR scores reported on different subdatasets.

Figure 1: Scores for the GPT-J model in pre and post-edit (for phone numbers) on the selected tasks of the EleutherAI
Language Model Evaluation Harness.

cessfully demonstrates its flexibility: it is effective
across all model sizes and PII types. It is important
to note that the PME edit generalizes to different
attacks prompts: even though the edit is performed
using a 200 token long prompt, the results in Ta-
ble 1 demonstrate that PME helps protect against
all the Memorization Attacks, and also against the
Association Attack as shown in Table 7.

Moreover, PME is generally more effective than
the baseline methods. PME is definitely more ef-
fective than DeMem, which systematically leaks
more PII. PME is also more effective than GRACE:
in fact, while GRACE can protect against Memo-
rization attacks with exactly the same prompt as
the one used for modification, it cannot general-
ize: a model edited with GRACE leaks PII in less
informed Memorization attacks, as well as in the
Association Attacks (Table 7). The strongest of the
baselines is represented by MEMIT that in some
cases is as effective as PME. However, as we will
discuss in the next Section, MEMIT is less robust,
since it has a greater negative impact on the lan-
guage modeling capabilities of the target LLM.

The results in Tables 1 and 7 demonstrate the
effectiveness of PME: verbatim memorization of

sequences successfully informs the edit procedure,
and the edit generalizes to different privacy attacks.

4.3 Post-edit LM Capabilities

To demonstrate the applicability of PME, we show
that PME preserves the capabilities of LM. The
scores on the selected tasks of the EleutherAI Lan-
guage Model Evaluation Harness attest that the
post-edit model is similar to the pre-edit one (for
the GPT-J model that has been edited on phone
numbers refer to Figure 1, the remaining config-
uration are detailed in Appendix 6.7, and exhibit
similar patterns). PME exhibits, across all tasks
and configurations, always similar performances
with respect to the pre-edit models. MEMIT and
GRACE also exhibit similar performances with
respect to the pre-edit, while DeMem does not pre-
serve model utility as the other methods.

Finally, in Table 2 it is possible to observe that a
model edited with PME generates sequences very
similar to the pre-edit model, as both the high aver-
age values of BLEU and METEOR metrics testify.
The high scores indicate that the edit only included
the generation of the target memorized examples,
without nearly any conditioning on the general lan-
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guage modeling abilities. Moreover, the similarity
is almost always higher for PME than for MEMIT,
the stronger of the baselines methods. The results
for all the remaining baselines can be found in Ap-
pendix 6.7. Those results demonstrate the robust-
ness of PME, and hence its applicability to protect
against the leakage of private information, with no
loss in terms of model utility.

4.4 Scaling PME to edit all PII

Finally, we demonstrate on the GPT-J model, that
PME is still effective and robust also with a larger
number of PII. For this experiment, we consider
the larger model – that also leaks the larger number
of PII – and we edit it with PME and MEMIT to
understand whether our proposed technique can
more robustly preserve users privacy when the edit
is performed on a larger number of examples.

Table 3 summarizes the effectiveness and robust-
ness of PME, compared to MEMIT, for the GPT-J
model when all the leaked PII (email addresses,
phone numbers and URLs) are edited. We report
an aggregate measure for Memorization and Asso-
ciation Attacks (the details for each PII type are
in Appendix 6.8), the similarity of the post-edit
models with respect to the pre-edit one on each of
the sub datasets and performances on the tasks od
the Language Model Evaluation Harness. While
the large number of edits makes the LLM edited
with MEMIT less robust, PME not only ensures a
stronger overall protection against privacy attacks,
but also has little influence on the general language
model capabilities of the model.

Finally, it is possible to notice that PME does not
cause the model to generate new and correct PII.
This aspect is particularly important if one wants
to frame the lifecycle of an LLM as pre-training
- fine-tuning - editing – where the editing phase
is an iterative one – and additional effects of the
editing on other privacy issues may emerge (Carlini
et al., 2022). It is important to understand whether,
for example, the edit causes the leakage of new
PII. In Table 4, it is possible to observe that the
leaked PII that are generated by the edited model,
but are not leaked by the pre-trained model, are
a relatively small number. PME does not lead to
the generation of new correct PII. MEMIT has a
similar trend, with a small number of correct leaked
new PII (details per PII type in Table 9).

Pre Edit PME MEMIT

A
tta

ck
s Memorization

2655 5 20
Tot Leaks
Associations

114 0 3
Tot Leaks

B
K

3 BLEU 0.90(±0.11) 0.81(±0.10)
METEOR 0.90(±0.12) 0.82(±0.11)

W
ik

i BLEU 0.89(±0.13) 0.84(±0.14)
METEOR 0.90(±0.12) 0.86(±0.13)

C
C BLEU 0.89(±0.12) 0.79(±0.13)

METEOR 0.90(±0.12) 0.79(±0.13)

L
M

E
va

lH
ar

ne
ss

Hellaswag
0.48 0.48 0.48

Accuracy↑
Lambada openai

3.98 4.07 4.24
Perplexity↓
Lambada standard

5.96 6.48 6.59
Perplexity↓
Wikitext

10.88 10.89 10.93
Word Perplexity↓
Winogrande

0.65 0.65 0.64
Accuracy↑
Piqa

0.76 0.76 0.76
Accuracy↑

Table 3: GPT-J model scores in pre and post-edit: com-
parison of the effectiveness and robustness of PME ver-
sus MEMIT.

Memorization Attacks
50 100 200

Pre-edit correct pred 564 749 866
PII pred 8247 8425 8524

PME correct new PII 0 0 0
new PII pred 74 54 56

MEMIT correct new PII 4 1 1
new PII pred 422 391 376

Table 4: New PII predicted after the edit procedure of
the GPT-J model via Memorization Attacks.

5 Conclusion

In this paper, we presented Private Memorization
Editing (PME), a model editing approach that turns
memorization of training examples into an effective
defense strategy to address the leakage of private
information in Large Language Models (LLMs).
After detecting the presence of memorized Person-
ally Identifiable Information (PII) in a target LLM
via Training Data Extraction attacks, PME edits
the model, avoiding privacy leakages and preserv-
ing the capabilities of the model. We tested our
method in a range of configurations and PME is
demonstrated to be more effective in preserving
privacy than a number of baseline methods, while
still preserving the model’s utility.

Memorization of Personally Identifiable Infor-
mation (PII) may result in a huge loss of credibility
in companies adopting LLMs. PME offers a new
tool for reducing this potential threat.
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Limitations

The generation of a PII informs the edit in PME:
each layer contribution is estimated and the edit is
performed accordingly. Despite this being useful
to gain a more effective edit and allow us to ob-
tain a more robust method that preserves models
utility, the computational costs of the edit increase,
since every layer has to be modified. However, it
is important to stress that so far the localization of
responsible layers with other techniques that identi-
fied a subset of layers, had a higher computational
cost, and did not inform the edit procedure (Chang
et al., 2024; Hase et al., 2023): PME is more effi-
cient in identifying responsible layers, since it only
requires an additional forward pass to compute the
contribution of each layer to edit the consider ex-
ample. Overall, an alternative, ideal localization
technique should be surgical (identifying a small
number of model parameters), computationally ef-
ficient, and should inform the edit procedure.

PME focuses on removing Personally Identifi-
able Information (PII) from LLMs without retrain-
ing. However, not all private information is struc-
tured as PII: secrets can be contextual information
(Brown et al., 2022), and a method like PME – or
any other model editing or even data sanitization
technique – cannot modify model generation at this
level.

Additionally, if one wants to frame the lifecylce
of an LLM also as a function of an iterative editing
phase, a greater exploration of the effect of edit-
ing information sequentially should be performed:
the update of model parameters, while from our
experiment is not affecting other privacy issues or
model performance, may cause additional effects
(Carlini et al., 2022). Similarly, greater details on
other effects causing leakages – with more complex
decoding strategies than greedy decoding and mul-
tiple queries per PII (Hayes et al., 2025) – should
be further investigated by future work.

Finally, as open models become less and less
popular, testing PME on a broader number of mod-
els could be challenging. In fact, training data are
an integral part of the editing strategy. While for
model owners the application of PME is feasible,
replicating those results on models not trained on
open datasets –like the Pile – could be more chal-
lenging: as future work, PME could be applied in
pipeline to other attacks, like Membership Infer-
ence Attacks (Shokri et al., 2017; Shi et al., 2024),
to obtain information regarding the training mate-

rial for models with closed training data.
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6 Appendix

6.1 Derivation for the update matrix ∆l

In this Section, we briefly discuss the derivation
for the update matrix ∆l, as introduced by Meng
et al. (2023b), for a Feed Forward matrix W l

out in
a Transformer model at a certain layer l. We stem
from the observation that a linear matrix W l

out in
the Feed Forward block can be interpreted as an
associative matrix between a set of keys K0 and
values V0 learned during the pre-training phase.

W l
outK0K

T
0 = V0K

T
0

We want the matrix W l
out to encode a new set of

values, V ∗, that encode the privacy preserving val-
ues at that layer l, to the corresponding keys K∗,
that are the representation of the prompt observed
during training at that layer. Additionally, the post-
edit matrix W l

out
∗ should encode all the previous

mappings on non-privacy related keys K0 corre-
sponding to values V0 as well as the new ones.
This can be framed as the following optimization
problem:

W l
out

∗
=argmin

Ŵ

∑

(k,v):k∈K0,v∈V0

∥∥∥Ŵk − v
∥∥∥
2
+

+
∑

(k,v):k∈K∗,v∈V ∗

∥∥∥Ŵk − v
∥∥∥
2

Assuming that one already knows what the correct
representations of keys and values are at that layer,

16583

https://doi.org/10.18653/v1/P16-1144
https://doi.org/10.18653/v1/P16-1144
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2112.11446
https://doi.org/10.18653/v1/2024.findings-acl.827
https://doi.org/10.18653/v1/2024.findings-acl.827
https://doi.org/10.18653/v1/2024.findings-acl.827
https://doi.org/10.1145/3474381
https://doi.org/10.1145/3474381
https://openreview.net/forum?id=zWqr3MQuNs
https://openreview.net/forum?id=zWqr3MQuNs
https://doi.org/10.1109/SP.2017.41
https://doi.org/10.1109/SP.2017.41
https://arxiv.org/abs/2406.18221
https://arxiv.org/abs/2406.18221
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://arxiv.org/abs/2310.10683
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472


one can solve this problem as proposed by Meng
et al. (2023b). The optimization problem can be
solved, in fact, by using the normal equations, a set
of equations used to find the optimal solution for
least squares problems.

W l
out

∗ [
K0 K∗] [K0 K∗]T =

=
[
V0 V ∗] [K0 K∗]T

We expand the above equation and we substitute
W l

out
∗ with W l

out +∆l:

(W l
out +∆l)(K0K

T
0 +K∗K∗T ) =

= V0K
T
0 + V ∗K∗T

that is equivalent to:

W l
outK0K

T
0 +W l

outK
∗K∗T +∆lK0K

T
0 +

+∆lK∗K∗T = V0K
T
0 + V ∗K∗T

Subtracting the definition of W l
out as associative

memory we obtain:

∆l(K0K
T
0 +K∗K∗T ) = (V ∗ −W l

outK
∗)K∗T

And, since in our application the keys are exactly
learned during the pre-training phase, we define
V ∗
0 = W l

outK
∗ as a subset of V0, that is the values

encoding the original PII observed in training at
that layer.

The equation for ∆l can be written as:

∆l = (V ∗ − V ∗
0 )K

∗T (K0K0
T +K∗K∗T )−1

In Section 2.2 we detail how the correct repre-
sentations for values V ∗ and V ∗

0 and corresponding
keys K∗ and K0 can be computed.

6.2 Feed Forward Layers Contribute the most
to the Output Representations

To study the prevalence of memorized information
in the Feed Forward blocks, we compute the con-
tribution of each of the model components to the
generation of the PII as in Equation 1 on emails
verbatim memorized by GPT-J.

In particular, similarly to how we later discuss
in Section 2.2, here we compute the contribution
coefficient for each l ∈ L of the Attention block aln
and of the Feed Forward block hln to the construc-
tion of the last layer representation xLn . Formally,
let oln the component output for the last token in

the prompt. Then, we define the contribution coef-
ficient of that component as:

ol =
oln · xLn
||xLn ||2

The higher the contribution coefficient for that com-
ponent, the more important that component is to
generate the verbatim memorized information since
it has a greater impact on the sum in Equation 1.

To effectively compare the different model com-
ponents, we consider a relative contribution coeffi-
cient that allows us to compare the importance of
the different components with one another. For this
reason, we consider the sum of all contributions as
a normalizing factor and obtain the coefficient:

olp =
ol

∑L
i=1 a

i +
∑L

i=1 h
i

Figure 2: Average contribution of each layer, for At-
tention and Feed Forward block. The higher the layer,
the more the Feed Forward blocks importance is higher
than the corresponding Attention block.

In Figure 2 the average relative contribution co-
efficient for each layer for the Feed Forward and
Attention block. For the GPT-Neo 2.7B model, for
the first 20 layers, the Attention block and the cor-
responding Feed Forward block at the same layer
have, more or less, the same influence. However,
for the higher layers, the relative weight for the
Feed Forward layer seems to play the more impor-
tant role.

Those results further testify to the importance
of Feed Forward layers in the generation, as also
discussed by (Geva et al., 2021, 2022), and we will
use this information to inform the edit in PME.

6.3 Association Attacks Prompts
As discussed in Section 3.1, in a Association At-
tack the model is fed with a prompt that contains
an identifier of the person whose information is to
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be extracted but that does not exactly match the
training data. We adopt this definition as originally
proposed by Huang et al. (2022). They propose
zero-shot attack prompts and defined four slightly
different prompts that contain a reference to the
identity – the name – of the PII owner and la-
beled the prompts with letters from a to d. Then,
given a target {name} of an individual, the model
is prompted to generate the PII following one of
the prompts:

• a: the email address of {name} is

• b: name: {name}, email:

• c: {name} [mailto:

• d: —–Original Message—– From: {name}
[mailto:

For example, the zero-shot prompt a to recover
the email address of John Brown is the email
address of John Brown is. The crucial obser-
vation is that the name of the owner in the Enron
subdataset often co-occurs with the corresponding
email address. For the other PII types –that is phone
numbers and twitter handles that we scrubbed from
the Pile-CC section– we adopt prompts with a simi-
lar structure and logic: we identified named entities
that are tagged as person in the context preceding
the target PII and selected the entity closer to the
target PII. We will refer to this tagged entity ref-
erence as the name in the training example. Then,
given the {name} of the identified PII owner, the
zero-shot prompts for the given {PII type} are:

• a: the {PII type} of {name} is

• b: name: {name}, {PII type}:

• c: {name} at:

• d: contact {name} at

While we still expect the Association Attacks to
be systematically less effective than Memorization
Attacks, we include them to simulate the presence
of an almost completely uninformed attacker. It is
worth noticing that, despite their effectiveness is
limited, even a small success rate with those attacks
could produce rather worrying privacy leaks.

6.4 Experimental Design of Extraction of PII
Attacks

In our experiments, we define a PII as memorized
in terms of the ability of the attack to extract it: this

Decoding Configuration Leak Tot

M
em

or
iz

at
io

n

Greedy
context 50 353 2827
context 100 476 2932
context 200 537 2951

Beam search
context 50 346 2689
context 100 476 2809
context 200 515 2863

A
ss

oc
ia

tio
n Greedy

zero-shot a 5 3130
zero shot b 2 3229
zero shot c 26 3234
zero shot d 68 3237

Beam search

zero shot a 6 3178
zero shot b 1 3178
zero shot c 28 3232
zero shot d 73 3234

Table 5: TDE Memorization and Association Attacks
against pre-edit GPT-J 6B . The number of leaked PII
Leak and the total number of generated PII Tot are
reported. Given the same prompt Configuration, no
clear gap can be seen in the two different decoding
strategies.

definition – formalized as discoverable memoriza-
tion (Carlini et al., 2023) – may be influenced by
different factors. In fact, the quantified accuracy of
the attack depends on the prompt used, the decod-
ing strategy, and the number of times a particular
prompt is used (Hayes et al., 2025).

To define our attack procedure, we experimented
with GPT-J to quantify the sensitivity of the attack
accuracy to different prompts and decoding strate-
gies. In Table 5, the results of TDE attacks against
the GPT-J model to extract emails are reported,
comparing different prompt lengths for the Mem-
orization Attacks, different zero shot templates in
the Associations Attacks, and two different decod-
ing strategies – greedy decoding and beam search –
in the pre-edit scenario.

The prompt seems to play a crucial role: the
Memorization Attacks are more effective than As-
sociation Attacks – in line with previous findings
(Huang et al., 2022) – and the length of the prompt
plays a strong role (Carlini et al., 2023). On the
other hand, we do not observe a significant differ-
ence between greedy decoding and beam search de-
coding. For these reasons, we defer a detailed anal-
ysis of the impact of different decoding strategies,
as well as the possibility of querying the model with
multiple queries for the same PII, as suggested by
(Hayes et al., 2025), to future work and focus for
the rest of the paper exclusively on discoverable
memorization under greedy decoding.
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6.5 PME Algorithm

As discussed in Section 2.2, the core component
of the PME algorithm, presented in detail in Algo-
rithm 1, is the computation of a contribution score
for each layer, that allow PME to reconstruct the
privacy preserving value layer by layer in a dense
fashion.

The intuition is that each layer should encode
a fraction of the final privacy preserving value v∗,
and that this fraction should be proportional to the
observed contribution of each layer to the genera-
tion of the original PII.

This intuition is reinforced by the observation
that, if a fixed contribution is defined for each level,
PME tends to make the model less robust in terms
of post-editing linguistic capacity as the contribu-
tion coefficient increases: in Table 6 we demon-
strate the role of our contribution coefficient by
studying the effect of defining a constant contribu-
tion coefficient c.

As discussed in Section 3.3, the post-edit lan-
guage model should be as similar as possible to
the pre-edit model in generations that do not con-
tain private information. For this experiment, 100-
token-long examples from the Pile were used, ob-
tained by sampling 300 texts from its subdatasets
Books3, Wikipedia, and Pile-CC and the model
generates continuations of 50 tokens. The simi-
larity of the post-edit and pre-edit generations is
measured using BLEU and METEOR scores. The
results in Table 6 demonstrate a decrease in simi-
larity as c increases and further motivate the choice
implemented in PME to define a contribution coef-
ficient for each instance and layer.

6.6 Post-edit Association Attacks

In Table 7 results of Association Attacks are pre-
sented. Although the overall accuracy of such at-
tacks is lower than that of memory attacks, PME
still demonstrates its ability to effectively correct
such leakages.

6.7 Post-edit Language Models Abilities

Effective model editing strategies should modify
only the patterns of interest, while preserving the
LLMs’ general abilities and knowledge at the same
time. Therefore, in the context of privacy, editing
methods should prevent PII leakage by attackers,
so the edits should be targeted at specific informa-
tion and should be not invasive. We compare PME
with several editing approaches to understand how

these methods affect the edited LLMs’ abilities. In
particular, we perform an extensive evaluation with
LM Evaluation Harness for GPT-Neo 1.3B (Figure
3), GPT-Neo 2.7B (Figure 4), and GPT-J 6B (Fig-
ure 5). In Table 10 we also compare the post-edit
generations and the pre-edit ones, measuring their
similarity using BLEU and METEOR metrics.

By observing the evaluation results in Figure 3,
Figure 4, and Figure 5 and Table 10, we note that
DeMem is the baseline performing worse. For all
tasks and configurations, DeMem achieves higher
perplexity and lower accuracy compared to the
other approaches, which indicates that the gen-
eral capabilities of the models have been altered.
The difference is more pronounced as the model’s
size increases, indicating a poor scalability of the
method, whose edits have clear invasive effects that
heavily damage the model’s capabilities. The sim-
ilarity of post-edit generation is, across the entire
Table 10, always the lower.

Instead, GRACE is able to perfectly preserve
LLMs’ abilities, whose performance remains un-
altered. However, as we discussed also in Section
4.2, this is probably due to the fact that GRACE
intervenes only for specific prompts and is not able
to generalize, thus avoiding the modification of
unrelated behaviors.

LLMs edited with PME and MEMIT are compa-
rable in terms of performance, and their scores do
not differ significantly from the pre-edit. Results of
GPT-J reported in Figure 5 show that accuracy and
perplexity for both PME and MEMIT are nearly
identical to the original model for the majority of
PII, thus suggesting the efficacy of both methods
at performing targeted edits. As already observed,
however, the post-edit generations are more differ-
ent to the pre-edit ones after MEMIT application
than after PME. The same pattern can be observed
for GPT-Neo-1.3B (Figure 3) and GPT-Neo-2.7B
(Figure 4).

6.8 PME is Robust after a large number of
edits

As we discussed in Section 4.4, PME is able to
largely protect user privacy while maintaining the
unaltered LLM capabilities. In Table 8 the results
of the TDE Attacks for each of the PII types are de-
tailed: PME is compared with the strongest of the
baselines, MEMIT. The results show that MEMIT
leaks a small number of PII, but in some cases leaks
more than our method, PME.
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c
Books3 Wikipedia Pile-CC

BLEU METEOR BLEU METEOR BLEU METEOR
0.2 0.899 (0.117) 0.907 (0.113) 0.922 (0.122) 0.934 (0.109) 0.913 (0.117) 0.916 (0.116)
0.5 0.891 (0.117) 0.898 (0.116) 0.91 (0.136) 0.923 (0.117) 0.889 (0.126) 0.889 (0.128)
1 0.866 (0.119) 0.871 (0.123) 0.875 (0.137) 0.889 (0.126) 0.891 (0.115) 0.899 (0.112)
2 0.847 (0.112) 0.851 (0.116) 0.855 (0.14) 0.868 (0.134) 0.856 (0.13) 0.866 (0.121)
3 0.797 (0.096) 0.805 (0.104) 0.82 (0.132) 0.844 (0.121) 0.787 (0.119) 0.8 (0.119)
5 0.662 (0.045) 0.665 (0.048) 0.665 (0.108) 0.661 (0.108) 0.642 (0.082) 0.646 (0.077)
10 0.677 (0.037) 0.661 (0.049) 0.667 (0.095) 0.655 (0.106) 0.653 (0.07) 0.644 (0.076

Table 6: Reliability of post-edit GPT-J with a constant contribution coefficient c: as c increases, the post-edit
generations tend to be less similar to the generations of the pre-edit models, as evidenced by the average BLEU and
METEOR scores reported on different subdatasets.

Algorithm 1: The PME Algorithm
Input:
model M autoregressive transformer of L layers, S = {(p, t)| s.t. M(p) = t}, dummy PII t∗,
estimated keys K l

0 for each layer l ∈ [1, ..., L], Feed Forward matrices W l
in and W l

out and
activation function f for each layer l ∈ [1, ..., L]
Output: Post update model M
for (p, t) ∈ S do

Record values and contribution to the current output:
Let {xjn}Lj=1 the output of all layers on input p at last prompt token of index n

for l ∈ [1, L− 1] do
Compute contribution of layer l: wl

p =
xl
n·xL

n

||xL
n ||2

Compute contribution coefficient: wl =
wl

p∑L−1
j=1 wj

p

Compute target privacy-preserving values x∗i :

optimize δ∗ = argmaxδ̂ P
(
t∗ | σ

(
(xLn + δ̂)WU

))
via Gradient Descent with early stopping

x∗ ← xLn + δ∗

for l ∈ [1, L− 1] do
for (p, t) ∈ S do

Let al−1
n the output of the attention block at the previous layer

Compute keys for the matrix W l
out:

k∗l = ml = f
(
W l

in(a
l−1
n + xl−1

n )
)

Compute current as: v∗0
l = k∗lW l

out

Compute new values as: v∗l = wlx∗

K∗l ← [k∗l]∀(p,t)∈S
V ∗
0
l ← [v∗0

l]∀(p,t)∈S
V ∗l ← [v∗l]∀(p,t)∈S
∆l = (V ∗l − V ∗

0
l)K∗lT (K l

0K
l
0
T
+K∗lK∗lT )−1

W l
out ←W l

out +∆l
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Pre Edit PME MEMIT GRACE DeMem
Model Attacks Leak Tot Acc Leak ∆ Acc % Leak ∆ Acc % Leak ∆ Acc % Leak ∆ Acc %

G
PT

N
eo

1.
3B

em
ai

l zero shot a 0 2792 0 0 0 0 9
zero shot b 1 3219 0 0 −100 1 0 1 0 0 −100
zero shot c 0 3225 0 0 0 0 1
zero shot d 16 3232 0.5 0 −100 1 −93.75 16 0 10 −37.5

ph
on

e

zero shot a 0 65 0 0 0 0 0
zero shot b 0 658 0 0 0 0 0
zero shot c 0 13 0 0 0 0 0
zero shot d 0 997 0 0 0 0 0

U
R

L

zero shot a 5 3783 0.1 2 −60 3 −40 5 0 6 20
zero shot b 0 1185 0 0 0 0 0
zero shot c 2 1803 0.1 1 −50 1 −50 2 0 1 −50
zero shot d 3 456 0.7 0 −100 1 −66.67 3 0 2 −33.33

G
PT

N
eo

2.
7B

em
ai

l zero shot a 1 1638 0.1 0 −100 0 −100 1 0 2 100
zero shot b 1 3230 0 0 −100 0 −100 1 0 0 −100
zero shot c 0 3229 0 0 0 0 4
zero shot d 40 3238 1.2 0 −100 2 −95 40 0 16 −60

ph
on

e

zero shot a 0 105 0 0 0 0 0
zero shot b 0 89 0 0 0 0 0
zero shot c 0 25 0 0 0 0 0
zero shot d 0 1905 0 0 0 0 0

U
R

L

zero shot a 3 3806 0.1 2 −33.33 6 100 3 0 2 −33.33
zero shot b 0 477 0 0 0 0 0
zero shot c 1 1104 0.1 0 −100 1 0 1 0 1 0
zero shot d 4 495 0.8 0 −100 3 −25 4 0 3 −25

G
PT

-J
6B

em
ai

l zero shot a 5 3130 0.2 0 −100 4 −20 5 0 0 −100
zero shot b 2 3229 0.1 0 −100 3 50 2 0 1 −50
zero shot c 26 3234 0.8 0 −100 4 −84.62 26 0 0 −100
zero shot d 68 3237 2.1 0 −100 1 −98.53 68 0 2 −97.06

ph
on

e

zero shot a 0 77 0 0 0 0 0
zero shot b 0 92 0 0 0 0 0
zero shot c 0 58 0 0 0 0 0
zero shot d 0 1618 0 0 0 0 0

U
R

L

zero shot a 2 3346 0.1 0 −100 1 −50 2 0 1 −50
zero shot b 1 2938 0 0 −100 2 100 1 0 0 −100
zero shot c 5 1885 0.3 0 −100 1 −80 5 0 0 −100
zero shot d 5 478 1 0 −100 0 −100 5 0 0 −100

Table 7: TDE Memorization Attacks in pre-edit and post-edit GPT Neo 1.3B, GPT Neo 2.7B, and GPT-J 6B models.
In the pre-edit configuration, the number of leaked PII Leak, the total number of generated PII Tot and the accuracy
Acc % are reported. For the post-edit attacks, the number of leaked PII Leak and the percentage of initially leaked
PII that have been successfully removed ∆ Acc % is reported for each method.
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(a) Email PII Editing

(b) Phone PII Editing

(c) URL PII Editing

Figure 3: LM Evaluation Harness for GPT-Neo-1.3B Post-Edit

(a) Email PII Editing

(b) Phone PII Editing

(c) URL PII Editing

Figure 4: LM Evaluation Harness for GPT-Neo-2.7B Post-Edit
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(a) Email PII Editing

(b) Phone PII Editing

(c) URL PII Editing

Figure 5: LM Evaluation Harness for GPT-J 6B Post-Edit
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PII Type Attacks
Pre Edit PME MEMIT

Leak Tot Acc Leak Leak

em
ai

l

50 353 2827 0.125 0 0
100 476 2932 0.162 0 0
200 537 2951 0.182 0 0
zero shot a 5 3130 0.002 0 0
zero shot b 2 3229 0.001 0 0
zero shot c 26 3234 0.008 0 0
zero shot d 68 3237 0.021 0 0

ph
on

e

50 99 3132 0.032 0 1
100 125 3166 0.039 1 1
200 161 3240 0.05 1 0
zero shot a 0 77 0 0 0
zero shot b 0 92 0 0 0
zero shot c 0 58 0 0 0
zero shot d 0 1618 0 0 0

U
R

L
s

50 112 2288 0.049 1 9
100 148 2327 0.064 1 5
200 168 2333 0.072 1 4
zero shot a 2 3346 0.001 0 1
zero shot b 1 2938 0 0 2
zero shot c 5 1885 0.003 0 0
zero shot d 5 478 0.01 0 0

Table 8: TDE Attacks in pre-edit and post-edit for the
GPT-J 6B model after the edit of all the PII. In the pre-
edit configuration, the number of leaked PII Leak, the
total number of generated PII Tot and the accuracy of
the attack Acc % are reported. For the post-edit attacks,
the number of leaked PII Leak is reported for PME and
MEMIT
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Context 50 100 200
email URL phone email URL phone email URL phone

Pre-edit correct prediction 353 112 99 476 148 125 537 168 161
PII predicted 2827 2288 3132 2932 2327 3166 2951 2333 3240

PME correct prediction 0 0 0 0 0 0 0 0 0
PII predicted 57 7 10 44 3 7 39 9 8

MEMIT correct prediction 0 4 0 0 1 0 0 1 0
PII predicted 120 186 116 65 205 121 57 204 115

Table 9: New PII predicted after the edit procedure of the GPT-J model via Memorization Attacks, detail for each
PII type.

Model PII Edit Books3 Wikipedia Pile-CC
BLEU METEOR BLEU METEOR BLEU METEOR

G
PT

N
eo

1.
3B

em
ai

l PME 0.925 (0.103) 0.93 (0.102) 0.941 (0.097) 0.946 (0.094) 0.897 (0.119) 0.907 (0.111)
MEMIT 0.92 (0.102) 0.924 (0.103) 0.904 (0.135) 0.916 (0.118) 0.896 (0.114) 0.905 (0.108)
GRACE 0.989 (0.057) 0.989 (0.056) 1.0 (0.0) 1.0 (0.0) 0.997 (0.033) 0.997 (0.032)
DeMem 0.864 (0.117) 0.87 (0.121) 0.875 (0.123) 0.892 (0.113) 0.828 (0.122) 0.846 (0.118)

ph
on

e PME 0.95 (0.096) 0.953 (0.095) 0.966 (0.084) 0.965 (0.09) 0.927 (0.117) 0.936 (0.106)
MEMIT 0.881 (0.12) 0.89 (0.12) 0.92 (0.124) 0.93 (0.107) 0.895 (0.122) 0.902 (0.117)
GRACE 0.989 (0.057) 0.989 (0.056) 1.0 (0.0) 1.0 (0.0) 0.997 (0.033) 0.997 (0.032)
DeMem 0.813 (0.106) 0.824 (0.111) 0.835 (0.132) 0.85 (0.128) 0.796 (0.126) 0.813 (0.121)

U
R

L

PME 0.957 (0.089) 0.959 (0.089) 0.975 (0.068) 0.977 (0.066) 0.938 (0.113) 0.943 (0.106)
MEMIT 0.882 (0.116) 0.891 (0.117) 0.887 (0.136) 0.899 (0.123) 0.862 (0.136) 0.864 (0.131)
GRACE 0.989 (0.057) 0.989 (0.056) 1.0 (0.0) 1.0 (0.0) 0.997 (0.033) 0.997 (0.032)
DeMem 0.841 (0.114) 0.853 (0.115) 0.866 (0.132) 0.882 (0.126) 0.82 (0.129) 0.835 (0.123)

G
PT

N
eo

2.
7B

em
ai

l PME 0.906 (0.112) 0.912 (0.113) 0.922 (0.111) 0.931 (0.104) 0.87 (0.123) 0.879 (0.123)
MEMIT 0.895 (0.123) 0.897 (0.127) 0.914 (0.101) 0.925 (0.095) 0.885 (0.121) 0.882 (0.128)
GRACE 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
DeMem 0.817 (0.109) 0.822 (0.115) 0.83 (0.12) 0.847 (0.121) 0.81 (0.132) 0.82 (0.128)

ph
on

e PME 0.942 (0.093) 0.944 (0.094) 0.946 (0.102) 0.957 (0.076) 0.905 (0.127) 0.908 (0.123)
MEMIT 0.905 (0.115) 0.91 (0.114) 0.925 (0.11) 0.937 (0.095) 0.872 (0.128) 0.878 (0.125)
GRACE 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
DeMem 0.796 (0.096) 0.804 (0.105) 0.82 (0.119) 0.835 (0.121) 0.779 (0.124) 0.783 (0.124)

U
R

L

PME 0.928 (0.101) 0.931 (0.103) 0.912 (0.123) 0.931 (0.095) 0.872 (0.134) 0.879 (0.132)
MEMIT 0.89 (0.116) 0.894 (0.117) 0.907 (0.11) 0.922 (0.094) 0.833 (0.116) 0.84 (0.12)
GRACE 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
DeMem 0.803 (0.101) 0.811 (0.109) 0.837 (0.121) 0.862 (0.119) 0.788 (0.11) 0.797 (0.113)

G
PT

-J
6B

em
ai

l PME 0.945 (0.093) 0.947 (0.096) 0.954 (0.094) 0.959 (0.09) 0.946 (0.096) 0.95 (0.095)
MEMIT 0.902 (0.108) 0.91 (0.107) 0.906 (0.124) 0.916 (0.117) 0.912 (0.118) 0.914 (0.112)
GRACE 0.988 (0.06) 0.988 (0.059) 1.0 (0.0) 1.0 (0.0) 0.997 (0.032) 0.997 (0.029)
DeMem 0.742 (0.06) 0.746 (0.077) 0.749 (0.118) 0.763 (0.121) 0.726 (0.089) 0.732 (0.096)

ph
on

e PME 0.953 (0.092) 0.955 (0.09) 0.962 (0.082) 0.966 (0.081) 0.951 (0.096) 0.956 (0.088)
MEMIT 0.858 (0.116) 0.864 (0.119) 0.869 (0.136) 0.883 (0.126) 0.849 (0.121) 0.859 (0.117)
GRACE 0.988 (0.06) 0.988 (0.059) 1.0 (0.0) 1.0 (0.0) 0.997 (0.032) 0.997 (0.029)
DeMem 0.725 (0.041) 0.732 (0.059) 0.73 (0.112) 0.747 (0.11) 0.706 (0.094) 0.722 (0.091)

U
R

L

PME 0.935 (0.093) 0.939 (0.093) 0.904 (0.123) 0.917 (0.111) 0.898 (0.125) 0.907 (0.119)
MEMIT 0.853 (0.112) 0.856 (0.115) 0.878 (0.127) 0.895 (0.114) 0.833 (0.122) 0.84 (0.124)
GRACE 0.988 (0.06) 0.988 (0.059) 1.0 (0.0) 1.0 (0.0) 0.997 (0.032) 0.997 (0.029)
DeMem 0.723 (0.055) 0.735 (0.071) 0.734 (0.117) 0.757 (0.123) 0.694 (0.089) 0.712 (0.091)

Table 10: Reliability of post-edit LLMs for all the considered baselines.
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