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Abstract

Zero-Shot Voice Conversion (VC) aims to trans-
form the source speaker’s timbre into an arbi-
trary unseen one while retaining speech con-
tent. Most prior work focuses on preserving the
source’s prosody, while fine-grained timbre in-
formation may leak through prosody, and trans-
ferring target prosody to synthesized speech
is rarely studied. In light of this, we propose
R-VC, a rhythm-controllable and efficient zero-
shot voice conversion model. R-VC employs
data perturbation techniques and discretize
source speech into Hubert content tokens, elimi-
nating much content-irrelevant information. By
leveraging a Mask Generative Transformer for
in-context duration modeling, our model adapts
the linguistic content duration to the desired
target speaking style, facilitating the transfer
of the target speaker’s rhythm. Furthermore,
R-VC introduces a powerful Diffusion Trans-
former (DiT) with shortcut flow matching dur-
ing training, conditioning the network not only
on the current noise level but also on the de-
sired step size, enabling high timbre similarity
and quality speech generation in fewer sam-
pling steps, even in just two, thus minimiz-
ing latency. Experimental results show that
R-VC achieves comparable speaker similarity
to state-of-the-art VC methods with a smaller
dataset, and surpasses them in terms of speech
naturalness, intelligibility and style transfer
performance. Audio samples are available at
https://r-vc929.github.io/r-vc/.

1 Introduction

Voice conversion (VC) aims to transform the
speaker’s timbre in speech to match that of a tar-
get speaker while preserving the original speech
content. The core approach involves disentangling
speech into several individual components, such
as linguistic content, timbre, and prosody or style.
The speaker conversion is achieved by integrating

*Equal contribution.
†Corresponding author.

the linguistic content of the source speech with
the target speaker characteristics. Some previous
methods focus on disentangling speech content and
speaker characteristics. Information bottleneck-
based methods (Hsu et al., 2016; Qian et al., 2019,
2020) are developed to disentangle speakers and
content. Some studies (Choi et al., 2021; Qian et al.,
2022; Ning et al., 2023) also use signal perturba-
tion techniques to alter speech utterances to make
it speaker irrelevant before content extraction. Vec-
tor quantization methods like K-means (Hsu et al.,
2021) or VQ-VAE (Van Den Oord et al., 2017;
Wu et al., 2020) have been employed to discretize
content features, effectively removing speaker vari-
ability. Recently, advanced methods (Van Niekerk
et al., 2022a; Yao et al., 2024; Choi et al., 2023)
have directly utilized features extracted from pre-
trained self-supervised speech representation net-
works (Hsu et al., 2021; Baevski et al., 2020; Babu
et al., 2021) as linguistic content. However, al-
though these features provide rich semantic infor-
mation, the retained residual timbre information
may lead to timbre leakage.

Inspired by the powerful zero-shot capabilities
of generative models (Ho et al., 2020; Peebles and
Xie, 2023; Tong et al., 2023b; Lee et al., 2023;
Jiang et al., 2023) and speech language models
(SLMs) (Borsos et al., 2023a; Wang et al., 2023a),
recent studies are proposed to enhance the natural-
ness and speaker similarity of the converted speech.
LM-VC (Wang et al., 2023b) and Uniaudio (Yang
et al., 2023) explore the feasibility of LMs for zero-
shot voice conversion. Some diffusion-based VC
(Popov et al., 2021; Choi et al., 2024) are proposed
to generate natural and high-quality speech. Re-
cent advancements in conditional flow matching
methods (Chen et al., 2024b; Du et al., 2024; Zuo
et al., 2025) leverage in-context learning (ICL) ca-
pability through target speech prompting, resulting
in improved speaker similarity. Nevertheless, these
methods have predominantly focused on maintain-
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ing the source speech’s prosody which often leads
to two issues: the coupling between timbre and
prosody may result in timbre leakage, and these
models struggle to transfer prosody or rhythm to
align with the target speech. Moreover, although
diffusion or flow matching offers advantages in
generating high-quality speech, the multi-step sam-
pling paradigm (typically ≥ 10 steps) results in
relatively high latency, which, compared to non-
diffusion methods, limits its practical application
in real-world scenarios.

To address these challenges, we propose R-VC,
a rhythm controllable voice conversion system
that enables efficient zero-shot speaker conversion
while replicating the target speech’s rhythm to pro-
duce natural, high-quality speech with minimal
generation steps. Specifically, to obtain speaker-
irrelevant linguistic content and mitigate timbre
leakage, we apply data perturbation techniques to
the input waveform and utilize pretrained HuBERT
and K-Means models to extract discrete content
tokens. To further eliminate prosodic information,
we deduplicate the content tokens and introduce a
mask transformer based duration model that iter-
atively predicts masked durations based on con-
textual information, effectively learning the tar-
get speaker’s rhythm. Additionally, we capture
both time-invariant and time-varying speaker char-
acteristics through a diffusion transformer which
employs a target speech prompting strategy to en-
hance timbre similarity. More importantly, a short-
cut flow matching technique is introduced in the
DiT decoder during the training phase, enabling
the model to accurately skip ahead in the denoising
process by conditioning on the assigned step size.
The main contributions are summarized as follows:

• We present R-VC, a robust and fast zero-shot
voice conversion system that enables flexible
control over rhythm and speaker identity.

• We introduce a masked generative transformer
model for in-context duration modeling, ca-
pable of adapting the duration of the same
linguistic content to different styles. Addition-
ally, we explore the effects of different dura-
tion granularities on the performance of VC
models, like token-level and sentence-level.

• We propose a shortcut DiT-based conditional
flow matching model that enables efficient
few-step and even one-step generation, signif-
icantly improving generation efficiency.

• R-VC achieves comparable timbre similarity
to SOTA models with less training data while
surpassing baseline models in terms of speech
naturalness, intelligibility and emotion style
transfer performance. The method accelerates
speech generation by 2.83 times compared to
the 10-step sampling Conditional Flow Match-
ing (CFM) methods while maintaining similar
speech quality.

2 Related Work

2.1 Speaker Representation in VC

Modeling speaker identity is crucial for voice
conversion, posing challenges in learning robust
speaker representations and designing efficient con-
ditioning strategies. Traditional approaches typi-
cally rely on global speaker embeddings extracted
from pre-trained speaker verification (SV) models
(Snyder et al., 2018; Casanova et al., 2022; Gu
et al., 2021; Qian et al., 2020), speaker encoders
(Kim et al., 2023; Qian et al., 2019; Yang et al.,
2024), or advanced speaker representation mod-
els (Tan et al., 2021; Cooper et al., 2020), casting
them as time-invariant representations. FACodec
(Ju et al., 2024) introduces a decoupled speech
codec that also facilitate VC, utilizing a timbre ex-
tractor and gradient reversal layer (GRL) to derive
speaker representations. Diff-HierVC (Choi et al.,
2023) introduces a diffusion based pitch genera-
tor for F0 modeling and a style encoder for global
speaker representation. However, these methods
often struggle in zero-shot voice conversion scenar-
ios due to the inherent generalization limitations of
global embeddings.

Recently, more efficient speaker modeling tech-
niques are also proposed. SEF-VC (Li et al., 2024)
proposes a position-agnostic cross-attention mech-
anism to learn and incorporate speaker timbre from
reference speech while RefXVC (Zhang et al.,
2024) combines global and local embeddings to
capture timbre variations. Despite these impres-
sive results, there is still room for improvement
in terms of speech naturalness and timbre simi-
larity. Motivated by the recent success of gener-
ative models with in-context learning capabilities
in speech synthesis (Ju et al., 2024; Chen et al.,
2024a; Jiang et al., 2024) and audio generation
(Yang et al., 2023; Borsos et al., 2023a), some
studies have explored their potential in voice con-
version. CosyVoice (Du et al., 2024) and ICL-VC
(Chen et al., 2024b) employ a flow-matching gen-
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Figure 1: Figure (a) illustrates the shortcut DiT-based flow matching decoder, which regresses the conditional
transport vector field from noise to spectrogram while conditioning on the desired step size. Figure (b) presents the
detailed structure of the diffusion transformer block. In Figure (c), the non-autoregressive Masked Duration Model
is trained to predict masked duration units based on content, contextual duration, and the prefix speaker embedding.

erative model training strategy with masking and
reconstruction, utilizing the entire reference speech
context to capture fine-grained speaker characteris-
tics, significantly improving the speaker similarity.
Nevertheless, these methods retain source prosody,
with CosyVoice utilizing semantic tokens that con-
tain partial style information, and ICL-VC leverag-
ing embeddings from a pre-trained emotion model,
potentially causing timbre leakage. Moreover, they
fail to replicate the target speaker’s rhythm.

2.2 Flow Matching for Speech Generation

Flow matching (FM) models (Lipman et al., 2022)
the vector field of transport probability path from
noise to data samples. Unlike diffusion-based meth-
ods like DDPM (Ho et al., 2020), flow matching of-
fers more stable training and superior performance.
Crucially, by leveraging ideas from optimal trans-
port (Tong et al., 2023a), FM can be set up to yield
ODEs that have simple vector fields that change
little during the process of mapping samples from
the source distribution onto the data distribution,
since it essentially just transports probability mass
along straight lines, which greatly reduces the re-
quired number of sampling steps. Recent advance-
ments in flow matching-based generative models
have demonstrated significant success not only im-
age generation (Esser et al., 2024) but also text-
to-speech (Mehta et al., 2024; Du et al., 2024; Le

et al., 2024; Jiang et al., 2025). Although FM-based
methods generate high-quality speech with fewer
sampling steps than traditional diffusion models,
but still require multiple forward passes (e.g., 10,
25, 32), making generation slow and expensive.
Inspired by shortcut models in the image genera-
tion domain (Frans et al., 2024), R-VC combines
the optimal-transport flow matching loss with a
self-consistency loss, which enforces the model’s
prediction to align with the actual data distribution
at larger step sizes, boosting generation efficiency
significantly.

3 R-VC

3.1 Overall Architecture
The overall architecture of R-VC is shown in Fig-
ure 1. R-VC is a fully non-autoregressive encoder-
decoder voice conversion system that employs a
shortcut flow matching DiT decoder to model in-
context speaker characteristics, achieving speech
generation with fewer inference steps and incor-
porates a masked generative transformer duration
model for controllable rhythm. The whole proce-
dure can be divided into three modules. (1) Robust
Content Representation Extraction: discrete con-
tent tokens are first extracted using a pretrained
Hubert model and K-Means clustering from per-
turbed waveforms and then deduplicated to remove
some prosodic patterns. (2) Mask Transformer
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Duration Model: unit-level durations are obtained
through a mask-predict iterative decoding condi-
tioned on the deduplicated content, unmasked tar-
get units, and speaker embedding. (3) Shortcut
Flow Matching Estimator: a shortcut flow match-
ing diffusion scheme is employed to estimate the
target training objectives (not only the FM objec-
tives but also self-consistency objectives), guided
by content, randomly masked context acoustic fea-
tures, noise embeddings, a global speaker embed-
ding, as well as a desired step size, propagating the
model’s generation capability from multi-step to
few-step to one-step. During inference, the source
deduplicated content tokens are extended accord-
ing to the predicted durations and input into the
shortcut DiT decoder to generate mel-spectrograms.
Finally, a pretrained HifiGAN (Kong et al., 2020)
vocoder synthesizes the perceptible waveform from
the generated mel-spectrograms.

3.2 Linguistic Content Representation

In R-VC, we leverage a self-supervised learning-
based pre-trained HuBERT model to extract SSL
features, which are then discretized by a K-means
model. The discrete tokens contain rich phonetic
content information and exhibit minimal speaker
variance, as demonstrated in (Li et al., 2024;
Van Niekerk et al., 2022b). Additionally, data per-
turbation is applied to the input waveform to elimi-
nate content-irrelevant information. More details
of the perturbation methods are in Appendix A.

The Hubert content tokens are extracted at a rate
of 50 tokens per second (50Hz) 1, encompassing
the full duration information of the speech, similar
to the SSL features from wav2vec (Baevski et al.,
2020) and XLS-R (Babu et al., 2021). This means
that the converted speech retains the same rhythm
as the source speech, which limits the model’s style
transfer capability. Duration or rhythm is a key
component of prosody, particularly in emotional
voice conversion, where rhythm influences emo-
tional expression 2. Consequently, we propose to
deduplicate discrete tokens to obtain unit-level du-
rations. For example, given a speech input S, the
content tokens from the Hubert model are repre-
sented as C(S) = [u1, u1, u1, u2, u3, u3], which
are condensed to C ′(S) = [u1, u2, u3] with cor-
responding durations D(S) = [d1, d2, d3], where

1https://github.com/facebookresearch/fairseq/
blob/main/examples/hubert

2Joy is conveyed through brisk speech, while sadness is
marked by a slower, more measured pace.

d1 = 3, d2 = 1, · · · . This approach brings two ad-
vantages: 1) It allows for rhythm-controlled voice
conversion rather than merely preserving the source
speech’s rhythm; 2) It may remove style-related in-
formation, such as accent and residual variations,
as discussed in (Lee et al., 2021).

3.3 Mask Transformer Duration Model

Inspired by the successful application of parallel de-
coding in text (Ghazvininejad et al., 2019), image
(Chang et al., 2022), audio (Borsos et al., 2023b;
Ji et al., 2024a) generation tasks. R-VC employs a
non-autoregressive, mask-based generative trans-
former model for duration modeling. The non-
autoregressive (NAR) duration model utilizes the
mask-predict algorithm to iteratively refine unit
choices, achieving high-accuracy output in just a
few cycles. We sample the mask M ∈ {0, 1}N
according to a sine schedule for a target duration
unit sequence, specifically sampling the masking
ratio p = sin(u) where u ∼ U

[
0, π2

]
, the mask

Mi ∼ Bernoulli(p) and i ∼ U [0, N − 1]. There-
fore, the masked duration sequence can be repre-
sented as D̄(S) = D(S)⊙M , where the duration
unit is preserved when Mi = 0, and replaced with
a Mask token otherwise.

As shown in Figure 1 (c). The prediction of
masked target duration units is conditioned on the
reduced content tokens, the unmasked portion of
durations, and a global speaker embedding, where
the content tokens and unmasked durations are con-
catenated at the dimension level, and the speaker
embedding is concatenated with them at the se-
quence level. This prediction is modeled as:

P (D(S) | D̄(S), C; θ) (1)

where C denotes the conditions mentioned above.
Rhythm in speech is not only content-dependent
but also speaker-specific. Therefore, we introduce a
deterministic speaker representation extracted from
a pre-trained speaker verification model 3 as an ad-
ditional condition to achieve more accurate and
efficient duration modeling. The learning objective
is the cross-entropy (CE) loss between the gener-
ated and target units at masked positions:

LCE = E
(
−

N∑

i=1

Mi · log(p(di | D̄(S), C; θ))
)

(2)

3https://github.com/modelscope/3D-Speaker
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We use the standard transformer block from
LLAMA (Dubey et al., 2024) as the backbone for
the duration model and adopt the Rotary Position
Embedding (RoPE) (Su et al., 2024) as the posi-
tional embedding, configured with fewer layers
and a smaller hidden dimension. During inference,
we decode the duration units in parallel through
iterative decoding with a pre-defined T iterations.
We perform a mask operation at each iteration, fol-
lowed by predict. At the initial iteration t = 0,
all the units in the sequence D = [d1, . . . , dN ] are
masked. In subsequent iterations, n units with the
lowest probability scores p are masked:

D̄t = argmin
i
(pi, n), D

′
t = D \ D̄t, (3)

where n is a function of the iteration t. In this
work, we apply a linear decay, defined as n =
N ·T−t

T . After masking, the duration model predicts
the target units D

′
t based on conditions C and the

masked context duration units D̄t. For each di ∈
D

′
t, the prediction with the highest probability p

is selected, and the probability score is updated as
follows:

dti = argmax
w

P (di = w | D̄t, C; θ), (4)

pti = max
w

P (di = w | D̄t, C; θ). (5)

This iterative approach ensures progressive re-
finement of the target duration sequence.

3.4 Shortcut Flow Matching Estimator
Drawing inspiration from previous works (Le et al.,
2024; Du et al., 2024), which leveraged mask-
ing strategies for in-context learning, we explore
a method that utilizes a target speech prompting
strategy for zero-shot voice conversion tasks. In
R-VC, an optimal-transport conditional flow match-
ing model (OT-CFM) (Tong et al., 2023b) is em-
ployed to learn a conditional mapping from a noise
distribution x0 ∼ p0(x) to a data distribution
x1 ∼ p1(x). For x and t ∼ U [0, 1], the OT-CFM
loss function can be formulated as:

L(θ) = Et,p1(x1),p0(x0)∥ut(xt|x1)− vt(xt, c; θ)∥2

where θ represents the neural network and c is the
condition, composed of masked context features,
content embeddings, and speaker embeddings con-
catenated along the channel dimension. Although
the CFM model is non-autoregressive in terms of
the time dimension, it requires multiple iterations

(a) CFM (b) Shortcut CFM

Figure 2: The comparison of vanilla conditional flow
matching and our shortcut flow matching methods.

to solve the Flow ODE. The number of iterations
(i.e., number of function evaluations, NFE) has
a great impact on inference efficiency, especially
when the model scales up further. Additionally,
naively taking large sampling steps leads to large
discretization error and in the single-step case, to
catastrophic failure. Therefore, we introduce a
shortcut flow matching strategy in R-VC as men-
tioned in (Frans et al., 2024), where an additional
conditioning on the step size allows the model to
account for future curvature and jump to the cor-
rect next point rather than going off track at large
step sizes. Specifically, the normalized direction
from xt towards the correct next point x′t+d is rep-
resented as the shortcut s(xt, t, d):

x
′
t+d = xt + s(xt, t, d) · d (6)

As shown in Figure 2, the shortcut CFM model
can be seen as a generalization of flow-matching
models for larger step sizes: as d → 0, the shortcut
becomes equivalent to the flow, while shortcut mod-
els additionally learn to make larger jumps when
d > 0. Due to the high computational cost, it is not
feasible to compute targets for training sθ(xt, t, d)
by fully simulating the ODE forward with a small
enough step size. Thanks to the consistency prop-
erty of shortcut models, a self-consistency training
target is proposed:

s(xt, t, 2d) =
1

2

(
s(xt, t, d) + s(x′t+d, t, d)

)
(7)

where one shortcut step equals two consecutive
shortcut steps of half the size. Therefore, our short-
cut flow matching estimator is trained with an OT-
CFM loss and a self-consistency loss as follows:

LS-CFM(θ) = Ep0(x0),p1(x1),(t,d)[∥sθ(xt, t, 0)−
(x1 − x0)∥2 + ∥sθ(xt, t, 2d)− starget∥2]

Such training objective learns a mapping from
noise to data which is consistent when queried un-
der any sequence of step sizes. The more detailed
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information about the CFM and Shortcut CFM al-
gorithms are in Appendix B.

Regarding the backbone network for Shortcut
CFM, we discarded the U-Net-style skip connec-
tion structure and opted for a Diffusion Trans-
former (DiT) with AdaLN-zero, unlike previous
U-Net-based transformer methods (Mehta et al.,
2024; Du et al., 2024). The diffusion transformer
is used to predict speech that matches the style of
the target speaker and the content of the source dis-
crete token. As shown in Figure 1 (a), the original
HuBERT token is first encoded by a Conformer
Encoder into content embeddings, which are then
passed through a Length Regulator module to align
with the mel-spectrogram sequence length. To en-
hance in-context timbre modeling, we employ a
masked speech modeling approach. This includes
using a random span-masked mel-spectrogram as a
speaker prompt for capturing fine-grained speaker
traits, along with a global speaker embedding from
a pre-trained speaker verification model as a timbre
conditioning. Experiments show that this method
accelerates training and produces a more robust
timbre representation, improving speaker similar-
ity. During inference, we employ the classifier-free
guidance approach to steer the model fθ’s output
towards the conditional generation fθ(xt, c) and
away from the unconditional generation fθ(xt, ∅):

f̂θ(xt, c) = fθ(xt, c) + α · [fθ(xt, c)− fθ(xt, ∅)]

where c denotes the conditional state, ∅ denotes
the unconditional state, and α is the guidance scale
selected based on experimental results.

3.5 Training and Inference

The Mask Transformer Duration Model and the
Shortcut DiT Decoder are trained independently
with distinct objectives: the cross-entropy loss LCE
and the shourtcut flow matching loss LS-CFM, com-
puted only at masked positions. We set N = 128 as
the smallest time unit for approximating the ODE,
resulting in 8 possible shortcut lengths based on
d ∈ (1/128, 1/64, . . . , 1). Since 128 is an empir-
ically chosen value large enough to fit the vector
field of the transport probability path for t ∈ [0, 1],
smaller values lead to performance degradation,
while larger values incur computational overhead.
We did not explore other configurations. During
each training step, we sample xt, t, and a random
d < 1, then perform two sequential steps with the
shortcut model. The concatenation of these steps

is used as the target for training at 2d. For each
training batch, a proportion k of the items are used
for the flow matching objective, and the remaining
(1− k) items for self-consistency targets.

4 Experiments

4.1 Experiment Setup

Datasets We utilize a subset of the English por-
tion of the Multilingual LibriSpeech (MLS) dataset
(Pratap et al., 2020), encompassing nearly 20,000
hours and 4.8 million audio samples, to train the R-
VC model and to reproduce several baseline mod-
els. For zero-shot voice conversion, we use the
test-clean subset (Panayotov et al., 2015) across 40
speakers, while emotional voice conversion is eval-
uated on the ESD dataset (Zhou et al., 2021). Addi-
tionally, rhythm control is assessed with a test set
of varied speaking rates from the test-clean dataset.

Baselines We compare the performance of R-VC
with the current state-of-the-art zero-shot VC sys-
tems, including 1) FACodec-VC (Ju et al., 2024); 2)
CosyVoice-VC (Du et al., 2024); 3) Diff-HierVC
(Choi et al., 2023); 4) HierSpeech++ (Lee et al.,
2023); 5) SEF-VC (Li et al., 2024). We use the of-
ficial open-source checkpoints pre-trained on large-
scale datasets to generate samples for FACodec-
VC, CosyVoice-VC, and HierSpeech++. For Diff-
HierVC and SEF-VC, we reproduce the models
using the same dataset as R-VC.
Training and Inference Setup We train the R-
VC model on 8 NVIDIA A100 GPUs, with 600k
steps for the Diffusion Transformer Decoder using
a batch size of 20k Mel frames per GPU, and 100k
steps for the Mask Transformer Duration Model
with a batch size of 8k tokens. The Adam opti-
mizer is employed with a learning rate of 5× 10−5,
β1 = 0.9, β2 = 0.999, and 2k warmup steps. Fur-
ther details are provided in Appendix C.
Evaluation Metrics We evaluate the model with
objective metrics including cosine distance (SECS),
character error rate (CER), word error rate (WER)
for zero-shot voice conversion, and emotion score
from a pre-trained emotion representation model
for style transfer. Inference latency is measured
by the real-time factor (RTF) on a single NVIDIA
V100 GPU. For subjective evaluation, MOS assess-
ments are conducted via Amazon Mechanical Turk,
focusing on QMOS (quality, clarity, naturalness)
and SMOS (speaker similarity), with automatic
MOS prediction using UTMOS (Saeki et al., 2022).
Experimental details are in Appendix D.
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Method WER↓ CER↓ SECS↑ UTMOS ↑ QMOS ↑ SMOS ↑ RTF ↓
GT (Vocoder) 2.87 1.36 - 4.14 4.19± 0.10 - -

FACodec-VC 4.68 1.96 0.902 2.88 3.21 ± 0.05 3.91 ± 0.14 0.10
Diff-HierVC 4.34 2.14 0.894 3.75 3.64 ± 0.16 3.80 ± 0.06 0.47
HierSpeech++ 3.64 1.46 0.907 4.09 3.98 ± 0.12 3.93 ± 0.08 0.25
CosyVoice-VC 5.95 2.70 0.933 4.09 3.95 ± 0.15 4.11 ± 0.16 1.74
SEF-VC 4.82 2.04 0.897 3.96 3.80 ± 0.07 3.85 ± 0.11 0.18

R-VC (CFM, NFE=10) 3.47 1.39 0.931 4.10 4.05 ± 0.11 4.12 ± 0.09 0.34
R-VC (ours, NFE=2) 3.51 1.40 0.930 4.10 4.03 ± 0.13 4.11 ± 0.07 0.12

Table 1: The objective and subjective experimental results for zero-shot VC. GT (Vocoder) refers to synthesizing
speech from ground truth mel features using a vocoder. R-VC (CFM) refers to the vanilla CFM diffusion scheme.

Method WER SECS UTMOS EMO

Target - - 3.93 0.692

FACodec-VC 8.91 0.854 2.64 0.438
Diff-HierVC 10.62 0.833 3.41 0.440
HierSpeech++ 7.94 0.850 3.78 0.489
CosyVoice-VC 9.93 0.878 3.73 0.395
SEF-VC 9.25 0.841 3.59 0.461

R-VC (ours) 6.95 0.880 3.85 0.590

Table 2: The experimental results of emotion style trans-
fer on an unseen ESD dataset. EMO refers to the aver-
age emotion score on the test set.

4.2 Zero-shot VC Results

In this section, we evaluate the zero-shot voice
conversion performance of our model on an un-
seen test-clean dataset comprising 2620 samples.
The analysis covers multiple dimensions, including
speech quality, naturalness, intelligibility, timbre
similarity, and inference speed. As summarized in
Table 1, our R-VC model achieves competitive tim-
bre similarity compared to state-of-the-art methods
and surpasses the baseline across all other metrics
except inference latency, demonstrating its excep-
tional capability in zero-shot VC tasks.

Specifically, we observe the following: 1) R-
VC achieves a WER of 3.51 and a CER of 1.40,
outperforming other VC systems, with the CER
of the generated speech approaching GT levels,
highlighting its clarity and intelligibility. 2) In
terms of timbre similarity, R-VC achieves compa-
rable performance to the CosyVoice-VC baseline,
outperforming other models by a margin of 3%.
Considering the disparity in training data, where
CosyVoice-VC leverages a large-scale in-the-wild
dataset of 171k hours, while our model is trained
on only 20k hours of MLS English data, this result
highlights the effectiveness of our approach. We
attribute this primarily to the powerful shortcut DiT
decoder, which captures speaker characteristics by
leveraging the global speaker condition and target
prompt, along with the combined impact of data

perturbation techniques and K-means discretiza-
tion, which efficiently filters content-irrelevant in-
formation. Additionally, the superior SMOS scores
confirm that our model generates speech with the
highest perceived speaker similarity. 3) R-VC
notably exceeds other systems in QMOS evalu-
ations, particularly in UTMOS scores, approaching
ground truth audio quality, which demonstrates its
excellence in generating high-quality, clear speech.
4) Considering inference speed, by incorporating
shortcut flow matching, our model achieves perfor-
mance comparable to vanilla CFM while reducing
sampling steps to 1/5, resulting in a 2.83× faster
inference, approaching the SOTA speed of non-
diffusion methods like FACodec-VC. This demon-
strates the model’s superior generation efficiency,
making it feasible for practical applications.

4.3 Emotion Style Transfer Ability Evaluation

We randomly select 200 emotional speech samples
from the ESD dataset to evaluate emotion style
transfer. We utilize a pre-trained Emotion2Vec
(Ma et al., 2023) model to calculate the emotion
score for each synthesized sample, and average
these scores to obtain the overall score.

As shown in Table 2, almost all metrics for both
the baseline and R-VC models show significant re-
ductions compared to zero-shot VC results, primar-
ily due to the lower quality of the ESD dataset and
the inherent challenges of emotion style transfer. R-
VC outperforms the baseline across all metrics, par-
ticularly in WER and emotion scores, demonstrat-
ing its exceptional robustness and style transfer ca-
pability. These improvements stem from two main
factors: First, we have achieved cleaner linguistic
content extraction, where K-means discretization
and data perturbation techniques effectively elim-
inate irrelevant content such as timbre and style.
In contrast, baseline models such as FACodec-VC
rely on prosody codes from source speech, retain-
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ing source style rather than transferring it. Addi-
tionally, CosyVoice-VC’s speech tokens may retain
stylistic information like timbre due to the absence
of supervision during tokenizer training. Second,
R-VC’s mask transformer duration model excels at
modeling duration, enabling accurate rhythm repli-
cation and facilitating emotion transfer, providing
more flexible control over rhythm than baseline
models which maintain the source speech’s rhythm.

4.4 Rhythm Control Ability Evaluation

While the improvement in emotion style transfer
demonstrates the effectiveness of our model in
rhythm modeling, it remains an indirect measure.
Therefore, we introduce an intuitive evaluation met-
ric, speaking rate, to quantify rhythm control. Fol-
lowing (Ji et al., 2024b), we compute speaking rate
as phonemes per second (PPS) after applying voice
activity detection (VAD) to remove silence. We cat-
egorize the speech into three rhythm levels: slow
(< 7.98 PPS), fast (> 14.47 PPS), and normal
(7.98 ≤ x ≤ 14.47 PPS).

We divide all 2,620 test-clean samples from the
English subset of the Multilingual LibriSpeech
(MLS) dataset into these three categories and
construct non-parallel source-target pairs across
rhythm levels. For each synthesized utterance, we
calculate the PPS, assign it a rhythm label, and
evaluate the alignment with the target rhythm.

Target Category Avg. Speaking Rate (PPS) Accuracy

Slow (151) 7.561 86.0%
Normal (2071) 11.903 92.3%
Fast (398) 14.257 80.7%

Overall - 90.2%

Table 3: Speaking rate statistics of generated speech for
different target rhythm categories. Numbers in paren-
theses indicate sample sizes.

As shown in Table 3, the average speaking rate
of the generated speech closely matches the target
category, with a rhythm classification accuracy of
90.2%. This result demonstrates the strong rhythm
control ability of our proposed masked duration
model. It is worth noting that baseline models re-
tain the source speech’s duration and thus cannot
adapt to the target rhythm. Therefore, we exclude
baseline results from this analysis. Audio examples
are provided in the “Rhythm Control Demo (Re-
buttal)” section on our demo page for qualitative
reference.

Method WER SECS UTMOS EMO

R-VC 6.95 0.880 3.85 0.590

w/o dur 7.03 0.878 3.86 0.425
w/o spk_v1 6.99 0.860 3.75 0.571
w/o spk_v2 8.24 0.873 3.69 0.477
w/o perturb 7.28 0.869 3.78 0.580
w/i sdur 9.86 0.872 3.58 0.528

Table 4: Ablation Studies on rhythm modeling, timbre
condition and data perturbation methods.

4.5 Ablation Studies

We conducted ablation experiments on the ESD to
validate the effectiveness of our system’s design
and each module, including: removing the duration
module (w/o, dur), separately excluding global
speaker conditioning from the DiT decoder and
the duration model (w/o spk_v1 and w/o spk_v2),
omitting pitch perturbation before content token
extraction (w/o perturb). Additionally, following
(Chen et al., 2024a), we summed the unit-level du-
ration to obtain sentence-level duration and trained
the DiT decoder with a padding filter token for
deduplicated content tokens (w/i, sdur).

The results are shown in Table 4. The ablation
study reveals that: 1) Removing the duration mod-
ule significantly impairs emotion transfer (emo-
tion score -0.165), as the DiT decoder preserves
source rather than target speech rhythm, which is
crucial for emotional expression. Notably, some
inaccurate duration predictions may also reduce
the model’s naturalness compared to those without
the duration module. 2) Using sentence-level dura-
tion as a global constraint makes the DiT decoder
struggle with learning alignment between text and
speech, leading to unstable performance and in-
creased WER. 3) The absence of global speaker
conditioning degrades overall performance, partic-
ularly affecting timbre similarity in R-VC, lever-
aging speaker verification system’s timbre repre-
sentation with the target prompt proves beneficial,
effectively capturing both time-invariant and time-
varying speaker characteristics while strengthen-
ing timbre modeling. 4) Removing speaker con-
ditioning from the duration model impacts WER,
UTMOS, and emotion scores, since rhythm or du-
ration patterns are inherently tied to both content
and speaker characteristics. 5) Data perturbation
before token extraction effectively mitigates timbre
leakage by filtering content-irrelevant information.

Varying generation steps We compared the
proposed shortcut flow matching with naive flow
matching at different sampling step counts. As
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Figure 3: Results with different inference steps.

shown in Figure 3, although the original CFM
performs well with sufficient steps (≥ 10), its
performance drops sharply at lower step counts
(in terms of WER and SECS). In contrast, our
shortcut CFM achieves matching performance with
just two steps, maintaining minimal performance
loss as step count decreases. This highlights the
method’s superior efficiency in generating high-
quality speech with fewer steps.

Decoder(NFE=2) LibriTTS MLS EN

WER SECS UTMOS WER SECS UTMOS

U-Net 4.58 0.892 3.99 3.60 0.925 4.08
DiT 4.61 0.897 3.97 3.51 0.930 4.10

Table 5: Ablation Studies on different architectures.

Ablation of Model Architecture We evaluated
U-Net and Diffusion Transformer decoders with
100MB and 300MB parameters on the LibriTTS
and MLS datasets (Table 5). While both architec-
tures showed similar performance, the U-Net gen-
erated clearer audio with slight improvements in
WER and UTMOS at smaller parameter sizes. As
the parameter size and dataset scale increased, the
DiT outperformed the U-Net across all metrics, par-
ticularly in speaker similarity. The analysis of the
duration model’s performance, ablation of the self-
consistency loss hyperparameter k, the effect of
speech prompt lengths, and UTMOS performance
across inference steps are in Appendix E.

5 Conclusion

In this paper, we propose R-VC, an efficient zero-
shot voice conversion system that enables flexible
control over rhythm and speaker identity. By lever-
aging a Diffusion Transformer with a shortcut flow
matching strategy, and a Mask Generative Trans-
former for in-context duration modeling, R-VC not
only adapts the duration of linguistic content to
various speaking styles but also captures both time-
invariant and time-varying speaker characteristics.
This approach enables high-quality speech gener-
ation with minimal sampling steps, significantly
enhancing both efficiency and performance.
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7 Limitations and Future Work

In this section, we discuss the limitations and chal-
lenges of our R-VC model. In R-VC, we use a mask
transformer model for rhythm modeling. How-
ever, our experiments revealed that there is a cer-
tain probability of inaccurate duration predictions,
which leads to unnatural phenomena in the gener-
ated speech, such as overextended pronunciations.
We believe that this fine-grained duration model
poses challenges to the stability of our system.
Therefore, we also explored a sentence-level dura-
tion strategy in this work, where the model implic-
itly learns the duration alignment of tokens with the
mel-spectrogram. However, this approach yielded
suboptimal results and exhibited even worse sta-
bility. Moving forward, we aim to explore more
robust duration modeling strategies to enhance the
style transfer capability of the zero-shot voice con-
version model.

References
Arun Babu, Changhan Wang, Andros Tjandra, Kushal

Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh,
Patrick Von Platen, Yatharth Saraf, Juan Pino, et al.
2021. Xls-r: Self-supervised cross-lingual speech
representation learning at scale. arXiv preprint
arXiv:2111.09296.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed,
and Michael Auli. 2020. wav2vec 2.0: A framework
for self-supervised learning of speech representations.
Advances in neural information processing systems,
33:12449–12460.

Zalán Borsos, Raphaël Marinier, Damien Vincent, Eu-
gene Kharitonov, Olivier Pietquin, Matt Sharifi,
Dominik Roblek, Olivier Teboul, David Grangier,
Marco Tagliasacchi, et al. 2023a. Audiolm: a
language modeling approach to audio generation.
IEEE/ACM transactions on audio, speech, and lan-
guage processing, 31:2523–2533.

Zalán Borsos, Matt Sharifi, Damien Vincent, Eugene
Kharitonov, Neil Zeghidour, and Marco Tagliasacchi.
2023b. Soundstorm: Efficient parallel audio genera-
tion. arXiv preprint arXiv:2305.09636.

Edresson Casanova, Julian Weber, Christopher D
Shulby, Arnaldo Candido Junior, Eren Gölge, and
Moacir A Ponti. 2022. Yourtts: Towards zero-shot

16211



multi-speaker tts and zero-shot voice conversion for
everyone. In International Conference on Machine
Learning, pages 2709–2720. PMLR.

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and
William T Freeman. 2022. Maskgit: Masked gen-
erative image transformer. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 11315–11325.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt,
and David K Duvenaud. 2018. Neural ordinary dif-
ferential equations. Advances in neural information
processing systems, 31.

Sanyuan Chen, Chengyi Wang, Zhengyang Chen,
Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki
Kanda, Takuya Yoshioka, Xiong Xiao, et al. 2022.
Wavlm: Large-scale self-supervised pre-training for
full stack speech processing. IEEE Journal of Se-
lected Topics in Signal Processing, 16(6):1505–1518.

Yushen Chen, Zhikang Niu, Ziyang Ma, Keqi Deng,
Chunhui Wang, Jian Zhao, Kai Yu, and Xie Chen.
2024a. F5-tts: A fairytaler that fakes fluent and
faithful speech with flow matching. arXiv preprint
arXiv:2410.06885.

Zhengyang Chen, Shuai Wang, Mingyang Zhang,
Xuechen Liu, Junichi Yamagishi, and Yanmin Qian.
2024b. Disentangling the prosody and semantic in-
formation with pre-trained model for in-context learn-
ing based zero-shot voice conversion. arXiv preprint
arXiv:2409.05004.

Ha-Yeong Choi, Sang-Hoon Lee, and Seong-Whan
Lee. 2023. Diff-hiervc: Diffusion-based hierarchical
voice conversion with robust pitch generation and
masked prior for zero-shot speaker adaptation. Inter-
national Speech Communication Association, pages
2283–2287.

Ha-Yeong Choi, Sang-Hoon Lee, and Seong-Whan Lee.
2024. Dddm-vc: Decoupled denoising diffusion
models with disentangled representation and prior
mixup for verified robust voice conversion. In Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, volume 38, pages 17862–17870.

Hyeong-Seok Choi, Juheon Lee, Wansoo Kim, Jie Lee,
Hoon Heo, and Kyogu Lee. 2021. Neural analy-
sis and synthesis: Reconstructing speech from self-
supervised representations. Advances in Neural In-
formation Processing Systems, 34:16251–16265.

Erica Cooper, Cheng-I Lai, Yusuke Yasuda, Fuming
Fang, Xin Wang, Nanxin Chen, and Junichi Ya-
magishi. 2020. Zero-shot multi-speaker text-to-
speech with state-of-the-art neural speaker embed-
dings. In ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 6184–6188. IEEE.

Zhihao Du, Qian Chen, Shiliang Zhang, Kai Hu, Heng
Lu, Yexin Yang, Hangrui Hu, Siqi Zheng, Yue

Gu, Ziyang Ma, et al. 2024. Cosyvoice: A scal-
able multilingual zero-shot text-to-speech synthesizer
based on supervised semantic tokens. arXiv preprint
arXiv:2407.05407.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim
Entezari, Jonas Müller, Harry Saini, Yam Levi, Do-
minik Lorenz, Axel Sauer, Frederic Boesel, et al.
2024. Scaling rectified flow transformers for high-
resolution image synthesis. In Forty-first Interna-
tional Conference on Machine Learning.

Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter
Abbeel. 2024. One step diffusion via shortcut models.
arXiv preprint arXiv:2410.12557.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and
Luke Zettlemoyer. 2019. Mask-predict: Parallel
decoding of conditional masked language models.
arXiv preprint arXiv:1904.09324.

Yewei Gu, Zhenyu Zhang, Xiaowei Yi, and Xi-
anfeng Zhao. 2021. Mediumvc: Any-to-any
voice conversion using synthetic specific-speaker
speeches as intermedium features. arXiv preprint
arXiv:2110.02500.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. De-
noising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840–
6851.

Chin-Cheng Hsu, Hsin-Te Hwang, Yi-Chiao Wu,
Yu Tsao, and Hsin-Min Wang. 2016. Voice con-
version from non-parallel corpora using variational
auto-encoder. In 2016 Asia-Pacific Signal and Infor-
mation Processing Association Annual Summit and
Conference (APSIPA), pages 1–6. IEEE.

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai,
Kushal Lakhotia, Ruslan Salakhutdinov, and Abdel-
rahman Mohamed. 2021. Hubert: Self-supervised
speech representation learning by masked prediction
of hidden units. IEEE/ACM transactions on audio,
speech, and language processing, 29:3451–3460.

Shengpeng Ji, Ziyue Jiang, Hanting Wang, Jialong Zuo,
and Zhou Zhao. 2024a. Mobilespeech: A fast and
high-fidelity framework for mobile zero-shot text-to-
speech. arXiv preprint arXiv:2402.09378.

Shengpeng Ji, Jialong Zuo, Minghui Fang, Ziyue Jiang,
Feiyang Chen, Xinyu Duan, Baoxing Huai, and Zhou
Zhao. 2024b. Textrolspeech: A text style control
speech corpus with codec language text-to-speech
models. In ICASSP 2024-2024 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 10301–10305. IEEE.

16212



Ziyue Jiang, Jinglin Liu, Yi Ren, Jinzheng He, Zhenhui
Ye, Shengpeng Ji, Qian Yang, Chen Zhang, Pengfei
Wei, Chunfeng Wang, et al. 2024. Mega-tts 2: Boost-
ing prompting mechanisms for zero-shot speech syn-
thesis. In The Twelfth International Conference on
Learning Representations.

Ziyue Jiang, Yi Ren, Ruiqi Li, Shengpeng Ji, Boyang
Zhang, Zhenhui Ye, Chen Zhang, Bai Jionghao, Xi-
aoda Yang, Jialong Zuo, et al. 2025. Megatts 3:
Sparse alignment enhanced latent diffusion trans-
former for zero-shot speech synthesis. arXiv preprint
arXiv:2502.18924.

Ziyue Jiang, Qian Yang, Jialong Zuo, Zhenhui Ye,
Rongjie Huang, Yi Ren, and Zhou Zhao. 2023. Flu-
entspeech: Stutter-oriented automatic speech editing
with context-aware diffusion models. arXiv preprint
arXiv:2305.13612.

Zeqian Ju, Yuancheng Wang, Kai Shen, Xu Tan, Detai
Xin, Dongchao Yang, Yanqing Liu, Yichong Leng,
Kaitao Song, Siliang Tang, et al. 2024. Natural-
speech 3: Zero-shot speech synthesis with factor-
ized codec and diffusion models. arXiv preprint
arXiv:2403.03100.

Heeseung Kim, Sungwon Kim, Jiheum Yeom, and Sun-
groh Yoon. 2023. Unitspeech: Speaker-adaptive
speech synthesis with untranscribed data. arXiv
preprint arXiv:2306.16083.

Jungil Kong, Jaehyeon Kim, and Jaekyoung Bae. 2020.
Hifi-gan: Generative adversarial networks for effi-
cient and high fidelity speech synthesis. Advances
in neural information processing systems, 33:17022–
17033.

Matthew Le, Apoorv Vyas, Bowen Shi, Brian Karrer,
Leda Sari, Rashel Moritz, Mary Williamson, Vimal
Manohar, Yossi Adi, Jay Mahadeokar, et al. 2024.
Voicebox: Text-guided multilingual universal speech
generation at scale. Advances in neural information
processing systems, 36.

Ann Lee, Hongyu Gong, Paul-Ambroise Duquenne,
Holger Schwenk, Peng-Jen Chen, Changhan Wang,
Sravya Popuri, Yossi Adi, Juan Pino, Jiatao Gu, et al.
2021. Textless speech-to-speech translation on real
data. arXiv preprint arXiv:2112.08352.

Sang-Hoon Lee, Ha-Yeong Choi, Seung-Bin Kim, and
Seong-Whan Lee. 2023. Hierspeech++: Bridging
the gap between semantic and acoustic represen-
tation of speech by hierarchical variational infer-
ence for zero-shot speech synthesis. arXiv preprint
arXiv:2311.12454.

Junjie Li, Yiwei Guo, Xie Chen, and Kai Yu. 2024.
Sef-vc: Speaker embedding free zero-shot voice
conversion with cross attention. In ICASSP 2024-
2024 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages
12296–12300. IEEE.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu,
Maximilian Nickel, and Matt Le. 2022. Flow
matching for generative modeling. arXiv preprint
arXiv:2210.02747.

Eric Luhman and Troy Luhman. 2021. Knowledge dis-
tillation in iterative generative models for improved
sampling speed. arXiv preprint arXiv:2101.02388.

Ziyang Ma, Zhisheng Zheng, Jiaxin Ye, Jinchao
Li, Zhifu Gao, Shiliang Zhang, and Xie Chen.
2023. emotion2vec: Self-supervised pre-training
for speech emotion representation. arXiv preprint
arXiv:2312.15185.

Shivam Mehta, Ruibo Tu, Jonas Beskow, Éva Székely,
and Gustav Eje Henter. 2024. Matcha-tts: A
fast tts architecture with conditional flow matching.
In ICASSP 2024-2024 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 11341–11345. IEEE.

Ziqian Ning, Qicong Xie, Pengcheng Zhu, Zhichao
Wang, Liumeng Xue, Jixun Yao, Lei Xie, and Mengx-
iao Bi. 2023. Expressive-vc: Highly expressive voice
conversion with attention fusion of bottleneck and
perturbation features. In ICASSP 2023-2023 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 1–5. IEEE.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and
Sanjeev Khudanpur. 2015. Librispeech: an asr cor-
pus based on public domain audio books. In 2015
IEEE international conference on acoustics, speech
and signal processing (ICASSP), pages 5206–5210.
IEEE.

William Peebles and Saining Xie. 2023. Scalable diffu-
sion models with transformers. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision, pages 4195–4205.

Vadim Popov, Ivan Vovk, Vladimir Gogoryan, Tas-
nima Sadekova, Mikhail Kudinov, and Jiansheng
Wei. 2021. Diffusion-based voice conversion with
fast maximum likelihood sampling scheme. arXiv
preprint arXiv:2109.13821.

Vineel Pratap, Qiantong Xu, Anuroop Sriram, Gabriel
Synnaeve, and Ronan Collobert. 2020. Mls: A large-
scale multilingual dataset for speech research. arXiv
preprint arXiv:2012.03411.

Kaizhi Qian, Yang Zhang, Shiyu Chang, Mark
Hasegawa-Johnson, and David Cox. 2020. Unsu-
pervised speech decomposition via triple information
bottleneck. In International Conference on Machine
Learning, pages 7836–7846. PMLR.

Kaizhi Qian, Yang Zhang, Shiyu Chang, Xuesong Yang,
and Mark Hasegawa-Johnson. 2019. Autovc: Zero-
shot voice style transfer with only autoencoder loss.
In International Conference on Machine Learning,
pages 5210–5219. PMLR.

16213



Kaizhi Qian, Yang Zhang, Heting Gao, Junrui Ni,
Cheng-I Lai, David Cox, Mark Hasegawa-Johnson,
and Shiyu Chang. 2022. Contentvec: An improved
self-supervised speech representation by disentan-
gling speakers. In International Conference on Ma-
chine Learning, pages 18003–18017. PMLR.

Takaaki Saeki, Detai Xin, Wataru Nakata, Tomoki
Koriyama, Shinnosuke Takamichi, and Hiroshi
Saruwatari. 2022. Utmos: Utokyo-sarulab sys-
tem for voicemos challenge 2022. arXiv preprint
arXiv:2204.02152.

David Snyder, Daniel Garcia-Romero, Gregory Sell,
Daniel Povey, and Sanjeev Khudanpur. 2018. X-
vectors: Robust dnn embeddings for speaker recog-
nition. In 2018 IEEE international conference on
acoustics, speech and signal processing (ICASSP),
pages 5329–5333. IEEE.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan,
Wen Bo, and Yunfeng Liu. 2024. Roformer: En-
hanced transformer with rotary position embedding.
Neurocomputing, 568:127063.

Zhiyuan Tan, Jianguo Wei, Junhai Xu, Yuqing He, and
Wenhuan Lu. 2021. Zero-shot voice conversion with
adjusted speaker embeddings and simple acoustic
features. In ICASSP 2021-2021 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 5964–5968. IEEE.

Alexander Tong, Kilian Fatras, Nikolay Malkin, Guil-
laume Huguet, Yanlei Zhang, Jarrid Rector-Brooks,
Guy Wolf, and Yoshua Bengio. 2023a. Improv-
ing and generalizing flow-based generative models
with minibatch optimal transport. arXiv preprint
arXiv:2302.00482.

Alexander Tong, Nikolay Malkin, Guillaume Huguet,
Yanlei Zhang, Jarrid Rector-Brooks, Kilian Fatras,
Guy Wolf, and Yoshua Bengio. 2023b. Conditional
flow matching: Simulation-free dynamic optimal
transport. arXiv preprint arXiv:2302.00482, 2(3).

Aaron Van Den Oord, Oriol Vinyals, et al. 2017. Neural
discrete representation learning. Advances in neural
information processing systems, 30.

Benjamin Van Niekerk, Marc-André Carbonneau, Julian
Zaïdi, Matthew Baas, Hugo Seuté, and Herman Kam-
per. 2022a. A comparison of discrete and soft speech
units for improved voice conversion. In ICASSP
2022-2022 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages
6562–6566. IEEE.

Benjamin Van Niekerk, Marc-André Carbonneau, Julian
Zaïdi, Matthew Baas, Hugo Seuté, and Herman Kam-
per. 2022b. A comparison of discrete and soft speech
units for improved voice conversion. In ICASSP
2022-2022 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages
6562–6566. IEEE.

Chengyi Wang, Sanyuan Chen, Yu Wu, Ziqiang Zhang,
Long Zhou, Shujie Liu, Zhuo Chen, Yanqing Liu,
Huaming Wang, Jinyu Li, et al. 2023a. Neural codec
language models are zero-shot text to speech synthe-
sizers. arXiv preprint arXiv:2301.02111.

Zhichao Wang, Yuanzhe Chen, Lei Xie, Qiao Tian,
and Yuping Wang. 2023b. Lm-vc: Zero-shot voice
conversion via speech generation based on language
models. IEEE Signal Processing Letters.

Da-Yi Wu, Yen-Hao Chen, and Hung-Yi Lee. 2020.
Vqvc+: One-shot voice conversion by vector quan-
tization and u-net architecture. arXiv preprint
arXiv:2006.04154.

Dongchao Yang, Jinchuan Tian, Xu Tan, Rongjie Huang,
Songxiang Liu, Xuankai Chang, Jiatong Shi, Sheng
Zhao, Jiang Bian, Xixin Wu, et al. 2023. Uniaudio:
An audio foundation model toward universal audio
generation. arXiv preprint arXiv:2310.00704.

Qian Yang, Jialong Zuo, Zhe Su, Ziyue Jiang, Mingze
Li, Zhou Zhao, Feiyang Chen, Zhefeng Wang, and
Baoxing Huai. 2024. Mscenespeech: A multi-scene
speech dataset for expressive speech synthesis. arXiv
preprint arXiv:2407.14006.

Jixun Yao, Yuguang Yang, Yi Lei, Ziqian Ning, Yanni
Hu, Yu Pan, Jingjing Yin, Hongbin Zhou, Heng Lu,
and Lei Xie. 2024. Promptvc: Flexible stylistic voice
conversion in latent space driven by natural language
prompts. In ICASSP 2024-2024 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 10571–10575. IEEE.

Mingyang Zhang, Yi Zhou, Yi Ren, Chen Zhang, Xiang
Yin, and Haizhou Li. 2024. Refxvc: Cross-lingual
voice conversion with enhanced reference leverag-
ing. IEEE/ACM Transactions on Audio, Speech, and
Language Processing.

Kun Zhou, Berrak Sisman, Rui Liu, and Haizhou Li.
2021. Seen and unseen emotional style transfer
for voice conversion with a new emotional speech
dataset. In ICASSP 2021-2021 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 920–924. IEEE.

Jialong Zuo, Shengpeng Ji, Minghui Fang, Ziyue Jiang,
Xize Cheng, Qian Yang, Wenrui Liu, Guangyan
Zhang, Zehai Tu, Yiwen Guo, et al. 2025. Enhanc-
ing expressive voice conversion with discrete pitch-
conditioned flow matching model. arXiv preprint
arXiv:2502.05471.

A Data Perturbation

We propose to perturb the pitch information in the
input waveform x using three functions: 1) for-
mant shifting fs, 2) pitch randomization pr, and
3) random frequency shaping using a parametric
equalizer peq. The chain function is employed
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to randomly shift the pitch value of the original
speech S denoted as: F = fs(pr(peq(S))). The
specific methods are as follows:

• For fs, a formant shifting ratio is sampled
uniformly from Unif(1, 1.4). After sampling
the ratio, we again randomly decide whether
to take the reciprocal of the sampled ratio or
not.

• For pr, a pitch shift ratio and pitch range
ratio are sampled uniformly from Unif(1, 2)
and Unif(1, 1.5), respectively. Again, we ran-
domly decide whether to take the reciprocal
of the sampled ratios or not. For more details
on formant shifting and pitch randomization,
please refer to Parselmouth 4.

• peq represents a serial composition of low-
shelving, peaking, and high-shelving filters.
We use one low-shelving (HLS), one high-
shelving (HHS), and eight peaking filters
(HPeak).

B Flow Matching

B.1 Conditional Flow Matching

Continuous Normalizing Flows (CNFs) (Chen
et al., 2018) aims to estimate the unknown dis-
tribution q(x) of data x ∈ Rd by learning the prob-
ability path from a simple prior distribution p0 to
a data distribution p1 ≈ q. This mapping can be
further taken as a time-dependent changing process
of probability density (a.k.a. flow), determined by
the ODE:

d

dt
ϕt(x) = vt(ϕt(x)); ϕ0(x) = x. (8)

where vt : [0, 1] × Rd → Rd is a vector field that
generates the flow ϕt : [0, 1]× Rd → Rd. We can
sample from the approximated data distribution p1
by solving the initial value problem in Eq. (1).
Suppose there exists a known vector field ut that
generates a probability path pt from p0 to p1. The
flow matching loss is defined as:

LFM (θ) = Et,pt(x)∥ut(x)− vt(x; θ)∥2. (9)

where t ∼ U [0, 1] and vt(x; θ) is a neural net-
work with parameters θ. However, LFM is un-
computable for lack of prior knowledge of pt or

4https://github.com/YannickJadoul/Parselmouth

vt. Luckily, (Lipman et al., 2022) proposed Condi-
tional Flow Matching (CFM) objective presented
as:

LCFM (θ) = Et,q(x1),pt(x|x1)∥ut(x|x1)−vt(x; θ)∥2
(10)

By conditioning pt and vt on real data x1, they
proved that FM and CFM have identical gradients
with respect to θ for training generative model.

In R-VC, an optimal-transport conditional flow
matching model (OT-CFM) (Lipman et al., 2022)
is employed to learn the distribution of Mel spec-
trogram and generate samples from gaussian noise.
The OT-CFM loss function can be written as:

L(θ) = Et,q(x1),p0(x0)∥uOT
t (ϕOT

t (x)|x1)
− vt(ϕ

OT
t (x)|θ)∥2

(11)

by defining ϕOT
t (x) = (1− (1− σmin)t)x0 + tx1

as the flow from x0 to x1 where each datum x1 is
matched to a random sample x0 ∼ N(0, I).

B.2 Shortcut Flow Matching

Flow-matching trains an ODE to map noise to data
along curved trajectories. However, taking large
sampling steps naively results in significant dis-
cretization errors and, in single-step scenarios, can
lead to catastrophic failures. By conditioning on
d, shortcut flow matching models can anticipate
future curvature and accurately jump to the correct
next point, avoiding divergence. We define the nor-
malized direction from xt to the next target point
x′t+d as the shortcut s(xt, t, d):

x
′
t+d = xt + s(xt, t, d) · d (12)

The objective is to train a shortcut model
sθ(xt, t, d) to learn shortcuts for all combinations
of xt, t, and d. Shortcut models generalize flow-
matching models to larger steps by learning to han-
dle transitions beyond instantaneous velocity. As
d → 0, the shortcut aligns with the flow.

A direct approach to compute training targets
involves simulating the ODE with small step sizes
(Luhman and Luhman, 2021), but this is compu-
tationally expensive. An alternative exploits the
self-consistency of shortcut models: a single short-
cut step is equivalent to two consecutive steps of
half the size.

s(xt, t, 2d) =
1

2

(
s(xt, t, d) + s(x′t+d, t, d)

)

(13)
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Shortcut models can be trained using self-
consistency targets for d > 0 and the flow-
matching loss for d = 0. The model can, in prin-
ciple, be trained on any distribution d ∼ p(d). In
practice, the batch is split: one fraction uses d = 0,
while the other uses randomly sampled d > 0. This
leads to the combined shortcut model loss function.

LS-CFM(θ) = Ep0(x0),p1(x1),(t,d)[∥sθ(xt, t, 0)−
(x1 − x0)∥2 + ∥sθ(xt, t, 2d)− starget∥2]

where starget = 1
2sθ(xt, t, d) + 1

2sθ(x
′
t+d, t, d),

where x′t+d = xt + sθ(xt, t, d)d. This objective
intuitively trains the model to map noise to data in
a way that remains consistent across any sequence
of step sizes, including a single large step. This
training objective combines a flow-matching ob-
jective and a self-consistency objective, which are
jointly optimized during training. To enhance train-
ing efficiency, we construct a batch by mixing k
flow-matching targets with (1−k) self-consistency
targets.

C Details of Models

The ground truth mel-spectrograms are generated
from the raw waveform with a frame size of 1024,
a hop size of 256, and 80 channels at a sampling
rate of 22.05 kHz. An open-source HiFiGAN
vocoder 5 is used to synthesize speech from the mel-
spectrograms. The Diffusion Transformer Decoder
consists of a 22-layer Transformer architecture with
16 attention heads and 1,024 embedding dimen-
sions, totaling 300M parameters. The Mask Trans-
former Duration Model follows a similar parameter
configuration, but features a hidden dimension of
512 and comprises a total of 62M parameters. A
random 70% to 100% of mel frames is masked
for infilling task training. The classifier-free guid-
ance scale α is set to 0.2 during training and 0.7
during inference, as referred to in (Du et al., 2024).
The shortcut flow matching decoder consists of two
training objectives. In each training batch, 30% of
the elements are used to construct self-consistency
targets, while the remaining 70% are used for flow
matching targets, ensuring an efficient trade-off be-
tween training efficiency and model performance.
We use 128 discrete time steps to approximate the
ODE, corresponding to 8 potential shortcut paths
at each training step.

5https://www.modelscope.cn/models/iic/
CosyVoice-300M

D Detailed Experiment Settings

D.1 Details in Subjective Evaluation

We randomly select 50 sentences from the test set
and perform the subjective evaluation on Amazon
Mechanical Turk (MTurk). Each generated audio
has been listened to by at least 10 native listeners.
For QMOS evaluations, the listeners are instructed
to focus on assessing the audio quality and natural-
ness while disregarding any differences in styles
(such as timbre, emotion, and pronunciation). Con-
versely, for SMOS evaluations, the listeners are
instructed to concentrate on evaluating the speaker
similarity to the audio prompt, while disregarding
differences in content or audio quality. For the
QMOS, SMOS evaluations, each listener is asked
to rate different speech samples using a Likert scale
ranging from 1 to 5.

D.2 Details in Objective Evaluation

To measure the speaker similarity (SECS), we use
the WavLM (Chen et al., 2022) model fine-tuned
for speaker verification from 6 to extract the speaker
embedding. Then the cosine similarity between the
synthesized speech’s speaker embedding and the
prompt speech’s speaker embedding is calculated
as the speaker similarity score. For word error rate
(WER) and character error rate (CER) metrics, we
use the Whisper model 7.

Method ACC_Absolute ACC_1 ACC_5

masked druation model (w/i prompt) 0.744 0.986 1.0
masked druation model (w/o prompt) 0.723 0.978 1.0
conformer duration model (w/i prompt) 0.679 0.952 0.996
conformer duration model (w/o prompt) 0.665 0.939 0.993

Table 6: The performance of the masked duration
model.

E Additional Experiments

Masked Duration Model Performance In fact,
the evaluation of the duration model is closely tied
to the Diffusion Transformer, as the rhythm control
exhibited by the generated speech directly reflects
the effectiveness of the masked duration model.
Here, we further evaluate the duration model’s pre-
diction accuracy to provide a more comprehensive
view of its performance. The experimental results
are shown in Table 6. The Conformer duration

6https://huggingface.co/microsoft/
wavlm-base-plus-sv

7https://huggingface.co/openai/
whisper-large-v3
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model refers to a non-autoregressive Conformer for
duration modeling. ACC_Absolute measures the
prediction accuracy of each de-duplicated HuBERT
token’s duration, while ACC_1 and ACC_5 al-
low prediction errors within one token (0.02s) and
five tokens (0.1s), respectively. W/i prompt and
w/o prompt indicate whether prompt conditions
(duration and speaker) are used during prediction.
As shown in the table, on the test-clean dataset with
2,620 unseen samples, our duration model outper-
forms the baseline in all three metrics. Specifically,
it achieves 98.6% accuracy within a 0.02s margin
and 100% accuracy within a 0.1s margin, demon-
strating the effectiveness of the masked generative
duration model.

Evaluation on Seed-TTS We further evaluate
zero-shot voice conversion on the English subset
of the Seed-TTS test set 8 (samples from the Com-
mon Voice dataset, containing more complex audio
types). The results are summarized in Table 7.
The proposed model achieves comparable timbre
similarity to Vanilla CFM and CosyVoice-VC with
fewer sampling steps, and attains lower WER while
significantly reducing latency.

Model SECS WER

DiffHier 0.8531 0.0589
CosyVoice-VC 0.9129 0.0610
FAcodec 0.8890 0.0569
HierSpeech++ 0.8670 0.0451
SEF-VC 0.8661 0.0494
CFM (NFE=10) 0.9110 0.0407
Shortcut CFM (NFE=2) 0.9102 0.0418

Table 7: Zero-shot voice conversion performance on the
Seed-TTS English subset.

1-k WER SECS UTMOS

10% 3.88 0.915 3.92
20% 3.62 0.923 4.05
30% 3.51 0.930 4.10
40% 3.54 0.933 4.09

Table 8: Results of different hyperparameter k.

Additional Ablations We conducted an abla-
tion analysis on the hyperparameter k under the
NFE=2 setting. During each training step, we se-
lected (1− k) proportion of samples to construct
the self-consistency training objective and compute
the loss. As demonstrated in Table 8, a smaller pro-
portion of self-consistency training objective leads
to insufficient training of shortcut flow matching,

8https://github.com/BytedanceSpeech/
seed-tts-eval

Figure 4: The influence of references of different lengths
on zero-shot VC.

Figure 5: The UTMOS performance under different
inference steps.

manifesting in suboptimal generation results with
fewer sampling steps similar to vanilla CFM. While
increasing this proportion effectively enhances the
model’s performance with fewer steps, it simulta-
neously introduces additional computational over-
head, as the construction of self-consistency train-
ing objective necessitates two forward passes. Bal-
ancing training efficiency and performance consid-
erations, we ultimately determined that setting 30%
represents an optimal parameter choice.

We also present the VC performance of our
model on the test-clean dataset using speaker
prompts of varying lengths. As shown in Figure
4 and Table 1, even with prompts shorter than 2
seconds, our model achieves higher speaker simi-
larity compared to most baseline models. Speaker
similarity improves significantly with longer refer-
ence speaker prompts before leveling off. A similar
trend is observed for WER, indicating that longer
prompts enhance the intelligibility of the gener-
ated speech. Moreover, we demonstrate the per-
formance of our proposed method and the vanilla
CFM method in terms of UTMOS across varying
sampling steps. As shown in Figure 5, our method
significantly outperforms the baseline flow match-
ing methods in terms of audio perceptual quality
with fewer sampling steps, indicating the model’s
ability to generate high-quality speech with mini-
mal sampling steps.
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