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Abstract

This paper proposes CRISISTS, the first mul-
timodal and multilingual dataset for urgency
classification composed of benchmark crisis
datasets that have been mapped with open
source geocoded meteorological time series
data. This mapping is based on a simple and
effective strategy that allows for temporal and
location alignment even in the absence of loca-
tion mention in the text. A set of multimodal
experiments have been conducted relying on
transformers and LLMs to improve overall per-
formances while ensuring model generalizabil-
ity. Our results show that modality fusion out-
performs text-only models.

1 Introduction

Learning with multiple modalities has become an
active line in the research community where current
multimodal models have achieved excellent results
outperforming their unimodal counterpart in many
application scenarios (Xu et al., 2023; Yin et al.,
2023). For example, visual/layout information
helps to better capture long-range dependencies
in automatic summarization (Nguyen et al., 2023)
while combining texts with images and/or videos
helps over text-based systems in many subjective
tasks such as sentiment analysis (Liang et al., 2022)
and hate speech detection (Hee et al., 2024).

Multimodal fusion mainly concerns texts, im-
ages, videos and audio data, where at most two
or three modalities are fused. However, coupling
texts with tabular-based time series (hereafter TS)
to improve performances of NLP applications has
received less attention. Among existing works,
Dang et al. (2019) use TS and texts from newspa-
pers to predict which news are the most relevant
and Deznabi et al. (2021) clinic notes and TS from
medical devices to predict in-hospital mortality. Fi-
nally, Conforti et al. (2022) leverage textual and
financial signals for stance detection in the finan-

cial domain. In this paper, we newly investigate the
role of TS in NLP-based crisis management (CM).

During crises such as floods or earthquakes,
both urgent (human/infrastructure damages, dis-
placed people, security instructions, etc.) and not-
urgent (critics, support, etc.) messages are posted
on social media platforms which provide crucial
information for various stakeholders like human-
itarian and secure organizations to set priorities
and decide appropriate actions (Imran et al., 2016;
Vieweg et al., 2014; Reuter and Kaufhold, 2018;
Sarioglu Kayi et al., 2020; Kozlowski et al., 2020).
Urgency detection is either framed as a binary util-
ity classification task to filter-out not-relevant from
relevant messages to rescue teams, a three-class
urgency classification (is the message urgent, not-
urgent or not-relevant), or a multiclass humanitar-
ian information types classification such as cau-
tion, advice and people missing. Several unimodal
datasets have been developed to address these tasks
in (semi-)supervised settings in different languages.
Well known datasets in the field include TREC-IS
(McCreadie et al., 2019, 2020), HumAID (Alam
et al., 2021), and CrisisFACTS (McCreadie and
Buntain, 2023).

Urgency detection from short and ill-formed so-
cial media content is very challenging due to two
main reasons: First, urgent messages are scarce
(e.g., about e.g., about 3.87% and 1.93% for in-
frastructure/human damages respectively in Crisis-
FACTS), making crisis datasets highly imbalanced
towards the not-relevant messages that often con-
tain keywords related to a crisis (e.g., "This place
gonna be on fire tonight" posted during a music
festival), (2) Models need to generalize well to new
unseen events that lack annotated data. Three eval-
uation settings are usually employed to measure
portability in real application scenarios: (a) On-
event where models are trained/tested on data from
the same event, e.g., Turkey earthquake, (b) Out-of-
event that requires training on one or several events
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from various types (e.g., flood, hurricanes) and test-
ing on unseen events of the same type (e.g., flood)
that occurred in different localization/dates, and
(c) Out-of-type where models are trained on events
related to different types of crises (e.g., hurricane,
earthquake) and tested on a particular different type
(e.g., storm). In this last setting, portability to sud-
den crises (e.g., terror attacks, building collapse,
explosions) has shown to be particularly difficult
where a significant drop in performances has been
observed when compared to expected crises that
can be anticipated from e.g., weather forecast (Ker-
sten et al., 2019; Wiegmann et al., 2020; Wang
et al., 2021a; Li et al., 2021; Bourgon et al., 2022).

One solution to address these issues is multi-
modality.1 Text and image fusion for urgency de-
tection has shown very promising results (Alam
et al., 2018; Agarwal et al., 2020; Abavisani et al.,
2020; Wu et al., 2022; Basit et al., 2023; Koshy
and Elango, 2023; Farah et al., 2024; Bouabid and
Farah, 2024). We continue this line of research
by exploiting for the first time as far as we know,
multivariate TS, i.e that have multiple dimensions
recorded over time. TS data (e.g., rainfall, water
level) has shown to be reliable sources of informa-
tion to detect and monitor crises (Zeng and Bertsi-
mas, 2023; de Bruijn et al., 2020). Here we go one
step further by first aligning TS with textual data
then injecting them into deep learning models to
improve urgency classification in out-of-type and
out-of-event scenarios. Our contributions are:

(1) CRISISTS, the first multimodal and mul-
tilingual dataset for urgency detection composed
of benchmark datasets about various expected and
sudden crises in French and English that have been
mapped with open source geocoded meteorological
data.

(2) A simple yet effective temporal and loca-
tion alignment strategy that allows TS-text map-
ping even in the absence of location mention in
the text, which allows us to cover a huge variety of
messages, going beyond existing text-TS alignment
strategies that only rely on one location mention
within a message.

(3) A set of experiments for multimodal ur-
gency detection relying both on transformers
and large language models. To show the portabil-
ity of our approach, we tested our models on two
languages and 29 crises from 7 types. Our results

1Text-based data augmentation has also been explored
(Bayer et al., 2021; Chowdhury et al., 2020a; Meunier et al.,
2023) but this is out of the scope of the paper.

show that injecting TS data from various sources
improves over text only models across different lan-
guages and types of crisis especially on non sudden
crisis. The dataset including the alignment strategy
are available to the community.2

In the following, Section 2 summarizes the re-
lated work. Section 3 presents the CrisisTS dataset
as well as the alignment strategy. Section 4 presents
the experimental settings, models and our results.
Finally, we conclude drawing some perspectives
for future work.

2 Related work

2.1 NLP for Crisis Management

In crisis situations, real-time textual information
can come from the emergency services (Otal and
Canbaz, 2024) but also from social media such as X
(Twitter) (Reuter et al., 2018) (e.g., more than one
million tweets posted during 2023 Turkey–Syria
earthquakes (Toraman et al., 2023)). In order to col-
lect, extract or summarize this information, NLP-
based crisis management has become a hot research
topic in text classification where posted messages
are classified into different categories, named entity
recognition to detect location mention that helps ge-
olocalise information needs (Suwaileh et al., 2023),
and event detection (Rajaby et al., 2022).

Text-based classifiers are mainly trained in a su-
pervised way with either traditional feature-based
learning algorithms (Li et al., 2018a; Kaufhold
et al., 2020; Alam et al., 2021) or deep learning
architectures (Caragea et al., 2016; Castillo, 2016;
Neppalli et al., 2018; Kersten et al., 2019; Ko-
zlowski et al., 2020; Chowdhury et al., 2020b; Liu
et al., 2021; Wang et al., 2021b; Dusart et al., 2021).
More recent works use generative AI (Otal and Can-
baz, 2024). Overall, results show that humanitarian
categories detection is the most challenging task
due to the extremely imbalanced nature of crisis
datasets.

2.2 Time Series in Crisis Management

Time series data are ubiquitous in various domains
like in finance, energy and public health. TS fore-
casting is crucial in many applications and consists
in predicting future events or trends based on his-
torical data (Benidis et al., 2022). State-of-the-art
models range from statistical methods (Huang et al.,
2018) to deep learning models such as LSTM (Box

2https://huggingface.co/datasets/
Unknees/CrisisTS
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et al., 2015), CNN (Bai et al., 2018) or hybrid mod-
els like CNN-LSTM that has been used to predict
the effect of a flood (Malik et al., 2024). TS pre-
trained models have also been largely employed
(Fawaz et al., 2018; Wen et al., 2022; Zhang et al.,
2024). Large language models applied to TS also
start to emerge such as TimeLLM (Jin et al., 2023)
and LagLLAMA (Rasul et al., 2023).

In the field of crisis management, time series
with meteorological data seems to be a natural ally
to predict a large range of crises in order to pre-
pare the population: For example, rainfall data is
used to predict daily precipitation during typhoons
(Huang et al., 2018), topological data to predict
landslides (Yuan and Moayedi, 2020), or weather
parameters to predict floods (Sankaranarayanan
et al., 2020). In the context of crisis early detec-
tion, Li et al. (2018b) trained a GAN with wave-
form features to mitigate false alerts of earthquake
while Moon et al. (2019) use logistic regression for
early-detection of heavy rainfalls. Sudden crises
have also received a special attention. For instance,
Van Le et al. (2021) used geographic information
system (GIS) database with deep learning in order
to predict the risk of wildfire in tropical climate.
Finally, the use of LLMs for TS crisis management
is relatively new, see for example Zhu et al. (2024)
who developed an LLM enriched with flood knowl-
edge that can interact with a GIS to enhance the
public’s perception of flood risks.

2.3 Time Series and Texts for Crisis
Management

Roughly, two major multimodal fusion training ex-
ist: Early fusion (Iyengar and Nock, 2003) where
features from different modalities are merged into
a single representation before training (e.g. via em-
beddings concatenation), and Late fusion (Azimi-
Sadjadi et al., 2000) where each modality is pro-
cessed separately (causing a higher computation
cost) and the decision from each model are then
merged (e.g. mean of the outputs). Vielzeuf et al.
(2018) proposed a hybrid fusion mechanism while
recent generative models have been fine-tuned with
multimodal instructions (Moon et al., 2023).

TS and texts are often temporally aligned and the
way this alignment is performed differs according
to the task. To predict patient mortality, Deznabi
et al. (2021) first train a BERT model and an LSTM
on TS then employ a late fusion. Conforti et al.
(2022) use a multi-view model where each modal-
ity has its own task: stance prediction for texts and

financial prediction for TS. Finally, Khadanga et al.
(2019) use late fusion to predict patient mortality
and the length of stay in intensive care units from
clinical notes and TS signals recorded by monitor-
ing instruments. This requires to align discrete text
events to continuous TS signals. More recently,
LLM have been developed for both time series
and texts, with the objective to improve the per-
formance on TS analysis (Chan et al., 2024) or
forecasting (Jia et al., 2024; Kim et al., 2024). Our
goal here is the opposite: use TS to improve text
classification, making existing models not adequate
for our task.

When it comes to crisis management, TS and
texts can be used to improve crisis prediction from
TS data as Cerna et al. (2022) who use NLP tech-
niques to recognize periods with peak interven-
tions in rare events. However, combining these two
modalities to improve crisis classification in text
messages is new. As far as we know, the only work
in this direction has been reported in de Bruijn
et al. (2020) who combine rainfall statistics and
tweets for utility prediction during floods (i.e., is
the tweet about a flood event?). TS and texts are
aligned temporally and spatially where a unique
location mention within the tweet is mapped with
a given latitude and longitude from the TS. This
paper extends this initial work by: (1) Considering
several types of crises both expected and sudden as
annotated in benchmark datasets, (2) Proposing a
novel alignment strategy that goes beyond explicit
location mentions, (3) Experimenting with early
fusion strategies as well as multimodal LLMs, and
finally (4) Evaluating models portability to unseen
events.

3 The CrisisTS Dataset

3.1 Textual Data

Datasets Selection. We chose the following
datasets, with and without annotated location men-
tions in order to evaluate the feasibility of textual
and TS data alignment:

- KOZLOWSKI: It is the largest corpus of French
tweets annotated for crisis (Kozlowski et al., 2020)
and augmented later on by Bourgon et al. (2022). It
is composed of 7 types of crisis (Fire, Flood, Storm,
Hurricane, Collapse, Explosion, Attack) with sev-
eral crises which occurred in France such as Notre-
Dame fire or flood in the Aude region. It contains
tweets, collected 24h before, during (48h) and up
to 72h after the crisis, manually annotated for three
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urgency categories as well as 6 intent to act cat-
egories (similar to humanitarian categories): (1)
URGENT that applies to messages mentioning HU-
MAN/MATERIAL DAMAGES as well as security in-
structions (ADVICE-WARNING) to limit these dam-
ages during crisis events, (2) NOT URGENT that
groups SUPPORT messages to the victims, CRIT-
ICS or any OTHER messages that do not have an
immediate impact on actionability but contribute in
raising situational awareness, and finally (3) NOT

USEFUL for messages that are not related to the
targeted crisis. From the original dataset, we re-
moved 3,628 tweets that are not annotated with
intent/humanitarian categories. Note that in this
dataset, location mentions are not annotated (see
Section 3.3 for the location identification).

- IDRISI-RE: This dataset is the largest pub-
licly available for location mention prediction in
crisis management (Suwaileh et al., 2023). It is
composed of 20,514 tweets in English from the
HumAID dataset (Alam et al., 2021), manually an-
notated for humanitarian categories and location
mentions, covering diverse disaster types and geo-
graphic areas around the globe. Since IDRISI-RE
only contains USEFUL tweets, we have added En-
glish NOT USEFUL tweets from HumAID. In the
public distribution of HumAID, there are no NOT

USEFUL tweets for flood and fire, and only 209
tweets for earthquake. Concerning hurricanes, we
have selected all the NOT USEFUL tweets for only
Irma hurricane because this crisis is geolocated in
only one state in the US (Florida), making possible
a direct alignment with TS location.

Datasets Pre-processing. For both datasets, we
assigned to each tweet one of the 3 following labels:
NOT-CRISIS for tweets labelled as NOT-USEFUL,
NOT-SUDDEN for tweets labelled as USEFUL and
related to storms, hurricanes and floods, and SUD-
DEN for tweets labelled as USEFUL and related to
fires, collapses, earthquakes and terrorist attacks.
It is important to note that in real life, the type of
crisis is not known in advance. Therefore, mete-
orological data are useful to give us information
on which kind of crisis (sudden or not) we are fac-
ing and then give us a better comprehension of the
information conveyed in the tweet which helps in
urgency classification.

In addition, and in order to conduct the same
experiments on French and English datasets, a uni-
fied annotation scheme has been used: We have
automatically assigned to the English tweets the

URGENT, NOT URGENT and NOT USEFUL labels
based on their manually annotated humanitarian
categories in order to be able to perform both ur-
gency and utility tasks.

3.2 Time Series Data
Datasets Selection. We created two TS datasets
sourced from open government data coming from
meteorological stations for two reasons: (a) end
users, such as emergency services rely on these
types of data, (b) the alignment method can be
easily portable to open data from other countries.

- FRENCHTS: We have collected meteorologi-
cal data on Meteo France website.3 These data are
geographically related to one of the 65 French me-
teorological stations, have a frequency of 3 hours
and 39 features, starting on 01/01/2007 00h00m00s
and ending at 11/30/2022 21h00m00s for a total of
46,495 timestamps per station.

- ENGLISHTS: We have collected meteorologi-
cal data for geographic areas related to IDRISI-RE
crises but only US and New Zealand data from both
websites of the National Oceanic and Atmospheric
Administration (NOAA)4 and the National Institute
of Water and Atmospheric research (NIWA)5 could
be freely collected. These data are geographically
related to a region or state (e.g. Kaikoura for New
Zealand, or the state of Maryland for US) and all
these data are daily summaries (daily frequency).
They start on 01/01/2016 and end at 12/31/2019
for a total of 1,460 timestamps per state.

Datasets Pre-processing. From both datasets,
we removed some features that are not relevant
for crisis management (e.g. wind direction since
it gives no relevant information contrary to wind
strength) and features with a high rate of miss-
ing values (e.g. 45% for cloud percentage in
FRENCHTS). The selected features and their asso-
ciated metrics are shown in Table 8 in Appendix B.
Finally, all features were normalized using the Stan-
dardScaler function from Scitkit-learn. A detailed
description of these features and their relevance for
the task is provided in Appendixes B.1 and B.2.

3.3 Multimodal Alignment Strategy
Textual and time series datasets are aligned geo-
graphically and temporally, as shown in Figure 1.

3https://donneespubliques.meteofrance.
fr/

4https://www.ncei.noaa.gov/cdo-web/
5https://niwa.co.nz/

climate-and-weather
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Figure 1: Location and temporal alignment of tweets and time series to create a multimodal dataset. Top (bottom):
Alignment in case of known (unknown) tweet location.

Our methodology has to deal with ambiguity. In-
deed, TS we were able to collect do not cover all
the crises present in our datasets because the cor-
responding TS were not freely available (TS could
not be collected only for a wildfire in Canada which
represents around 4.8% of the whole IDRISI-RE).
Ambiguity can also come from location mentions
within the tweet (e.g., named entities that refer to
different cities). However, our method does not de-
pend on location mention to align the data, which
allows us to cover a huge variety of tweets, going
beyond existing TS-text alignment strategies that
only rely on one location mention.6 We explain
below how we overcome these difficulties.

Location alignment. Since the TS datasets have
been collected from meteorological stations, the
location of each time series is known (either a city
in France, or a state in the rest of the world). For
tweets however, there are two alignment methods
depending on whether the location mention of the
tweet is available or not:

– (Case a) Exact location mention. If the lo-
cation mention refers to a unique location in the
globe, the tweet is associated to TS data from the
state the location belongs to. Otherwise, the tweet
is discarded. For example in Figure 1, a tweet
mentioning the city Fontana is associated with TS
from California, whereas a tweet mentioning the
city Florence is removed since there are 7 cities
named Florence in the USA and 1 in Italy, so it is
impossible to link the tweet to a specific state.

This strategy is applied to geographically align
6A disambiguation module can be useful in these cases

and is left for future work.

IDRISI-RE with ENGLISHTS. It is important to
note that 10% of tweets from this dataset have
been removed due to ambiguous location mentions.
However, in real life situations, meteorological data
can also help in disambiguating these mentions
(e.g., a tweet mentioning storm in Florence but no
TS in Italy indicate an ongoing crisis).

– (Case b): Unknown in case of the absence
of location mention or presence of several men-
tions. For example, in "After having swept across
the Atlantic coast, the Bruno storm moves towards
Corsica", the relevant mention is Corsica since the
location Atlantic coast refers to a past event. A
possible solution is to use an automatic named en-
tity extraction which can be quite effective in case
of a unique location mention, but this would lead
to some difficulties as around 63% of our tweets
contain either no or several mentions.

Instead, since each tweet has been associated
during scraping to a crisis that can be geolocated,
the location mention is manually extracted from
the Wikipedia pages of the 29 crisis events and
all the tweets for a given event are linked to the
corresponding or the closest meteorological sta-
tion. When the location mention in Wikipedia
is a fuzzy area, all the tweets of the crisis event
are linked to the meteorological station of the ad-
ministrative capital of the area. For example, the
tweet wind gusts up to 120km/h recorded in the
north of the country will be linked to the TS from
the station Lille-Lesquin.

Temporal alignment. Once a tweet is associated
to a location and to geolocated time series, they
have then to be temporally filtered out. Given that
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ENGLISHTS and FRENCHTS do not have the same
frequency, this implies fixing a window size to
select the appropriate TS.

Considering that the tweets of the French dataset
have been scrapped with a 48-hour window before
the crisis, we have applied the same window to
FRENCHTS resulting in the selection of 16 times-
tamps (1 timestamp every 3 hours) before the post-
ing date of each tweet. Applying a 48-hour win-
dow to ENGLISHTS, which has a daily frequency,
would select only 2 timestamps for each tweet
which is not enough to be relevant. On the con-
trary, selecting 16 timestamps as for French would
select the time series data for 16 days before the
crisis, which may lead to noisy data. After some
experiments with different window sizes, we ap-
plied a 5-day window for ENGLISHTS as this was
the window that gave the best results.

Quality of alignment. Since Case (a) is based on
manually annotated and exact location mentions,
we considered these alignments as gold alignments.
Case (b) however has to be evaluated (this repre-
sents 69.46% of tweets (15,368) in our multimodal
dataset). To this end, we performed a manual check
of the quality of the alignment on a randomly se-
lected subset of 1,150 useful tweets that have been
linked to their administrative locations:

–Location alignment: We observed 558 tweets
with a spatial shift between 0-50 km, 334 tweets be-
tween 50 and 150 km, 235 tweets between 150-300
km and 23 tweets beyond 300 km. The maximum
shift is 687 km for a mean spatial shift of 114 km.

An outlier analysis (i.e., spatial shift >300 km)
shows that outliers were due to a case where two
storms were occurring in France at the same time
but at different locations. However, thanks to the
fact that these two crises were about the same type,
these tweets were still associated with meteoro-
logical data that describe the same kind of crisis
(storms). Finally, when looking into the spatial
shift per crisis, we found that all the sudden crisis
tweets we verified have a shift between 0-50 km,
due to the fact that our sudden crisis tweets are
about a local event.

–Temporal alignment: An analysis of the impact
of a spatial shift on temporal alignment reveals
that for a 0-50 km spatial shift, there is no temporal
shift ; between 50-150 km an average time shift of 1
time stamp and finally for tweets between 150-300
km, there is an average time shift of 2 timestamps.

CrisisTS Statistics. The distributions of the
datasets after alignments are presented in Table 4
and Table 5 (see Appendix A).

4 Multimodal Urgency Classification

4.1 Experimental Settings
We designed two experimental settings to better
evaluate the performances in real scenarios (Tables
4 and 5 from Appendix A give the size of each
train/test sets, computing infrastructure is detailed
in Appendix C):

(1) Out-of-event. It aims to evaluate if a model
can deal with new crisis events with a known type.
For this set-up, we defined the three sets of events
from KOSLOWSKI (cf. Appendix A). The models
are successively tested on each of these three sets
while trained on all events that are not present in the
chosen test set. To make sure the improvements are
not due to randomness or a training artifact, all the
models have been run trough three Out-Of-event
scenario, for a total 9 experiments. The results
are then the mean of the results obtained for each
experiments. Due to the low amount of events for
each crisis type in IDRISI-RE, we were not able to
carry out an out-of-event evaluation for the English
data.

(2) Out-of-type. It aims to evaluate if a model
can deal with new types of crisis, which is crucial
to ensure the portability of the models to unseen
events. Thus for each dataset, this second consists
in the average of n runs, each run with n− 1 crisis
types for training and the remaining crisis type for
testing. All the models have been run through 2
Out-Of-type scenario, for a total 10 experiments.
The results are then the mean of the results obtained
for each experiments. It is important to note that
this second setting is more challenging and is the
closest to real world crisis events.

4.2 Models
We designed textual baselines and multimodal mod-
els. Since our task is to classify a tweet, a TS uni-
modal baseline is not relevant. Note that TimeLLM
(see below) heavily relies on TS prediction.

(a) Unimodal Text-based Models. We rely on
transformers and LLMs, as follows:

- FlauBERTFineTuned: It is a FlauBERT model
(Le et al., 2020) that has been fine-tuned on 358,834
unlabelled tweets posted during crises. Due to
an imbalanced dataset, the Focal Loss and Adam
optimizer are used. It is reported to be the best
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performing model for intent classification on the
French KOSLOWSKI dataset (Meunier et al., 2023).
We use it as our baseline for the French dataset.

- FlauBERTFineTuned−3Tasks: It is the current
state-of-the-art multitask model on KOSLOWSKI

(Bourgon et al., 2022). This model is trained for 3
tasks: detection of utility, urgency and intents.

- RoBERTa (Liu et al., 2019): This is a baseline
for the English dataset as it is reported to be effi-
cient for crisis management in English (Koshy and
Elango, 2023; Rocca et al., 2023; Madichetty et al.,
2023). The Focal Loss and Adam optimizer are
also used. RoBERTa3Tasks is a multitask version
of the model trained for 3 tasks: detection of utility,
urgency and humanitarian categories.

- RoBERTa+Sudden and FlauBERTFineTuned

+Sudden. In order to evaluate the impact of the cri-
sis type (sudden or not) on the global performance,
we also trained both FlauBERT and RoBERTA
baselines in a multitask architecture, with an auxil-
iary task to detect the SUDDEN and NOT SUDDEN

crises.
- LLMs. We rely on Mistral7B (Jiang et al.,

2023) and Llama38B (AI@Meta, 2024) for French
and English respectively in a few-shot setting,
where 5 examples for each label were randomly
chosen from the train set.7 To avoid any bias, both
LLMs use the same prompt (see Appendix D). Each
tweet to classify is tested 5 times with different ex-
amples. The final predicted label is obtained by a
majority vote.

(b) Multimodal Text+TS Models. To evaluate
the contribution of time series to the performance
of models for all tasks, we trained a multimodal
version of each model:

- RoBERTa + Early Fusion and
FlauBERTFineTuned + Early Fusion. Due
to the fact that our TS are not labeled, we can only
use them in an early fusion configuration. We
therefore rely on embeddings concatenation and
this fusion strategy is applied to all transformer
text-based models including their multitask
versions.

- MM-TimeLLM. Our goal is to use TS to im-
prove text classification, making existing multi-
modal models not adequate for our task. A possible
alternative could be to train a new multimodal LLM
but this requires a huge amount of both textual and
TS data. Therefore, we have adapted TimeLLM

7We also tested other open source LLMs but we only report
those that achieved the best scores.

(Jin et al., 2023), a time series model into a multi-
modal model, MM-TimeLLM, with the objective
to evaluate the impact of multimodal data on a tex-
tual classification task. We then compare unimodal
LLMs with MM-TimeLLM.

As a pioneering approach in multimodal time
series analysis, TimeLLM utilizes a frozen LLM
backbone for time series forecasting. Like
PatchTST (Nie et al., 2023), it follows the channel-
independence assumption and segments the time
series data into distinct patches. To enable the
LLM to understand time series data effectively,
the model reprograms these time series patches us-
ing pretrained word embeddings from the LLM
backbone. To incorporate prior knowledge and
textual information, TimeLLM generates a prompt
for each time series instance based on designed
template. The output embedding of the prompt
from the LLM backbone is then used as a prefix to
prepend the input embeddings. During training, the
LLM remains frozen, and only the reprogramming
layer and output layer are updated.

In our adaptation of TimeLLM (see Figure 2),
we replace the output projection layer with a clas-
sification layer to suit our classification task. In
addition, we use our tweet text data for prompting
instead of the original template-based prompt (cf.
Appendix D). This study utilized Llama 2.

Figure 2: A modelisation of MM-TimeLLM.

4.3 Results
Tables 1 and 2 present the results on the French and
English datasets respectively. The best results for
each model are in bold and the best result for each
task is underlined.

For both English and French, the best results are
obtained with a multimodal and multitask model
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Out-of-Event Out-of-Type

Main task
Model Utility Urgency Humanitarian Utility Urgency Humanitarian

Baselines (1): FLAUBERTFineTuned 59.20 52.39 54.34 74.68 63.14 47.34
(2): FLAUBERTFineTuned−3Tasks 75.35 67.11 56.24 74.63 63.87 49.99

Unimodal models
(3): (1) + SUDDEN TASK 72.73 63.87 51.57 74.44 60.72 44.93
(4): (2) + SUDDEN TASK 75.64 67.11 55.44 76.36 64.18 49.28

MISTRAL 69.88 49.35 41.41 69.46 48.16 38.37

Multimodal models

(1) + Early Fusion 74.67 65.23 55.22 74.56 63.23 49.83
(2) + Early Fusion 74.38 66.13 56.34 75.10 63.73 51.15
(3) + Early Fusion 74.61 65.17 55.56 75.77 64.73 50.52
(4) + Early Fusion 75.03 67.26 56.79 75.81 64.68 49.72
MM-TIMELLM 72.56 28.80 12.05 72.56 56.66 14.72

Table 1: Results on the French dataset in terms of average F-score. All the results are statistically significant at
p < 0.01 using the McNeymar test.

Main task
Model Utility Urgency Humanitarian

Baselines (1): ROBERTA 75.55 75.17 72.03
(2): ROBERTA3Tasks 76.62 78.89 75.50

Unimodal models
(3): (1) + SUDDEN TASK 72.77 77.55 74.40
(4): (2) + SUDDEN TASK 75.73 76.18 75.18

LLAMA3 48.42 39.19 43.93

Multimodal models

(1) + Early Fusion 73.71 76.58 73.24
(2) + Early Fusion 77.50 79.46 74.78
(3) + Early Fusion 73.13 76.93 74.56
(4) + Early Fusion 77.98 79.58 74.09
MM-TIMELLM 52.83 41.29 17.47

Table 2: Results on the English dataset in terms of average F-score (out-of-type experiment only). All the results are
statistically significant at p < 0.01 using the McNeymar test.

((4) + Early Fusion) for the urgency task showing
that time series data and the SUDDEN vs. NOT

SUDDEN knowledge contributes to improve ur-
gency detection. Regarding the performances of
the LLMs, the multimodal MM-TimeLLM outper-
forms the unimodal LLMs (Mistral and Llama3)
except on the humanitarian task where its perfor-
mance drops drastically: In MM-TimeLLM, TS
have a more important weight than textual data and
this drop suggests that meteorological data are less
relevant than texts to detect the humanitarian cate-
gories (type of damages, critics, support, etc.). We
also note that MM-TimeLLM performs better on
French data which have a higher frequency (every
3 hours instead of daily for English).

On the French dataset, we note that all
multimodal models using TS data perform
better than their unimodal versions for the
intent and urgency detection tasks (except
FlauBERTFineTuned−3Tasks for urgency). Con-
sidering the English dataset, multimodal models
outperform only their unimodal version for the
RoBERTa baseline and the multitask RoBERTA.
The lower impact of TS on the English dataset

can be explained by the fact that ENGLISHTS has
a lower frequency than FRENCHTS leading to a
lower quantity of relevant data. We also note that
the results on the utility task are lower than on the
urgency and humanitarian tasks. This is due to the
lack of NOT USEFUL tweets in the corpus (388
NOT USEFUL tweets vs. 6,356 USEFUL).

Looking at the detailed results per class for the
urgency task (see Table 13 in Appendix E), we ob-
serve that multimodality increases the performance
on the NOT-USEFUL class in English as well as
French. In French, an important increase is also
noticed for the NOT-URGENT class. Indeed, abnor-
mal meteorological data bring information about
the existence of a crisis situation and will help to
better detect NOT-USEFUL messages: for example,
the tweet There is a leak in my kitchen, everything
is flooded! would be classified as URGENT by a
unimodal model based on text whereas it would
be considered as NOT USEFUL by a multimodal
model if there is no meteorological anomaly de-
tected. This is confirmed in Table 14 showing bet-
ter results of the multimodal models for all classes
of the utility task in both languages.
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Considering our assumption that meteorologi-
cal data can help to better distinguish not sudden
(i.e. meteorological expected conditions) from sud-
den crises, as expected adding TS data does not
increase the performance for sudden crises in both
languages (cf. Table 15) whereas performances
are improved for not sudden crises in all classes
and both languages (cf. Table 16). When look-
ing at the results per crisis (cf. Tables 17 and 18),
we notice that multimodal models improve perfor-
mances for all types of not-sudden crises, except
the building collapse. We believe this is due to the
fact that meteorological data does not detect any
crisis whereas textual information does, which is a
typical situation in a sudden event. The only crisis
type that shows a loss of performance is fire, prob-
ably because in our dataset, some fires are caused
by meteorological conditions (e.g. Landes) while
others are accidental (e.g. Notre-Dame).

5 Error Analysis

5.1 Impact of the Quality of Alignment

In order to estimate the impact of a spatial shift
during location alignment - possibly causing a tem-
poral shift - on classification, we ran a test in an
out-of type configuration on the humanitarian task
for storm as this is the crisis with the highest shift.
For tweets with no temporal shift, 26.66% of tweets
were misclassified; with a shift of 1 timestamp
27.92% were misclassified, whereas with 2 times-
tamps, 31.25% were misclassified. This shows that
the performances are quite similar for one times-
tamp vs. zero shift. Considering that 77.56% of
the manually checked tweets have a spatial shift
under 150 km, corresponding to a temporal shift of
1 timestamp, alignment errors have a small impact
on the classification performances.

5.2 Impact of Time Series Frequency

To better analyze the impact of TS frequency,
we experimented by artificially reducing the
frequency of FrenchTS to a 6 hour, then 12
hour frequency (instead of a 3 hours). To
this end, we follow the out-of type evalua-
tion setting relying on our best model, namely
FlauBERTFineTuned−3Tasks+Sudden. The re-
sults in terms of F1-scores are presented in Table
3. They show that for the utility and urgency tasks,
the lower the frequency is, the lower is the perfor-
mance.

The humanitarian task however does not follow

Main task
Time Frequency Utility Urgency Humanitarian

3 hours (Baseline) 75.81 64.68 49.72
6 hours 72.04 62.93 52.88
12 hours 71.98 64.16 53.52

Table 3: Macro F1-scores on the French dataset with
our best model on different frequencies.

this scheme where we observed an increase in per-
formances. The results per class show that the
increase concerns not-urgent messages (e.g., CRIT-
ICS, SUPPORT) while the decrease concerns urgent
messages (e.g., HUMAN/MATERIAL DAMAGES).
For example, the results for HUMAN DAMAGES are
F1=58.80 (resp. 62.31) for 12 hour (resp. 3) fre-
quency while F1=38.54 (resp. 30.39) for 12 hour
(resp. 3) frequency for CRITICS. Given that accu-
rate urgent messages detection is crucial from an
end user perspective (there is human life at stake),
high frequency data is valuable.

6 Conclusion

This paper proposed CrisisTS, the first open source
multimodal and multilingual dataset that combines
time series and textual data for urgency classifica-
tion relying on a temporal and spatial alignment
strategy that goes beyond explicit location men-
tions in texts. We also proposed a set of unimodal
and multimodal experiments using an early fusion
mechanism as well as LLMs that we newly adapted
to our task. Results show that coupling TS and texts
improves over text-based models in both French
and English benchmark datasets while ensuring
models portability to unseen events. In the future,
we plan to consider other languages as well as de-
sign new multimodal fusion strategies.
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Limitations

Although CrisisTS covers a large amount of crises,
it can be extended to more types of crisis and
other time series (e.g. the COVID crisis with clini-
cal/health TS data (Suanpang and Jamjuntr, 2021)).
The dataset can also be extended to other languages
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and easily upgraded with actual public meteorolog-
ical data.

Ethics Statement

The data used for creating the dataset is composed
of texts from datasets benchmarks publicly avail-
able to the research community and meterologi-
cal data publicly available online. The datasets
are anonymized and contain no offensive or abu-
sive language. They were collected before Twitter
changed to X and conform to the Twitter Developer
Agreement and Policy that allows unlimited distri-
bution of either the numeric identification number
or the textual content of each tweet.

Finally, analyzing social media is a vital resource
in the field of crisis management as shown in many
reports (DHS, 2014; Saroj and Pal, 2020). Al-
though using AI models in situations where lives
could be at stake, our aim is not to develop a fully
automated system but an assistant tool to help res-
cue teams, with whom we are working in collabo-
ration, to better filter social media urgent messages
and anticipate actions.
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A Dataset distribution

Tables 4 and 5 show the distribution for French and
English textual data respectively.

The testsets used in the Out-of-event experi-
ments are as follows:

• Set 1: Flood in Aude, Attack in Trebes, Beryl
storm, Collapse in Lille, Explosion in Sanary,
Fire in Landes (6,939 tweets).

• Set 2: Flood in Corsica, Fionn storm, Col-
lapse in Marseille, Explosion Lubrizol, Fire
Notre-Dame (4,036 tweets).

• Set 3: Flood Autre, Explosion Lubrizol, Irma
hurricane, Fire Notre-Dame, Collapse in Lille
(5,406 tweets).

Regarding the Out-of-type, testsets are shown in
the Tables (i.e., for earthquake in the English data,
the testset is composed of 1,105 tweets).

B Time Series Data Quality

B.1 Standard Data Analysis
An important factor when using meteorological
time series data is their quality. We provide here
standard data analysis (such as the mean, standard
deviation, maximum, minimum, number of missing
values, abnormal values, etc.) of the TS selected
features in both FrenchTS (cf. Figure 3 and Table
6) and EnglishTS (cf. Figure 4 and Table 7). This
analysis allows to check whether each feature has
the correct metric (e.g., a MEAN TEMPERATURE

of 287.82 shows that the measure is in Kelvin and
not in Celsius or Fahrenheit) but also detect regular
anomaly (e.g., MEAN WIND SPEED can not be
negative).

From the features we chose (we decided to
remove some features, such as dew point in
FrenchTS, as we considered that feature is not use-
ful for crisis management), we observe that the
EnglishTS features from the US and New Zealand
TS do not contain missing data (Figure 4) whereas
in FrenchTS, the feature with the most missing data
is MAXIMUM WIND GUST SPEED with a rate of
16.8% (Figure 3).

Figure 3: Percentage of missing data in FrenchTS
dataset.

When looking into Table 6 for FrenchTS, we
notice that the Max(Maximum Gust Wind Speed)
is lower than Max(Mean Wind Speed). This is due
to the number of missing data that is higher for
MAXIMUM GUST WIND SPEED (see Figure 3).

B.2 Selected Features and Relevance for
Crisis Classification

Table 8 shows the final list of features selected for
each time series dataset.
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CRISIS URGENT NOT URGENT NOT
(# events / # tweets) HMN-DMG MAT-DMG ADV_WARN SUPPORT CRITICS OTHER USEFUL

NOT SUDDEN (13 / 11,513) NOT CRISIS
Flood (3 / 3,593) 102 237 431 198 53 405 2,167
Hurricane (2 / 2,160) 57 57 199 200 29 200 1,418
Storm (8 / 5,760) 52 142 716 22 13 147 4,668

SUDDEN (7 / 3,855) NOT CRISIS
Fire (2 / 2,458) 23 94 51 340 170 385 1,395
Attack (1 / 61) 14 0 0 40 3 2 2
Collapse (2 / 1,269) 63 38 11 23 51 136 947
Explosion (2 / 67) 1 7 0 53 2 4 0
TOTAL (20 / 15,368) 312 575 1,408 876 321 1,279 10,597

Table 4: Distribution of textual data in the multimodal French dataset.

CRISIS URGENT NOT URG NOT
(# events / # tweets) HMN-DMG HMN-MISS EVAC MAT-DMG NEED WARN VOLUNTEER USEFUL

NOT SUDDEN (7 / 4,552) NOT CRISIS
Flood (1 / 431) 45 133 2 82 3 65 101 N/A
Hurricane (6 / 4,300) 318 9 478 699 309 936 1,372 179

SUDDEN (2 / 2,192) NOT CRISIS
Fire (1 / 1,087) 514 49 82 102 49 28 263 N/A
Earthquake (1 / 1,105) 102 3 66 252 16 361 96 209
TOTAL (9 / 6,923) 979 194 628 1,135 377 1,390 1,832 388

Table 5: Distribution of textual data in the multimodal English dataset.

Figure 4: Percentage of missing data in EnglishTS
dataset.

Feature Mean SD Max Min
Sea Press. 101,532.83 914.82 109,160 93,850
Press. Var. 2.30 124.07 2,17 - 2,190

Mean Wind Spd. 3.19 4.08 96 0
Mean Temp. 287.82 9.38 340.85 238.75

Humidity 75.75 16.86 100 1
Max G. Wind Spd. 7.37 5.08 77.33 0

Table 6: Data Quality Analysis of the FrenchTS dataset
in terms of mean, standard deviation, maximum and
minimum values.

After a quantitative analysis of our features,
the next step is to analyse their relevance to our
crisis management task. To this end, given a
feature F , we compute the value P that repre-
sents the percentage of quartile that belongs to
the values range of F , following the formula below:

Feature Mean SD Max Min
Precipitation 2.29 5.26 52.62 0

Mean spd. wind 4.74 1.54 11.65 1.67
Mean temp. 13.40 10.62 31.95 -16.99
Max temp. 19.97 11.06 39.05 -11.26
Min temp. 6.83 10.54 24.95 -24.14

Max G. Wind Spd. 9.88 2.55 19.74 4.11
Snow fall 0.99 6.13 101 0

Snow Depth 2.61 10.1 105 0

Table 7: Data Quality Analysis of the EnglishTS dataset
in terms of mean, standard deviation, maximum and
minimum values.

Feature FrenchTS EnglishTS

PRECIPITATION N/A mm
SEA LEVEL PRESSURE Pa N/A
PRESSURE VARIATION Pa N/A
MEAN SPEED WIND m.s-1 m.s-1
MEAN TEMPERATURE K °C
HUMIDITY % N/A
MAXIMUM WIND GUST SPEED m.s-1 m.s-1
MAX TEMPERATURE N/A °C
MIN TEMPERATURE N/A °C
SNOW FALL N/A mm
SNOW DEPTH N/A mm

Table 8: Features with their associated metrics in time
series datasets. N/A means that the corresponding fea-
tures from the source data are either not available or
contain a high rate of missing values.

P (Qi, Fd,j) =
Qi−min(Fdj)

max(Fdj)−min(Fdj)
∗ 100

where Fd,j is a feature j in a given dataset
d, Q1 is the first quartile (i.e. 25% of values
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of the feature j are lower than Q1), Q2 is
the second quartile (or median) and Q3 the
third quartile (i.e. 75% of values are lower
than Q3). For example, for the HUMIDITY

feature in the FrenchTS dataset, we get 64.65
which means that the first quartile of the humidity
feature is equal to 64.65% of the range of humidity:

P (Q1, FFr,Humidity) =
65−1
100−1 ∗ 100 = 64.65

Computing these percentages for each feature
allows for anomaly detection. Indeed, a linear data
would have a first quartile close to 25% of the value
range, a median close to 50% and third quartile
close to 75%. Hence, a huge difference between
these linear values for first quartile implies that
there is also a huge difference between 25% of the
lowest data and the rest of the data. Similarly, if
P (Q3, Fd,j) << 75%, it means that there is a gap
between 25% of the highest values and the oth-
ers. Therefore, 25% of data can easily be detected
as a crisis situation since it can correspond to an
extreme meteorological situation.

Table 9 (resp. Table 10) shows the values of P
for each quartile Qi in FrenchTS and EnglishTS
respectively. For example for FrenchTs, we can
see that the third quartile is at 12.29% of the values
range of MAXIMUM WIND GUST SPEED which
implies that there is an important gap between all
the data below the third quartile and the data after
which can be useful in crisis detection.

Feature Q1 Q2 Q3

Sea level pressure 47.55 50.36 53.63
Pressure variation 48.62 50.23 51.83
Mean speed wind 1.98 3.44 5.83
Mean temperature 41.63 47.70 56.02

Humidity 64.65 78.79 89.90
Max Wind Gust Speed 4.91 8.02 12.29

Table 9: Features relevance in the FrenchTS dataset
as given by P for each quartile. The most relevant
percentages are in bold font.

C Computing Infrastructure

In order to improve the reproducibility of the ex-
periments, we describe here the computing infras-
tructure we used:

• 2 CPU AMD Milan EPYC 7543 (32 core 2,80
GHz)

• 512 Go of memory

Feature Q1 Q2 Q3

Precipitation 0.00 0.08 3.69
Mean speed wind 19.54 28.26 38.78
Mean temperature 44.99 62.69 81.94
Max temperature 45.50 64.76 80.70
Min temperature 45.00 63.25 83.66

Max Wind Gust Speed 24.50 35.00 46.77
Snow fall 0.00 0.00 0.00

Snow Depth 0.00 0.00 0.00

Table 10: Features relevance in the EnglishTS dataset
as given by P for each quartile. The most relevant
percentages are in bold font.

• 8 GPU Nvidia A100 SXM4 80 Go

D Prompts and LLMs Hyper-parameters

We describe here the prompts and the parameters
we used during our experiments in order to en-
sure reproducibility of the results. We recall that
we used a five-shot prompt-tuning for Mistral and
Llama3.

In Figure 5, we provide an example of a prompt
for Llama3, using the standard three role format:
The System role defines the task and how the model
will answer; the User represents the input and the
assistant is the response of the model. For Mistral,
since the tweet is in French, the system input is a
direct translation of the Llama system input with
an adaptation to fit for the French label. Figure 6
gives an example of a prompt for MM-TimeLLM.

Figure 5: Example of prompt used in Llama3.

Mistral and LLAMA3 used the same hyper pa-
rameters as shown in Table 11, while those in MM-
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Figure 6: Example of prompt used in MM-TimeLLM.

TimeLLM are shown in Table 12.

Parameter Value
max_new_token 100

temperature 1.0
do_sample True

epochs 10
learning rate (2e-5)

batch size 6

Table 11: Parameters used for testing LLMs unimodal
models.

E Detailed Results

Parameter Value
dropout 0.2

learning rate 0.001
epochs 10

Table 12: Parameters used for testing the adapted multi-
modal version of TimeLLM.

To measure the impact of time series on the fine-
grained detection of urgency categories, we further
detail our results per class for each dataset in ur-
gency (cf. Table 13) and utility tasks (cf. Table 14).
In both tables, the best unimodal and multimodal
models are compared, showing the improvement
of early fusion when trained in a multitask con-
figuration, sudden crisis detection being the most
productive secondary task.

We further analyze the results per crisis type. Ta-
ble 15 (resp. Table 16) shows the performances
of our best models in urgency classification when
only trained on sudden (resp. expected) crises. Ta-
bles 17 and 18 give more detailed results per crisis
type in order to see the impact of multi-modality
for different kind of crisis. Multimodal models
improve performances for all types of not-sudden
crises, except the building collapse.
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Model F-score per class Macro
Not-Urgent Urgent Not-Useful F-score

ROBERTA3Tasks 86.56 93.56 56.50 78.89
ROBERTA4Tasks + EARLY FUSION 86.26 93.69 58.79 79.58
FLAUBERT3Tasks 47.54 62.85 81.21 63.87
FLAUBERT4Tasks + EARLY FUSION 49.41 62.03 82.86 64.68

Table 13: Results per class for the three-class urgency task of our best unimodal and multimodal models in the
English (first two lines) and French (last two lines) datasets in the out-of-type experiments.

Model F-score per class Macro
Useful Not-Useful F-score

ROBERTA3Tasks 97.37 57.28 77.50
ROBERTA4Tasks + EARLY FUSION 97.64 58.33 77.98
FLAUBERT3Tasks 67.78 81.47 74.63
FLAUBERT4Tasks + EARLY FUSION 69.27 82.34 75.81

Table 14: Results per class for the binary utility task of our best unimodal and multimodal models in the English
(first two lines) and French (last two lines) datasets in the out-of-type experiments.

Model F-score per class Macro
Not-Urgent Urgent Not-Useful F-score

ROBERTA3Tasks 87.35 93.75 63.16 86.57
ROBERTA4Tasks + EARLY FUSION 86.34 93.94 65.42 86.54
FLAUBERT3Tasks 50.7 51.9 76.92 59.84
FLAUBERT3Tasks + EARLY FUSION 54.37 48.69 78.18 60.41

Table 15: Results per class for the three-class urgency task of our best unimodal and multimodal models in the
English (first two lines) and French (last two lines) in the out-of-type experiments when only considering sudden
crises in the test set.

Model F-score per class Macro
Not-Urgent Urgent Not-Useful F-score

ROBERTA3Tasks 85.83 93.35 49.85 82.92
ROBERTA4Tasks + EARLY FUSION 86.18 93.43 52.17 83.57
FLAUBERT3Tasks 45.44 70.15 84.07 66.56
FLAUBERT3Tasks + EARLY FUSION 46.11 70.92 85.52 67.52

Table 16: Results per class for the three-class urgency task of our best unimodal and multimodal models in the
English (first two lines) and French (last two lines) in the out-of-type experiments when only considering not
sudden crises in the test set.

Model
F-score per Crisis Type

Sudden crisis Not sudden crisis
Fire Collapse Hurricane Storm Flood

FLAUBERTFineTuned−3Tasks 38.36 45.36 60.87 50.98 54.34
FLAUBERTFineTuned−3Tasks + EARLY FUSION 37.19 46.69 62.18 54.19 55.48

Table 17: Results per crisis of our best unimodal and multimodal models in French for the multi-class humanitarian
task in the out-of-type experiments.

Model
F-score per Crisis Type

Sudden crisis Not sudden crisis
Fire Collapse Hurricane Flood

ROBERTA3Tasks 94.03 79.12 89.29 76.55
ROBERTA4Tasks + EARLY FUSION 93.26 79.83 90.02 77.13

Table 18: Results per crisis of our best unimodal and multimodal models in English for the three-class urgency task
in the out-of-type experiments
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