
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 14620–14642
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

CoT-ICL Lab: A Synthetic Framework for Studying
Chain-of-Thought Learning from In-Context Demonstrations

Vignesh Kothapalli1,2, Hamed Firooz2, Maziar Sanjabi2

1New York University, 2LinkedIn AI,
Correspondence: vk2115@nyu.edu

Abstract

We introduce CoT-ICL Lab, a framework
and methodology to generate synthetic to-
kenized datasets and systematically study
chain-of-thought (CoT) in-context learning
(ICL) in language models. CoT-ICL Lab al-
lows fine grained control over the complex-
ity of in-context examples by decoupling (1)
the causal structure involved in chain to-
ken generation from (2) the underlying to-
ken processing functions. We train decoder-
only transformers (up to 700M parameters)
on these datasets and show that CoT ac-
celerates the accuracy transition to higher
values across model sizes. In particular, we
find that model depth is crucial for leverag-
ing CoT with limited in-context examples,
while more examples help shallow models
match deeper model performance. Addi-
tionally, limiting the diversity of token pro-
cessing functions throughout training im-
proves causal structure learning via ICL. We
also interpret these transitions by analyz-
ing transformer embeddings and attention
maps. Overall, CoT-ICL Lab serves as a
simple yet powerful testbed for theoretical
and empirical insights into ICL and CoT in
language models1.

1 Introduction

Transformer-based language models (Vaswani et al.,
2017) have demonstrated remarkable capabilities in
tasks requiring emergent reasoning behaviors, such
as few-shot ICL (Brown et al., 2020; Firooz et al.,
2025) and CoT prompting (Wei et al., 2022; Nye
et al., 2021; Kojima et al., 2022). In-context learn-
ing refers to a phenomenon wherein language models
generalize to new tasks by conditioning on a small
number of input-output examples without explicit
parameter updates (Dong et al., 2022). Meanwhile,

1The code and documentation is available at:
https://github.com/kvignesh1420/cot-icl-lab

chain-of-thought prompting augments the input with
explicit intermediate reasoning steps that can guide
the model’s generative process toward more accu-
rate solutions (Wei et al., 2022). Despite the sub-
stantial performance gains witnessed in various nat-
ural language processing tasks (Kim et al., 2023), the
precise mechanisms and architectural factors driving
ICL and CoT remain only partially understood.

Recent studies have ventured into controlled syn-
thetic tasks to understand how transformers learn
in-context (Garg et al., 2022; Von Oswald et al.,
2023; Bai et al., 2023). These works often rely on
real-valued examples consisting of single-input and
single-output pairs, and study if the transformers
can learn linear or non-linear function classes. While
these tasks facilitate theoretical analysis, they leave
open the question of whether the findings readily ex-
tend to more complex or compositional settings, es-
pecially pertaining to discrete tokenized sequences.
In a parallel line of research, investigations of CoT
prompting for NLP tasks often rely on short, human-
annotated explanations or heuristics, thereby limit-
ing the variety and control of “reasoning” processes
considered (Wang et al., 2022; Liu et al., 2024; Yang
et al., 2024; Prabhakar et al., 2024). Although such
strategies have yielded valuable insights, there does
not exist a setup that unifies ICL and CoT and fa-
cilitates systematic probing of different aspects of
complexity—ranging from vocabulary size and chain
length (i.e, the number of tokens involved in the rea-
soning process) to the shape and sparsity of depen-
dencies between tokens.

In this work, we introduce CoT-ICL Lab, a tok-
enized synthetic dataset generation framework, that
is specifically designed for studying how transformer-
based models acquire chain-of-thought reasoning in-
context. Our framework differs from prior work in
the following ways:

1. Tokenized setup akin to language. Unlike
many purely numeric toy tasks, we consider in-
puts and chain tokens in a discrete token space
(i.e, a custom vocabulary V). This setup aligns
closely with natural language prompting and fa-

14620

mailto:vk2115@nyu.edu
https://github.com/kvignesh1420/cot-icl-lab

cilitates complexity control via vocabulary size.

2. Decoupled structure and token process-
ing functions. We represent the causal struc-
ture of the ‘reasoning’ chain via a directed
acyclic graph (DAG) and implement token pro-
cessing via arbitrary MLP transformations of
the corresponding ‘unknown’ data embeddings
Edata ∈ R|V|×d. This separation grants flex-
ibility in controlling problem difficulty —e.g.,
by manipulating chain length, number of edges
in the DAG, depth and activation functions in
MLPs and the dimension of data embeddings d.

3. Multi input-output ICL examples. A ma-
jority of the efforts which study ICL in trans-
former models rely on (real-valued) single input-
output examples in-context (Garg et al., 2022;
Bai et al., 2023; Li et al., 2023b). Our setup ad-
dresses these limitations and allows researchers
to use tokenized, multi-input multi-output ex-
amples in-context, which is closer to prac-
tice. To the best of our knowledge, this is the
first work to introduce and analyze transformer
models in such controlled settings.

4. Ablation-friendly design. By varying one
component at a time (vocabulary, number of
input or chain tokens per example, DAG con-
nectivity, MLP complexity, or the underlying
transformer architecture), researchers can pre-
cisely identify which facets of the problem most
challenge the model’s ICL and CoT capabilities.

Key Results. In addition to proposing the CoT-
ICL Lab framework, we showcase how it can be used
to gain insights into the abilities of decoder-only
transformer models in ICL with and without CoT.
Specifically:

• Transformer-models undergo phase transitions
in accuracy while training on ICL problems.
Such transitions are facilitated by model size,
availability of more examples in-context and
CoT prompting.

• We empirically show that the phase transition
correlates with the alignment between model’s
token embeddings and the data/language em-
beddings Edata. Furthermore, when utilizing a
finite set of token processing functions to gen-
erate the CoT-ICL Lab data, this reduction
in problem complexity facilitates the attention
maps of the model to capture the underlying
reasoning DAG and excel at ICL.

• In essence, we highlight an interplay between
the problem complexity induced due to diverse
token processing functions and the DAG struc-
ture. As DAG sparsity reduces and the number
of token processing functions increases, we ob-
served that larger models tend to adapt to such
diversity in ICL problems and leverage CoT to
outperform the smaller models. Thus, showcas-
ing the intricacies involved in scaling the model
size for ICL performance.

2 Related Work

In-Context Learning. Initially popularized by
GPT-3 (Brown et al., 2020), in-context learning has
garnered extensive attention for its surprising abil-
ity to generalize with just a few example prompts.
Many investigations center on how transformers
might implicitly perform gradient descent or imple-
ment other adaptation mechanisms in their hidden
activations (Garg et al., 2022; Akyürek et al., 2024;
Von Oswald et al., 2023; Bai et al., 2023). See (Dong
et al., 2022; Zhou et al., 2024) for surveys on the
topic. However, these analyses often assume real-
valued examples and very simple data distributions,
leaving room to explore richer compositional struc-
tures that can align with natural language tasks.

Chain-of-Thought. CoT prompting (Wei et al.,
2022; Nye et al., 2021; Kojima et al., 2022; Chu et al.,
2024) has emerged as an effective technique for elic-
iting more interpretable (and sometimes more ac-
curate) intermediate reasoning from large language
models. Despite empirical successes, debate persists
as to whether models truly learn a generalized rea-
soning algorithm or simply latch onto superficial fea-
tures (Wang et al., 2022). While some efforts (Liu
et al., 2024; Prabhakar et al., 2024) systematically
study CoT’s potential, they often rely on limited or
handcrafted tasks that do not fully capture the com-
plexity of multi-step compositional processes.

Synthetic Tasks for Controlled Model Anal-
ysis. Synthetic tasks provide controlled environ-
ments that enable precise interventions, ablation
studies, and theoretical insights into the model be-
havior and training dynamics (Garg et al., 2022;
Von Oswald et al., 2023; Bai et al., 2023). However,
existing synthetic settings generally remain numeric
and follow overly restrictive Markovian assumptions
(Edelman et al., 2024) (e.g., a single parent for
each token). Our proposed CoT-ICL Lab extends
these efforts by decoupling the causal structure from
token-processing functions. We leverage directed
acyclic graphs (DAGs) to control the branching fac-
tor in the chain generation, and MLPs for varied

14621

levels of token transformations. This design grants
extensive configurability, encompassing vocabulary
size, multi-input example length, chain length, DAG
sparsity, MLP depth, activations and more.

Chain-of-Thought & Compositional Reason-
ing. Recent studies focus on dissecting CoT to
assess how compositionality might emerge from
ICL. For instance, (Li et al., 2023b) examines how
CoT might be effectively disentangled into filter-
ing and learning the intermediate features of the
MLP components in the prompt. Furthermore,
our work can be treated as a generalization of the
MechanisticProbe approach by (Hou et al., 2023)
where the filtering and reasoning tree construction
process is not limited by the availability of natural
language datasets. While these and related efforts
(Yang et al., 2024; Prabhakar et al., 2024) represent
significant progress toward understanding emergent
reasoning, their experimental setups typically do not
offer the systematic and fine-grained complexity that
CoT-ICL Lab enables (see also Appendix F).

3 Preliminaries and Setup

Notation. Let {1, · · · ,K} = [K]. We consider a
vocabulary V to represent the tokens of a synthetic
language. Let F denote a class of functions that are
compositional in nature. Formally, a function f ∈ F
is composed of C sub-functions as: f = fC◦fC−1 · · ·◦
f1. Given N input tokens x = (x1, · · · , xN) ∈ VN ,
the function f recursively generates C chain tokens
y = (y1, · · · , yC) ∈ VC as follows:

yc = fc(x1, · · · , xN , y1, · · · , yc−1), ∀c ∈ [C]. (1)

Here y:C−1 = (y1, · · · , yC−1) are treated as the in-
termediate tokens and yC as the answer token. The
recursive process involves all the input and inter-
mediate tokens to generate the answer token and
presents a generalized setup to study CoT. The full
notation list is presented in Table 3.

3.1 Compositional Nature of F
Let G,H denote the causal structure and token pro-
cessing function classes respectively. In this work,
we consider the sub-functions involved in the com-
position of f = fC ◦ fC−1 · · · ◦ f1 to be formulated
as fc = hc ◦ gc, where gc ∈ G, hc ∈ H. Given in-
put tokens (x1, · · · , xN), the chain tokens in (1) are
decomposed into:

yc = fc (x1, · · · , xn, y1, · · · , yc−1)

= hc (gc(x1, · · · , xn, y1, · · · , yc−1)) ,∀c ∈ [C]
(2)

• The causal structure function class G. This
class represents functions which take an arbitrary
number of tokens and filter a fixed number of M ≤
N ∈ N tokens. These M parent tokens represent the
causal dependency of a chain token.

• The token processing function class H.
These functions process the M selected tokens from
G and output a single chain token. Thus, emulating
an arbitrary ground-truth ‘reasoning process’ which
the transformer models are trained to approximate.

3.2 Multi-Input ICL and CoT

Sequence design. We consider a generalized ICL
problem of learning f ∈ F with (multi) input-output
pairs in the token space. An example is defined as
a vector of N input tokens and the corresponding
answer token, as per (1). A collection of K ∈ N such
examples results in a sequence pK(f) as follows:

pK(f) =
(
x
(i)
1 , · · · , x(i)

N , y
(i)
C

)K

i=1
. (3)

By including the intermediate tokens in an example,
we obtain a CoT example, which is now a vector of
N input tokens, and all the C chain tokens. The
corresponding sequence pK

CoT (f) is given as follows:

pK
CoT (f) =

(
x
(i)
1 , · · · , x(i)

N , y
(i)
1 , · · · , y(i)C

)K

i=1
. (4)

4 CoT-ICL Lab: Data Generation

In this section, we present details about the synthetic
data generation using CoT-ICL Lab and draw par-
allels with NLP tasks.

Language vocabulary embedding. To create
synthetic training and evaluation datasets via the
CoT-ICL Lab framework, we consider a vocabulary
V of arbitrary size and associate with it a common
data embedding matrix Edata ∈ R|V|×d. Here d de-
notes the data embedding dimension and the entries
are sampled i.i.d from N (0, 1). In particular, Edata

will be leveraged by h ∈ H to process embeddings of
the tokens and return a new token (see Figure 1).

Causal structure via DAGs. G is selected to
be a class of topologically sorted DAGs whose (1)
edge connectivity represents the causality involved
in chain generation and (2) whose sparsity controls
the usage of input and intermediate tokens. For no-
tational simplicity, we represent DAGs in our setup
as G(M,N,C). We sample one DAG per sequence
and use it to create all (CoT-) examples within
the sequence. For instance, given input tokens
x1, x2, x3, x4 and chain tokens y1, y2, y3, we illus-
trate in Figure 1 a DAG which maps y1 ← {x1, x2},

14622

Figure 1: CoT-ICL Lab overview (right) and comparison to CoT ICL in NLP (left). The left figure illustrates
2 CoT examples (colored green and blue) presented in-context along with a question (colored in orange). A
corresponding scenario using CoT-ICL Lab is presented on the right where we model the causal structure
via the DAG g ∈ G and process the data embeddings Edata using the token processor function h ∈ H.

y2 ← {x3, x4} and y3 ← {y1, y2}. The possible
structures that can be sampled using a particular
choice of M,N,C controls the diversity of causal
structures in our dataset of sequences.

Token processing via MLPs. The function
class H is selected to be MLPs whose complex-
ity is controlled by the activation ϕ such as ReLU,

SiLU, LeakyReLU, Identity, and the depth l ∈
{1, 2, 3, 4, 5}. To generate a single chain token, we
randomly initialize an MLP based on l, ϕ and use it
to process the embeddings of the M parent tokens.
We take the mean of the M final layer features, ap-
ply the activation function again and multiply with
E⊤

data to obtain a chain token via arg-max. For no-
tational simplicity, we represent MLPs of depth l
and activation ϕ as H(l, ϕ) (see algorithm in Ap-
pendix A.1). Thus, we sample C MLPs per sequence
(one for each chain token) and use them to generate
the chain tokens of all K examples within the se-
quence. In essence, these token processing functions
are shared across the ICL examples in each sequence
but differ across sequences. We present comprehen-
sive details about the (1) distribution of tokens, and
(2) the flexibility of our setup in terms of simulating
the complexity of real world datasets in Appendix A.

5 Model Training and Evaluation

Training. We employ NLP style next-token pre-
diction training of decoder only transformer (TF)

models (Radford et al.) with Cross-Entropy (CE)
loss. We employ the supervised fine-tuning strategy
to compute the CE loss only on the K answer tokens
for pK and on all the K × C chain tokens for pK

CoT

(Garg et al., 2022; Bai et al., 2023; Li et al., 2023b).

Evaluation via accuracy. To measure the ICL
ability of a TF model, we measure the accuracy

of predicting the answer token of the query (final)
example. Formally, we generate the evaluation se-
quence prefix withK−1 in-context examples and ap-
pend the query input tokens x̃ = (x̃1, · · · , x̃N) ∈ VN

at the end. For the query input x̃, the ground truth
chain tokens ỹ = (ỹ1, · · · , ỹC) ∈ VC are generated
by the recursive formulation given in (1) using a test
function f̃ ∈ F . Note that there is a difference in
model predictions w/ and w/o CoT as follows:

ŷpred := TF
(
pK−1(f̃), x̃

)
w/o CoT,

ŷpred := TF◦C
(
pK−1
CoT (f̃), x̃

)
w/ CoT.

(5)

Here TF◦C(·) represents the C-step auto-regressive
greedy token generation by the model (without any
teacher-forcing) as follows (Li et al., 2023b):

ŷC = TF


pK−1

CoT (f̃), x̃, ŷ1, · · · , ŷC−1︸ ︷︷ ︸
previous step outputs


 . (6)

14623

Intuitively, when using CoT sequences, we allow the
model to generate C − 1 intermediate tokens, fol-
lowed by the final token ŷpred = ŷC . Given an eval-

uation dataset of T̃ sequences, the accuracy is for-

mulated as accuracy = 1

T̃

∑T̃
t=1 Iŷpred=ỹC

.

On intermediate tokens. Since we have access
to all the ground truth chain tokens using f̃ , we
measure the accuracy of predicting them based on
ŷc,∀c ∈ [C]. In fact, in Section 6.2, we show a grad-
ual error propagation phenomenon which results in
higher accuracy values on tokens at the beginning
of the chain and lower accuracy at the end.

Models. We create three models TF-4, TF-8,

TF-12 with varying depth based on the Llama-3 ar-
chitecture (Dubey et al., 2024) for our experiments
(see Table 1). We ensure that depth is the only vary-
ing design factor in the architecture to facilitate a
systematic study of the model performance.

Learning the ‘unknown’ embeddings Edata.
Recall that the fixed embedding matrix Edata ∈
R|V|×d that was used to generate the training se-
quences is unknown to the TFmodels. To understand
the effect of training on the learnable embeddings
ETF of the TF models, we measure the subspace sim-
ilarity between the left singular bases of Edata and
ETF (Zhu and Knyazev, 2013). Let d < |V| and de-
note SVD of Edata and ETF as follows to obtain:

UdataSdataV
⊤
data = Edata; UTFSTFV

⊤
TF = ETF

sim(Edata,ETF) :=
1

d
·
∥∥U⊤

data[: d]UTF[: d]
∥∥
F
.

(7)

Here sim(·, ·) allows us to measure how well the sub-
spaces of Edata,ETF are aligned, and a higher value
indicates that the TF model is learning the token
space of the target language embeddings.

Experimental setup. To present our empirical
findings based on training TF models on CoT-ICL
Lab, we use the following common parameters to cre-
ate our datasets. We create a training dataset of size
T = 32×105, evaluation dataset of size T̃ = 104 and
use d = 10 along with H(1, LeakyReLU). In par-
ticular, as also mentioned in Section 4, we do not
put limitations on the cardinality of G,H. See Ap-
pendix B for details on the hardware, training re-
sources and hyper-parameters used for experiments.

6 Results

6.1 Effect of Vocabulary Size |V|
As shown in Figure 1, our setup aims to mimic ICL
and CoT problems in NLP. However, our synthetic
language setup does not have the same priors and

rules as tokens in natural language. In this section
we test if such a problem is learnable to non-trivial
levels of accuracy by TF models that only observe
patterns in the ICL examples. We vary the size of
the vocabulary as per |V| = {64, 128, 256, 512, 1024}
along with N = 4,M = 4, C = 2,K = {30, 40} and
show that the TF models achieve non-trivial perfor-
mance. To the best of our knowledge no prior work
has done experiments with synthetic datasets of this
vocabulary and model size (see Table 2).

Smaller models fail to leverage CoT for ICL
with larger vocabularies. When K = 30, ob-
serve from Figure 2 that towards the end of training,
the evaluation accuracy for |V| = {64, 128}, is al-
most the same for CoT and non-CoT cases across
all the three models. However, notice that CoT
based ICL results in higher evaluation accuracy af-
ter training on relatively less number of sequences
than the non-CoT approach, i.e CoT results in
faster transitions in performance. More impor-
tantly, the benefits of CoT are prominent in TF-4
when |V| = 256 (see Figure 2a). In this case, CoT
based ICL results in a sudden jump in accuracy

after training on ≈ 8 × 105 sequences, but the non-
CoT approach fails to exhibit such behavior even
towards the end of training. The same observation
can be made for TF-8 (Figure 2b), TF-12 (Figure 2c).
Nonetheless, the benefits of model depth are evi-
dent when |V| = {512, 1024} as TF-4 fails to leverage
CoT with such large vocabularies whereas TF-8, TF-
12 clearly show the jumps towards higher accuracy
(see Figure 2a vs Figure 2b, Figure 2c).

More ICL examples facilitate smaller models
to leverage CoT. By increasingK to 40, we make
an interesting observation that even a smaller TF-4
model can perform on-par with larger TF-8, TF-12
models in the difficult setting of |V| = {512, 1024}
(see Figure 3). However, the role of model size comes
into play when considering standard non-CoT exam-
ples where TF-12 gradually improves with |V| = 256
while TF-4, TF-8 show a saturated curve (see blue
dotted line in Figure 3c vs Figure 3a, Figure 3b).
See Appendix C.3 for experiments with smaller K
and Appendix C.4 for experiments with training on
3× larger datasets, which highlight the role of model
size for achieving better accuracy.

Embedding subspace similarity correlates
with transitions in evaluation accuracy. Re-
call that we employ a common Edata to prepare our
training and evaluation sequences. We noticed that
sim(Edata,ETF) serves as a useful metric to poten-
tially explain the TF-4 models earlier transition to

14624

(a) TF-4 (b) TF-8 (c) TF-12

Figure 2: accuracy by varying V with G(M = 4, N = 4, C = 2),H(1, LeakyRelu), d = 10,K = 30.

(a) TF-4 (b) TF-8 (c) TF-12

Figure 3: accuracy by varying V with G(M = 4, N = 4, C = 2),H(1, LeakyRelu), d = 10,K = 40.

(a) TF-4 (b) TF-8 (c) TF-12

Figure 4: sim(Edata,ETF) by varying V with G(M = 4, N = 4, C = 2),H(1, LeakyRelu), d = 10,K = 40.

a higer evaluation accuracy with |V| = 1024, when
compared to |V| = 512 in Figure 3a. From Figure 4a,
notice that sim(Edata,ETF) transitions to a higher
value after ≈ 23×105 steps, which exactly coincides
with the transition point in Figure 3a. Similarly, the
delay in alignment with |V| = 512 in Figure 4a is in-
dicative of a delay in the evaluation accuracy tran-
sition in Figure 3a. This is an interesting and unique
aspect of CoT-ICL Lab that allows us to interpret
and understand how the models learn relationships
between the concepts in the synthetic language.

6.2 Effect of Chain Length (C)

The number of intermediate steps involved in the
reasoning process is typically indicative of the com-
plexity of NLP tasks. Its counterpart in our CoT-
ICL Lab is the chain length C. By choosing |V| =
1024, N = 4,M = 4 and varying C = {3, 4, 5}, we

examine and show that longer chains result in harder
problems that the models without CoT would not be
able to solve effectively (Figure 5).

Longer chains result in lower accuracy across
all model sizes. As the chain length increases,
we can observe from Figure 5 that the evaluation
accuracy is consistently lower for all models. Since
the number of possibilities for the parents of the last
chain token increases with C, we hypothesize that
the models fail to adapt to such increased difficulty.
This is indeed what we observe in Figure 6 where the
accuracy consistently goes down for tokens towards
the end of the chain across all model sizes.

6.3 Effect of Number of Parent Tokens (M)

The dependency between tokens in NLP tasks is a
variable that is usually not controllable (see Fig-

14625

(a) TF-4 (b) TF-8 (c) TF-12

Figure 5: accuracy by varying C with G(N = 4,M = 4),H(1, LeakyRelu), d = 10, |V| = 1024,K = 40.

(a) TF-4 (b) TF-8 (c) TF-12

Figure 6: accuracy of predicting all the chain tokens (of the query CoT example in the evaluation sequences)
with G(N = 4,M = 4, C = 5),H(1, LeakyRelu), d = 10, |V| = 1024,K = 40.

ure 1). But in CoT-ICL Lab it can be controlled
via M . By choosing |V| = 1024, N = 4, C = 4 and
varying M = {1, 2, 3}, we observe that larger M
(i.e dependency on more prior tokens) can make the
problem harder for the models (see Figure 7).

Large models outperform small ones when
DAGs are sparse. When M = 1, we make an
interesting observation that TF-8 (Figure 7b), TF-12
(Figure 7c) models exploit CoT towards the end of
training to significantly outperform the TF-4 model
(Figure 7a). This shows an interesting difference in
the training dynamics of deeper models, which could
be an interesting research question for future works.

6.4 Ablations with G and H
Our CoT-ICL Lab datasets, in their most general
form, i.e. no restrictions on the cardinality of G and
H, are quite difficult for the models to solve (based
on the low evaluation accuracy observed in prior
sections). Owing to the flexibility of our setup, we
decouple the effect of G and H to better understand
the source of difficulty for the ICL problems.

• Fixed DAG structure. We follow the same
setup as Section 6.3 and sample different token pro-
cessing MLPs but choose a fixed random DAG for
all the training and validation sequences.

• Fixed token processors. Contrary to the
above case, we sample random DAGs for different
sequences but choose C fixed MLPs, one per chain
location, as our token processors for all sequences.

By comparing Figure 8a, for fixed DAG, and Fig-
ure 8b for fixed token processors, we can observe
that the models reach higher accuracies in the
fixed token processor setting. This points to
the possibility that the dense transformer models we
consider here can identify the causal structure of the
chain generation process with ease. We verify this by
analyzing the attention map of the models trained in
the fixed token processor setting (explained below).
Furthermore, this gives us another lever to adjust
the difficulty of synthetic datasets in CoT-ICL Lab,
i.e adjusting the number of possible token processors
(from infinite in the general case to a finite set). See
Appendix C.5 for experiments with TF-8 and TF-12.

6.4.1 Attention Maps reflect the DAG

We consider models trained in the fixed token pro-
cessor setting and analyze the attention map A av-
eraged across all the heads Ah, h ∈ [H] of the last

layer. Formally A := 1
H

∑H
h=1 Ah. We plot such A

for the last two examples of a single validation se-
quence in Figure 9a for M = 1. Notice that most
of the attention scores are almost zero and the ones
with large values correspond to the parent tokens

14626

(a) TF-4 (b) TF-8 (c) TF-12

Figure 7: accuracy by varying M with G(N = 4, C = 4),H(1, LeakyReLU), d = 10, |V| = 1024,K = 40.

(a) TF-4 (Fixed DAG) (b) TF-4 (Fixed 4 MLPs) (c) TF-4 (Fixed 40 MLPs)

Figure 8: Ablation experiments with fixed DAG (a) and Fixed MLPs (b, c) for the TF-4 model by measuring
accuracy with varying M and G(N = 4, C = 4),H(1, LeakyRelu), d = 10, |V| = 1024,K = 40.

(a) Average attention map A (b) Precision during training

Figure 9: (Left) Mean attention matrix (last 16 rows and columns) of all heads for the final layer of a
trained TF-4 model. The highlighted regions show that the model is attending to the correct parent tokens
y1 ← {x4}, y2 ← {x1}, y3 ← {y1}, y4 ← {y2} to generate the chain tokens. (Right) Precision in detecting
the parent tokens using average attention map A of a trained TF-4 model.

of each chain token, i.e. it matches the underlying
DAG structure for this sequence. See Appendix D
for illustrations with M = 2, 3.

Quantitative measurement via Precision. To
quantify the attention map analysis to diverse set-
tings, we calculate the Precision of identifying the
parent tokens which are needed to generate the final
answer token in the evaluation sequences. Let us as-
sume that G is the set of ground truth parent tokens

to formulate Precision as follows:

Aquery := A[−1,−(N + C − 1) :]

G̃ := argsort(Aquery)[−M :]

Precision :=

∑
i∈G̃ I(i ∈ G)

M
.

(8)

Figure 9b shows that as the model accuracy rises
in this setting, the Precision of detecting the right
DAG structure increases as well. It is worth noting
that we repeated such an analysis for datasets with

14627

infinitely possible token processors but could not find
such patterns. We believe that formalizing advanced
tools for understanding how/if models detect causal
structures is an important research area.

6.4.2 On Finite Token Processors

So far, we have considered the extreme cases of sam-
pling from infinite token processors for every se-
quence or sample once and keep them fixed for all
the sequences. Next, we show that by controlling
the diversity of sequences by using a fixed collection
(40 in this case, i.e 10 tuples of C = 4 MLPs.) of
token processors to choose from and generate the se-
quences, the TF models require relatively more train-
ing sequences, compared to the fixed token proces-
sor setting above, to transition to higher accuracies
(see Figure 8c). Intuitively, the final accuracy of the
model for this setting is higher than the infinite to-
ken processor case (Figure 7a) and lower than the
fixed token processor case (Figure 8b).

7 Connection to NLP

Tokenized prompts associated with NLP tasks are
grounded in real-world knowledge. But due to the
unknown causal structure of the underlying data
it is hard to do controlled experiments with these
datasets. On the other hand, although the se-
quences in CoT-ICL Lab are not associated with any
grounded semantic information, we observed that
models that are pre-trained on NLP learn CoT-ICL
Lab tasks better and faster. Moreover, when examin-
ing the NLP models’ attention maps, while perform-
ing reasoning on math tasks, we see sparse patterns
in attentions between tokens (Appendix E). This
motivates the design choice of using sparse causal
structures in CoT-ICL Lab.

7.1 Training NLP Pre-Trained Models on
CoT-ICL Lab

Setup. We consider the open-source pre-trained
Llama-3.2-1B-Instruct model (from Hugging-
Face) and its random weight counterpart. The
model.resize token embeddings() API is used to
restrict the vocabulary size to 1024 for both models.
The models are then trained on our synthetic CoT-
ICL Lab dataset using the same experimental setup
as in Section 6.1 with G(M = 4, N = 4, C =
2),H(1, LeakyRelu), d = 10,K = 40 and |V| = 1024.
Note that the vocabulary V and the data embed-
dings Edata used in the CoT-ICL Lab does not have
any connection to the initial embeddings of the pre-
trained model.

NLP pre-trained models transition faster
than random counterparts. As shown in Fig-

Figure 10: accuracy of pre-trained and random init
Llama-3.2-1B-Instruct on CoT-ICL Lab .

ure 10 the pre-trained model transitions to a higher
accuracy in the early phases of training with CoT
sequences. On the contrary the random model
exhibits such a transition after being trained on
≈ 13 × 105 sequences with CoT. Towards the end
of training, the pre-trained model has an overall
accuracy of 0.25, compared to 0.22 for the ran-
domly initialized model. In the non-CoT training
case, the pre-trained model has a final accuracy of
0.25 and clearly outperforms the random counter-
part (which has an accuracy of 0.08). Note that the
randomly initialized model does not exhibit a tran-
sition throughout training with non-CoT sequences.
These results highlight that the pre-trained model
has both higher accuracy w/ and w/o CoT and ex-
hibits faster transition/improvement during train-
ing on CoT-ICL Lab data (with the difference be-
ing significant when CoT is disabled). Thus, hinting
at a much deeper and interesting connection/sim-
ilarity between the patterns that the Llama model
learnt from natural language and the ones it is being
trained and evaluated on in the synthetic setup.

8 Conclusion

In this paper, we introduced CoT-ICL Lab, a frame-
work to generate synthetic Chain-of-Thought se-
quences and systematically study the role of CoT
for In-Context Learning tasks. We used the flex-
ibility and controllability of this framework to (1)
generate synthetic multi input-output ICL datasets,
(2) design controlled experiments to gain better in-
sights into the role of CoT for ICL and (3) interpret
the model behavior via embeddings and attention
map analysis. We believe these insights, and many
more that could be extracted by experimenting with
CoT-ICL Lab, would play a crucial role in better un-
derstanding CoT for ICL in NLP, which is of utmost
importance for the success of large language models.

14628

9 Limitations

While CoT-ICL Lab is designed to closely mirror the
chain-of-thought process in in-context learning for
NLP, we acknowledge that its synthetic nature does
not fully capture the linguistic properties of natural
language. Specifically, CoT-ICL Lab tokens are not
grounded in real-world concepts and therefore do not
inherently align with the priors that govern natural
language tokens. Consequently, researchers utilizing
CoT-ICL Lab for experimentation should carefully
weigh its advantages—such as flexibility and con-
trollability—against its limitations, particularly its
synthetic nature, and consider the potential impact
on their results.

Acknowledgments

The authors would like to thank the anonymous re-
viewers for providing constructive feedback and im-
proving our work.

References

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand,
and Suvrit Sra. 2023. Transformers learn to im-
plement preconditioned gradient descent for in-
context learning. Advances in Neural Information
Processing Systems, 36:45614–45650.

Ekin Akyürek, Bailin Wang, Yoon Kim, and Jacob
Andreas. 2024. In-context language learning: Ar-
chitectures and algorithms. In Forty-first Interna-
tional Conference on Machine Learning.

Jeff Alstott, Ed Bullmore, and Dietmar Plenz. 2014.
powerlaw: a python package for analysis of heavy-
tailed distributions. PloS one, 9(1):e85777.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong,
and Song Mei. 2023. Transformers as statisticians:
Provable in-context learning with in-context algo-
rithm selection. In Thirty-seventh Conference on
Neural Information Processing Systems.

Alberto Bietti, Vivien Cabannes, Diane Boucha-
court, Herve Jegou, and Leon Bottou. 2023. Birth
of a transformer: A memory viewpoint. In Thirty-
seventh Conference on Neural Information Pro-
cessing Systems.

Tom B Brown, Benjamin Mann, Nick Ryder,
Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. 2020. Language
models are few-shot learners. Advances in Neural
Information Processing Systems, 33:1877–1901.

Zheng Chu, Jingchang Chen, Qianglong Chen, Wei-
jiang Yu, Tao He, Haotian Wang, Weihua Peng,
Ming Liu, Bing Qin, and Ting Liu. 2024. Navi-
gate through enigmatic labyrinth a survey of chain
of thought reasoning: Advances, frontiers and fu-
ture. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1173–1203.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming
Ma, Zhifang Sui, and Furu Wei. 2023. Why can
gpt learn in-context? language models secretly
perform gradient descent as meta-optimizers. In
Findings of the Association for Computational
Linguistics: ACL 2023, pages 4005–4019.

Gilad Deutch, Nadav Magar, Tomer Natan, and Guy
Dar. 2024. In-context learning and gradient de-
scent revisited. In Proceedings of the 2024 Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers),
pages 1017–1028.

Li Dong et al. 2022. A survey on in-context learning.
arXiv preprint arXiv:2301.00234.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav
Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten,
Amy Yang, Angela Fan, et al. 2024. The llama 3
herd of models. arXiv preprint arXiv:2407.21783.

Ezra Edelman, Nikolaos Tsilivis, Benjamin L. Edel-
man, eran malach, and Surbhi Goel. 2024. The
evolution of statistical induction heads: In-context
learning markov chains. In The Thirty-eighth An-
nual Conference on Neural Information Process-
ing Systems.

Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian
Ye, Di He, and Liwei Wang. 2023. Towards re-
vealing the mystery behind chain of thought: a
theoretical perspective. In Proceedings of the 37th
International Conference on Neural Information
Processing Systems, pages 70757–70798.

Hamed Firooz, Maziar Sanjabi, Adrian Englhardt,
Aman Gupta, Ben Levine, Dre Olgiati, Gun-
gor Polatkan, Iuliia Melnychuk, Karthik Ram-
gopal, Kirill Talanine, et al. 2025. 360brew:
A decoder-only foundation model for personal-
ized ranking and recommendation. arXiv preprint
arXiv:2501.16450.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and
Gregory Valiant. 2022. What can transformers
learn in-context? a case study of simple function
classes. Advances in Neural Information Process-
ing Systems, 35:30583–30598.

14629

Tianyu Guo, Wei Hu, Song Mei, Huan Wang, Caim-
ing Xiong, Silvio Savarese, and Yu Bai. 2024. How
do transformers learn in-context beyond simple
functions? a case study on learning with represen-
tations. In The Twelfth International Conference
on Learning Representations.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. 2021. Measuring massive multitask
language understanding. In International Confer-
ence on Learning Representations.

Yifan Hou, Jiaoda Li, Yu Fei, Alessandro Stolfo,
Wangchunshu Zhou, Guangtao Zeng, Antoine
Bosselut, and Mrinmaya Sachan. 2023. Towards a
mechanistic interpretation of multi-step reasoning
capabilities of language models. In Proceedings
of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 4902–4919.

Pin-Lun Hsu, Yun Dai, Vignesh Kothapalli,
Qingquan Song, Shao Tang, Siyu Zhu, Steven
Shimizu, Shivam Sahni, Haowen Ning, and Yan-
ning Chen. 2024. Liger kernel: Efficient tri-
ton kernels for llm training. arXiv preprint
arXiv:2410.10989.

Seungone Kim, Se June Joo, Doyoung Kim, Joel
Jang, Seonghyeon Ye, Jamin Shin, and Minjoon
Seo. 2023. The cot collection: Improving zero-
shot and few-shot learning of language models via
chain-of-thought fine-tuning. In The 2023 Confer-
ence on Empirical Methods in Natural Language
Processing.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid,
Yutaka Matsuo, and Yusuke Iwasawa. 2022. Large
language models are zero-shot reasoners. arXiv
preprint arXiv:2205.11916.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Ef-
ficient memory management for large language
model serving with pagedattention. In Proceed-
ings of the 29th Symposium on Operating Systems
Principles, pages 611–626.

Yingcong Li, Muhammed Emrullah Ildiz, Dimitris
Papailiopoulos, and Samet Oymak. 2023a. Trans-
formers as algorithms: Generalization and stabil-
ity in in-context learning. In International Con-
ference on Machine Learning, pages 19565–19594.
PMLR.

Yingcong Li, Kartik Sreenivasan, Angeliki Gian-
nou, Dimitris Papailiopoulos, and Samet Oymak.
2023b. Dissecting chain-of-thought: Composition-
ality through in-context filtering and learning. In
Thirty-seventh Conference on Neural Information
Processing Systems.

Manqing Liu, David R Bellamy, and Andrew L
Beam. 2024. Dag-aware transformer for causal ef-
fect estimation. arXiv preprint arXiv:2410.10044.

William Merrill and Ashish Sabharwal. 2024. The
expressive power of transformers with chain of
thought. In The Twelfth International Conference
on Learning Representations.

Eshaan Nichani, Alex Damian, and Jason D. Lee.
2024. How transformers learn causal structure
with gradient descent. In Forty-first International
Conference on Machine Learning.

Max Nye, Anders Johan Andreassen, David A Abo-
lafia, François Chollet, and Geoffrey Irving. 2021.
Show Your Work: Scratchpads for intermediate
computation. arXiv preprint arXiv:2112.00114.

Kazusato Oko, Yujin Song, Taiji Suzuki, and
Denny Wu. 2024. Pretrained transformer effi-
ciently learns low-dimensional target functions in-
context. In The Thirty-eighth Annual Conference
on Neural Information Processing Systems.

Catherine Olsson, Nelson Elhage, Neel Nanda,
Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna
Chen, et al. 2022. In-context learning and induc-
tion heads. arXiv preprint arXiv:2209.11895.

Madhur Panwar, Kabir Ahuja, and Navin Goyal.
2024. In-context learning through the bayesian
prism. In The Twelfth International Conference
on Learning Representations.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances
in neural information processing systems, 32.

Akshara Prabhakar, Thomas L Griffiths, and
R Thomas McCoy. 2024. Deciphering the factors
influencing the efficacy of chain-of-thought: Prob-
ability, memorization, and noisy reasoning. arXiv
preprint arXiv:2407.01687.

Ben Prystawski, Michael Y Li, and Noah D Good-
man. 2023. Why think step by step? reason-
ing emerges from the locality of experience. In
Proceedings of the 37th International Conference
on Neural Information Processing Systems, pages
70926–70947.

Alec Radford, Karthik Narasimhan, Tim Salimans,
and Ilya Sutskever. Improving language under-
standing by generative pre-training.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,

14630

Lukasz Kaiser, and Illia Polosukhin. 2017. Atten-
tion is all you need. In Neural Information Pro-
cessing Systems.

Johannes Von Oswald, Eyvind Niklasson, Ettore
Randazzo, João Sacramento, Alexander Mordv-
intsev, Andrey Zhmoginov, and Max Vladymyrov.
2023. Transformers learn in-context by gradient
descent. In International Conference on Machine
Learning, pages 35151–35174. PMLR.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc
Le, Ed Chi, and Denny Zhou. 2022. Rationale-
augmented ensembles in language models. arXiv
preprint arXiv:2207.00747.

Jason Wei, Yi Tay, Mark Davies, et al. 2022.
Chain-of-thought prompting elicits reasoning
in large language models. arXiv preprint
arXiv:2201.11903.

Sang Michael Xie, Aditi Raghunathan, Percy Liang,
and Tengyu Ma. 2022. An explanation of in-
context learning as implicit bayesian inference. In
International Conference on Learning Representa-
tions.

Chenxiao Yang, Zhiyuan Li, and David Wipf. 2024.
An in-context learning theoretic analysis of chain-
of-thought. In ICML 2024 Workshop on In-
Context Learning.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie,
Chuyue Sun, Jeff Huang, Cody Hao Yu, Shiyi
Cao, Christos Kozyrakis, Ion Stoica, Joseph E.
Gonzalez, Clark Barrett, and Ying Sheng. 2024.
SGLang: Efficient execution of structured lan-
guage model programs. In The Thirty-eighth An-
nual Conference on Neural Information Process-
ing Systems.

Yuxiang Zhou, Jiazheng Li, Yanzheng Xiang, Hanqi
Yan, Lin Gui, and Yulan He. 2024. The mystery
of in-context learning: A comprehensive survey on
interpretation and analysis. In Proceedings of the
2024 Conference on Empirical Methods in Natural
Language Processing, pages 14365–14378.

Peizhen Zhu and Andrew V Knyazev. 2013. Angles
between subspaces and their tangents. Journal of
Numerical Mathematics, 21(4):325–340.

14631

A Real World CoT Datasets and
CoT-ICL Lab

In this section, we provide additional comprehensive
details about the CoT-ICL Lab setup and draw par-
allels with real world NLP CoT datasets.

A.1 Algorithm for Token Processing

Algorithm 1 formalizes the token processing via
H(l, ϕ) by utilizing the corresponding data embed-
ding matrix Edata and generating a single chain to-
ken. Formally, given a token embedding e ∈ Rd, the
output of the MLP h ∈ H(l, ϕ) is formulated as:

h(e) = WL (ϕ (WL−1(· · ·ϕ (W1 (e))))) . (9)

Here Wl ∈ Rd×d,∀l ∈ [L] denote the linear layers
whose width is kept constant (d) across layers, and
whose entries are sampled from N (0, 1). The useful-
ness of CoT-ICL Lab lies in its flexibility to modify
Algorithm 1. For instance:

1. Future efforts can explore non-random Edata

and also modify Step 3 to employ more com-
plex function classes beyond just MLPs.

2. One can also explore feature aggregation tech-
niques (Step 5-6) when scaling to (|V| > 1024).

Algorithm 1 Generate a single chain token yc

Require: M parent token embeddings {eidata}Mi=1

from the data embedding matrix Edata ∈ R|V|×d,
choices of depth l and activation functions ϕ,

1: Initialize MLP hc ∈ H(l, ϕ)
2: for i = 1 to M do
3: hi ← hc(e

i
data) {Process parent embedding}

4: end for
5: hmean ← 1

M

∑M
i=1 h

i {Mean of features}
6: hact ← ϕ(hmean) {Apply activation}
7: yc ← argmax(Edatahact) {Get chain token}
8: return yc

A.2 Synthetic Datasets and Token
Distributions

To create synthetic training and evaluation sequence
datasets via the CoT-ICL Lab framework, we con-
sider a vocabulary V of arbitrary size and the data
embedding matrix Edata ∈ R|V|×d. To create a
single sequence, we randomly sample a DAG from
G(M,N,C) and sample C MLPs from H(l, ϕ). The
N input tokens per example are sampled uniformly
from V and are then used to generate the C chain
tokens using (2). Note that gc(.) corresponds to the

M edges of the DAG that map the parent tokens to
the chain token (i.e, the filtering function) and hc(.)
corresponds to the token processing function via a
MLP (as per Algorithm 1). Creating K such (CoT)-
examples gives us a sequence and creating T such
sequences gives us the desired synthetic dataset.

(a) d = 10 (b) d = 20

(c) d = 30 (d) d = 40

Figure 11: Token distribution from 10, 000 CoT se-
quences with |V| = 64,K = 40,H(1, LeakyReLU) and
G(M = 4, N = 4, C = 2).

(a) ReLU (b) SiLU

(c) LeakyReLU (d) Identity

Figure 12: Complementary cumulative distribution
plots of the chain token distribution, it’s corre-
sponding power-law and log-normal fits. We sam-
ple 10, 000 CoT sequences with |V| = 64, d =
40,H(1, ϕ),G(M = 4, N = 4, C = 2),K = 40.

14632

A.3 Token Distribution Fits

To understand the distribution of to-
kens in our synthetic datasets, we sample
10, 000 CoT sequences with |V| = 64, d =
{10, 20, 30, 40},H(1, LeakyReLU), N = 4,M =
4, C = 2,K = 40 and plot the distribution of input
tokens and chain tokens in Figure 11. Observe that
the distribution of chain tokens in the sequences
exhibit a decay that depends on d. By utilizing
the powerlaw python package (Alstott et al., 2014)
to fit power-law and log-normal distributions to
the chain tokens frequencies, we quantify that the
distribution is more likely to be log-normal. See
Figure 12 for the d = 40 case with varying ϕ.

To quantify the impact of varying factors (such as
V, d, l, ϕ), we measure the TokenCoverage over all
chain tokens in the dataset as follows:

Definition A.1. The TokenCoverage ∈ [0, 1] of
a dataset represents the ratio of number of unique
chain tokens to the number of unique tokens present
in the entire dataset.

Remark. We emphasize that TokenCoverage acts
only as a first-order explanation of uniqueness in the
entire collection of chain tokens and does not account
for the unique CoT examples in the dataset.

(a) ReLU (b) SiLU

(c) LeakyReLU (d) Identity

Figure 13: Measuring TokenCoverage of T = 10, 000
CoT sequences with G(M = 4, N = 4, C = 2),K =
40, |V| = 1024, d = {10, 20, 30, 40} and H(l, ϕ), l =
{1, 2, 3, 4, 5} with varying ϕ.

A.4 TokenCoverage by MLP depth l

To illustrate the role of depth l of the MLPs in gen-
erating the chain tokens, we sample T = 10, 000
CoT sequences with |V| = 1024, d = {10, 20, 30, 40}

(a) |V| = 64 (b) |V| = 1024

Figure 14: TokenCoverage of 10, 000 CoT sequences
with K = 40,H(1, ϕ) and G(M = 4, N = 4, C = 2).

Figure 15: Measuring TokenCoverage of all the 216
task datasets from the CoT-Collection corpus using
the Llama-3.1 Tokenizer with a vocab size of 128256.

and H(l, ϕ). We choose l = {1, 2, 3, 4, 5} and ϕ =
{ReLU, SiLU, LeakyReLU, Identity}. Each CoT
sequence uses N = 4,M = 4, C = 2,K = 40. Fig-
ure 13 illustrates that ReLU, LeakyReLU, Identity

functions have approximately the same token cover-
age for varying l. However, SiLU tends to exhibit
lower TokenCoverage for larger l values.

A.5 TokenCoverage by MLP Activation ϕ.

We vary ϕ = {ReLU, SiLU, LeakyReLU, Identity}
and plot the TokenCoverage for a similar dataset
with T = 10, 000 CoT sequences in Figure 14. A
key takeaway is that ReLU and SiLU lead to highly
skewed chain token distributions with relatively
smaller TokenCoverage for any given dimension d.
Nonetheless, all ϕ exhibit an increasing trend for
larger values of d.

A.6 TokenCoverage in the CoT-Collection
NLP Dataset

To further show that our setup is flexible enough
to resemble realistic NLP scenarios in token distri-
bution, we analyze CoT sequences from the CoT-
Collection dataset (Kim et al., 2023) which collates

14633

Model Layers Attention Heads Hidden Size Intermediate Size Params
TF-4 4 32 2048 8192 243, 288, 064
TF-8 8 32 2048 8192 486, 574, 080
TF-12 12 32 2048 8192 729, 860, 096

Table 1: Model Card: A naming convention for the TF models along with their number of layers, attention
heads, hidden size, and intermediate size. The parameter count excludes the Embedding layer weights.

(a) TF-4 (b) TF-8 (c) TF-12

Figure 16: accuracy by varying ϕ in H(1, ϕ) with G(M = 4, N = 4, C = 2), d = 10, |V| = 64,K = 40.

≈ 1.8 million NLP prompts from a diverse pool of
216 tasks. We analyze the TokenCoverage by tok-
enizing the reasoning text of the NLP prompts per-
taining to each task with the Llama-3.1 tokenizer
(|V| = 128256). From Figure 15, notice that the
tasks span a wide range of the TokenCoverage val-
ues with the lowest being< 0.2 and the highest being
1. From the above analysis of simulating chains via
different configurations of H, d, we can notice that
our setup is flexible enough to replicate the com-
plexity of real-world datasets (in terms of input and
chain lengths) and offer flexibility of simulating even
complex datasets which might not be easy to curate.

B Hardware and Hyper-Parameters
for Training and Evaluation

We use the DistributedDataParallel APIs in Py-
Torch (Paszke et al., 2019) to run each training job
on 4 H100 NVIDIA GPUs. Furthermore, since our
modeling code leverages HuggingFace APIs, we also
employ Liger-Kernels (Hsu et al., 2024) for faster
training. We created 3 different models based on
the Llama-3 architecture whose details are presented
in Table 1. The smallest model TF-4 has ≈ 240M
parameters without the embedding layer and the
largest model TF-12 has ≈ 730M parameters. For
all the training runs, we use a batch size of 64 per
rank and the AdamW optimizer with a learning rate
5 × 10−5. We employ the GenerationConfig API
in the transformers library to greedily generate
the model predictions without teacher forcing. This
API is used for evaluations on checkpoints during the
training runs. For larger scale and on-demand evalu-

ations, we provide code examples to leverage vLLM
(Kwon et al., 2023) and SGLang (Zheng et al., 2024)
based inference.

C Additional Experiments

C.1 Varying Activation Functions (ϕ)

Setup. Considering a vocabulary |V| = 64, d = 10,
we employ H(1, ϕ), N = 4,M = 4, C = 2,K = 40
with varying ϕ = {ReLU, SiLU, LeakyReLU}. All
models are trained on a dataset with T = 32 × 105

sequences and evaluated on T̃ = 10, 000 sequences.

Lower TokenCoverage leads to higher accuracy.
We previously observed from Figure 14 that the acti-
vation function (ϕ) corresponding to H plays a key-
role in determining the TokenCoverage of chain to-
kens in the sequences. For instance, when |V| = 64,
the TokenCoverage with Identity and SiLU is rel-
atively larger than ReLU. This implies that the num-
ber of unique tokens that a model would have to cor-
rectly predict is relatively lower in the ReLU case. We
can observe from Figure 16 that such smaller cover-
age can indeed result in higher evaluation accuracy

across all model sizes.

C.2 Vary Data Embedding Dimension (d)

Based on the token distribution analysis, we have
noticed that the TokenCoverage increases monoton-
ically with d for various choices of H(l, ϕ) in Fig-
ure 13. As a result, Figure 17 shows that larger
coverage makes it difficult for the TF models to at-
tain high evaluation accuracy as they have to now
correctly predict a larger fraction of tokens in V.

14634

(a) TF-4 (b) TF-8 (c) TF-12

Figure 17: accuracy by varying d with G(M = 4, N = 4, C = 2),H(1, LeakyRelu), |V| = 64,K = 40.

(a) TF-4 (b) TF-8 (c) TF-12

Figure 18: accuracy by varying K with G(M = 4, N = 4, C = 2),H(1, LeakyRelu), d = 10, |V| = 64.

(a) TF-4 (b) TF-8 (c) TF-12

Figure 19: accuracy by varying K with G(M = 4, N = 4, C = 2),H(1, LeakyRelu), d = 10, |V| = 1024,.

C.3 Vary Number of (CoT-) examples K

In Section 6.1, we observed that more examples in-
context can help smaller models to perform on-par
with bigger models. To this end, we plot in Fig-
ure 18 the accuracy by varying K = {10, 20, 30}.
For simplicity we choose a smaller vocab size of
|V| = 64 and show that smaller K can hurt perfor-
mance even when CoT is employed across all model
sizes. Additionally, larger models tend to outper-
form the smaller one TF-4 in the extreme case of
K = 10 without any CoT. Next, by increasing the
vocabulary size to |V| = 1024, we observe from Fig-
ure 19 that TF-8, TF-12 leverage their depth and out-
perform TF-4 by utilizing CoT when K = 30. For
K = 10, 20, the problem turns out to be harder even
for these bigger models.

C.4 Longer Training

We follow the same setup of Section 6.1 and explore
the impact of longer training on the accuracy of
the TF models. In particular, we train on 3× more
steps, which results in 96×105 (CoT-) sequences per
dataset. Observe from Figure 20a that by training
beyond 32× 105 sequences, even the TF-4 model ex-
hibits a transition in non-CoT evaluation accuracy

for |V| = {256, 512}. Similar behavior can be ob-
served with TF-8 (Figure 20b) and TF-12 (Figure 20c)
where the transitions tend to occur with relatively
less number of training sequences. Additionally, the
bigger models tend to reach a final accuracy with
CoT which is higher than that of the smaller TF-4
model.

14635

(a) TF-4 (b) TF-8 (c) TF-12

Figure 20: accuracy by varying V with G(M = 4, N = 4, C = 2),H(1, LeakyReLU), d = 10,K = 40 and
training for 3× steps (i.e 96× 105 (CoT-) sequences).

(a) TF-4 (b) TF-8 (c) TF-12

Figure 21: accuracy by varying V with H(1, LeakyRelu), d = 10,K = 40 and a fixed DAG sampled from
G(M = 4, N = 4, C = 2).

(a) TF-4 (b) TF-8 (c) TF-12

Figure 22: accuracy by varying V with G(M = 4, N = 4, C = 2), d = 10,K = 40 and fixed token
processors sampled from H(1, LeakyRelu).

C.5 Ablations with fixed DAGs and Token
Processors

Vary V. Following the same setup as Section 6.1
with varying vocabularies, we consider the ablations
with a fixed DAG and C MLPs. We observe from
Figure 21 that when the DAG is fixed across all
sequences, there is a slight increase in the evalua-
tion accuracy when compared to the random DAG
per sequence case in Figure 3. However, notice from
Figure 22 that fixing the C MLPs for all sequences
facilitates the models to learn the causal structure
with ease and results in very high accuracy when
CoT is enabled. Furthermore, notice that for non-

CoT datasets, TF-8 (Figure 22b) and TF-12 (Fig-
ure 22c) reach higher a accuracy than the smaller
TF-4 model (Figure 22a) for |V| = {512, 1024}.

Vary M . As a follow up of Section 6.4, we show
in Figure 23 that when the DAG is fixed across all
sequences, the TF-12 model exhibits a transition to
higher accuracy (with M = 1) towards the end of
training (Figure 23c), which is not observed in the
case of TF-4 (Figure 23a) and TF-8 (Figure 23b).
On the other hand, when we fix the C token proces-
sors, Figure 24 shows that all models can achieve a
perfect accuracy of 1 with M = 1 and CoT. Inter-
estingly, similar to the previous case of varying V,

14636

(a) TF-4 (b) TF-8 (c) TF-12

Figure 23: accuracy by varying M with H(1, LeakyRelu), d = 10, |V| = 1024,K = 40 and a fixed DAG
sampled from G(N = 4, C = 4).

(a) TF-4 (b) TF-8 (c) TF-12

Figure 24: accuracy by varying M with G(N = 4, C = 4), d = 10, |V| = 1024,K = 40 and fixed token
processors sampled from H(1, LeakyRelu).

we observe that the TF-8 (Figure 24b) and TF-12

(Figure 24c) models reach a higher accuracy on the
non-CoT datasets pertaining to M = {2, 3}, when
compared with the smaller TF-4 model (Figure 24a).

D Interpreting the Attention Maps

To interpret the attention maps, we consider the
same ablation setup as Section 6.4 in the main text
with fixed token processing functions and consider
M = 1, |V| = 1024 and the TF-4 model for simplic-
ity. Let the tokens x1, x2, x3, x4 and y1, y2, y3, y4 rep-
resent the input and chain tokens of a CoT example
respectively. We consider a validation sequence with
the DAG structure (i.e the parent tokens) for the 4
chain tokens given by: y1 ← {x4}, y2 ← {x1}, y3 ←
{y1}, y4 ← {y2} for the analysis. Now, given such a
validation sequence prepared with K = 40, we auto-
regressively generate the 4 chain tokens and consider
the attention maps used for generating the last chain
token (i.e the answer token). We take the mean of
all attention maps across the heads in a layer and
plot the last 64 rows and columns in Figure 25. Fur-
thermore, we also plot such attention maps for the
M = 2 case in Figure 26 and the M = 3 case in
Figure 27 with the DAGs described in the captions.

Qualitatively, we observed that even for the rela-
tively difficult setup of M = {2, 3}, larger attention

(a) Layer 1 (b) Layer 2

(c) Layer 3 (d) Layer 4

Figure 25: Mean attention matrices (last 64 rows
and columns) of all 32 heads across layers of the
fully trained TF-4 model with setup: M = 1, N =
4, C = 4,G(random) and fixed token processors sam-
pled from H(1, LeakyReLU). The DAG structure is
y1 ← {x4}, y2 ← {x1}, y3 ← {y1}, y4 ← {y2}.

scores for the chain tokens in any example are placed
on the parent tokens in that particular example itself
(similar to the M = 1 case in Figure 9a). However,

14637

(a) Layer 1 (b) Layer 2

(c) Layer 3 (d) Layer 4

Figure 26: Mean attention matrices (last 64 rows
and columns) of all 32 heads across layers of the
fully trained TF-4 model with setup: M = 2, N =
4, C = 4,G(random) and fixed token processors sam-
pled from H(1, LeakyReLU). The DAG structure is
y1 ← {x4, x2}, y2 ← {x1, x4}, y3 ← {y1, x2}, y4 ←
{y2, x4}.

(a) Layer 1 (b) Layer 2

(c) Layer 3 (d) Layer 4

Figure 27: Mean attention matrices (last 64 rows
and columns) of all 32 heads across layers of
the fully trained TF-4 model with setup: M =
3, N = 4, C = 4,G(random) and fixed token pro-
cessors from H(1, LeakyReLU). The DAG struc-
ture is y1 ← {x4, x2, x3}, y2 ← {x1, x4, y1}, y3 ←
{y1, x2, x4}, y4 ← {y2, x4, x2}.

in the generic case of randomly sampling the token
processors per sequence, we observed that the mean
attention scores of the last layer indicate a reliance
on the answer tokens of previous examples (see Fig-

(a) Layer 1 (b) Layer 2

(c) Layer 3 (d) Layer 4

Figure 28: Mean attention matrices (last 64 rows
and columns) of all 32 heads across layers of the fully
trained TF-4 model with setup: M = 1, N = 4, C =
4,G(random),H(1, LeakyReLU). The parent tokens
of the chain tokens are y1 ← {x4}, y2 ← {x1}, y3 ←
{y1}, y4 ← {y2}. When the cardinality of H is not
bounded, we notice that the Layer 4 attention maps
indicate a reliance on the answer tokens of previous
in-context examples to generate final answer token.

ure 28). This is an interesting observation which
requires further study on the dependence between
diversity of token processors and the attention map
score distributions.

Patterns beyond the ‘induction heads’. Pre-
vious works such as (Olsson et al., 2022; Edelman
et al., 2024; Nichani et al., 2024) typically relied on
‘attention-layer’ only models to analyze the ‘induc-
tion head’ characteristics for improved ICL perfor-
mance. Our analysis goes beyond such prefix match-
ing and copying mechanisms of induction heads. In
particular, our analysis of the attention maps and
the Precision indicates that practical transformer
models are capable of inferring the causal structure
even without any prefix matching mechanisms. This
indicates a deeper connection between the underly-
ing reasoning process via chain tokens and the di-
versity of token processing functions that facilitate
such learning of causal structures.

E On the Sparsity of Attention
Maps in Reasoning LLMs

A key aspect of CoT-ICL Lab is the freedom it pro-
vides to control the sparsity of DAGs while cre-
ating the tokenized sequences. Drawing parallels
with NLP, we aim to gain insights by analyzing the

14638

mean attention maps of the last layer of reasoning
LLMs when prompted with math questions from the
MMLU dataset (Hendrycks et al., 2021).

Setup. The DeepSeek-R1-Distill-Llama-8B

reasoning model is prompted to answer a high
school mathematics question from the MMLU
dataset. We employ the GenerationConfig API in
the transformers library to generate the response
with a token limit of 1024 and various tempera-
ture values. For visualization purposes, we apply
thresholding on the mean attention map using a
value of 10−3. The attention scores greater than the
threshold are assigned a value of 1 and the rest are
set to 0.

The binarized attention maps of
DeepSeek-R1-Distill-Llama-8B can be ex-
tremely sparse. We plot the mean attention
maps corresponding to the reasoning (output)
tokens in Figure 29. Notice that the temperature

not only affects the reasoning output lengths, but
the attention patterns as well. Interestingly, in both
the scenarios, notice that the attention scores tend
to concentrate around the immediately previous
tokens in the reasoning chain. The input prompt is
presented in Figure 30 and reasoning outputs are
presented in Figure 31 and Figure 32.

(a) temperature=0.6 (b) temperature=0.9

Figure 29: Mean attention matrix of all heads for the
final layer of the DeepSeek-R1-Distill-Llama-8B

model when generating the reasoning output for a
high school mathematics question from MMLU.

F Comparison with Related Work

ICL with real-valued examples. Analyzing the
ICL capabilities of transformer models with syn-
thetic data has gained massive attention in recent
years. In particular, the notion of using these models
as “statisticians” which can learn and approximate
arbitrary function classes on real valued inputs has
been widely explored (Garg et al., 2022; Bai et al.,
2023; Von Oswald et al., 2023; Ahn et al., 2023; Li
et al., 2023a; Oko et al., 2024) (see also (Dong et al.,

2022)). Unlike the setup considered in this paper,
these works consider single input-output examples
(xk, yk)

K
k=1 in context where xi ∼ N (0, Id) ∈ Rd

and yi ∈ R. The goal here is to learn the linear/non-
linear functions f ∈ F such that yk = f(xk),∀k ∈
[K]. Although such a setup has resulted in valuable
insights on how transformers learn complex function
classes (linear/noisy/sparse regression, single-index
models, shallow neural networks etc), it is unclear
if it is suitable to explain the ICL capabilities of
transformers in NLP settings with tokenized multi
input-output examples.

ICL with CoT. In the real-valued setting, a re-
cent work by (Li et al., 2023b) explored the role of
CoT for learning the MLP function classes. More
importantly, they evaluate the CoT outputs of the
transformers without teacher-forcing and show how
this decomposition can facilitate a hierarchical layer-
wise learning of the MLPs. On the other hand, sev-
eral works have explored simple tokenized settings
which employ markov chain like causal structures to
study the attention maps and training dynamics of
shallow transformers (Edelman et al., 2024; Nichani
et al., 2024; Akyürek et al., 2024; Bietti et al., 2023).
The main idea here is to consider a small vocabulary
V and associate a causal dependency between tokens
using single/multiple markov chains. In particular,
a single input token x1 ∈ V is used to generate the
chain tokens y1, · · · , yC ∈ VC as per the transition
probabilities of the chain.

We highlight that the generic setup of CoT-ICL
Lab can specialize to a markov chain like structures
(via DAGs) and also allow researchers to explore to-
ken processing functions beyond MLPs (see also Ta-
ble 2) to extend such lines of work. More impor-
tantly, the multi input-output ICL setup along with
data embeddings allows us to take a step towards
modeling NLP like scenarios with interpretable syn-
thetic data.

14639

The following is a multiple choice question about high school mathematics.

The length of a rectangle is twice its width. Given the length of the diagonal is $5\sqrt {5}$,
find the area of the rectangle.

A. 2500

B. 2

C. 50

D. 25

Which of these options is correct? Please provide a concise explanation and either option A,B,C

or D in the format: ### Final Option:

Figure 30: The input prompt to the DeepSeek-R1-Distill-Llama-8B model.

Okay , I’m trying to solve this problem about the rectangle. Let ’s see. The question says the length is twice its width ,

and the diagonal is 5\sqrt {5}. We need to find the area of the rectangle. Hmm , okay , I remember that in a rectangle ,

the diagonal forms a right triangle with the length and width. So maybe I can use the Pythagorean theorem here.

Let me denote the width as ’w’. Then the length , since it’s twice the width , would be ’2w’. Right , so length is 2w,

width is w. Now , the diagonal of the rectangle is the hypotenuse of this right -angled triangle. The formula for the

diagonal (d) would be sqrt((length)^2 + (width)^2). Wait , that ’s the Pythagorean theorem.

Given that the diagonal is 5\sqrt{5}, I can set up the equation: sqrt((2w)^2 + w^2) = 5\sqrt {5}. Let me square

both sides to eliminate the square root. That gives me (2w)^2 + w^2 = (5\ sqrt {5})^2.

Calculating each term: (2w)^2 is 4w^2, and w^2 is just w^2. So adding them together , 4w^2 + w^2 is 5w^2.

On the right side , (5\ sqrt {5})^2 is 25 * 5, which is 125.

So now I have 5w^2 = 125. To find w^2, I can divide both sides by 5. That gives w^2 = 25. Taking the square root

of both sides , w = 5. Since width can ’t be negative , we take the positive value.

So the width is 5 units. Then the length , which is twice that , is 2 * 5 = 10 units. Now , the area of the rectangle is

length multiplied by width , so that ’s 10 * 5 = 50.

Looking at the options , option C is 50. So I think the correct answer is C. Let me just double -check my steps. I set up

the variables correctly , used the Pythagorean theorem , squared both sides properly , solved for w, and then calculated

the area. Everything seems to add up. Yeah , I’m confident it’s C.

</think >

The problem involves finding the area of a rectangle where the length is twice the width and the diagonal is

\(5\ sqrt {5}\). By denoting the width as \(w\), the length becomes \(2w\).

Using the Pythagorean theorem for the diagonal:

\[

\sqrt {(2w)^2 + w^2} = 5\sqrt {5}

\]

Squaring both sides:

\[

4w^2 + w^2 = 125 \Rightarrow 5w^2 = 125 \Rightarrow w^2 = 25 \Rightarrow w = 5

\]

The width is 5, so the length is \(2 \times 5 = 10\). The area is:

\[

5 \times 10 = 50

\]

Thus , the correct answer is **C. 50**.

Final Option: C

Figure 31: The output of the DeepSeek-R1-Distill-Llama-8B model with temperature=0.6.

14640

Okay , so I have this problem here about a rectangle. The problem says that the length is twice its width. Hmm ,

I remember that in a rectangle , the sides are pairs of equal lengths. So if the length is twice the width ,

I can represent them as variables. Let me think , maybe width is w and length would be 2w.

Then the problem mentions the diagonal is 5 times the square root of 5. That ’s 5\sqrt {5}. I know that in a rectangle ,

the diagonal forms a right triangle with the length and width. So I can use the Pythagorean theorem here.

The theorem states that in a right -angled triangle , the square of the hypotenuse (which is the diagonal here)

is equal to the sum of the squares of the other two sides.

Okay , so the diagonal is 5\sqrt{5}, so I should square that. Let me calculate that: (5\ sqrt {5})^2. Squaring 5 gives 25,

and squaring \sqrt {5} gives 5. So 25 times 5 is 125. So the diagonal squared is 125.

Now , the length is 2w, and the width is w. Plugging into the Pythagorean theorem: (2w)^2 + w^2 = (5\ sqrt {5})^2.

Let me compute (2w)^2, which is 4w^2, and w^2 is w^2. Adding them together , it’s 5w^2. So 5w^2 = 125.

To find w^2, I can divide both sides by 5. That gives me w^2 = 25. So w is the square root of 25, which is 5.

Therefore , the width is 5 units.

Then the length is twice that , so 2 times 5 is 10. So the length is 10 and the width is 5. To find the area of the

rectangle , I multiply length by width. So 10 times 5 is 50. Hmm , that ’s 50. Let me check the options. Option C is 50.

So I think the answer is C.

Wait , let me double -check because sometimes when I do math quickly , I might makes mistakes. So let me recast it.

Given length is twice the width , so l=2w. The diagonal squared equals l squared plus w squared. So substituting ,

(2w)^2 + w^2 = (5\ sqrt {5})^2.

That ’s 4w^2 + w^2 = 25 * 5. So 5w^2 = 125. Dividing both sides by 5 gives w^2=25. So w=5, since width can ’t be negative.

So length is 10. Area is l times w, so 10*5=50. Yep , that seems correct.

So the area should be 50, which is option C.

</think >

The length of the rectangle is twice its width. Using the Pythagorean theorem for the diagonal , we find the width and

length , then calculate the area.

Step -by-Step Explanation:

1. ** Define Variables :**

- Let the width be \(w \).

- Then , the length is \(2w \).

2. **Apply Pythagorean Theorem :**

- The diagonal is \(5\sqrt {5} \).

- \((length)^2 + (width)^2 = (diagonal)^2 \)

- Substitute \(length = 2w \) and \(width = w \):

\[

(2w)^2 + w^2 = (5\ sqrt {5})^2

\]

- Simplify:

\[

4w^2 + w^2 = 25 \times 5

\]

\[

5w^2 = 125

\]

3. **Solve for \(w^2 \):**

- \(w^2 = \frac {125}{5} = 25 \)

- \(w = \sqrt {25} = 5 \) (since width can ’t be negative).

4. **Find Length and Area :**

- Length \(= 2w = 2 \times 5 = 10 \).

- Area \(= length \times width = 10 \times 5 = 50 \).

Final Answer:

The area of the rectangle is **50** , which corresponds to option **C**.

Final Option:

C.

Figure 32: The output of the DeepSeek-R1-Distill-Llama-8B model with temperature=0.9.

14641

Previous Work Tokenized Setup CoT in ICL Multi-Input Output ICL Explicit DAG
Von Oswald et al. (2023) × × × ×

Ahn et al. (2023) × × × ×
Garg et al. (2022) × × × ×
Bai et al. (2023) × × × ×
Li et al. (2023a) × × × ×
Guo et al. (2024) × × × ×

Panwar et al. (2024) × × × ×
Oko et al. (2024) × × × ×
Xie et al. (2022) ✓ × × ×

Akyürek et al. (2024) ✓ × × ×
Dai et al. (2023) ✓ × × ×

Deutch et al. (2024) ✓ × × ×
Edelman et al. (2024) ✓ × × ✓
Nichani et al. (2024) ✓ × × ✓
Feng et al. (2023) ✓ ✓ × ×

Prystawski et al. (2023) ✓ ✓ × ✓
Merrill and Sabharwal (2024) ✓ ✓ × ×

Hou et al. (2023) ✓ ✓ × ✓
Li et al. (2023b) × ✓ × ×
CoT-ICL Lab ✓ ✓ ✓ ✓

Table 2: Comparison with related work on ICL and CoT.

Notation Description
V A custom vocabulary used to generate tokens

d The data embedding dimension in Edata ∈ R|V|×d.
Edata A constant ‘unknown’ data embedding matrix
G A class of functions to filter/select tokens
H A class of functions to process token embeddings (rows in Edata)
F A function class composed of G,H
l The depth of the MLP in H
ϕ The activation function used in the MLP in H
N Number of input tokens per example
M Number of tokens selected by G
C Number of chain tokens (Chain length)
K Number of examples per sequence
TF A decoder only transformer model

x = (x1, · · · , xN) ∈ VN Input tokens in an example
y = (y1, · · · , yC) ∈ VC Chain tokens in an example

pK(f) A sequence composed using f ∈ F with K examples in-context.
pK
CoT (f) A CoT sequence composed using f ∈ F with K examples in-context.
TF◦C(·) The C-step auto-regressive greedy token generation by the TF model.

Table 3: A summary of notations used throughout the paper.

14642

