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Abstract

Large Multimodal Models (LMMs) have re-
cently demonstrated impressive performance
on general video comprehension benchmarks.
Nevertheless, for broader applications, the ro-
bustness of their temporal analysis capability
needs to be thoroughly investigated yet pre-
dominantly ignored. Motivated by this, we pro-
pose a novel temporal robustness benchmark
(TEMROBBENCH), which introduces tempo-
ral inconsistency perturbations separately at the
visual and textual modalities to assess the ro-
bustness of models. We evaluate 16 mainstream
LMMs and find that they exhibit over-reliance
on prior knowledge and textual context in ad-
versarial environments, while ignoring the ac-
tual temporal dynamics in the video. To mit-
igate this issue, we design panoramic direct
preference optimization (PanoDPO), which en-
courages LMMs to incorporate both visual and
linguistic feature preferences simultaneously.
Experimental results show that PanoDPO can
effectively enhance the model’s robustness and
reliability in temporal analysis.

1 Introduction

Large Multimodal Models (LMMs) (Wang et al.,
2024b; OpenGVLab, 2024; Li et al., 2024c; Ye
et al., 2024) can effortlessly understand videos with
the support of temporal analysis capability. Recent
research (Ren et al., 2025) further highlights this
capability, proving that capturing visual changes
alone can substantially enhance knowledge acqui-
sition without the need for text labels. As a vital
sensor for perception and learning, exploring its
robustness is crucial yet largely overlooked.

Inspired by this, we conduct a preliminary ex-
ploration of mainstream LMMs and observe that
they exhibit two different aspects of shortcut phe-
nomenons triggered by temporal inconsistency
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Figure 1: An example of the Intrinsic Temporal Shortcut
(b) and Extrinsic Temporal Shortcut (c). The model
tends to excessively rely on prior knowledge or textual
context when temporal inconsistencies arise between
video content and common sense or text prompt.

anomalies. First, when the temporal information in
the video conflicts with common sense, the model
primarily relies on prior knowledge to generate re-
sponses, which we refer to as Intrinsic Temporal
Shortcut (shown in the Fig. 1 (b)). Second, the
model exhibits a pronounced inclination to the tex-
tual context when discrepancies occur between the
video and the accompanying text prompt, termed
Extrinsic Temporal Shortcut (shown in the Fig. 1
(c)). More importantly, we notice that these phe-
nomena are prevalent in mainstream LMMs and
arise with high frequency. As illustrated in Fig. 2
(a), more than 59% of responses are taken shortcuts,
indicating a flaw in the robustness of their tempo-
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Figure 2: (a) Response distribution when asking the
question within temporal inconsistencies. The majority
of errors stem from shortcuts. (b) The model discrim-
inative ability on the correct and shortcut answer is
represented by the difference in log-likelihoods.

ral analysis. Thus, a comprehensive benchmark to
investigate these issues is necessary. However, the
existing robustness benchmarks (Yi et al., 2021;
Zeng et al., 2024; Li et al., 2024e) exhibit two
major drawbacks that make it difficult to support
our study: (i) Lack of consideration for temporal
dimension: They only focus on adding feature per-
turbations to frames, such as Gaussian noise, which
cannot reflect the model’s temporal dynamic robust-
ness. (ii) Lack of consideration for textual context:
They solely assess the model’s robustness to visual
content, overlooking the text, which is insufficient
for handling complex multimodal scenarios.

To address these limitations, we introduce TEM-
ROBBENCH, a novel temporal robustness bench-
mark, which incorporates four levels of temporal
inconsistency perturbations across both visual and
textual modalities. Additionally, we design tempo-
ral questions and corresponding options to check if
a specific answer is flipped to shortcuts due to per-
turbations, totally collecting 1,686 QA pairs from
562 videos. Through extensive evaluations of 16
LMMs, we find that they generally exhibit weak
temporal robustness, especially when perturbed by
visual modalities, which leads to over-reliance on
prior knowledge. Further observations indicate that
correct answers generated by LMMs are not en-
tirely reliable, as they often randomly guess when
confronted with perturbations rather than referring
to the video content. To mitigate these issues, we
propose a panoramic direct preference optimization
(PanoDPO) method, which introduces additional
video- and question-conditioned preference pairs
by incorporating adversarial information and em-
ploys multimodal guidance during preference learn-

ing, encouraging LMMs to focus on both visual and
linguistic features simultaneously. Fig. 2 (b) shows
the shifts of likelihood difference between correct
and shortcut answers after aligning the model with
conditioned preference data via PanoDPO, indicat-
ing that our method helps the model discriminate
shortcuts, thereby enhancing its robustness.

Our main contributions are summarized as:

• We identify the robustness weaknesses of current
LMMs, which frequently take shortcuts based
on prior knowledge and textual context against
temporal inconsistency anomalies.

• We introduce TEMROBBENCH and conduct ex-
tensive investigations into temporal robustness of
various LMMs to provide detailed insights.

• We propose a panoramic optimization method,
PanoDPO, which effectively enhances the
model’s robustness in temporal analysis.

2 TEMROBBENCH

2.1 Benchmark Design Principal

We present TEMROBBENCH, a novel benchmark
designed to evaluate the temporal robustness of
Large Multimodal Models (LMMs) against tem-
poral inconsistency. TEMROBBENCH focus on
investigating the degree to which: LMMs genuinely
perceive temporal information in videos, without
being influenced by intrinsic and extrinsic priors to
take shortcuts. Specifically, intrinsic and extrinsic
shortcuts refer to LMMs exhibiting over-reliance
on inherent knowledge and textual context while
neglecting the actual video content. To achieve
this, we design adversarial perturbations on both
the visual and textual modalities, and create sam-
ples with varying levels of inconsistency severity.

2.2 Inconsistency Perturbation Construction

2.2.1 Intrinsic Temporal Shortcut
To investigate whether the model relies on inherent
temporal knowledge to take shortcuts, we design
inconsistency perturbation to the video. Specially,
we first apply shuffled editing to the original clips
in the video, each representing an event. The edited
video typically discords with common sense. As
shown in Fig. 3, we swap the sequence of event
“Strip the insulation” and action “Arrange the sep-
arated wire”, which rarely occurs in reality. The
perturbations are grouped into two categories: light
disorder and severe disorder. Light disorder means
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Figure 3: Overview of the TEMROBBENCH. The benchmark emphasizes evaluating the model’s robustness against
temporal inconsistency, especially take intrinsic shortcuts (over-reliance on prior knowledge) and extrinsic shortcuts
(over-reliance on textual context). We construct inconsistencies with knowledge and textual context by shuffling
video clips and event descriptions, and design corresponding shortcut answers to verify the evidence of the response.

Category Size

Video Sources 562
- Events / per Video 6.4
- Maximum Duration 149.9s
- Minimum Duration 20.8s
- Average Duration 106.7s

Questions / per Video 3
Total Samples 1686

Intrinsic	
Temporal	Shortcut

Extrinsic		
Temporal	Shortcut

38%

62%

Light	disorder	 Severe	disorder	
Relative	disorder		 Absolute	disorder	

Figure 4: Comprehensive statistics from different per-
spectives (left) and detailed inconsistency perturbation
classes (right) in the TEMROBBENCH.

swapping adjacent events once, while severe dis-
order involves multiple random swaps of different
events. Then, we design a unified question to ask
the model about the correct sequence of events in
the video, with four options: One correct option
that matches the edited sequence to test whether the
model accurately captures the temporal informa-
tion, one shortcut option that matches the unedited
clip sequence to evaluate whether the model over-
rely on prior knowledge, and two incorrect options
to test whether the model makes temporal errors.

2.2.2 Extrinsic Temporal Shortcut
To examine if the model depends on textual con-
text to shortcut its temporal analysis, we introduce
perturbations into the text prompt. Specially, we
provide shuffled event descriptions that are incon-

sistent with the video to models, and ask them to
determine the actual order of two events. Examples
of the shuffle edited text can be seen in Fig. 3. The
perturbations are grouped into two categories: abso-
lute disorder and relative disorder. In absolute dis-
order, we first select an adjacent event pair {xp, xq}
from list E, and shuffle the remaining ones. Then,
we reverse the order and randomly insert them into
E, formulated as Ea = {..., xq, xp, ...}. In rela-
tive disorder, an irrelevant event xk is inserted in
between target event pair to create perturbation, ex-
pressed as Er = {..., xp, xk, xq, ...}. Similarly, we
design four options: one correct option matches the
video, one shortcut option matches the sequence of
event captions, and two incorrect options.

2.3 Benchmark Statics

Typically, mainstream LMMs adopt caption (Heil-
bron et al., 2015) and VideoQA (Xiao et al., 2021)
datasets as finetuning data. To minimize poten-
tial data leakage issues that could hinder the zero-
shot evaluation, we use the action detection dataset
COIN (Tang et al., 2019) as our data source, which
contains high-quality raw manual annotations. As
shown in Fig. 4, we collect 562 videos and auto-
matically construct 1,686 multi-choice QA pairs
adapted from raw annotations for TEMROBBENCH,
each video includes two different types of incon-
sistency perturbations. Moreover, to minimize the
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Model Frame
Intrinsic Temporal Shortcut Extrinsic Temporal Shortcut

Clean Adversarial Clean Adversarial

Acc↑ Acc↑ FR↓ WFR ↓ Acc↑ Acc↑ FR↓ WFR ↓
7B LLM

VideoChat2 (Li et al., 2024f) 16 33.4 26.5 -6.9 28.4 74.1 22.6 14.5 -8.1 18.5 90.6
VideoLLaVA (Lin et al., 2024a) 8 31.5 25.5 -6.0 62.4 85.3 22.9 9.8 -13.1 19.4 85.7
LLaVA-Hound (Zhang et al., 2024) 32 35.3 26.5 -8.8 60.3 84.9 17.8 10.0 -7.8 42.6 77.7
ShareGPT4Video (Chen et al., 2024) 16 30.1 24.0 -6.1 65.9 87.0 77.1 22.8 -54.3 58.2 72.1
InternVideo2 (Wang et al., 2024c) 8 35.3 25.8 -9.5 57.2 89.8 52.8 31.8 -21.0 28.8 53.5
VILA1.5 (Lin et al., 2024b) 16 24.0 20.8 -3.2 70.2 89.9 66.8 13.8 -53.0 56.7 82.3
VideoLLaMA2 (Cheng et al., 2024) 32 38.8 29.3 -8.5 61.6 85.0 62.1 28.3 -33.8 40.2 62.8
PLLaVA (Xu et al., 2024) 32 39.0 27.2 -11.8 63.8 88.8 37.4 14.5 -22.9 21.3 78.7
mPLUG-Owl3 (Ye et al., 2024) 32 55.5 26.4 -29.1 75.0 87.5 86.9 33.1 -53.8 50.2 63.1
InternVL-2.5 (OpenGVLab, 2024) 32 54.9 22.8 -32.1 81.8 91.3 81.8 48.4 -33.4 33.4 41.6
Qwen2-VL (Wang et al., 2024b) 32 54.9 24.6 -30.3 83.7 93.7 76.6 38.8 -37.8 33.0 51.9
LLaVA-OV (Li et al., 2024c) 32 48.0 29.2 -18.8 72.2 86.2 81.8 21.2 -60.6 60.3 75.4

13B LLM

VILA1.5 (Lin et al., 2024b) 16 38.4 28.5 -9.9 69.7 87.5 59.8 14.3 -45.5 57.1 79.3
PLLaVA (Xu et al., 2024) 32 42.0 31.2 -10.8 62.5 87.9 44.9 21.2 -23.7 19.0 70.3
InternVL-2.5 (OpenGVLab, 2024) 32 60.7 24.7 -36.0 85.5 90.4 82.7 52.4 -30.3 32.2 37.6

Closed-Source

GPT-4o (OpenAI, 2023) 32 67.1 16.8 -50.3 82.3 91.6 83.6 57.9 -25.7 19.0 34.1

Table 1: Experiment results for LMMs answering the same questions under two different settings: Clean and
Adversarial. Red numbers represent the accuracy drop caused by temporal inconsistencies, compared to the model
under Clean setting. The values in bold and underlined represent the best and the second-best results, respectively.

evaluation bias due to the constrain window size
of LMMs (unable to handle too much frames), we
select videos with short duration (average 106.7s).

3 Evaluations

To deeply investigate the temporal perception ro-
bustness of LMMs, we set up two different question
answering scenarios for comparative analysis. The
first scenario is that the model answers the question
with the unperturbed data, i.e., raw video and event
descriptions, which we refer to as Clean setting.
The second is that the model responses to the same
question with inconsistency perturbation data from
our TEMROBBENCH, termed Adversarial setting.
Both settings are multiple-choice QA format, and
we instruct the model to select the correct option.

3.1 Evaluation Metrics

In this part, we introduce our evaluation metrics.
Accuracy (Acc): Due to the setup of the multiple-
choice QA, we evaluate the correctness for the
i-th sample by checking if the correct answer is
matched the generated response. For the clarity of
subsequent statements, we formalize this as:

Scorei = 1, if yi in ŷi else 0,

where yi and ŷi denote the correct answer and the
selected answer, respectively. Naturally, the overall
accuracy can be formalized as:

Acc(Y, Ŷ ) =

∑N
i=1Scorei(yi, ŷi)

N
,

where Acc(Y, Ŷ ) represents the model’s accuracy
score over the entire setting, Y = {y1, y2, ..., yN}
and Ŷ = {ŷ1, ŷ2, ..., ŷN}.
Flip Rate (FR): To systematically estimate the de-
gree of LMMs take shortcuts, we adopt FR (Zhong
et al., 2024) to evaluate how many of the model’s
original correct responses are misled by perturba-
tions and change to match with our curated shortcut
answers:

FR =

∑
i∈D+Scorei(y

∗−
i , ŷ−i )∑n

i=1Scorei(y
+
i , ŷ

+
i )

,

D+ =
{
i | Score(y+i , ŷ+i ) = 1

}
,

where ŷ+i and ŷ−i represent selected answers under
Clean and Adversarial settings, respectively. y+i
and y−i are correct answers, y∗−i denotes shortcut
answers in Adversarial.
Weak Flip Rate (WFR): In addition, we use a
more general metric WFR, which calculate how
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Figure 5: Accuracy (left) and flip rate (right) of two
different aspects (i.e., blue bars and red bars represent
intrinsic and extrinsic temporal shortcuts, respectively)
for each perturbation classes. The stripe pattern denotes
performance drop due to the temporal inconsistencies.

many mistakes (includes shortcuts and substantive
errors) the model makes in perturbation scenarios:

WFR =

∑
i∈D+(1− Scorei(y

−
i , ŷ

−
i ))∑n

i=1Scorei(y
+
i , ŷ

+
i )

.

3.2 Models
We investigate the temporal robustness in the
following 16 mainstream LMMs: VideoChat2 (Li
et al., 2024f), VideoLLaVA (Lin et al.,
2024a), LLaVA-Hound (Zhang et al., 2024),
ShareGPT4Video (Chen et al., 2024), Intern-
Video2 (Wang et al., 2024c), VILA1.5 (Lin et al.,
2024b), VideoLLaMA2 (Cheng et al., 2024),
PLLaVA (Xu et al., 2024), mPLUG-Owl3 (Ye
et al., 2024), InternVL-2.5 (OpenGVLab, 2024),
Qwen2-VL (Wang et al., 2024b), LLaVA-OV (Li
et al., 2024c), and GPT-4o (OpenAI, 2023).
Detailed descriptionsare provided in App. A.

3.3 Result and Analysis
LMMs typically exhibit weak temporal robustness.
As shown in Tab. 1, we can observe that most
LMMs exhibit significant performance degradation
under temporal inconsistencies (See the accuracy
of Adversarial) compared to consistent scenarios
(See the accuracy of Clean). For current advanced
open-source LMMs such as Qwen2-VL (Wang
et al., 2024b) and InternVL-2.5 (OpenGVLab,
2024), despite their strong video understanding
capability, they still suffer an over 50% perfor-
mance drop. Further observation of the high flip
rate (FR) reveals that the model’s responses are
easily misled by temporal inconsistencies. More-
over, a higher weak flip rate (WFR) indicates that
models incur comprehension deviation under adver-
sarial settings. By comparing the performance of

Model Frame
ITS ETS

Acc↑ T-Acc↑ Acc↑ T-Acc↑
7B LLM

VideoChat2 (Li et al., 2024f) 16 26.5 3.3 -87.5% 14.5 4.1 -71.7%

VideoLLaVA (Lin et al., 2024a) 8 25.5 6.7 -73.7% 9.8 1.9 -81.0%

LLaVA-Hound (Zhang et al., 2024) 32 26.5 0.7 -97.3% 10.0 1.4 -86.0%

ShareGPT4Video (Chen et al., 2024) 16 24.0 0.6 -97.3% 22.8 13.7 -39.9%

InternVideo2 (Wang et al., 2024c) 8 25.8 0.7 -97.3% 31.8 14.5 -54.4%

VILA1.5 (Lin et al., 2024b) 16 20.8 1.2 -94.2% 13.8 1.9 -86.2%

VideoLLaMA2 (Cheng et al., 2024) 32 29.3 16.2 -44.7% 28.3 11.7 -58.7%

PLLaVA (Xu et al., 2024) 32 27.2 1.6 -94.1% 14.5 2.5 -82.8%

mPLUG-Owl3 (Ye et al., 2024) 32 26.4 25.0 -5.3% 33.1 25.6 -22.7%

InternVL-2.5 (OpenGVLab, 2024) 32 22.8 22.0 -3.5% 48.4 34.0 -29.8%

Qwen2-VL (Wang et al., 2024b) 32 24.6 16.1 -34.6% 38.8 23.4 -39.7%

LLaVA-OV (Li et al., 2024c) 32 29.2 8.8 -69.9% 21.2 11.7 -44.8%

13B LLM

VILA1.5 (Lin et al., 2024b) 16 28.5 10.1 -64.6% 14.3 7.6 -46.9%

PLLaVA (Xu et al., 2024) 32 31.2 12.7 -59.3% 21.2 2.1 -90.1%

InternVL-2.5 (OpenGVLab, 2024) 32 24.7 24.6 -0.4% 52.4 48.1 -8.2%

Closed-Source

GPT-4o (OpenAI, 2023) 32 16.8 16.7 -0.6% 57.9 53.6 -7.4%

Table 2: The accuracy (Acc) and true accuracy (T-Acc)
under Adversarial settings. T-Acc denote the voting re-
sult where the model answers correctly in three or more
times out of four shuffling options rounds for each sam-
ple. Red numbers represent the ratio of unreliable parts.
ITS and ETS denotes intrinsic and extrinsic temporal
shortcut, respectively.

the same LMMs with larger sizes, such as 7B and
13B of PLLaVA (Xu et al., 2024), although there
is a certain improvement in accuracy, the nearly
constant FR indicates that the shortcuts have not
been effectively alleviated.

LMMs are more vulnerable to visual perturba-
tions, relying on prior knowledge. Comparing the
FR results between two different perturbations (See
the FR of intrinsic and extrinsic temporal shortcut),
we find that LMMs are more susceptible to visual
perturbation and take intrinsic shortcuts, i.e., over-
reliance on prior knowledge. We consider this may
due to the current LMMs are built on powerful
Large Language Models (LLMs), which are better
at determining whether the text modality contains
misleading content. However, when perturbation
occurs in visual modality, they become confused
and tend to respond based on thought inertia.

More temporal inconsistency leads to more ex-
trinsic shortcuts but fewer intrinsic shortcuts. We
further present the accuracy and flip rate (FR) of
detailed categories of perturbation in the Fig. 5.
For text perturbation, absolute disorder (more con-
flict to the normal video) is more likely to cause
the model to take external temporal shortcuts, in-
dicating the model places more trust in textual
context when faced with uncertainty. In contrast,
for video perturbation, we observe a nearly 100%
FR on the light disorder (more similar to the nor-
mal video). We consider this could attributed to
the “over-confidence”, where the model quickly

14153



v x

yw

xv

yl

vlvw xw

yw

xw

yw

vw

yw

xwvw

yw

vw xw

yw

xwvw

yl

Shuffle/Crop/Replace

Question:	What	happens	to	the	 athlete	after	he	
bends	the	pole?

Question:	(Background):	While	it	might	seem	
that	the	athlete	is	propelling	himself	upwards	over	
the	bar	after	bending	the	pole, …	.	What	happens	
to	the	 athlete	after	he	bends	the	pole?

Generated Perturbation

(c) Preference Data Construction

(b) PanoDPO

(a) DPO

chosen	video	vw

chosen	question	xw
perturbation	content	c

chosen	response	ywDPOv DPOt DPOm

rejected	video	vl

rejected	response	yl

xw+c

Figure 6: Overview of the PanoDPO. Vanilla DPO (a) expects LMMs to learn response preferences only. PanoDPO
(b) integrates additional video and question preference learning objectives to encourage models to focus the response
interactions with both the video and question. Moreover, we construct the visual- and text-conditioned preference
data (c) for PanoDPO learning.

glances at the video and assumes it aligns with
typical patterns, directly based on prior knowledge.

The accuracy remains unreliable under incon-
sistency perturbations. Although LMMs flip the
answer due to shortcuts or misunderstandings when
perturbed, we find that the remaining correct parts
are still not entirely reliable, as the model might
randomly guess. To minimize this bias and further
investigate the model’s true temporal robustness,
we design a control setting following the (Li et al.,
2024f) and (Hu et al., 2024). Specifically, we shuf-
fle the order of the options and place the correct
one in different positions in Adversarial, conduct-
ing four evaluation rounds. If the model answers
correctly three or more times, we consider it ac-
tually perceiving the temporal information, which
is defined as true accuracy (T-Acc). Surprisingly,
despite performing well with high accuracy, some
LMMs (e.g., VILA1.5 (Xu et al., 2024)) almost
entirely rely on gambly guess when faced with in-
terference. This phenomenon further suggests that
LMMs exhibit weak temporal robustness when han-
dling temporal interference.

4 PanoDPO

From the perspective of intrinsic and extrinsic tem-
poral shortcut phenomena, LMMs tend to respond
based on prior knowledge or textual context when
they conflict with video content, neglecting the
visual information. To mitigate this issue, we
propose panoramic direct preference optimization
(PanoDPO), which encourages LMMs to simultane-
ously focus on both visual and linguistic features.

4.1 Direct Preference Optimization
Direct Preference Optimization (DPO) (Rafailov
et al., 2023) is a method that originates from
RLHF (Ouyang et al., 2022), designed to encour-
age Large Language Models (LLMs) to generate
responses that better align with human preferences
without relying on explicit reward modeling or re-
inforcement learning. Specifically, given an input
x, we optimize the response y of the model π and
constrain it to adhere to normal language patterns
by KL divergence:

max
πθ

Ex∼X ,y∼πθ

{
r(x, y)

−βDKL [πθ(y | x) ∥ πref(y | x)]
}
,

where r and πref denotes reward function and refer-
ence model. DPO formulates the reward as follows:

r(x, y) = βlog
πθ(y | x)
πref(y | x) + Z(x),

where Z(x) =
∑

yπref(y|x)exp(r(x, y)/β) is the
partition function. Given the corresponding pre-
ferred (chosen) answers yw and non-preferred (re-
jected) answers yl, DPO seeks to maximize the
difference between their rewards. Thus, the ob-
jective can be derived based on the Bradley-Terry
model (Bradley and Terry, 1952):

LDPO = −logσ
(
βlog πθ(yw|x)

πref(yw|x) − βlog πθ(yl|x)
πref(yl|x)

)
.

Naturally, as shown in Fig. 6 (a), the DPO objective
in multimodal scenarios can be formulated as:

LDPOm = −logσ
(
βlog πθ(yw|x,v)

πref(yw|x,v) − βlog πθ(yl|x,v)
πref(yl|x,v)

)
,

where v is the visual modality input.
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4.2 Panoramic Preference Optimization
To mitigate the issue of overlooking visual infor-
mation in perturbed environments and enhance ro-
bustness, we propose the panoramic preference op-
timization approach, which integrates optimization
modules for both the video and question compo-
nents based on Vanilla DPO. As shown in Fig. 6 (b),
given a pair of tuples (vw, xw, yw) and (vl, xw, yw),
where vw is the chosen video, and vl is the rejected
one constructed by disruptive visual information.
Subsequently, visual-condition optimization DPOv

can be established, where video is the sole variable:

LDPOv = −logσ
(
βlog πθ(yw|xw,vw)

πref(yw|xw,vw) − βlog πθ(yw|xw,vl)
πref(yw|xw,vl)

)
.

Similar to the DPOv, the text-conditioned DPOt

includes tuples pairs (vw, xw, yw) and (vw, (xw +
c), yw) with the question as the only variable, and
its optimization objective can be formulated as:

LDPOt = −logσ
(
βlog πθ(yw|xw+c,vw)

πref(yw|xw+c,vw) − βlog πθ(yw|xw,vw)
πref(yw|xw,vw)

)
,

where vw is the chosen question, and c denotes the
perturbative content introduced into the question.
Ultimately, we perform panoramic optimization by
combining vanilla DPO, DPOv, and DPOt:

LPanoDPO = LDPOm + LDPOv + LDPOt .

4.3 Preference Data Construction
To acquire visual- and text-conditioned preference
data for DPOv and DPOt, we expand the existing
dataset ShareGPTVideo-DPO (Zhang et al., 2024),
which contains videos, questions and preference
pairs of response. As shown in Fig. 6 (c), to obtain
rejected videos, we perform video editing using
three methods to construct destructive visual con-
tent: shuffling the video frames, randomly cropping
the frames, and replacing certain frames with blank,
respectively. Furthermore, to acquire rejected ques-
tions, we introduce perturbations into the origi-
nal questions. Specifically, we first generate cap-
tions for the videos, and then use GPT-4o (OpenAI,
2023) to construct contextually adaptive perturba-
tion text based on the caption, question, and correct
answer. Note that these perturbations appear to
be plausible but misleading, as they are actually
contradictory to the video content. More details of
preference data are provided in App. B.

5 Experiments

5.1 Experimental Setups
Baseline Methods. We compare our PanoDPO
against the following three baselines: SFT refers to

Model Frame
ITS ETS

T-Acc↑ FR↓ T-Acc↑ FR↓
LLaVA-OV-7B

w/ SFT 32 8.8 72.2 11.7 60.3
w/ Prompt 32 8.9 71.8 11.3 59.5
w/ Vanilla DPO 32 9.6 69.4 12.2 58.8
w/ PanoDPO (ours) 32 16.6 55.5 15.3 50.3

LLaVA-Hound-7B
w/ SFT 32 0.7 60.3 1.4 42.6
w/ Prompt 32 0.6 61.0 1.4 42.8
w/ Vanilla DPO 32 0.9 61.2 1.7 41.8
w/ PanoDPO (ours) 32 8.9 56.4 5.3 18.4

Table 3: Comparison of our PanoDPO to other baseline
methods on two backbone LMMs under adversarial
setting. ITS and ETS denotes intrinsic and extrinsic
temporal shortcut, respectively.

the fine-tuned model without any preference opti-
mization. Prompt is utilized to instruct the model
to focus on the given video without overly rely-
ing on prior knowledge or textual context. Vanilla
DPO (Rafailov et al., 2023) is designed to fine-
tune LMMs to learn response preferences based on
the video and question. We evaluate the effective-
ness of the baseline methods and our PanoDPO on
two LMMs: LLaVA-OV-7B (Li et al., 2024c) and
LLaVA-Hound-7B (Zhang et al., 2024).
Evaluation Metrics. According to the observa-
tions in Sec. 3.3, the temporal perception ability
reflected by accuracy (Acc) is not entirely reli-
able. Therefore, we adopt true accuracy (T-Acc) as
the metric, which excludes the potentially random
guess aspects of Acc. Additionally, we use flip rate
(FR) to assess the model’s temporal robustness.
Implementation Details. All models are fine-
tuned using LoRA for 3 epochs with a batch size
of 64. We use the learning rate of 1e-5, a cosine
scheduler, and warm-up ratio of 0.1. The prefer-
ence optimization coefficient β is set to 0.1.

5.2 Experiment Result

The experimental results are shown in the Ta-
ble Tab. 3. We find that the prompt-based method
performs almost identically to the SFT method, in-
dicating that the temporal shortcut is an inherent
issue that is difficult to alleviate through instruc-
tions. Vanilla DPO (Rafailov et al., 2023) provides
a certain relief, but the effect is still inconspicuous,
as this method lacks targeted optimization strate-
gies for visual and textual conditions. In contrast,
our proposed PanoDPO mitigates both intrinsic and
extrinsic shortcut phenomena through panoramic
optimization preference optimization, significantly
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Model Frame
ITS ETS

T-Acc↑ FR↓ T-Acc↑ FR↓
LLaVA-OV-7B

w/ PanoDPO (ours) 32 16.6 55.5 15.3 50.3
w/o DPOv 32 12.4 61.0 15.2 52.3
w/o DPOt 32 16.3 58.2 12.9 58.0

LLaVA-OV-7B
w/ DPOv crop 32 13.7 59.7 14.8 52.2
w/ DPOv replace 32 14.3 60.4 15.1 51.8
w/ DPOv shuffle 32 16.6 55.5 15.3 50.3

Table 4: Abaltion on different condition moudeles in
PanoDPO and rejected video construction strategies.

enhancing its temporal perception robustness. In
Fig. 7, we show the shifts of average likelihood
difference between correct and shortcut answer in
each inference batch under different optimization
methods. The results demonstrate that our Pan-
oDPO better helps the model to distinguish short-
cuts (i.e., larger shifts reflects stronger discrimina-
tion), effectively enhancing the robustness.

5.3 Analysis
Impact of the different optimization condition.
To investigate the effectiveness of the video- and
question-conditiond modules of PanoDPO, we con-
duct an ablation on DPOv and DPOt separately.
As shown in Tab. 4, when DPOv or DPOt are re-
moved, the model suffer significantly performance
decreases, indicting that both conditions play a tar-
geted role in improving the robustness.
Impact of the different construction strategies.
In DPOv, we try three different rejected video con-
struction strategies: shuffling the video frame order,
cropping random regions, and replacing random
frames with blank spaces. To investigate the effects
of them, we conduct an ablation by training with
different rejected data separately. The results in
Tab. 4 show that shuffle achieves the best perfor-
mance, demonstrating that temporal dynamic is an
important factor for videos. Disrupting temporal
sequence can effectively destroy video information.
General capability analysis. PanoDPO is pro-
posed to enhance temporal robustness of LMMs.
To further verify and analyze its capability in
general video understanding, we evaluate it on
three mainstream video understanding bench-
marks, including VideoMME (Fu et al., 2024),
LongVideoBench (Wu et al., 2024a), and Activ-
itynetQA (Yu et al., 2019). We compare LLaVA-
OV+DPO with LLaVA-OV+PanoDPO, and the re-
sults are shown in the Tab. 5. The results demon-
strate that our proposed PanoDPO remains effective
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Figure 7: The discriminative ability of the backbone
model LLaVA-OV for correct and shortcut answers with
different optimization strategies, represented by differ-
ence in log-likelihoods.

Model VideoMME LongVideoBench ActivityNet-QA
LLaVA-OV-7B 58.2 55.6 56.6

w/ Vanilla DPO 58.8 56.4 57.6
w/ PanoDPO (Ours) 60.9 58.9 59.8

Table 5: The general capability evaluation results on
three general video understanding benchmarks.

in maintaining general capabilities.

6 Related Work

Large Multimodal Models. Large Multimodal
Models (LMMs) (OpenGVLab, 2024; Wang et al.,
2024b; Ye et al., 2024; Li et al., 2024c) have seen
impressive developments in recent years. They
are primarily built upon large language models
(LLMs), which extend temporal dynamics by lever-
aging strong linguistic capabilities. Despite, they
demonstrate impressive performance on general
video understanding, for broader applications, the
robustness of their temporal capabilities needs to
be thoroughly investigated yet largely overlooked.
Temporal Robustness Benchmark. Currently,
there are numerous methods and benchmarks re-
lated to robustness focused on the image do-
main (Qiu et al., 2024; Li et al., 2024a; Zhao et al.,
2023; Zhou et al., 2023; Lee et al., 2024; Wu et al.,
2024b; Li et al., 2024b). However, research related
to videos remains insufficient. Existing works such
as (Li et al., 2024e; Zeng et al., 2024; Yi et al.,
2021; Schiappa et al., 2022) primarily focus on ap-
plying feature perturbations to individual frames
while neglecting the unique temporal characteris-
tics of videos. Furthermore, they mainly investigate
the model’s robustness to visual and overlook the
text, which is inadequate for multimodal scenarios.
A work similar to ours is TempCompass (Liu et al.,
2024b) , which innovatively introduces temporal
adversarial data through video editing. However,
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due to its simplistic adversarial approach, the chal-
lenges it presents are relatively limited. Addition-
ally, TempCompass is difficult to effectively diag-
nose the source of errors. In contrast, we propose
TEMROBBENCH that systematically investigates
ultimodal robustness in LMMs against temporal
inconsistency.
Direct Preference Optimization. Direct prefer-
ence optimization (DPO) (Rafailov et al., 2023),
which focuses on directly optimizing large lan-
guage models (LLMs) to align human preferences
has gained significant traction in the context of
RLHF (Ouyang et al., 2022). Previous works (Xie
et al., 2024; Wang et al., 2024a) primarily empha-
size constructing image contrast data to optimize
visual preferences. Recently, some works such
as (Zhang et al., 2024) and (Liu et al., 2024a)
transfer DPO to video tasks. However, they tar-
get only response optimization, which is limited
to multimodal scenarios. In contrast, we propose
PanoDPO, which performs panoramic optimization
on both the video, question and response, encour-
aging the model to simultaneously prioritize visual
information and linguistic features.

7 Conclusion

In this paper, we identify the robustness weak-
nesses of intrinsic and extrinsic shortcuts in LMMs
against temporal inconsistency, where the model
over-rely on prior knowledge and textural context
to response, neglecting the actual video content.
To systematically investigate these issue, we care-
fully design TEMROBBENCH, which includes di-
verse temporal inconsistency settings. The exten-
sive evaluations demonstrate that the temporal ro-
bustness of LMMs is generally fragile, despite
their strong performance on understanding gen-
eral videos. Additionally, we propose a preference
optimization method PanoDPO, which effectively
enhance robustness of LMMs in temporal analysis
and alleviates the shortcut phenomenon.

Limitations

Although we construct a comprehensive bench-
mark and propose a methodology to investigate
and mitigate the shortcut phenomena caused by the
weak temporal robustness of LMMs, our work still
has limitations. Firstly, the temporal inconsistency
scenarios in our dataset are relatively simplistic.
We focus on classifying them based on varying
degrees of inconsistency, as expanding to more

complex and diverse scenarios would increase the
difficulty and demand considerable effort. Sec-
ondly, our experiments are conducted on models
of 7B and 13B sizes, and we evaluate our proposed
PanoDPO on a few selected models. This is due to
computational limitations.
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A Detailed descriptions of LMMs

Videochat2 (Li et al., 2024f) is a model built on
visual encoder UMT (Li et al., 2023) and LLM
Vicuna-v0 (Chiang et al., 2023), trained through a
three-stage progressive training process.
VideoLLaVA (Lin et al., 2024a) is a model
constructed upon the foundation of Language-
Bind (Zhu et al., 2024), which pre-aligns im-
ages and videos, and Vicuna-v1.5 (Chiang et al.,
2023), undergoing a two-phase training regimen
that blends both image and video data.
LLaVA-Hound extends the pipeline of Vide-
oLLaVA and introduces additional video
DPO (Rafailov et al., 2023) training.
ShareGPT4Video leverages GPT4v (OpenAI,
2023) to generate dense and precise video cap-
tions for training, building upon the foundation
of LLaVA-NEXT (Li et al., 2024d).
InternVideo2 is constructed by expanding the vi-
sual encoder (Wang et al., 2023) and integrating
Mistral (Jiang et al., 2023), while continuing the
training process established by VideoChat2.
VILA1.5 (Lin et al., 2024b) is built upon
SigLIP (Zhai et al., 2023) and Vicuna-1.5, utiliz-
ing large-scale interleaved image-text data for pre-
training to enhance alignment efficacy.
VideoLLaMA2 (Cheng et al., 2024) is built upon
SigLIP and Mistral-7B-Instruct, employing 3D con-
volutions to build an alignment layer that circum-
vents information loss due to token compression.
PLLaVA (Xu et al., 2024) introduces a pooling
strategy on the basis of LLaVA-NEXT, circumvent-
ing the bias of learned high-norm visual features
that arise from utilizing image-language models.
mPLUG-ow3 (Ye et al., 2024) integrates several
hyper attention transformer blocks within the trans-
former blocks of Qwen2 (Yang et al., 2024) to facil-
itate the fusion of multimodal information, thereby
preventing the loss of visual information during the
front-end processing of the language model.
InternVL2.5 (OpenGVLab, 2024) is built upon
the foundation of InternViT and InternLM, with
enhancements in data quality and training strategy
optimization to bolster model performance.
Qwen2-VL (Wang et al., 2024b) is constructed
upon Qwen2 and ViT (Dosovitskiy et al., 2021),
incorporating naive dynamic resolution and M-
RoPE strategies to effectively integrate information
across different modalities, enabling the compre-
hension of very long videos.

LLaVA-OV (Li et al., 2024c) is built upon Qwen2
and SigLIP, leveraging a pooled anyres strategy to
achieve superior performance across single-image,
multi-image, and video scenarios.
GPT-4o (OpenAI, 2023) builds upon the GPT4v,
further enhancing its multimodal and multilingual
abilities, enabling it to comprehend various modal-
ities including images, videos, and audio.

B More Details in Preference Data
Construction

All preference data for training PanoDPO is ex-
tended from ShareGPTVideo-DPO (Zhang et al.,
2024), which contains 17K samples, including
videos, questions, chosen and rejected responses.

B.1 Visual-conditioned Preference Data
We explore three different methods to construct
the rejected videos. For the shuffle, we generate
random numbers to rearrange the indices. For the
crop, we randomly remove 20% of the area in each
frame to reduce the available visual information.
For the replace, we randomly change 50% of the
video frames with blank during the training.

B.2 Textual-conditioned Preference Data
We first generate captions for each video, and then
generate perturbation texts based on the captions,
questions, and correct answers. As shown in the
prompt in Fig. 8, we have carefully defined the
rules inspire by (Chen et al., 2025) for generating
perturbation content to ensure their high quality.

C Introduction to the COIN Dataset

The COIN dataset (Tang et al., 2019) consists of
videos related to 180 different tasks, which are all
collected from YouTube. The average length of
a video is 2.36 minutes. Each video is labelled
with 3.91 step segments, where each segment lasts
14.91 seconds on average and corresponding to a
manually annotated event description.

D More Implementation Details

During DPO training, we freeze the vision encoder
and only optimize the LoRA parameters of the
LLM and the parameters of projector. Our training
codes are based on the HuggingFace TRL. Addi-
tionally, we use A100 80GB GPUs for training and
apply full shared data parallel (FSDP) and gradient
checkpointing to save GPU memory. Each DPO
training takes approximately 10 hours.

14161



Prompt for Generating Perturbation Content

[User]
-Goal-: 
Your mission is to subtly and strategically mislead the multimodal model by crafting responses that 
seem plausible, confident, and logical, yet are fundamentally incorrect. Your objective is to avoid 
directly pointing out any errors or contradictions in the video. Instead, guide the model into making its 
own incorrect assumptions by using persuasive language-based reasoning that conflicts with the visual 
content. This isn’t about trapping the model—it’s about leading it astray through sophisticated, indirect 
misdirection.
-Steps-: 
1. Analyze the (Video content) and the (Question), noting key elements from the video and the correct 
answer. However, refrain from directly confronting any discrepancies in the video. 
2. Create subtle perturbations that align with widely accepted world knowledge or logical reasoning, 
but interpret the video content in a way that leads to a conflicting or misleading conclusion. The 
following principles will help guide your responses: 
• Never directly state that something in the video is incorrect. Instead, offer an interpretation that, 

while plausible, subtly deviates from the visual truth. The model must be misled into arriving at an 
incorrect conclusion on its own. 

• Use established knowledge to give weight to your misdirection. Frame your reasoning confidently 
and authoritatively to make it harder for the model to question. 

• Lead with implication and speculation, encouraging the model to rely on language-based patterns 
and general knowledge rather than visual context. 

3. Ensure your perturbations meet these criteria: 
• They must subtly reinterpret or mislead without directly pointing to errors in the video. Avoid any 

blatant contradictions or confrontations with the video content. 
• The perturbations should sound natural and rational, pulling the model into an incorrect response 

that feels justified through reasoning, not forced by direct contradictions. 
• Leverage a tone of authority and confidence to subtly strengthen the incorrect interpretation, making 

the model less likely to double-check against the visual input. 
4. Refining your perturbation: 
• Have you avoided stating that something is wrong in the video? Subtlety is key. You should be 

leading the model, not trapping it. 
• Is the perturbation focused on language-based reasoning and assumptions, subtly bypassing the need 

for visual validation? 
• Does the response sound logical, confident, and authoritative while leading to a fundamentally 

incorrect conclusion?
5. Once you’ve crafted the perturbation, ensure it is as detailed and complex as possible, introducing 
multiple layers of misdirection and logical reasoning to produce an elaborate and convincing, yet 
fundamentally incorrect conclusion. 
6. Avoid making the conclusion too lengthy. Output the (Perturbation): . 
-Real Data-: 
(Video content): ‘[Caption]’ 
(Question): ‘[Question]’ 
(Answer): ‘[Correct answer]’ 
output: 

...... Several Examples ...... 

[Assistant]
Model generated ...

Figure 8: The prompt for generating textual-conditioned preference data.

14162


