
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 13660–13676
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

STUN: Structured-Then-Unstructured Pruning
for Scalable MoE Pruning

Jaeseong Lee*, Seung-won Hwang*, Aurick Qiao,
Daniel Campos, Zhewei Yao, Yuxiong He

Snowflake AI Research, Seoul National University*

Abstract
Mixture-of-experts (MoEs) have been adopted
to reduce inference costs by sparsely activating
experts in large language models (LLMs). De-
spite these reductions, the massive number of
parameters in MoEs still makes them expensive
to serve. Conventionally, unstructured or struc-
tured pruning has been considered to reduce the
number of parameters. Our key contribution is
exploring the interpolation between structured
and unstructured pruning, to propose a novel
structured-then-unstructured (STUN) approach
outperforming both structured and unstructured
pruning, especially for MoEs. In the first stage,
we show a scalable expert pruning with O(1)
forward pass, unlike existing work requiring
O(kn

√
n
) forward passes for n experts that can-

not scale for recent MoEs with hundreds of ex-
perts. We then show our expert-pruned MoEs
are robust to unstructured pruning to follow.
Experiments on Snowflake Arctic and Mixtral
show that our proposal is highly effective– For
Snowflake Arctic, a 480B-sized MoE with 128
experts, our method needs only one H100 and
two hours to achieve nearly no loss in perfor-
mance with 40% sparsity, even in generative
tasks such as GSM8K, where state-of-the-art
structured or unstructured pruning methods fail.
The code is publicly available.1

1 Introduction

Large language models (LLMs) have become state-
of-the-art for various tasks (OpenAI, 2023; Tou-
vron et al., 2023; Jiang et al., 2023; Lieber et al.,
2024). However, their prohibitive inference cost
is becoming a bottleneck to deployment (Kad-
dour et al., 2023), and detrimental to the environ-
ment (Strubell et al., 2019; Zeng et al., 2023).

Mixture-of-experts (MoE) presents a promising
alternative, by sparsely activating a specific sub-
set of parameters, named as experts, to reduce the

*Work done while visiting Snowflake. Correspond to se-
ungwonh@snu.ac.kr

1https://github.com/thnkinbtfly/STUN

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1

G
SM

8
K

 a
cc

u
ra

cy

structured pruning ratio

OWL Lu et al. (2024)

Ours LLM-Pruner

Figure 1: GSM8K 5-shot accuracy by pruning Mixtral-
8x7B-Instruct by 50% of sparsity. We probe interpola-
tion of structured and unstructured pruning, by varying
the ratio of structured pruning.

inference cost. This architecture has been empiri-
cally proven effective, in training cost (Fedus et al.,
2022), and inference cost (Du et al., 2022).

Despite these reductions, the massive number of
parameters remains unchanged, requiring signifi-
cantly more GPU memory, which makes serving
large MoE models challenging for many. Addi-
tionally, recent MoEs tend to increase the number
of experts n, resulting in even larger MoEs. For
instance, accommodating 56B parameters of Mix-
tral (Jiang et al., 2024) with 8 experts or 132B
of DBRX (Databricks, 2024) with 16 experts, or
480B of Snowflake Arctic (Snowflake, 2024) with
128 experts, requires an ever-growing amount of
memory and more GPUs to serve.

To reduce the number of parameters, unstruc-
tured (Frantar and Alistarh, 2023; Sun et al., 2024),
or structured pruning (Ma et al., 2023) can be
considered. Unstructured pruning allows weight
tensors to be sparse anywhere, while structured
pruning imposes patterns on sparsification, such
as removing rows, entire weight tensors (Ma et al.,
2023), or pruning experts in MoE (Lu et al., 2024a).

In this paper, we propose the interpolation of two,

13660

Inter-Expert Sparsity Intra-Expert Sparsity Figure 1
✓ ✗ Lu et al., 2024a (•)
✗ ✓ LLM-Pruner (•), Wanda, OWL (•)
✓ ✓ Ours (•)

Table 1: Comparison of existing pruning methods for MoEs.

Structured-Then-UNstructured pruning (STUN).
Figure 1 motivates our interpolated method, where
unstructured- or structured-only, x = 0 and x = 1,
respectively, is outperformed by the peak, combin-
ing both.

Our first phase, expert pruning, by leveraging
model-inherent expert for pruning, significantly
outperforms row/column-level structured pruning
(Figure 1 blue; Ma et al., 2023) However, existing
expert-level pruning for MoE (Figure 1 grey; Lu
et al., 2024a) often does not scale well over the
solution space, requiring an exhaustive combina-
tion of experts, leading to O(kn√

n
) GPU calls, with

k = 1
ϕϕ(1−ϕ)1−ϕ , and ϕ < 1 is sparsity (Lu et al.,

2024a). While this was acceptable in an early MoE
work with few experts, it does not scale to recent
trends in MoEs with large n (Bai et al., 2023; Dai
et al., 2024; Snowflake, 2024), or even infinity (He,
2024). Our distinction is drastically reducing the
number of GPU calls to O(1), without compromis-
ing the performance. The main intuition is lever-
aging a latent structure between experts, based on
behavior similarity, such that the greedy decision of
whether to prune closely captures the joint pruning
effect.

The second contribution is allowing unstructured
phase to follow, to consider both inter- and intra-
expert sparsity (Table 1). STUN removes redun-
dant experts by expert-level structured pruning first,
then desires fine-grained sparsity within individual
experts.2

We support STUN with the findings of Mason-
Williams and Dahlqvist (2024), which show that
higher kurtosis in the weight distribution (indicat-
ing many outliers) suggests more weights can be
pruned while maintaining performance, highlight-
ing the robustness of unstructured pruning. We
argue that expert-level pruning does not reduce kur-
tosis, thereby preserving the network’s resilience
to unstructured pruning.

Our contributions can be summarized as follows:

2From now on, we will define sparsity as the number of
pruned parameters divided by the total number of parameters
in the original model.

• We propose STUN, the first method to com-
bine structured and unstructured pruning, out-
performing both approaches.

• Scalable first phase: We design an expert-
level pruning method with O(1) GPU calls,
outperforming the O(kn√

n
) solution (Lu et al.,

2024a).

• Justifying the second phase: We show the
expert-pruned network remains robust to un-
structured pruning to follow.

• State-of-the-art efficiency and compression:
For Snowflake Arctic (480B, 128 experts), it
requires just 1 H100 and two hours, with no
backpropagation or fine-tuning needed. Com-
pression reaches up to 40% sparsity without
compromising performance, even in genera-
tive tasks like GSM8K, where unstructured
pruning fails. We report consistent results for
Mixtral models.

2 Related Work

2.1 LLM Pruning
LLM pruning can be classified into unstructured
and structured pruning (Behnke and Heafield,
2021). Unstructured pruning involves finding mask
tensors to sparsify weight tensors. Such masking
leads to practical speedups in hardware such as
CPU (NeuralMagic, 2021), and ongoing research
is actively developing methods to achieve similar
speedups on GPUs (Mishra et al., 2021; Zhao et al.,
2024). SparseGPT (Frantar and Alistarh, 2023)
uses the Hessian matrix for second-order Taylor
approximation, while GBLM-Pruner (Das et al.,
2024) and Pruner-Zero (Dong et al., 2024) leverage
gradients to identify mask tensors. However, as
these methods demand substantial GPU memory
for LLMs, we focus on more memory-efficient ap-
proaches, using two recent baselines: Wanda (Sun
et al., 2024) evaluates the importance of neurons
in each layer by its weight multiplied by the activa-
tion value, removing those with low scores. While
Wanda assumes a uniform sparsity across layers,

13661

OWL (Yin et al., 2024) probes the optimal sparsity
per layer, given the pruning budget.

Structured pruning, on the other hand, imposes
constraints on the sparsification pattern, such as
removing rows, columns, or even entire weight ten-
sors. Early methods that involve pruning attention
heads (Voita et al., 2019; Shim et al., 2021; Zhang
et al., 2021), rows (Gong et al., 2022), entire dense
layers (Liang et al., 2021), or whole transformer
blocks (Fan et al., 2019; Li et al., 2020) fall under
this category. Recent works have applied struc-
tured pruning for LLMs (Ma et al., 2023; Cheng
et al., 2024; Gao et al., 2024; Zhang et al., 2024a;
Dery et al., 2024), but without fine-tuning, these
methods generally underperform when compared
to unstructured pruning.

Our distinction is to introduce a new class
of pruning– structured-then-unstructured pruning–
and demonstrate its significant advantages for
MoEs, surpassing the performance of either
method alone. This approach differs from previous
methods that combine structured and unstructured
pruning (Kurtic et al., 2022), which failed to out-
perform unstructured pruning.

2.2 Expert Pruning
Early work on expert pruning was domain-
specific (Kim et al., 2021; Koishekenov et al., 2023;
Liu et al., 2024), such as in translation MoEs, by
keeping most activated experts (Kim et al., 2021),
or pruning based on gate statistics (Koishekenov
et al., 2023). Lu et al. (2024a) introduced a domain-
agnostic expert pruning, searching for the best com-
bination of experts to reduce the reconstruction loss,
and quantify their criticality in output prediction.
Concurrently to our study, (Zhang et al., 2024b)
proposed an efficient expert pruning method.

Our distinction is two-fold. First, we interpolate
expert pruning with unstructured pruning to out-
perform either method alone. Second, for scalable
expert-level structured pruning, we derive a scal-
able expert-level structured pruning method with
O(1) GPU calls, improving on the O(kn√

n
) solution

enumerating combinatorial pruning.

2.3 Pruning Robustness
Robustness in post-hoc pruning is quantified by
whether performance is maintained after prun-
ing. Kurtosis of weights (Mason-Williams and
Dahlqvist, 2024) has been used as a proxy for ro-
bustness, with networks showing higher weight
kurtosis able to tolerate higher unstructured prun-

ing ratios. Our contribution is demonstrating that
an expert-pruned network remains robust to addi-
tional unstructured pruning, which naturally sup-
ports our design of unstructured pruning as the
second phase.

3 Preliminaries: MoE

As a promising alternative to large language mod-
els, which incur prohibitive inference costs, MoE
employs a multitude of specialized experts. In each
forward pass, MoE selectively activates specific ex-
perts conditioned on input tokens, thereby reducing
the train and inference costs.

We now formally describe the behavior of an
MoE. An MoE layer M consists of experts Ei =
E(x; θi), where θi represents the parameters of
expert Ei, and a router layer r. Each expert E
typically follows the same MLP architecture.

First, the router layer selects which experts to
sparsely activate based on the current input token,
and provides the coefficients r(x) ∈ Rn for linear
combination of selected expert outputs. The coeffi-
cients r(x) and the top-k indices of experts T are
formulated as follows:

r(x) = softmax(Wx) (1)

T = topk(r(x)) (2)

where W is the learnable weight matrix for router
r.

Next, these coefficients are used for the linear
combination of expert outputs:

M(x; θ) =
∑

i∈T
ri(x)E(x; θi) (3)

4 Proposed Method

4.1 Overview: STUN
Figure 2 overviews our two-phase approach, inter-
polating structured and unstructured pruning as mo-
tivated in Table 1. Section 4.2 describes ➀ how we
remove redundant experts with expert-level struc-
tured pruning with high scalability, then Section 4.3
describes ➁ how we perform unstructured pruning
inside individual experts.

4.2 Expert-level Structured Pruning with
O(1) GPU calls

Now, we describe our expert-level structured prun-
ing with O(1) GPU calls.3 Previous solution (Lu

3We focus on GPU cost, since it dominates the CPU cost–
For example, the accumulated CPU cost (including the hy-

13662

① ②

: experts : pruned

Figure 2: Overview of our proposed STUN. ➀ We first
remove redundant experts with expert-level structured
pruning, then ➁ perform unstructured pruning inside
individual experts. Black box represents a layer in MoE,
and different colors represent different behavioral simi-
larities.

et al., 2024a) minimizes reconstruction loss (Sec-
tion 4.2.1), requiring GPU call per combination
of experts, that is O(kn√

n
). Our key contribution is

to approximate this combinatorial reconstruction
loss to reduce the number of GPU calls to O(1), by
leveraging latent cluster structure among experts,
based on behavioral similarity.

Specifically, we find clusters of similar experts
layer by layer, yielding a total of ϕnl clusters in
the whole MoE, where ϕ is the sparsity, n is the
number of experts in each layer, and l is the number
of layers in MoE. Then we greedily prune every
expert but one representative per each cluster.

Later sections show why our greedy pruning is
as effective as its combinatorial counterpart.

4.2.1 O(kn√
n
): Combinatorial Reconstruction

Loss
We start from the conventional goal of pruning–
minimizing the reconstruction loss. Reconstruction
loss has been employed to assess how closely the
pruned model θ − θS without expert set S mirrors
the behavior of the unpruned θ (Lu et al., 2024a).
Formally, this loss is quantified by the Frobenius
norm of the difference between the original output
M(x; θ) and the output of pruned layer M(x; θ −
θS), denoted as ES .

ES = ∥M(x; θ)−M(x; θ − θS)∥F (4)

perparameter search to meet desired sparsity) required by our
algorithm is less than 1 minute, even on 480B Snowflake
Arctic.

where x is the whole input we consider. The objec-
tive of pruning is to explore all possible combina-
tions of experts,

(
n
|S|
)
, to determine the expert set

S that minimizes ES .
While such an exhaustive search is feasible for

smaller models like Mixtral (Jiang et al., 2024),
which contains only 8 experts, it becomes pro-
hibitive for recent MoEs featuring a massive num-
ber of experts.

To elaborate, deciding which experts to prune
using Eq. 4 for |S| = ϕn requires

(
n
|S|
)
≈ O(kn√

n
)

forward passes according to Stirling’s approxima-
tion, where k = 1

ϕϕ(1−ϕ)1−ϕ , and ϕ < 1 repre-
sents the sparsity. Our distinction is to lower the
computation to O(1), without compromising the
performance– In fact, as we will elaborate later, we
outperform the combinatorial objective.

4.2.2 Towards O(n): Probabilistic
Interpretation

As a stepping stone towards O(1), we propose to
rephrase the goal of finding θS to minimize ES (Eq.
4) as:

argmaxS
∏

k

P (Xk = sk|X1 = s1,

· · · , Xk−1 = sk−1) (5)

Our contribution is greedy optimization with-
out compromise for Eq. 5– We decompose the
multiplication of Eq. 5 at each step k, and obtain
the distribution P (Xk|s1, · · · , sk−1), to select Xk

that maximizes the probability. To achieve it, we
estimate the rank between the probabilities. Such
rank estimation can benefit from the latent structure
among experts, specifically, a cluster of similar ex-
perts in MoE. Given cluster mapping c which maps
an expert to a set of similarly behaving experts, we
assign the value P (Ei|Sk−1), as follows:

P (Ei|Sk−1) =

{
P (Ei)− p c(Ei) ⊆ Sk

P (Ei) otherwise
(6)

This enables the calculation of all P (Ei|Sk−1) in
Eq. 5 from P (Ei)s, which needs only n forwards
in total.

Clustering the Similar Experts Our remaining
task is to obtain cluster information c: One sig-
nal is pairwise behavioral similarity bi,j , from the
pretrained router weights W at a minimal cost.
Suppose two rows Wi ≈ Wj are similar; then

13663

ri(x) ≈ rj(x), meaning Ei, Ej tend to be selected
by similar inputs, implying similar expertise. Thus,
the behavioral similarity bi,j between two experts
Ei, Ej can be obtained as follows:

bi,j = −∥Wi −Wj∥F (7)

which can be improved with coactivation statis-
tics ai,j , if we allow some inference cost. As a
result, we illustrate our clustering algorithm in Alg
1, whose detailed derivation can be found in Ap-
pendix A.1.

Algorithm 1 Expert Clustering Algorithm

Require: l← Number of layers
Require: n← Number of experts per layer
Require: {ai,j}i,j ← Coactivation statistics of
Ei, Ej for every layer

Require: λ1, λ2 ← Hyperparameter for behav-
ioral similarity

Require: t← Threshold to determine sparsity
Ensure: c← The mapping from expert to cluster

of the similar experts
for m in [1..l] do

W ← Router weight of layer m
{ai,j}i,j ← Coactivation statistics of layer

m
for i in [1..n− 1] do

for j in [i+ 1..n] do
bi,j ← −λ1∥Wi −Wj∥F + λ2ai,j

end for
end for
for i in [1..n] do

c(Ei)← {Ei}
end for
while mini,j bi,j < t do

d, e← argmini,jbi,j
md ← maxi∈c(Ee) bd,i
me ← maxi∈c(Ed) bi,e
if c(Ed) ̸= c(Ee) ∧ max(md,me) < t

then
c(Ed) = c(Ee)← c(Ed) ∪ c(Ee)

end if
bd,e ←∞ ▷ Mark as visited

end while
end for
return c

4.2.3 Towards O(1): Taylor Approximation
and Selective Reconstruction

While the previous section immensely reduces the
cost to obtain the probability distribution to O(n)

by requiring only P (Ei)s, we can further reduce
the number of forward passes– We aim to remove
the GPU calls for P (Ei), which is needed as in Eq.
10.

The key idea is approximating Ei’s reconstruc-
tion loss value Ei = ∥M(x; θ)−M(x; θ − θi)∥F .
To address this, with 1st order Taylor approxima-
tion, we find the expert closest to θ̄i within each
cluster has the highest priority to be retained. We
assign ranks similarly, and the same greedy algo-
rithm is applied to optimize Eq. 5. Additionally,
we selectively reconstruct the expert. The final al-
gorithm is summarized in Alg 2, which is described
in detail in Appendix A.2.

Algorithm 2 Our O(1) Expert Pruning

Require: l← Number of layers
Require: n← Number of experts per layer
Require: c← The mapping from expert to cluster

of the similar experts
Require: κ← Threshold for selective reconstruc-

tion
for m in [1..l] do

r(m) = []
A← {c(E1), · · · , c(En)}
for C in A do

θ̄i ← 1
|C|

∑
i∈C θi

if |A| < κ then
θC ← θ̄i ▷ Reconstruct

else
θC ← minθj∈C ∥θj − θ̄i∥F

end if
r(m).append(θC)

end for
end for
return r

4.3 Unstructured Pruning on Expert-pruned
Model

Our main conjecture for STUN is intra-expert spar-
sity yet remains intact after the first phase. Specif-
ically, we propose to pursue fine-grained sparsity
within the remaining experts, by leveraging unstruc-
tured pruning methods designed for general LLM
, such as OWL (Yin et al., 2024) or Wanda (Sun
et al., 2024).

Now we theoretically verify our conjecture:
intra-expert sparsity remains high, or, even higher,
after the expert pruning phase. In other words, we
explain why performing unstructured pruning after

13664

model sparsity method GSM8K Avg(→) ARC-c ARC-e HellaSwag MMLU

Arctic

0% unpruned 70.74 68.33 56.91 84.60 66.94 64.86

40%

STUN (w/ OWL) 70.28 67.66 57.68 83.29 64.94 64.75
OWL 63.76 67.35 56.74 84.13 65.08 63.47
STUN (w/ Wanda) 69.60 67.64 57.25 83.63 64.86 64.81
Wanda 64.59 67.54 57.00 84.64 65.19 63.32

65%
STUN (w/ OWL) 43.97 62.67 51.54 80.01 59.91 59.24
OWL 13.42 56.68 44.37 76.64 53.69 52.02

Mixtral-8x7B
(Instruct)

65%
STUN (w/ OWL) 25.09 60.34 48.12 78.79 54.05 60.39
OWL 1.29 45.20 24.15 49.79 49.27 57.60
LLM-Pruner 1.29 31.74 22.78 45.96 35.09 23.13

Mixtral-8x22B
(Instruct)

70%
STUN (w/ OWL) 30.78 60.20 47.95 77.86 55.41 59.56
OWL 19.64 57.74 45.48 76.60 52.47 56.42

Table 2: Comparison between STUN and the baselines across various models.

expert pruning is better than continuously perform-
ing unstructured pruning only.

Intra-expert sparsity, formally speaking, robust-
ness to unstructured pruning, can be estimated
by the kurtosis of weights (Mason-Williams and
Dahlqvist, 2024). Kurtosis is expressed as follows:

K(θ) = E

[(
θ − µ

σ

)4
]

(8)

Suppose the weight of experts θ follow a zero-
meaned Gaussian distribution N . Unstructured
pruning (Sun et al., 2024; Yin et al., 2024; Das
et al., 2024; Dong et al., 2024), which tends to
remove near-zero weights,4 would shift the distri-
bution closer to a bimodal symmetric distribution,
whose kurtosis is minimum (Darlington, 1970). As
a result, unstructured pruning would lower the kur-
tosis value, leaving less margin for further unstruc-
tured pruning.

In contrast, coarse structured pruning, such as ex-
pert pruning, is less likely to decrease the kurtosis
value, since the assumption θ ∼ N still holds for
remaining experts. This implies that expert pruning
preserves the robustness of unstructured pruning,
unlike applying unstructured pruning with a similar
sparsity.5

5 Experiments

5.1 Experimental Settings
We use Snowflake Arctic (Snowflake, 2024) as a
representative large MoE, with a total of 480B pa-

4The importance score of unstructured pruning typically
increases as the absolute value of the weight increases.

5In our experiments, the kurtosis increased from 14248 to
15623 after expert pruning.

rameters and 128 experts. To compare our method
with previous works (Lu et al., 2024a), we also
experiment with Mixtral (Jiang et al., 2024).

Tasks and Datasets In contrast to previous un-
structured pruning studies (Sun et al., 2024; Yin
et al., 2024), we also evaluate the NLG task,
GSM8K (Cobbe et al., 2021), where maintaining
performance proves to be much more challenging
(see Table 2; Appendix F). We further assess per-
formance on four NLU tasks– ARC-challenge and
ARC-easy (Clark et al., 2018), HellaSwag (Zellers
et al., 2019), and MMLU (Hendrycks et al., 2021).
When comparing with expert pruning methods, fol-
lowing previous work (Lu et al., 2024a), we also
conduct a zero-shot evaluation on BoolQ (Wang
et al., 2019), OpenBookQA (Mihaylov et al., 2018),
RTE (Wang et al., 2018), WinoGrande (Sakaguchi
et al., 2021).

To provide some data for inference, we employ
the C4 dataset (Raffel et al., 2020), following the
baselines (Yin et al., 2024; Sun et al., 2024; Lu
et al., 2024a).

Implementation Details We explore the values
of (λ1, λ2) ∈ {(0, 1), (1, 0), (1, 1)}, except for
Snowflake Arctic, the largest MoE in our exper-
iments, where we only consider (λ1, λ2) = (1, 0),
meaning no GPU calls are required for expert prun-
ing. The sparsity for expert-level structured prun-
ing is set to 20%, 12.5%, and 10% for Snowflake
Arctic, Mixtral-8x7B, and Mixtral-8x22B respec-
tively. We use κ = 3 for selective reconstruction.
More detailed implementation information and hy-
perparameter decisions are provided in Appendix.

13665

model sparsity method cost Avg

Mixtral-8x7B (Instruct)
0% unpruned 69.98

25%
Ours O(1) 68.05
Lu et al. (2024a) O(kn√

n
) 67.45

Mixtral-8x7B
0% unpruned 67.58

25%
Ours O(1) 64.34
Lu et al. (2024a) O(kn√

n
) 64.22

Table 3: Comparing the average performance of 8 tasks of the proposed expert pruning, with other baselines.

sparsity ARC-C BoolQ HellaSwag MMLU RTE WinoGrande Avg
Unpruned 0% 59.4 84.2 84.0 67.9 70.4 75.6 71.5
Ours 25% 55.6 83.1 81.1 63.3 68.6 72.7 70.7
SEER-MoE (Muzio et al., 2024) 25% - - - 56.7 - - -
Expert Drop (He et al., 2024) 25% 53.2 77.7 80.5 52.2 55.6 76.8 66.0
Layer Drop (He et al., 2024) 25% 47.7 85.3 75.2 67.3 69.7 74.6 70.0

Table 4: Comparison of efficient expert pruning methods on Mixtral-8x7B.

sparsity cost GSM8K
unpruned 0% 63.46
Ours 25% O(1) 53.22
Lu et al. (2024a) 25% O(kn√

n
) 48.52

Table 5: GSM8K accuracy comparison with baseline on
Mixtral-8x7B-Instruct.

5.2 Experimental Results
5.2.1 RQ1: STUN Outperforms Unstructured

Pruning
Table 2 describes that our proposed (STUN) signif-
icantly outperforms the unstructured pruning meth-
ods. We emphasize that we use the same unstruc-
tured pruning approach for all for fair comparison.

For example, with 40% of sparsity for the Arc-
tic, STUN neatly retains the original GSM8K per-
formance, while unstructured pruning results in a
noticeable performance drop. This is consistent
for different unstructured pruning methods, Wanda,
as well. As the sparsity increases, the table shows
that STUN can maintain the original performance
much better than the baselines– For 65% sparsity,
STUN’s GSM8K performance is nearly 30%p bet-
ter than that of unstructured pruning. With differ-
ent models, we observe different gaps but a simi-
lar trend– For 65% of sparsity for Mixtral-8x7B-
Instruct, STUN’s GSM8K performance is nearly
20 times better than that of unstructured pruning. In
the ARC-challenge, the unstructured pruning per-
formance falls below the random-guess accuracy
of 25.02 (Clark et al., 2018), whereas STUN main-

sparsity O(n) O(1)

25% 63.97 64.34
50% 59.90 59.58

Table 6: Comparing the average performance of 8 tasks
of our O(n) and O(1) algorithms for expert pruning on
Mixtral-8x7B.

tains a significantly higher performance, achieving
twice the score. Mixtral-8x22B shows a similar
trend.

5.2.2 RQ2: Our O(1) Expert Pruning
Outperforms Existing Methods

Tables 3 and 5 show that our proposed O(1) expert
pruning method is highly effective, outperforming
the previous O(kn√

n
) solution. This is because we

derive the latent structure from the pretrained MoE,
while the previous work (Lu et al., 2024a) relies
solely on the given calibration data. This validates
our design of O(1) in section 4. The detailed re-
sults are in Appendix E.

Table 4 shows that our expert pruning outper-
forms other efficient pruning methods. Compared
to SEER-MoE, our pruning clearly outperforms the
performance in MMLU, by a substantial margin.
Moreover, ours achieves a higher average perfor-
mance compared to the results reported by He et al.
(2024).6

Moreover, Table 6 shows that our O(1) expert
6Note that SEER-MoE (Muzio et al., 2024) only reveals

the performance of MMLU, and we used different metrics
following He et al. (2024).

13666

0

0.2

0.4

0.6

0.8

50 60 70 80

sparsity

unstructured

STUN

(a) Arctic (128x3.66B)

0

0.2

0.4

0.6

0.8

50 60 70

sparsity

unstructured

STUN

(b) Mixtral-8x7B

0

0.2

0.4

0.6

0.8

50 60 70 80

sparsity

unstructured

STUN

(c) Mixtral-8x22B

0

0.2

0.4

0.6

0.8

45 50 55 60

sparsity

unstructured

STUN

(d) OLMoE-7B

Figure 3: Comparing STUN and unstructured pruning for various MoEs.

Train GPU cost GPUs #
Lu et al. (2024a) 0 infeasible7 > 8
STUN (w/ OWL) 0 1.12h 1
OWL (Yin et al., 2024) 0 1.12h 1
STUN (w/ Wanda) 0 0.58h 1
Wanda (Sun et al., 2024) 0 0.58h 1

Table 7: Cost comparison of diverse pruning methods
with Snowflake-Arctic. Train: training cost, GPU #:
number of GPUs required for pruning.

pruning method achieves similar performance to
our O(n) method. This supports our choice to use
the O(1) method, which is more efficient.

5.2.3 RQ3: STUN Adapts Large Number of
Small Experts

Figure 3 illustrates the trend of STUN in differ-
ent MoEs. The performance gap between STUN
and unstructured pruning increases as the MoE has
more experts with small sizes (from (c) to (a)). This
is because having more experts, rather than having
fewer but larger ones, provides greater flexibility
to our expert pruning. Notably, MoEs with a large

7In detail, 23951146041928082866135587776380551750
forward passes per layer at minimum.

number of small experts are favored in recent mod-
els (He, 2024).

5.2.4 RQ4: STUN Outperforms Unstructured
Pruning in non-MoEs

To investigate whether STUN is generalizable to
non-MoE as well, we employ a state-of-the-art
structured pruning algorithm for non-MoE mod-
els, namely, LLM-surgeon (van der Ouderaa et al.,
2024) with 5% sparsity before performing unstruc-
tured pruning, which is OWL in our case. Figure 4
illustrates that such STUN outperforms unstruc-
tured pruning.

6 Cost Analysis

Table 7 shows the cost comparison between di-
verse pruning methods. While none of the pruning
methods require training cost, Lu et al. (2024a)
is infeasible due to its prohibitive number of for-
ward passes in GPUs. Due to the efficiency of
proposed expert pruning, STUN is as efficient as
the unstructured pruning method it uses, making
it a feasible pruning method even for large MoEs,
such as Snowflake-Arctic.

13667

0.02

0.07

0.12

0.17

45 50 55 60 65

unstructured

STUN

(a) Llama-2 7B

0.02

0.07

0.12

0.17

45 50 55 60 65

unstructured

STUN

(b) Llama-2 13B

Figure 4: GSM8K 5-shot accuracy comparing STUN and unstructured pruning for various non-MoEs.

7 Conclusion

In this paper, we proposed STUN– an interpola-
tion between structured and unstructured pruning,
leveraging both inter- and intra-expert sparsity.We
provide both theoretical and empirical evidence
demonstrating why designing expert pruning be-
fore unstructured pruning is beneficial.

Limitation

Since our method utilizes unstructured pruning in
the second stage, we share the same disadvantages
with unstructured pruning, that is, on some hard-
ware, the acceleration may not be trivial. How-
ever, it is shown that some hardware, such as CPU,
can successfully accelerate unstructure-pruned net-
works (NeuralMagic, 2021), and ongoing research
is actively developing methods to achieve similar
speedups on GPUs (Mishra et al., 2021; Zhao et al.,
2024). With a substantial body of work dedicated
to unstructured pruning (Frantar and Alistarh, 2023;
Das et al., 2024; Dong et al., 2024; Sun et al., 2024;
Yin et al., 2024; Li et al., 2024; Hu et al., 2024;
Lu et al., 2024b), we believe this approach remains
highly relevant and leads to practical performance
improvements with ongoing hardware support.

We already have shown our method works in
versatile extreme settings, such as non-MoE mod-
els, or high sparsity, etc. We leave more extensive
evaluations, such as performance under highly im-
balanced or skewed data distributions, as future
work.

References
Daniel Aloise, Amit Deshpande, Pierre Hansen, and

Preyas Popat. 2009. NP-hardness of Euclidean sum-
of-squares clustering. Machine Learning, 75(2):245–
248.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,
Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong
Tu, Peng Wang, Shijie Wang, Wei Wang, Sheng-
guang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang,
Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingx-
uan Zhang, Yichang Zhang, Zhenru Zhang, Chang
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang
Zhu. 2023. Qwen Technical Report. Preprint,
arXiv:2309.16609.

Maximiliana Behnke and Kenneth Heafield. 2021. Prun-
ing Neural Machine Translation for Speed Using
Group Lasso. In Proceedings of the Sixth Conference
on Machine Translation, pages 1074–1086, Online.
Association for Computational Linguistics.

Daniel Brélaz. 1979. New methods to color the vertices
of a graph. Communications of The Acm, 22(4):251–
256.

Hongrong Cheng, Miao Zhang, and Javen Qinfeng
Shi. 2024. MINI-LLM: Memory-Efficient Struc-
tured Pruning for Large Language Models. Preprint,
arXiv:2407.11681.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have Solved Question An-
swering? Try ARC, the AI2 Reasoning Challenge.
Preprint, arXiv:1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training Verifiers to Solve Math Word Prob-
lems. Preprint, arXiv:2110.14168.

Damai Dai, Chengqi Deng, Chenggang Zhao, R.x. Xu,
Huazuo Gao, Deli Chen, Jiashi Li, Wangding Zeng,
Xingkai Yu, Y. Wu, Zhenda Xie, Y.k. Li, Panpan
Huang, Fuli Luo, Chong Ruan, Zhifang Sui, and
Wenfeng Liang. 2024. DeepSeekMoE: Towards Ul-
timate Expert Specialization in Mixture-of-Experts

13668

https://doi.org/10.1007/s10994-009-5103-0
https://doi.org/10.1007/s10994-009-5103-0
https://doi.org/10.48550/arXiv.2309.16609
https://doi.org/10.1145/359094.359101
https://doi.org/10.1145/359094.359101
https://doi.org/10.48550/arXiv.2407.11681
https://doi.org/10.48550/arXiv.2407.11681
https://doi.org/10.48550/arXiv.1803.05457
https://doi.org/10.48550/arXiv.1803.05457
https://doi.org/10.48550/arXiv.2110.14168
https://doi.org/10.48550/arXiv.2110.14168

Language Models. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1280–
1297, Bangkok, Thailand. Association for Computa-
tional Linguistics.

Richard B. Darlington. 1970. Is Kurtosis Really
"Peakedness?". The American Statistician, 24(2):19–
22.

Rocktim Jyoti Das, Mingjie Sun, Liqun Ma, and
Zhiqiang Shen. 2024. Beyond Size: How Gradients
Shape Pruning Decisions in Large Language Models.
Preprint, arXiv:2311.04902.

Sanjoy Dasgupta. 2008. The hardness of k-means clus-
tering.

Databricks. 2024. Databricks/dbrx. Databricks.

Lucio Dery, Steven Kolawole, Jean-François Kagy, Vir-
ginia Smith, Graham Neubig, and Ameet Talwalkar.
2024. Everybody Prune Now: Structured Prun-
ing of LLMs with only Forward Passes. Preprint,
arXiv:2402.05406.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. QLoRA: Efficient finetun-
ing of quantized LLMs. In Thirty-Seventh Confer-
ence on Neural Information Processing Systems.

Peijie Dong, Lujun Li, Zhenheng Tang, Xiang Liu,
Xinglin Pan, Qiang Wang, and Xiaowen Chu. 2024.
Pruner-Zero: Evolving Symbolic Pruning Metric
From Scratch for Large Language Models. In Forty-
First International Conference on Machine Learning.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong,
Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun,
Yanqi Zhou, Adams Wei Yu, Orhan Firat, Barret
Zoph, Liam Fedus, Maarten P Bosma, Zongwei Zhou,
Tao Wang, Emma Wang, Kellie Webster, Marie Pel-
lat, Kevin Robinson, Kathleen Meier-Hellstern, Toju
Duke, Lucas Dixon, Kun Zhang, Quoc Le, Yonghui
Wu, Zhifeng Chen, and Claire Cui. 2022. GLaM:
Efficient scaling of language models with mixture-
of-experts. In Proceedings of the 39th International
Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pages
5547–5569. PMLR.

Angela Fan, Edouard Grave, and Armand Joulin. 2019.
Reducing Transformer Depth on Demand with Struc-
tured Dropout. In International Conference on Learn-
ing Representations.

William Fedus, Barret Zoph, and Noam Shazeer. 2022.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of
Machine Learning Research, 23(120):1–39.

Elias Frantar and Dan Alistarh. 2023. SparseGPT: Mas-
sive language models can be accurately pruned in
one-shot. In Proceedings of the 40th International
Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pages
10323–10337. PMLR.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black,
Anthony DiPofi, Charles Foster, Laurence Golding,
Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff,
Jason Phang, Laria Reynolds, Eric Tang, Anish Thite,
Ben Wang, Kevin Wang, and Andy Zou. 2021. A
framework for few-shot language model evaluation.
Zenodo.

Yuan Gao, Zujing Liu, Weizhong Zhang, Bo Du, and
Gui-Song Xia. 2024. Optimization-based Structural
Pruning for Large Language Models without Back-
Propagation. Preprint, arXiv:2406.10576.

Hongyu Gong, Xian Li, and Dmitriy Genzel. 2022.
Adaptive Sparse Transformer for Multilingual Trans-
lation. arXiv:2104.07358 [cs].

Babak Hassibi and David Stork. 1992. Second order
derivatives for network pruning: Optimal Brain Sur-
geon. In Advances in Neural Information Processing
Systems, volume 5. Morgan-Kaufmann.

Shwai He, Daize Dong, Liang Ding, and Ang Li.
2024. Demystifying the Compression of Mixture-
of-Experts Through a Unified Framework. Preprint,
arXiv:2406.02500.

Xu Owen He. 2024. Mixture of A Million Experts.
Preprint, arXiv:2407.04153.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring massive multitask language under-
standing. In International Conference on Learning
Representations.

Yuezhou Hu, Jun Zhu, and Jianfei Chen. 2024. S-STE:
Continuous Pruning Function for Efficient 2:4 Sparse
Pre-training. In The Thirty-eighth Annual Confer-
ence on Neural Information Processing Systems.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7B. Preprint,
arXiv:2310.06825.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las
Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lam-
ple, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian,
Sophia Yang, Szymon Antoniak, Teven Le Scao,
Théophile Gervet, Thibaut Lavril, Thomas Wang,
Timothée Lacroix, and William El Sayed. 2024. Mix-
tral of Experts. Preprint, arXiv:2401.04088.

Jean Kaddour, Joshua Harris, Maximilian Mozes, Her-
bie Bradley, Roberta Raileanu, and Robert McHardy.
2023. Challenges and Applications of Large Lan-
guage Models. Preprint, arXiv:2307.10169.

13669

https://doi.org/10.2307/2681925
https://doi.org/10.2307/2681925
https://doi.org/10.48550/arXiv.2311.04902
https://doi.org/10.48550/arXiv.2311.04902
https://doi.org/10.48550/arXiv.2402.05406
https://doi.org/10.48550/arXiv.2402.05406
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.48550/arXiv.2406.10576
https://doi.org/10.48550/arXiv.2406.10576
https://doi.org/10.48550/arXiv.2406.10576
https://arxiv.org/abs/2104.07358
https://arxiv.org/abs/2104.07358
https://doi.org/10.48550/arXiv.2406.02500
https://doi.org/10.48550/arXiv.2406.02500
https://arxiv.org/abs/2407.04153
https://doi.org/10.48550/arXiv.2310.06825
https://doi.org/10.48550/arXiv.2401.04088
https://doi.org/10.48550/arXiv.2401.04088
https://doi.org/10.48550/arXiv.2307.10169
https://doi.org/10.48550/arXiv.2307.10169

Young Jin Kim, Ammar Ahmad Awan, Alexandre
Muzio, Andres Felipe Cruz Salinas, Liyang Lu,
Amr Hendy, Samyam Rajbhandari, Yuxiong He, and
Hany Hassan Awadalla. 2021. Scalable and Efficient
MoE Training for Multitask Multilingual Models.
Preprint, arXiv:2109.10465.

Yeskendir Koishekenov, Alexandre Berard, and Vas-
silina Nikoulina. 2023. Memory-efficient NLLB-
200: Language-specific Expert Pruning of a Mas-
sively Multilingual Machine Translation Model. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 3567–3585, Toronto, Canada.
Association for Computational Linguistics.

Eldar Kurtic, Daniel Campos, Tuan Nguyen, Elias Fran-
tar, Mark Kurtz, Benjamin Fineran, Michael Goin,
and Dan Alistarh. 2022. The Optimal BERT Sur-
geon: Scalable and Accurate Second-Order Prun-
ing for Large Language Models. In Proceedings of
the 2022 Conference on Empirical Methods in Nat-
ural Language Processing, pages 4163–4181, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Lujun Li, Peijie Dong, Zhenheng Tang, Xiang Liu,
Qiang Wang, Wenhan Luo, Wei Xue, Qifeng Liu,
Xiaowen Chu, and Yike Guo. 2024. Discovering
Sparsity Allocation for Layer-wise Pruning of Large
Language Models. In The Thirty-eighth Annual Con-
ference on Neural Information Processing Systems.

Xian Li, Asa Cooper Stickland, Yuqing Tang, and Xiang
Kong. 2020. Deep transformers with latent depth. In
Advances in Neural Information Processing Systems,
volume 33, pages 1736–1746. Curran Associates,
Inc.

Chen Liang, Simiao Zuo, Minshuo Chen, Haoming
Jiang, Xiaodong Liu, Pengcheng He, Tuo Zhao, and
Weizhu Chen. 2021. Super Tickets in Pre-Trained
Language Models: From Model Compression to Im-
proving Generalization. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 6524–6538, Online. Association
for Computational Linguistics.

Opher Lieber, Barak Lenz, Hofit Bata, Gal Cohen,
Jhonathan Osin, Itay Dalmedigos, Erez Safahi,
Shaked Meirom, Yonatan Belinkov, Shai Shalev-
Shwartz, Omri Abend, Raz Alon, Tomer Asida,
Amir Bergman, Roman Glozman, Michael Gokhman,
Avashalom Manevich, Nir Ratner, Noam Rozen, Erez
Shwartz, Mor Zusman, and Yoav Shoham. 2024.
Jamba: A Hybrid Transformer-Mamba Language
Model. Preprint, arXiv:2403.19887.

Enshu Liu, Junyi Zhu, Zinan Lin, Xuefei Ning,
Matthew B. Blaschko, Shengen Yan, Guohao Dai,
Huazhong Yang, and Yu Wang. 2024. Efficient
Expert Pruning for Sparse Mixture-of-Experts Lan-
guage Models: Enhancing Performance and Reduc-
ing Inference Costs. Preprint, arXiv:2407.00945.

Xudong Lu, Qi Liu, Yuhui Xu, Aojun Zhou, Siyuan
Huang, Bo Zhang, Junchi Yan, and Hongsheng Li.
2024a. Not All Experts are Equal: Efficient Expert
Pruning and Skipping for Mixture-of-Experts Large
Language Models. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 6159–
6172.

Xudong Lu, Aojun Zhou, Yuhui Xu, Renrui Zhang,
Peng Gao, and Hongsheng Li. 2024b. SPP: Sparsity-
Preserved Parameter-Efficient Fine-Tuning for Large
Language Models. In Forty-First International Con-
ference on Machine Learning.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023.
LLM-Pruner: On the structural pruning of large lan-
guage models. In Thirty-Seventh Conference on Neu-
ral Information Processing Systems.

Gabryel Mason-Williams and Fredrik Dahlqvist. 2024.
What makes a good prune? Maximal unstructured
pruning for maximal cosine similarity. In The Twelfth
International Conference on Learning Representa-
tions.

Nimrod Megiddo and Kenneth J. Supowit. 1984. On the
Complexity of Some Common Geometric Location
Problems. SIAM Journal on Computing, 13(1):182–
196.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a Suit of Armor Conduct Elec-
tricity? A New Dataset for Open Book Question An-
swering. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2381–2391, Brussels, Belgium. Association
for Computational Linguistics.

Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko
Stosic, Dusan Stosic, Ganesh Venkatesh, Chong Yu,
and Paulius Micikevicius. 2021. Accelerating Sparse
Deep Neural Networks. Preprint, arXiv:2104.08378.

Alexandre Muzio, Alex Sun, and Churan He. 2024.
SEER-MoE: Sparse Expert Efficiency through
Regularization for Mixture-of-Experts. Preprint,
arXiv:2404.05089.

NeuralMagic. 2021. Neuralmagic/deepsparse: Sparsity-
aware deep learning inference runtime for CPUs.
https://github.com/neuralmagic/deepsparse.

OpenAI. 2023. GPT-4 Technical Report. Preprint,
arXiv:2303.08774.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. WinoGrande: An adver-
sarial winograd schema challenge at scale. Commu-
nications of The Acm, 64(9):99–106.

13670

https://doi.org/10.48550/arXiv.2109.10465
https://doi.org/10.48550/arXiv.2109.10465
https://doi.org/10.18653/v1/2023.acl-long.198
https://doi.org/10.18653/v1/2023.acl-long.198
https://doi.org/10.18653/v1/2023.acl-long.198
https://doi.org/10.18653/v1/2022.emnlp-main.279
https://doi.org/10.18653/v1/2022.emnlp-main.279
https://doi.org/10.18653/v1/2022.emnlp-main.279
https://doi.org/10.18653/v1/2021.acl-long.510
https://doi.org/10.18653/v1/2021.acl-long.510
https://doi.org/10.18653/v1/2021.acl-long.510
https://doi.org/10.48550/arXiv.2403.19887
https://doi.org/10.48550/arXiv.2403.19887
https://doi.org/10.48550/arXiv.2407.00945
https://doi.org/10.48550/arXiv.2407.00945
https://doi.org/10.48550/arXiv.2407.00945
https://doi.org/10.48550/arXiv.2407.00945
https://doi.org/10.1137/0213014
https://doi.org/10.1137/0213014
https://doi.org/10.1137/0213014
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.48550/arXiv.2104.08378
https://doi.org/10.48550/arXiv.2104.08378
https://doi.org/10.48550/arXiv.2404.05089
https://doi.org/10.48550/arXiv.2404.05089
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.1145/3474381
https://doi.org/10.1145/3474381

Kyuhong Shim, Iksoo Choi, Wonyong Sung, and Jung-
wook Choi. 2021. Layer-wise Pruning of Trans-
former Attention Heads for Efficient Language Mod-
eling. In 2021 18th International SoC Design Con-
ference (ISOCC), pages 357–358.

Peter H. A. Sneath and Robert R. Sokal. 1973. Nu-
merical taxonomy. The principles and practice of
numerical classification.

Snowflake. 2024. Snowflake-Labs/snowflake-arctic.
Snowflake Labs.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and Policy Considerations for
Deep Learning in NLP. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 3645–3650, Florence, Italy. Asso-
ciation for Computational Linguistics.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter.
2024. A simple and effective pruning approach for
large language models. In The Twelfth International
Conference on Learning Representations.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open Foundation and Fine-
Tuned Chat Models. Preprint, arXiv:2307.09288.

Tycho F. A. van der Ouderaa, Markus Nagel, Mart Van
Baalen, and Tijmen Blankevoort. 2024. The LLM
surgeon. In The Twelfth International Conference on
Learning Representations.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing Multi-Head
Self-Attention: Specialized Heads Do the Heavy Lift-
ing, the Rest Can Be Pruned. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 5797–5808, Florence, Italy.
Association for Computational Linguistics.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,

and Samuel R. Bowman. 2019. SuperGLUE: A stick-
ier benchmark for general-purpose language under-
standing systems. In Proceedings of the 33rd Interna-
tional Conference on Neural Information Processing
Systems, 294, pages 3266–3280. Curran Associates
Inc., Red Hook, NY, USA.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A Multi-Task Benchmark and Analysis Platform for
Natural Language Understanding. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: An-
alyzing and Interpreting Neural Networks for NLP,
pages 353–355, Brussels, Belgium. Association for
Computational Linguistics.

Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh,
Yaqing Wang, Yiling Jia, Gen Li, Ajay Kumar
Jaiswal, Mykola Pechenizkiy, Yi Liang, Michael Ben-
dersky, Zhangyang Wang, and Shiwei Liu. 2024. Out-
lier Weighed Layerwise Sparsity (OWL): A Missing
Secret Sauce for Pruning LLMs to High Sparsity.
In Forty-First International Conference on Machine
Learning.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. HellaSwag: Can
a Machine Really Finish Your Sentence? In Proceed-
ings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4791–4800, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Qingcheng Zeng, Lucas Garay, Peilin Zhou, Dading
Chong, Yining Hua, Jiageng Wu, Yikang Pan, Han
Zhou, Rob Voigt, and Jie Yang. 2023. GreenPLM:
Cross-Lingual Transfer of Monolingual Pre-Trained
Language Models at Almost No Cost. In Proceed-
ings of the Thirty-Second International Joint Con-
ference on Artificial Intelligence, pages 6290–6298,
Macau, SAR China. International Joint Conferences
on Artificial Intelligence Organization.

Honghe Zhang, XiaolongShi XiaolongShi, Jingwei Sun,
and Guangzhong Sun. 2024a. Structured Pruning
for Large Language Models Using Coupled Compo-
nents Elimination and Minor Fine-tuning. In Find-
ings of the Association for Computational Linguis-
tics: NAACL 2024, pages 1–12, Mexico City, Mexico.
Association for Computational Linguistics.

Zeliang Zhang, Xiaodong Liu, Hao Cheng, Chenliang
Xu, and Jianfeng Gao. 2024b. Diversifying the Ex-
pert Knowledge for Task-Agnostic Pruning in Sparse
Mixture-of-Experts.

Zhengyan Zhang, Fanchao Qi, Zhiyuan Liu, Qun Liu,
and Maosong Sun. 2021. Know what you don’t need:
Single-Shot Meta-Pruning for attention heads. AI
Open, 2:36–42.

Kang Zhao, Tao Yuan, Han Bao, Zhenfeng Su, Chang
Gao, Zhaofeng Sun, Zichen Liang, Liping Jing, and
Jianfei Chen. 2024. Beyond 2:4: Exploring V:N:M
sparsity for efficient transformer inference on GPUs.
Preprint, arXiv:2410.16135.

13671

https://doi.org/10.1109/ISOCC53507.2021.9613933
https://doi.org/10.1109/ISOCC53507.2021.9613933
https://doi.org/10.1109/ISOCC53507.2021.9613933
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.24963/ijcai.2023/698
https://doi.org/10.24963/ijcai.2023/698
https://doi.org/10.24963/ijcai.2023/698
https://doi.org/10.18653/v1/2024.findings-naacl.1
https://doi.org/10.18653/v1/2024.findings-naacl.1
https://doi.org/10.18653/v1/2024.findings-naacl.1
https://doi.org/10.1016/j.aiopen.2021.05.003
https://doi.org/10.1016/j.aiopen.2021.05.003
https://doi.org/10.48550/arXiv.2410.16135
https://doi.org/10.48550/arXiv.2410.16135

A Derivation From O(kn√
n
) to O(1)

A.1 Towards O(n): Probabilistic
Interpretation

As a stepping stone towards O(1), we propose to
rephrase the goal of finding θS to minimize ES (Eq.
4) as:

argmaxSP (X1 = s1, · · · , X|S| = s|S|) (9)

where sis are the experts included in the expert
set S, and P (X1 = s1, · · · , X|S| = s|S|) is the
joint probability of pruning S. One intuitive way
to design P so that Eq. 9 yields the same S to
minimize Eq. 4 is as follows:

P (X1 = s1, · · · , X|S| = s|S|) =
1

Z
· 1

ES
(10)

where Z is the normalization factor. Each joint
probability needs O(1) GPU calls, since ES needs
the output of M(x; θ − θS).

Section 4.2.1 corresponds to enumerating joint
probability from all combinations, requiring

(
n
|S|
)

different values, which is compute-intensive. When
chain rule is applied, Eq. 9 can be reformulated as
follows:

argmaxS
∏

k

P (Xk = sk|X1 = s1,

· · · , Xk−1 = sk−1) (11)

Our contribution is greedy optimization without
compromise for Eq. 11– We decompose the mul-
tiplication of Eq. 11 at each step k, and obtain the
distribution P (Xk|s1, · · · , sk−1), to select Xk that
maximizes the probability. For simplicity, we will
omit Xks from this point on.

As our goal is finding the argmax of the prob-
abilities as in Eq. 11, estimating the rank be-
tween them is sufficient, rather than evaluating
exact values. Such rank estimation can benefit
from the latent structure among experts, specif-
ically, a cluster of similar experts in MoE, en-
abling P (Xk|s1, · · · , sk−1) calculation without
chain-rule multiplications in Eq. 11.

Assume we know oracle clusters, c(Ei), where
c is the mapping from an expert to a set of sim-
ilarly behaving experts identified from the latent
clusters. When we have knowledge of similar ex-
perts, for example, c(Ei) = c(Ej) = {Ei, Ej}
indicating Ei and Ej are highly similar, we will de-
cide not to prune Ei if Ej is already pruned. That

is, if c(Ei) ⊆ Sk then P (Xk = Ei|Sk−1) should
be lowered by some value p, to guide the model
against pruning. Moreover, P (Ei|Sk−1) should be
larger, or rank higher, otherwise.

To generalize, we will cluster similar experts.
Once the cluster of similar experts is finalized, we
assign the value P (Ei|Sk−1), as follows:

P (Ei|Sk−1) =

{
P (Ei)− p c(Ei) ⊆ Sk

P (Ei) otherwise
(12)

We set p as a constant for simplicity. This enables
the calculation of all P (Ei|Sk−1) in Eq. 11 from
P (Ei)s, which needs only n forwards in total.

Clustering the Similar Experts Our remaining
task is to obtain cluster information c: One signal
is pairwise behavioral similarity bi,j , from the pre-
trained weights W at a minimal cost. Suppose two
rows Wi ≈ Wj are similar; then ri(x) ≈ rj(x),
meaning Ei, Ej tend to be selected by similar in-
puts, implying similar expertise. Thus, the behav-
ioral similarity bi,j between two experts Ei, Ej can
be obtained as follows:

bi,j = −∥Wi −Wj∥F (13)

Next, we generalize pairwise similarity into clus-
ters of experts, such that experts in each cluster Cl

are highly similar to its representative µl. Formally,
the objective of clustering is to minimize the sum
of squared errors between µl and experts Ei in the
cluster: ∑

i∈Cl

∑

l

∥Wi − µl∥2 (14)

which is an NP-hard problem (Megiddo and
Supowit, 1984; Dasgupta, 2008; Aloise et al.,
2009).

Practically, we found that the agglomerative clus-
tering algorithm (Sneath and Sokal, 1973) performs
well.8 Specifically, clusters are initialized as indi-
vidual experts and then iteratively merged, with
a termination condition that prevents the experts
within each cluster from being too dissimilar. This
condition is tuned based on the desired sparsity.

Lastly, if we allow inference on some data, we
can improve Eq. 13 with coactivation statistics ai,j ,
which measure the frequency with which Ei, Ej

are selected simultaneously.9 However, these coac-
tivation statistics depend on the given data, whose

8We tried other clustering algorithms in the Appendix.
9We normalize ai,j by dividing it with the total coactiva-

tions in one layer.

13672

distribution may differ from the test data. There-
fore, we combine the two as follows:

bi,j = −λ1∥Wi −Wj∥F + λ2ai,j (15)

We recap the algorithm in the Appendix (Alg 1).

A.2 Towards O(1): Taylor Approximation
and Selective Reconstruction

1st-order Taylor Approximation While previ-
ous section immensely reduces the cost to obtain
the probability distribution to O(n) by requiring
only P (Ei)s, we can further reduce the number of
forward passes– We aim to remove the GPU calls
for P (Ei), which is needed as in Eq. 10.

The key idea is approximating Ei’s reconstruc-
tion loss value Ei = ∥M(x; θ)−M(x; θ − θi)∥F ,
and assigning P (Ei) as some high value L if the re-
construction loss Ei is lowest. This neatly estimates
the rank between P (Ei)s.

Though Ei can be approximated via conven-
tional 2nd-order reconstruction methods (Hassibi
and Stork, 1992; Frantar and Alistarh, 2023), the
size of the hessian matrix increases quadratically
with the number of experts, which often yields out-
of-memory errors.

To address this, we propose using a 1st order
Taylor approximation. To rank the reconstruction
loss values, we consider approximating the recon-
struction loss when replacing the output from θi
with some specific expert θC in C = c(Ei) as fol-
lows:

Ei = ∥E′(θi) · (θi − θC)∥2 (16)

As the convention of 2nd order Taylor approxima-
tion (Hassibi and Stork, 1992; Frantar and Alis-
tarh, 2023), we assume the parameters are near a
local minimum. Thus, with a small constant γ,
∥E′(θi)∥ < γ, leading to:

∑

i

Ei <
∑

i

γ∥θi − θC∥2 (17)

whose upper bound in the right-hand side can be
minimized when θC = θi, where ¯ denotes the
average.

Therefore, the expert closest to θ̄i within each
cluster has the highest priority to be retained. We
assign Ei a large number L > p if Ei is the closest
to θ̄i from the corresponding cluster c(Ei), and set
it to zero otherwise. The same greedy algorithm is
applied to optimize Eq. 11.

Selective Reconstruction of Experts While let-
ting θC as the expert closest to θ̄i successfully mini-
mizes

∑
i Ei, sometimes we can minimize them fur-

ther, by replacing the weight of the closest expert
θC to θ̄i. However, blindly doing so is suboptimal,
as there is another kind of error to consider. The de-
cision boundaries of the next layer are accustomed
to the output of {E(x; θi)}|C|

i=1, but changing the
output as E(x; θC) = E(x; θ̄i) could result in a
distribution that the model is unfamiliar with. This
potential error, which we denote as Ed, would be
minimized if θC ∈ {θi}|C|

i=1.
To balance these two types of errors, we selec-

tively decide whether to reconstruct. We observe
that

∑
i Ei increases if the total number of clusters

in a layer decreases, as this would introduce more
∥E′(θi) · (θi − θC)∥2 terms. Therefore, if the total
number of clusters is below a threshold κ, we use
θC = θi to minimize

∑
i Ei. Otherwise, we set

θC as the expert within the cluster {θi}|C|
i=1 clos-

est to the θi, to minimize Ed. The router weight
reconstruction is done similarly, following its cor-
responding expert.

B Implementation Details

We probe (λ1, λ2) ∈ {(0, 1), (1, 0), (1, 1)}, except
for the Snowflake Arctic, which is the biggest MoE
we deal with, where we only consider (λ1, λ2) =
(1, 0), which means no GPU calls is needed for
expert pruning. To get coactivation values ai,j , we
utilize 1000 samples from the C4 dataset, each
of which has 2048 sequence length. We evaluate
on LM-EVALUATION-HARNESS (Gao et al., 2021)
We use 4bit quantization (Dettmers et al., 2023)
for experiments with Mixtral-8x22B and Arctic,
due to their model size. We use 20%, 12.5%, and
10% for Arctic, Mixtral-8x7B, and Mixtral-8x22B
respectively, as the expert sparsity for STUN. These
are the maximum values among 10, 12.5, 20, 25,
and 35%, with minimum performance loss. We
use κ = 3 for selective reconstruction. For Wanda
and OWL, we use 128 C4 samples following the
original papers (Yin et al., 2024; Sun et al., 2024),
while we use 4096 for sequence length. For OWL,
we use the default setting, M = 5, λ = 0.08.

All experiments are conducted on H100 80GB
GPUs, with a maximum of 4. Each evaluation is
done within 4 hours, and each unstructured pruning
requires less than 2 hours on one GPU. Evaluation
is done only once, since we introduce no random-
ness in our experiment.

13673

Cluster Reconstruct LM-eval Avg
Ours Ours 59.58

DSatur Ours 58.59
Ours Always 57.60
Ours Never 59.22

Table 8: Ablation experiments for the first component
of STUN, the proposed expert pruning.

C Other Clustering Algorithms

We also considered DSatur (Brélaz, 1979) as a clus-
tering algorithm for Eq. 12, converting into clique-
partitioning in a graph where edge ei,j connected
if two experts are similar enough as follows,

ei,j =

{
1 bi,j >= tDSatur

∞ otherwise
(18)

where tDSatur is some threshold to control the spar-
sity of MoE.

D Ablation Studies

To validate our design of expert pruning in sections
A.1 and A.2, we evaluate alternative approaches to
expert-prune Mixtral-8x7B at 50% sparsity. Table 8
confirms that our design choices are valid. Our ag-
glomerative clustering algorithm outperforms the
DSatur algorithm, an alternative clustering algo-
rithm we discuss in the Appendix. Additionally, se-
lective reconstruction proves superior to always or
never reconstructing, as shown in the last two rows.
Detailed per-task performance of ablation studies
are described in Tables 9, 10. Detailed hyperpa-
rameter ablation studies are described in Tables 11,
12. Results with applying expert-pruning only are
provided in Table 14.

E Detailed Results for RQ2

Table 13 describes the per-task performance of
RQ2.

F Why GSM8K is Harder

The nature of the GSM8K task, which is a genera-
tion task, accounts for this discrepancy. A random
generation baseline on GSM8K would achieve 0%
accuracy, making it far more challenging to main-
tain performance. In contrast, ARC, HellaSwag,
and MMLU are multiple-choice tasks where ran-
dom baselines can achieve reasonable accuracy by
comparing the perplexity of different completion
options. As a result, maintaining performance on

GSM8K is considerably harder, a challenge often
overlooked in previous works. This explains the
more pronounced difference in performance be-
tween STUN and the baselines on GSM8K.

13674

ARC-c ARC-e BoolQ HellaSwag MMLU OBQA RTE WinoGrande Avg
DSatur 45.99 75.38 80.76 54.62 45.06 29.00 66.79 71.11 58.59
Ours 45.73 75.13 83.46 54.55 53.29 31.20 62.45 70.80 59.58

Table 9: Our agglomerative clustering algorithm is better than the alternative.

ARC-c ARC-e BoolQ HellaSwag MMLU OBQA RTE WinoGrande Avg
Always reconstruct (κ = 8) 42.92 74.20 82.42 54.66 50.09 28.40 55.96 72.14 57.60
No reconstruct (κ = 0) 45.22 75.21 82.45 54.53 52.31 30.00 62.82 71.19 59.22
Ours (κ = 3) 45.73 75.13 83.46 54.55 53.29 31.20 62.45 70.80 59.58

Table 10: Selective reconstruction outperforms the baselines.

λ1 λ2 GSM8K

Mixtral-8x7B
1 0 63.38
0 1 58.53
1 1 60.42

Mixtral-8x22B
1 0 81.50
0 1 81.58
1 1 80.52

Table 11: Comparison of different λ1, λ2 configurations.
For the Arctic, we only consider the cheapest, (λ1, λ2)
= (1,0).

sparsity GSM8K

Arctic
10% 70.74
20% 69.90
35% 60.05

Mixtral-8x7B
12.50% 63.38

25% 53.22

Mixtral-22B
10% 81.58

12.50% 79.91
25% 74.07

Table 12: Comparison of different sparsity of our pro-
posed expert-level pruning. (λ1, λ2) is probed among
(1,0),(0,1),(1,1), except for 10% and 20% of Arctic.

13675

model sparsity method cost ARC-c ARC-e BoolQ HellaSwag MMLU OBQA RTE WinoGrande Avg

Mixtral-8x7B
(Instruct)

0% unpruned 62.20 87.04 88.50 67.59 68.87 36.60 72.20 76.87 69.98

25%
Ours O(1) 59.30 85.44 88.13 64.42 64.52 35.40 71.84 75.37 68.05
Lu et al. (2024a) O(kn√

n
) 58.19 84.89 87.34 65.24 62.47 35.60 70.04 75.85 67.45

Mixtral-8x7B
0% unpruned 57.17 84.01 85.35 64.88 67.88 35.00 70.40 75.93 67.58

25%
Ours O(1) 52.73 81.82 83.09 60.84 63.34 31.60 68.59 72.69 64.34
Lu et al. (2024a) O(kn√

n
) 51.62 81.94 83.64 61.60 58.72 33.00 67.87 75.37 64.22

Table 13: Comparing the first component of STUN, the proposed expert pruning, with other baselines.

sparsity GSM8K Avg (→) ARC-c ARC-e HellaSwag MMLU
Arctic 20% 69.90 67.95 57.00 83.71 65.70 65.39
Mixtral-8x7B 12.50% 63.38 70.65 61.18 86.66 66.80 67.97
Mixtral-8x22B 10% 81.58 71.78 61.18 85.82 66.62 73.52

Table 14: Performance when applying only our expert pruning.

13676

