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Abstract

In recent years, large language models have
achieved significant success in generative tasks
related to speech, audio, music, and other sig-
nal domains. A crucial element of these mod-
els is the discrete acoustic codecs, which serve
as an intermediate representation replacing the
mel-spectrogram. However, there exist several
gaps between discrete codecs and downstream
speech language models. Specifically, 1) Due
to the reconstruction paradigm of the Codec
model and the structure of residual vector quan-
tization, the initial channel of the codebooks
contains excessive information, making it chal-
lenging to directly generate acoustic tokens
from weakly supervised signals such as text
in downstream tasks. 2) numerous codebooks
increases the burden on downstream speech
language models. Consequently, leveraging the
characteristics of speech language models, we
propose Language-Codec. In the Language-
Codec, we introduce a Masked Channel Resid-
ual Vector Quantization (MCRVQ) mechanism
along with improved fourier transform struc-
tures and attention blocks, refined discrimina-
tor design to address the aforementioned gaps.
We compare our method with competing au-
dio compression algorithms and observe signif-
icant outperformance across extensive evalua-
tions. Furthermore, we also validate the effi-
ciency of the Language-Codec on downstream
speech language models. Codes are avail-
able at https://github.com/jishengpeng/
Languagecodec.

1 Introduction

In recent times, significant achievements have been
made by large-scale language models (Brown et al.,
2020) in generative tasks involving such as multi-
ple speaker speech syntheses (Wang et al., 2023;
Kharitonov et al., 2023; Ji et al., 2023), music gen-
eration (Agostinelli et al., 2023), and audio genera-

*Equal contribution.
†Corresponding author.

tion (Kreuk et al., 2022). This success can largely
be attributed to the utilization of discrete acoustic
codec representations produced by neural codec
models (Zeghidour et al., 2021; Défossez et al.,
2022), which enable powerful transformer-based
sequence-to-sequence modeling approaches for au-
dio generation. The primary objective of discrete
codec models is to convert a high-resolution au-
dio signal (e.g., audio sampled at 44 kHz per sec-
ond) into the two-dimensional discrete space. This
transformation allows for the maximal compres-
sion of the speech signal in the time and frequency
domains while maintaining excellent audio recon-
struction quality.

Currently, most end-to-end discrete codec mod-
els (Zeghidour et al., 2021; Défossez et al., 2022;
Yang et al., 2023) typically adopt a three-stage
structure consisting of an encoder, a Residual Vec-
tor Quantization (RVQ) module, and a decoder.
The encoder performs downsampling of the audio
signal in the time domain to obtain compressed au-
dio frames. Each compressed audio frame is then
quantized by a series of quantizers, with each quan-
tizer operating on the residual of the previous one.
The number of quantizers determines the overall
bitrate. The decoder, on the other hand, performs
upsampling in the time domain to reconstruct the
audio signal from the quantizer outputs.

While most codec models strive to optimize
their architecture (Kumar et al., 2023; Défossez
et al., 2022; Siuzdak, 2023), resulting in satisfac-
tory audio reconstruction quality, there are still
areas worth investigating in the construction of a
discrete acoustic codec space that facilitates down-
stream speech language model modeling (Wang
et al., 2023; Borsos et al., 2023; Kharitonov et al.,
2023). Specifically, we believe that there exist
gaps between discrete codec models and speech
language models, which can be characterized as fol-
lows: 1) The Codec model is inherently designed
for information compression; therefore, the training
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objective of the Codec model aims to preserve as
much information as possible within the codebook
space to enhance reconstruction. We have discov-
ered that a single channel of codebook is sufficient
to reconstruct a significant portion of the audio sig-
nal. The RVQ structure, in particular, results
in the first channel of the codebook containing
excessive information. Consequently, in down-
stream tasks, whether unconditionally or based on
weak conditioning such as text, efficiently generat-
ing long and high-quality audio segments remains
an unresolved challenge. 2) In order to generate
high-quality audio through token modeling with the
neural codecs, the rate of discrete representation
must be increased, which leads to either exponen-
tial growth in codebook size or the generation of
long token sequences. Therefore, there is a need
for fewer codebooks to achieve this goal.

Based on the findings mentioned above, we at-
tempted to construct a discrete codec model that
is more suitable for downstream speech language
models. Our objective is to include less informa-
tion in the first channel of the codebook while
increasing the missing information on limited
channels. We consider that within downstream
speech language models, the first-layer quan-
tizer of the Codec model serves as an interme-
diary module bridging textual input and sub-
sequent quantizers. By judiciously reducing in-
formation within the first-layer quantizer, employ-
ing text (which inherently carries less information
compared to speech) to generate first Codec(codec
in the first quantizer) with lower information con-
tent can be more easy. Therefore, we devised
the Masked Channel Residual Vector Quantization
(MCRVQ) mechanism, which employs the mask-
ing mechanism to restrict the quantizers of the first
three channels to learn only the compressed audio
frame information in the specified space. Simul-
taneously, We designed a new, more powerful de-
coder with improved Fourier transform structure
(Siuzdak, 2023) and attention block. We alos add a
complex STFT discriminator (Kumar et al., 2024a)
at multiple time-scales (Défossez et al., 2022).
Through these modules with enhanced sampling
and reconstruction capabilities, Language-Codec
achieves excellent reconstruction quality on vari-
ous test datasets using only four channels, thereby
enhancing its compatibility with downstream mod-
els. The contributions of Language-Codec are as
follows:

• Language-Codec is the pioneering discrete
codec model formulated from the standpoint
of speech language models. Specifically,
Language-Codec introduces an innovative
MCRVQ structure, which effectively consoli-
dates the information within the codebook.

• By utilizing a modern, powerful decoder and
multi-scale discriminator. Language-Codec
achieves excellent audio reconstruction qual-
ity with only four codebook channels.

• Language-Codec demonstrates significant out-
performance compared to competing audio
compression algorithms across various met-
rics and different test datasets.

• The code and pre-trained models of Language-
Codec will be open-source.

2 Related Works

In recent times, neural acoustic codecs (Zeghidour
et al., 2021; Défossez et al., 2022; Yang et al., 2023;
Siuzdak, 2023; Zhang et al., 2023; Kumar et al.,
2024b; Du et al., 2023; Ji et al., 2024b) have demon-
strated remarkable capabilities in reconstructing
high-quality audio at extremely low bitrates. Con-
sequently, these codecs have facilitated the applica-
tion of discrete modeling to a wide range of audio
signals, including zero-shot TTS, music generation,
and audio generation. Typically, these methods em-
ploy an encoder to extract deep features in a latent
space, which are subsequently quantized before
being fed into the decoder.

To elaborate, Soundstream (Zeghidour et al.,
2021) utilizes a model architecture comprising a
fully convolutional encoder-decoder network and
a residual vector quantizer (RVQ) to effectively
compress speech. Encodec (Défossez et al., 2022)
employs a streaming encoder-decoder architecture
with a quantized latent space, trained in an end-
to-end fashion. HiFi-Codec (Yang et al., 2023)
introduces a group-residual vector quantization
(GRVQ) technique to reduce the number of quan-
tizers. Vocos (Siuzdak, 2023) aims to bridge the
gap between time-domain and Fourier-based neural
vocoders for high-quality audio synthesis. In order
to narrow the gaps between text and acoustic codec
tokens, HILCodec (Ahn et al., 2024) introduces
the MFBD discriminator to guide codec model-
ing. APCodec (Ai et al., 2024) further enhances re-
construction quality by incorporating ConvNextV2
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modules in the encoder and decoder. SpeechToken-
sizer (Zhang et al., 2023) introduces the concept
of using semantic tokens in the first channel of dis-
crete codecs. Recently, both SemantiCodec (Liu
et al., 2024) and DAC (Kumar et al., 2024a) have
demonstrated strong reconstruction performance.
SemantiCodec employs a VQ-VAE framework and
utilizes a diffusion model to model the VAE’s latent
space. While it achieves excellent reconstruction at
low bitrates, its inference speed is approximately
100 times slower than that of standard codec mod-
els. DAC (Kumar et al., 2024a) incorporates strate-
gies such as factorized codes, L2-normalized codes,
and quantizer dropout, making it one of the most
advanced codec models.

The primary distinction from the previously men-
tioned models lies in the fact that, while Language-
Codec aims to optimize codec reconstruction per-
formance, it places greater emphasis on the gap be-
tween the reconstruction paradigm and downstream
generative models. We hypothesize that the first-
layer quantizer serves as an intermediary module,
connecting the textual input with subsequent quan-
tizers in speech language models. To address this
challenge, we propose the MCRVQ mechanism as
a solution within the Language-Codec framework.

3 Language-Codec

In this section, we will first introduce the over-
all architecture of Language-Codec, followed by
a detailed focus on the encoder module, new de-
coder module, and Masked Channel Residual Vec-
tor Quantization module. Furthermore, we will
proceed to elaborate on the specific intricacies of
Language-Codec’s training processes, with the ex-
plicit details of the loss and discriminator.

3.1 Overall
As illustrated in Figure 1, the structure of
Language-Codec is identical to that of mainstream
codec models. It can be divided into three main
components: inputting the raw audio signal X , and
outputting the reconstructed audio signal X̃ . It
is widely acknowledged that the original single-
channel audio signal X is represented as a one-
dimensional vector sequence.

X = {x1, x2, · · · , xT } , T = d ∗ sr (1)

Where sr is the audio sample rate and d is the
audio duration. Language-Codec passes the raw
audio X through three modules. 1) an encoder

network that takes the input audio and generates
a latent feature representation Z; 2) a combina-
tion of parallel and serialized quantization layer q
that produces a compressed representation Zq; and
3) a decoder that reconstructs the audio signal X̃
from the compressed latent representation Zq. The
model is trained end-to-end, optimizing a recon-
struction loss applied over both time and frequency
domains, along with a perceptual loss in the form
of discriminators operating at different resolutions.

3.2 Encoder and Decoder
Follow Encodec (Défossez et al., 2022), the en-
coder model consists of a 1D convolution with C
channels and a kernel size of 7 followed by B con-
volution blocks. Each convolution block is com-
posed of a single residual unit followed by a down-
sampling layer consisting of a stridden convolution,
with a kernel size of twice the stride S. The resid-
ual unit contains two convolutions with kernel size
3 and a skip-connection. The number of channels is
doubled whenever down-sampling occurs. The con-
volution blocks are followed by a two-layer LSTM
for sequence modeling and a final 1D convolution
layer with a kernel size of 7 and D output channels.
Following Encodec (Défossez et al., 2022), we use
C = 32, B = 4, and (2, 4, 5, 8) as S. We use ELU
as a non-linear activation function. With this setup,
Language-Codec outputs 75 latent steps per second
of audio at 24 kHz.

Language-Codec does not employ a mirrored de-
coder upsampling structure. The standard practice
involves using a stack of dilated convolutions to
increase the receptive field, and transposed convolu-
tions to sequentially upsample the feature sequence
to the waveform. However, this design is known to
be susceptible to aliasing artifactsInstead, follow-
ing Vocos (Siuzdak, 2023), we maintain consistent
feature resolution at all depths, achieving waveform
upsampling through inverse Fourier transform. In
the decoder section, the target audio signal X̃ is
represented using Short-Time Fourier Transform
(STFT):

STFT (X̃[m,k]) =
N∑

n=0

X̃ [n]w [n−m] e−j2πkn/K

(2)
Here, K represents the number of frequency points
after performing the Discrete Fourier Transform
(DFT), while k denotes the frequency index. N
corresponds to the number of points in the sampled
sequence, with n representing a particular sample
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Figure 1: The overall architecture for Language-Codec. On the far left is the encoder downsampling module, which
still utilizes the model structure of Encodec. On the far right is the decoder upsampling module, where we have
replaced it with Vocos’ model structure. The middle part is the Masked Channel Residual Vector Quantization
module, with the gray blocks indicating the masked portion of temporal information. The dashed lines within the
MCRVQ module indicate that the corresponding representations exhibit a decrease in residual values.

point, and m indicating the index length. In the
practical implementation, the Short-Time Fourier
Transform (STFT) is performed by applying a se-
ries of Fast Fourier Transforms (FFTs) to overlap-
ping and windowed frames of data. The window
function advances or hops through time to create
these frames.

Therefore, for the representation of the interme-
diate signals Zq after quantization, the Language-
Codec only needs to input Zq into the conv1D layer,
attention block, ConvNeXt (Liu et al., 2022) blocks,
which serves as the fundamental backbone. Sub-
sequently, a Fourier transform is performed on the
real-valued signals. Notably, we introduced an
attention module in the decoder to enhance the
sequence modeling capability of the upsampling
module. During experiments, we observed that al-
though 3-second audio segments were randomly
selected during training, there were no issues with
length extrapolation when reconstructing longer
audio segments during inference. In ConvNeXt
Block, it first embeds the input features into a hid-
den dimensionality and then applies a sequence of
convolutional blocks. Each block is composed of a
large-kernel-sized depthwise convolution, followed
by an inverted bottleneck that projects features into
a higher dimensionality using pointwise convolu-
tion. GELU (Gaussian Error Linear Unit) acti-
vations are used within the bottleneck, and Layer
Normalization is employed between the blocks. Re-
garding the transformation of real-valued signals,

we utilize a single side band spectrum, resulting
in nfft/2 + 1 coefficients per frame. Since we
parameterize the model to output both phase and
magnitude values, the activations of the hidden di-
mensions are projected into a tensor h with nfft+2
channels and subsequently split into:

q = h [1 : nfft/2 + 1] ; p = h [nfft/2 + 2 : n]
(3)

where q stands for magnitude, p stands for argu-
ment, Finally, we represent complex-valued coeffi-
cients as:

STFT = exp(q) · (cos p+ j sin p) (4)

Finally, the inverse Fourier transform F−1 can be
used to reconstruct the final audio.

3.3 Masked Channel Residual Vector
Quantization

Within the Masked Channel Residual Vector Quan-
tization module, our aim is to minimize the in-
formational content in the initial channel of the
codebook, while augmenting the amount of infor-
mation compensated on constrained channels. To
achieve this objective, a hybrid structure combining
parallel and serial quantization is employed within
the Language-codec framework. In the initial Nq

layers, each quantizer independently processes a
segment of the original information compressed at
the base layer, concurrently producing correspond-
ing codebooks and embedding vectors. For the
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subsequent layers, extending from Nq to N , each
quantizer sequentially subtracts the embedding vec-
tors generated by all preceding quantizers, utilizing
this resultant as the input for the current quantiza-
tion process.

More specifically, concerning the quantizers op-
erating in parallel within the initial Nq layers, the
Language-Codec introduces the Masked Channel
mechanism to achieve mean quantization of the
latent space information Z on the first Nq chan-
nels of the quantizer. In the actual training process,
we simply set Nq to 3. We divide the compressed
audio frame into Nq equal parts and use M to rep-
resent the portion to be masked and M̄ to represent
the remaining portion. Following the order of the
quantizers, we mask the specified portion of the
quantizer and retain 1

Nq
of the latent space informa-

tion Z, which is then directly fed into the quantizer.
Therefore, when the quantizer generates i the in-
termediate result Ẑi for the layer i (1 ≤ i ≤ Nq),
this process can be represented by the following
equation:

P (Ẑi|M̄Z) = P (Ẑi|(1−M)Z) = P (Ẑi|
Z

Nq
)

(5)
For the quantizers after the Nq channels, we still

retain the information Ẑj obtained by subtracting
the residual of Z from the previous Nj channels,
and then feed it into the quantizer j (Nq + 1 ≤
j ≤ N). It is noteworthy that, given the parallel
architecture of the quantizers in the first Nq layers,
the input to the quantizer at the Nq + 1 layer must
sequentially subtract the representations of each
preceding layer, rather than being simply denoted
as Z − Ẑj . The generation process for the Nq + 1
layer can be distinctly represented as follows:

P (ẐNq+1|Z −
Nq∑

i=1

Ẑi) (6)

After passing through N quantizers, the infor-
mation on each channel is fused to obtain the final
result Zq. The function of the fusion layer is to con-
catenate the output embedding matrices from the
parallel quantizers and the serial quantizers along
the channel dimension. A similar fusion opera-
tion is applied to the codebook vectors as well. In
summary, The Masked Channel Residual Vector
Quantization mechanism can be represented as fol-

lows:

P (Zq|Z) =

Nq∏

i=1

P (Ẑi|M̄Z)P (ẐNq+1|Z −
Nq∑

i=1

Ẑi)

×
N−1∏

j=Nq+1

P (Ẑj+1|Z − Ẑj)

(7)

3.4 Discriminator and Loss
The adversarial loss is used to promote percep-
tual quality. We employ the multi-period discrim-
inator (MPD) as defined by (Kong et al., 2020)
and multi-resolution discriminator (MRD) (Jang
et al., 2021). Furthermore, to learn discriminative
features about a specific sub-band and provide a
stronger gradient signal to the generator, following
(Kumar et al., 2024b), we use a multi-scale discrim-
inator (MSD) and a complex STFT discriminator
(Zeghidour et al., 2021) at multiple time-scales (Dé-
fossez et al., 2022). We adopt a hinge loss formu-
lation instead of the least squares GAN objective,
as suggested by (Zeghidour et al., 2021). To train
the discriminator, we can optimize the following
objective function Ldis(X, X̃):

1

K

K∑

k=1

max(0, 1−Dk(X))+max(0, 1+Dk(X̃))

(8)
The variable K represents the number of discrim-
inators. Dk represents the k-th discriminator. Re-
garding the loss for the generator, the Language-
Codec model consists of four components: quan-
tizer loss, mel-spectrum reconstruction loss, adver-
sarial loss, and feature matching loss. The quan-
tizer loss can be defined as follows:

Lq(Z,Zq) =
N∑

i=1

∥∥∥Zi − Ẑi

∥∥∥
2

2
(9)

The mel-spectrum reconstruction loss can be de-
fined as follows:

Lmel(X, X̃) =
∥∥∥Mel(X)−Mel(X̃)

∥∥∥
1

(10)

Furthermore, we can define the adversarial loss as
a hinge loss over the logits of these discriminators:

Ladv =
1

K

K∑

k=1

max(0, 1−Dk(X̃)) (11)

The feature matching loss, denoted as Lfeat , is
calculated as the mean of the distances between the
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lth feature maps of the kth subdistriminator:

Lfeat =
1

K ∗ L
∑

k

∑

l

∥∥∥Dl
k(X)−Dl

k(X̃)
∥∥∥
1

(12)
In the end, the total loss of the generator Lgen is:

Lgen = λqLq+λmelLmel+λadvLadv+λfeatLfeat

(13)
where λq, λmel, λadv, λfeat are the hyper-
parameters to control the training objective func-
tion.

4 Experiments

4.1 Experiment Setup
Datasets. Language-Codec was trained on a com-
prehensive 50,000-hour speech dataset (We verify
the effect of training dataset of different sizes on
the model in Appendix A). We employed a combi-
nation of Librilight’s small and medium collections
(Kahn et al., 2020), speech segments from DNS
Challenge 4 (Dubey et al., 2022), the Common
Voice dataset (version 16.0) (Ardila et al., 2019),
LibriTTS (Panayotov et al., 2015) training set, and
20,000 hours of internal Chinese data as the inte-
grated training dataset. To ensure a fair comparison
of codec models’ performance, we conducted in-
ference testing on the LibriTTS (Zen et al., 2019)
Test-Clean and Test-Other sets to evaluate codecs’
restoration effectiveness in common and noisy envi-
ronments respectively. Additionally, we performed
tests on the LJSpeech dataset to simulate out-of-
domain scenarios. For downstream speech lan-
guage models, we utilized the LibriTTS training
set to train zero-shot text-to-speech models. Infer-
ence testing was carried out on the LibriSpeech
(Panayotov et al., 2015) Test-Clean sets, following
VALL-E (Wang et al., 2023) and MobileSpeech (Ji
et al., 2024a), we filtered audio samples of 4-10
seconds from the LibriSpeech Test-Clean sets.
Automatic metrics. For objective evaluation of
our codec models, we employ the UTMOS (Saeki
et al., 2022) automatic Mean Opinion Score (MOS)
prediction system. UTMOS can yield scores
highly correlated with human evaluations and is
restricted to 16 kHz sample rate. we also adopt
the metrics from speech enhancement fields, such
as the PESQ (Rix et al., 2001), STOI, and the
F1 score for voiced/unvoiced classification (V/UV
F1), following the methodology proposed by Vo-
cos(Siuzdak, 2023) to evaluate the performance
of discrete codecs. Moreover, we have aligned

all our zero-shot TTS experiments metrics with
VALL-E (Wang et al., 2023). To evaluate speaker
similarity (SPK) between the original prompt and
synthesized speech, we employ WavLM-TDNN
(Chen et al., 2022). However, due to updates in the
repository, we have updated the feature extractor
in WavLM, but all our models have been tested by
using the same metrics. For assessing automatic
speech recognition (ASR) performance, we con-
duct ASR on the generated audio and calculate
the word error rate (WER) compared to the orig-
inal transcriptions. In this experiment, we utilize
the HuBERT-Large (Hsu et al., 2021) model fine-
tuned on LibriSpeech 960h as the ASR model. This
model is a CTC-based model without language
model fusion.
Due to space constraints, details of the Baselines
and Training and Inference Settings are in Ap-
pendix B and Appendix C. Subjective evaluations
are detailed in Appendix D.

4.2 Reconstruction Evaluation
We evaluated the reconstruction performance of the
codec model on the LibriTTS Test-Clean dataset
(Zen et al., 2019). Considering that the primary
purpose of the discrete codecs is to serve as an
audio representation for downstream tasks, exces-
sive channel numbers would significantly burden
downstream speech language models. Therefore,
we conducted a comparison between four-channel
and eight-channel dimensions. We believe that the
results on the LibriTTS Test-Clean subset ade-
quately reflect the reconstruction performance
of the codec model. To further evaluate the re-
construction performance of the codec model in
noisy environments and out-of-domain scenarios,
we additionally compare the performance of differ-
ent codec models on the LibriTTS Test-Other (Zen
et al., 2019) and LJSpeech datasets in Appendix E.

Based on the observations from Table 1, the fol-
lowing conclusions can be drawn: 1) Regarding the
audio reconstruction of the four-channel codecs,
the Language-Codec model significantly outper-
forms all baseline models in terms of objective
metrics. While there is a slight decrease in audio
reconstruction quality when the number of chan-
nels is reduced from eight to four in the baseline
models, the Language-Codec model maintains a
consistently good reconstruction performance. Ad-
ditionally, it is noteworthy that the four-channel
reconstruction of Language-Codec even surpasses
the eight-channel performance of several baseline

13337



Table 1: The results of different codec models on the LibriTTS Test-Clean and Test-Other dataset. Since down-
stream generative models use at most 8 layers of quantizers, we limit our comparisons to the 6 kbps and 3
kbps dimensions, even though 12 kbps can achieve better reconstruction performance.

Model Bandwidth Nq UTMOS ↑ PESQ ↑ STOI ↑ V/UV F1 ↑ SPK ↑
LibriTTS Test-Clean sets

GT - - 4.0562 - - - -
Opus 6.0kbps - 2.7961 2.5860 0.9367 0.9408 0.7701
EVS 7.2kbps - 3.4539 3.0988 0.9317 0.9453 0.8524

Encodec 3.0kbps 4 2.3070 2.0517 0.9007 0.9198 0.7860
Encodec 6.0kbps 8 3.0399 2.7202 0.9391 0.9527 0.8822

Vocos 3.0kbps 4 3.5390 2.4026 0.9231 0.9358 0.7892
Vocos 6.0kbps 8 3.6954 2.8069 0.9426 0.9437 0.8608

SpeechTokenizer 3.0kbps 4 3.5632 1.9311 0.8778 0.9273 0.6587
SpeechTokenizer 6.0kpbs 8 3.8794 2.6121 0.9165 0.9495 0.8311

DAC 3.0kbps 4 2.9902 2.4091 0.9118 0.9531 0.8129
DAC 6.0kbps 8 3.6804 3.5558 0.9257 0.9711 0.8715

Language-Codec 3.0kbps 4 3.7875 3.2675 0.9493 0.9657 0.8698
Language-Codec 6.0kbps 8 4.0372 3.8813 0.9715 0.9754 0.9318

models. For instance, in terms of the PESQ and
STOI metrics, the four-channel Language-Codec
model outperforms the eight-channel SpeechTo-
kenizer model by 0.6 and 0.03 in LibriTTS Test-
Clean sets. Furthermore, in the UTMOS metric, the
four-channel Language-Codec model significantly
outperforms the eight-channel Encodec model. 2)
In the eight-channel codecs reconstruction, the
Language-Codec model also maintains SOTA re-
construction quality. Although the eight-channel
SpeechTokenizer model achieved similar scores
to the Language-Codec model in terms of the UT-
MOS metric, it significantly underperformed in
other metrics such as SOTI, SPK, and PESQ com-
pared to the Language-Codec model, and even per-
formed noticeably worse than the Encodec model.
Considering the overall auditory perception and
average audio quality, the Language-Codec model
achieves the best performance.

4.3 Zero-shot TTS Evaluation

Regarding the inference phase, to ensure fair com-
parisons, we followed the experimental protocols
outlined in VALL-E (Wang et al., 2023) and em-
ployed the LibriSpeech Test-Clean dataset (Panay-
otov et al., 2015), ensuring no overlap with our
training data. We specifically utilized samples from
the LibriSpeech Test-Clean dataset with durations
ranging from 4 to 10 seconds, resulting in a subset
of 2.2 hours. Following VALL-E, we use the whole
transcription and the first 3 seconds of the utterance
as the phoneme and acoustic prompts respectively,

and ask the model to generate the continuations.
Given the widespread adoption of Encodec models
in downstream speech language models for extract-
ing features as intermediate acoustic tokens, we
have selected it as the primary baseline model in
our study. For the Vocos version, we maintain
the practice of training downstream models using
feature representations extracted by the Encodec
model. However, during the inference and decod-
ing phase, we replace the Encodec decoder with
the Vocos decoder. A more comprehensive expla-
nation of this approach, including the rationale and
methodology behind it, will be provided in the
subsequent section dedicated to ablation experi-
ments. Additionally, in the case of the Language-
Codec version, we focus exclusively on training
models with codec representations derived from
the Language-Codec model.

As shown in Table 2, the experimental results in-
dicate that different discrete codec representations
do not exhibit significant differences in terms of the
Word Error Rate (WER) metric. However, for the
Speaker Similarity (SPK) metric, we observe that
the codecs extracted by the Language-Codec model
perform better on downstream models. By merely
replacing the codec representation, the average
speaker similarity increases by 10%-15%. Addi-
tionally, in subjective Mean Opinion Score (MOS)
evaluations, we discover that the codec representa-
tions extracted by the Language-Codec model ex-
hibit certain improvements in terms of audio quality
and audio similarity compared to those extracted by
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Table 2: Evaluation of zero-shot TTS models with different codecs on the LibriSpeech Test-Clean corpus.

Zero-shot TTS Model WER ↓ SPK ↑ MOS-Q ↑ MOS-P ↑ MOS-S ↑
VALL-E w/ Encodec 4.3 0.6115 3.73±0.09 3.76±0.12 3.74±0.11

VALL-E w/ Encodec+Vocos 4.3 0.6198 3.83±0.07 3.81±0.13 3.82±0.06
VALL-E w/ Language-Codec 3.8 0.6995 4.01±0.09 3.89±0.12 3.99±0.08

MobileSpeech w/ Encodec 3.2 0.6776 3.91±0.10 3.99±0.12 3.98±0.11
Mobilespeech w/ Encodec+Vocos 3.1 0.6883 4.05±0.08 4.03±0.12 4.04±0.09

MobileSpeech w/ Language-Codec 2.9 0.7712 4.20±0.11 4.09±0.07 4.18±0.10

the encoder model. However, no significant differ-
ences are observed in terms of prosodic represen-
tations. Moreover, during the training process of
our downstream zero-shot Text-to-Speech model,
we find that when the downstream model predicts
codecs generated by the Language-Codec model,
the accuracy of codec prediction decreases when
the number of channels exceeds four. Although this
does not have a significant impact on the perfor-
mance of the downstream model, future endeavors
could explore the use of smaller or variable code-
books to further enhance the results.

4.4 Ablation experiment

In this section, we conducted a detailed analysis
of MCRVQ module. The ablation experiments
regarding the new decoder and the multi-scale dis-
criminator are presented in Appendix G and F.

We validated the role of the Masked Channel
Residual Vector Quantization (MCRVQ) module
in the language-codec model. Considering that the
design purpose of the MCRVQ mechanism is to re-
duce the difficulty of text generation in downstream
tasks, we conducted ablation experiments on the
zero-shot TTS model downstream. Specifically, we
first replaced the MCRVQ module with the RVQ
module (eight quantizers) while keeping the same
training steps and other configurations. We refer
to this experiment setup as Language-Codec w/o
MCRVQ. We used Language-Codec w/o MCRVQ
to extract the corresponding discrete codec features
and retrained the downstream VALL-E and Mo-
bileSpeech models. The experimental results, as
shown in Table 3, revealed that there was no sig-
nificant difference (0.2) between Language-Codec
w/o MCRVQ and Language-Codec in terms of the
robustness metric WER. However, in terms of the
objective metric of speaker similarity, omitting the
MCRVQ module resulted in a decrease of 0.06
similarity in VALL-E and MobileSpeech, respec-
tively, indicating that the MCRVQ module indeed

Table 3: The ablation experiments of the MCRVQ mod-
ule, we assessed the performance of WER and SPK
metrics.

Model Codec Model WER ↓ SPK ↑
VALL-E Language-Codec w/o MCRVQ 4.1 0.6383
VALL-E Language-Codec 3.8 0.6995

MobileSpeech Language-Codec w/o MCRVQ 3.1 0.7103
MobileSpeech Language-Codec 2.9 0.7712

Table 4: The ablation experiments of the MCRVQ mod-
ule, we assessed the performance of subjective metric
CMOS.

Model Codec Model CMOS ↑
VALL-E Language-Codec w/o MCRVQ -0.19
VALL-E Language-Codec 0.00

MobileSpeech Language-Codec w/o MCRVQ -0.25
MobileSpeech Language-Codec 0.00

enhances the codec generation capability of the
downstream speech synthesis model by weakening
the difficulty of text generation for codec.

In addition, we also conducted corresponding
subjective CMOS tests. From Table 4, it can be
observed that in the autoregressive discrete codec
modeling experiments of the VALL-E model, the
CMOS values of the synthesized audio decreased
by 0.19 when the MCRVQ module was omitted
compared to the original Language-Codec model.
Similarly, in the parallel discrete codec model-
ing experiments of the MobileSpeech model, the
CMOS values of the synthesized audio decreased
by 0.25 when the MCRVQ module was omitted
compared to the original Language-Codec model,
which further indicated that the codec generated
by the Language-Codec w/o MCRVQ model had
lower subjective audio quality and audio similarity
than the codec generated by the Language-Codec.

5 Conclusions

In this article, we propose Language-Codec, a dis-
crete acoustic codec model that enhances adap-
tation to downstream speech language models.
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Through improved model architecture and a unique
Masked Channel residual vector quantization mech-
anism, we achieve excellent audio reconstruction
quality with just four layers of codecs. The
Language-Codec model demonstrates effective au-
dio restoration performance in both clean audio
and noisy environments. Furthermore, we validate
the generalization capability of Language-Codec
in unseen domains and its generation ability in
downstream zero-shot TTS models, yielding satis-
factory results. We envision Language-Codec as a
state-of-the-art foundational codec model for future
research in the field of speech generation.
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7 Limitations

While Language-Codec models demonstrate supe-
rior reconstruction quality compared to some no-
table comparative models, it is important to note
that due to time constraints, Language-Codec mod-
els have been trained solely on speech corpora and
validated solely on downstream speech language
models. Although the majority of codec models
also exclusively support speech data, we aspire to
develop a more comprehensive and versatile codec
model. In the future, we plan to incorporate a larger
training dataset (consisting of several hundred thou-
sand hours) to encompass a wider range of signal
types, including audio, music, and more.
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Table 5: The reconstruction results of different training datasets on LibriTTS Test-Clean corpus.

Model Dataset Nq UTMOS ↑ PESQ ↑ STOI ↑ VUV F1 ↑ SPK ↑
Language-Codec LibriTTS (585 hours) 4 3.7901 3.2652 0.9495 0.9652 0.8688
Language-Codec LibriTTS (585 hours) 8 4.0402 3.8581 0.9701 0.9711 0.9165
Language-Codec Paper w/o 20k internal data 4 3.7867 3.2598 0.9499 0.9654 0.8688
Language-Codec Paper w/o 20k internal data 8 4.0279 3.8645 0.9716 0.9735 0.9268
Language-Codec 50k hours 4 3.7875 3.2675 0.9493 0.9657 0.8698
Language-Codec 50k hours 8 4.0372 3.8813 0.9715 0.9754 0.9318

Table 6: The reconstruction results of different codec models on the LibriTTS Test-Other dataset (noisy environment).

Model Bandwidth Nq UTMOS ↑ PESQ ↑ STOI ↑ V/UV F1 ↑ SPK ↑
LibriTTS Test-Other sets

GT - - 3.4831 - - - -
Opus 6.0kbps - 2.2628 2.5701 0.9233 0.9265 0.7563
EVS 7.2kbps - 2.8845 2.8456 0.9102 0.9256 0.8407

Encodec 3.0kbps 4 2.0883 2.0529 0.8835 0.8926 0.7724
Encodec 6.0kbps 8 2.6568 2.6818 0.9241 0.9338 0.8763

Vocos 3.0kbps 4 3.0558 2.1933 0.8967 0.9051 0.7592
Vocos 6.0kbps 8 3.1956 2.5590 0.9209 0.9202 0.8363

SpeechTokenizer 3.0kbps 4 3.0183 1.7373 0.8371 0.8907 0.6071
SpeechTokenizer 6.0kpbs 8 3.2851 2.3269 0.8811 0.9205 0.7925

DAC 3.0kbps 4 2.5981 2.2380 0.8869 0.9361 0.7947
DAC 6.0kbps 8 3.1701 3.2874 0.9341 0.9578 0.8563

Language-Codec 3.0kbps 4 3.2218 2.9844 0.9207 0.9483 0.8466
Language-Codec 6.0kbps 8 3.4801 3.7218 0.9498 0.9654 0.9153

A Ablation experiments about varied
training data volumes

As shown in Table 5. We found that the size of the
dataset does not significantly impact speech recon-
struction. Particularly noteworthy is the internal
dataset comprising 20k hours, which, given its Chi-
nese language corpus, exerts minimal influence on
the results presented in the paper. Dataset size may
more influence generalization (more languages) in-
stead of reconstruction.

B Baselines

Following Encodec (Défossez et al., 2022), we
considered several traditional speech compression
models as baselines. Opus (Valin et al., 2012) is a
versatile speech and audio codec model that was
standardized by the IETF in 2012. EVS (Dietz
et al., 2015) is a codec standardized by 3GPP in
2014 and specifically developed for Voice over LTE
(VoLTE). We also utilized the official implementa-
tion available in Lyra2 1 at bit rates of 3.2 kbps and
6 kbps. Additionally, we selected three state-of-the-
art codec models based on RVQ as baselines. To

1https://github.com/google/lyra

ensure a fair comparison, we employed the official
weight files provided by the Encodec 2 (Défossez
et al., 2022) , Vocos 3 (Siuzdak, 2023) , SpeechTo-
kenizer 4 (Zhang et al., 2023) and DAC 5 (Kumar
et al., 2024a) frameworks. For downstream speech
language models, we replicated two zero-shot TTS
models based on discrete codecs modeling: VALL-
E (Wang et al., 2023) , representing autoregressive
modeling, and MobileSpeech (Ji et al., 2024a), rep-
resenting fully parallel modeling.

C Training and Inference Settings

We train Language-Codec up to 2 million itera-
tions, with 1 million iterations allocated to both the
generator and discriminator on 8 NVIDIA A100
40G GPUs. Throughout the entire training pro-
cess, all input speech samples were resampled to
24 kHz, and the batch size was 100. During the
training phase, we uniformly truncated excessively
long segments in the training data to a fixed length

2https://github.com/facebookresearch/encodec
3https://github.com/gemelo-ai/vocos
4https://github.com/ZhangXInFD/SpeechTokenizer
5https://github.com/descriptinc/

descript-audio-codec

13342

https://github.com/google/lyra
https://github.com/facebookresearch/encodec
https://github.com/gemelo-ai/vocos
https://github.com/ZhangXInFD/SpeechTokenizer
https://github.com/descriptinc/descript-audio-codec
https://github.com/descriptinc/descript-audio-codec


Table 7: The reconstruction results of different codec models on the LJSpeech dataset (out domain scenarios).

Model Bandwidth Nq UTMOS ↑ PESQ ↑ STOI ↑ V/UV F1 ↑ SPK ↑
LJSpeech

GT - - 4.3794 - - - -
Opus 6.0kbps - 2.7640 2.1433 0.1245 0.9489 0.7098
EVS 7.2kbps - 3.8991 3.0560 0.9507 0.9521 0.8551

Lyra-v2 3.2kbps - 3.3773 2.4182 0.9161 0.9421 0.7041
Lyra-v2 6.0kbps - 3.9591 2.8853 0.9418 0.9551 0.8007
Encodec 3.0kbps 4 2.3905 2.0194 0.9058 0.9326 0.8177
Encodec 6.0kbps 8 3.2286 2.6633 0.9441 0.9555 0.8952

Vocos 3.0kbps 4 3.7880 2.5006 0.9310 0.9388 0.7801
Vocos 6.0kbps 8 4.0332 2.9258 0.9497 0.9459 0.8339

SpeechTokenizer 3.0kbps 4 3.9908 2.0458 0.9021 0.9299 0.6793
SpeechTokenizer 6.0kpbs 8 4.2373 2.6413 0.9316 0.9452 0.8332
Language-Codec 3.0kbps 4 4.1416 3.2488 0.9493 0.9612 0.8675
Language-Codec 6.0kbps 8 4.3561 3.7456 0.9704 0.9732 0.9389
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Figure 2: The overall architecture of Attention Block and ConvNeXt Blocks inside Decoder. Subfigures (b) and (c)
show the more fundamental structure in the Attention Block. The text surrounded by “<>” indicates the parameter
settings of Conv1d.

Table 8: The ablation experiment of multi-scale discrim-
ination (msdm) on the LibriTTS Test-Clean corpus.

Model UTMOS ↑ PESQ ↑ STOI ↑ V/UV F1 ↑
Language-Codec w/o msdm 3.8682 3.5117 0.9636 0.9682

Language-Codec 4.0372 3.8813 0.9715 0.9754

of 10 seconds and subsequently performed a ran-
dom crop of the waveform to obtain audio snippets
of 1-second duration for feeding Language-Codec.
Language-Codec is optimized using the AdamW
optimizer with an initial learning rate of 2e-4 and
betas set to (0.9, 0.999). The learning rate was de-
cayed based on a cosine schedule. MobileSpeech
(Ji et al., 2024a) was trained for 12 epochs on 8
NVIDIA A100 40G GPUs, with each batch accom-
modating 3500 frames of the discrete codecs. We
optimized the models using the AdamW optimizer

with parameters β1 = 0.9 and β2 = 0.95. The learn-
ing rate was warmed up for the first 5k updates,
reaching a peak of 5× 10−4, and then linearly de-
cayed. The AR model and NAR model in VALL-E
(Wang et al., 2023) are trained using 4 NVIDIA
A100 40GB GPUs with a batch size of 6k acoustic
tokens per GPU. We also optimize the models with
the AdamW optimizer, warm up the learning rate
for the first 5k updates to a peak of 5× 10−4, and
then linear decay it.

D Human evaluation

We conduct the MOS (mean opinion score) eval-
uation on the Librispeech test set to measure the
audio naturalness via crowdsourcing in zero-shot
TTS experiments. We keep the text content and
prompt speech consistent among different mod-
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Table 9: The ablation experiment of decoder on the LibriTTS Test-Clean corpus.

Model UTMOS ↑ PESQ ↑ STOI ↑ V/UV F1 ↑ SPK ↑
Language-Codec w/o decoder 3.2557 3.0654 0.9456 0.9611 0.9096

Language-Codec w/o attention block 3.8719 3.6225 0.9642 0.9688 0.9208
Language-Codec 4.0372 3.8813 0.9715 0.9754 0.9318

Table 10: Evaluation of mobilespeech with different quantizers on the LibriSpeech Test-Clean corpus.

Zero-shot TTS Model Nq ↓ WER ↓ SPK ↑ MOS-Q ↑ MOS-P ↑ MOS-S ↑
MobileSpeech w/ Language-Codec 4 3.2 0.7254 4.04±0.09 4.06±0.12 4.11±0.11
MobileSpeech w/ Language-Codec 8 2.9 0.7712 4.20±0.11 4.09±0.07 4.18±0.10

els to exclude other interference factors. We ran-
domly choose 50 samples from the test set for
the subjective evaluation and each audio is lis-
tened to by at least 10 testers. We analyze the
MOS in three aspects: MOS-Q (Quality: clarity,
high-frequency, and original timbre reconstruction),
MOS-P (Prosody: naturalness of pitch, energy, and
duration), and MOS-S (Speaker similarity). We re-
quire crowdsource evaluators to focus solely on the
MOS results for a specific dimension, disregarding
the influence of other dimensions.

E More Reconstruction Evaluation

We evaluate the performance of different codec
models in noisy environments using the LibriTTS
Test-Other dataset. The experimental results are
presented in Table 6. We noticed that all com-
parative models maintain similar conclusions and
trends between the Test-Clean (clean dataset) and
Test-Other (noisy dataset) conditions. Moreover,
the Language-Codec model demonstrates good re-
construction quality even in noisy environments.

We validated the generalization performance of
the codec model on a total of 13,100 audio sam-
ples from the LJSpeech dataset. The audio in the
LJSpeech dataset has a sampling rate of 22,050
Hz, which we resampled to 24,000 Hz during the
input stage of the inference process. Since the
codec model was trained on tens of thousands
of hours of speech data, it possesses a stronger
generalization capability. From Table 7, we ob-
served the following findings: 1) Most codec mod-
els demonstrated impressive generalization perfor-
mance, with SpeechTokenizer exhibiting slightly
lower generalization performance, likely due to
training data limitations. 2) In tests involving dif-
ferent sampling rates and out-of-domain samples,
Language-Codec outperformed the current SOTA

baseline models significantly across various objec-
tive metrics such as UTMOS, PESQ, STOI, V/UV
F1, and SPK, for both the four-channel and eight-
channel configurations. In general, due to its data-
driven nature, Language-Codec demonstrates ex-
cellent generalization performance.

F Ablation experiments about
discriminator

We evaluated the impact of the ablation experi-
ments on the multi-scale discriminator on the Lib-
riTTS testclean dataset. The experimental results
are presented in Table 8. We observed that the
multi-scale discriminator enhances the reconstruc-
tion performance of the Codec model to a certain
extent. Specifically, the multi-scale discriminator
shows significant improvements in the PESQ met-
ric.

G Ablation experiments about decoder

We conducted detailed ablation experiments on
the Decoder module within the Language-Codec
framework. Specifically, we initially replaced the
Decoder with the upsampling module from the
Encodec model. This framework was denoted as
’Language-Codec w/o decoder’. Additionally, we
examined the impact of the attention module on
Codec reconstruction fidelity. This framework was
denoted as ’Language-Codec w/o attention block’.
The experimental results, as shown in Table 9, high-
light the significant influence of the upsampling
structure dependent on Fourier transforms and the
attention module on Codec reconstruction efficacy.

H Experiments on downstream
generative models with four quantizers

Due to time constraints, we evaluated the genera-
tion performance of a four-layer quantizer on the
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MobileSpeech model. The experimental results,
presented in Table 10, demonstrate that even with
just four codebooks, high-quality audio can be gen-
erated.

I Visualize modules in Decoder

As shown in Figure 2(a), the Attention Block is
composed of stacked Conv1d ResBlocks and Self-
Attention modules.

Specifically, as shown in Figure 2(b), The
Conv1d ResBlock processes the features by first
applying normalization and sigmoid activation, fol-
lowed by a Conv1d layer with the kernel size of 3,
stride of 1, and padding of 1. After another round
of normalization and sigmoid activation, the fea-
tures undergo dropout before being passed through
another Conv1d layer with the same configuration.
Finally, residual connections are applied to produce
the output.

The self-attentive module, as shown in Figure
2(c), utilizes three Conv1d layers with kernel size
of 1, stride of 1, and padding of 0 to extract Q, K,
and V, respectively. After that execute the attention
mechanism and finally go through the Conv1d layer
output with kernal size of 1, Stride of 1 and padding
of 0.

As shown in Figure 2(d), ConvNeXt consists
of the stack of N ConvNeXtBlocks, each Con-
vNeXtBlock processes the input features using the
Conv1d layer with Kernal size of 7, Stride of 3, and
padding of 1. After Normalize and Linear layer, the
output features are processed by GLUE activation
and the Linear layer, finally using the residual con-
nection for the input of the next ConvNeXtBlock.
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