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Abstract

Large language models (LLMs) have shown
significant promise in question-answering (QA)
tasks, particularly in retrieval-augmented gener-
ation (RAG) scenarios and long-context appli-
cations. However, their performance is hin-
dered by noisy reference documents, which
often distract from essential information. De-
spite fine-tuning efforts, Transformer-based ar-
chitectures struggle to prioritize relevant con-
tent. This is evidenced by their tendency to
allocate disproportionate attention to irrelevant
or later-positioned documents. Recent work
proposes the differential attention mechanism
to address this issue, but this mechanism is lim-
ited by an unsuitable common-mode rejection
ratio (CMRR) and high computational costs.
Inspired by the operational amplifier (OpAmp),
we propose the OpAmp adaptation to address
these challenges, which is implemented with
adapters efficiently. By integrating the adapter
into pre-trained Transformer blocks, our ap-
proach enhances focus on the golden context
without costly training from scratch. Empiri-
cal evaluations on noisy-context benchmarks
reveal that our Qwen2.5-OpAmp-72B model,
trained with our OpAmp adaptation, surpasses
the performance of state-of-the-art LLMs, in-
cluding DeepSeek-V3 and GPT-4o. Our code
is available at https://github.com/wuhy68/
OpampAdapter.

1 Introduction

Recent advancements in large language models
(LLMs) (OpenAI, 2023; Dubey et al., 2024; Yang
et al., 2024; Liu et al., 2024a) have demonstrated
remarkable capabilities in understanding, gener-
ating, and reasoning across diverse domains, sig-
nificantly advancing their application in various
fields. Among these applications, question answer-
ing (QA) based on provided contexts has emerged
as one of the most prominent use cases for LLMs.

*These authors contributed equally to this work.
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Figure 1: Normalized attention score. Transformers
often miss the golden document in a noisy context.

As LLMs’ capabilities continue to evolve and
user expectations grow, users increasingly sup-
ply multiple documents retrieved in Retrieval-
Augmented Generation (RAG) scenarios or long-
context reference documents to guide LLMs in
generating contextually relevant responses. How-
ever, in practice, such retrieved documents or long-
context references often contain substantial noise,
including information irrelevant to the user’s query.
Recent studies (Ye et al., 2025; Liu et al., 2024b)
highlight a critical challenge that LLMs frequently
struggle to accurately identify and extract key in-
formation from these noisy contexts, limiting their
effectiveness in real-world applications.

As illustrated in Figure 1, we visualize the nor-
malized attention scores assigned to retrieved docu-
ments in the RAG scenario, which includes var-
ious noisy documents and a single golden doc-
ument. The task involves identifying the cor-
rect answer within noisy contexts. Our analysis
evaluates several LLMs, including Llama3.1-8B-
base (Meta, 2024), Llama3.1-8B-inst (Meta, 2024),
and Llama3-ChatQA2-8B (Xu et al., 2024), the
latter of which has been fine-tuned specifically
for long-context and RAG applications. The vi-
sualization demonstrates that the Transformer ar-
chitecture tends to allocate only a small propor-
tion of attention scores to the golden document,
while disproportionately focusing on irrelevant or
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Figure 2: Qwen2.5-OpAmp-72B achieves the best aver-
age performance in various noisy-context benchmarks
compared to current SOTA LLMs.

later-positioned documents. Notably, ChatQA2,
despite its fine-tuning for long-context and RAG
tasks, tends to over-attend to documents positioned
later in the sequence rather than the golden docu-
ment. Similarly, the aligned LLM struggles to fo-
cus on relevant information in noisy environments.
These findings highlight a persistent challenge for
Transformer-based architectures, including effec-
tively identifying and prioritizing relevant docu-
ments in the presence of noise. The issue (Ye et al.,
2025) arises from the non-negligible allocation of
attention scores to irrelevant content, which ulti-
mately obscures the correct answer and undermines
model performance.

Ye et al. (2025) propose a differential attention
mechanism designed to mitigate attention noise
through differential denoising, inspired by the prin-
ciples of differential amplifiers in electrical engi-
neering. However, differential amplifiers are effec-
tive in scenarios requiring a high common-mode
rejection ratio (CMRR) considering that they only
focus on differential gain. This is unsuitable for
attention denoising in the Transformer block. Train-
ing a differential transformer from scratch entails
great computation costs and introduces significant
risks, further limiting its practical applicability.

Inspired by the operational amplifiers (OpAmp),
we introduce OpAmp adaptation with adapters, an
efficient approach for refining the attention mecha-
nism to enhance focus on the most relevant context
leveraging parameter-efficient fine-tuning (PEFT)

techniques. The OpAmp adaptation enables simul-
taneous control of differential gain and common-
mode gain through the management of the CMRR.
Building on the OpAmp design, our approach fa-
cilitates the training of OpAmp models using pre-
trained Transformer architectures, eliminating the
need for training from scratch. This strategy sig-
nificantly reduces computational costs compared
to previous methods. As demonstrated in Figure 2,
our Qwen2.5-OpAmp-72B model, trained with the
OpAmp adaptation, achieves superior average per-
formance across various noisy-context benchmarks
compared to current state-of-the-art (SOTA) LLMs.
Our contributions are as follows:

• We introduce the OpAmp adaptation for zoom
attention to the most relevant context in noisy
contexts;

• Implement OpAmp adaptation with adapters,
which are fine-tuned with our noisy context
dataset, achieving significant improvements;

• Develop OpAmp models with our OpAmp
adaptation method, surpassing current SOTA
LLMs in various noisy-context benchmarks.

2 Methods

2.1 Preliminaries

Adapters. Houlsby et al. (2019) introduced the
concept of integrating adapters into pre-trained
transformer-based models for PEFT. This approach
only fine-tunes the parameters introduced by the
adapters while maintaining the pre-trained weights
with large parameters unchanged. An adapter
module comprises two trainable matrices, W 1 ∈
Rd1×d2 and W 2 ∈ Rd2×d1 , along with a non-linear
activation function ϕ(·). Here, d1 represents the
feature dimension of the pre-trained weights, while
d2 denotes the hidden dimension of the inserted
adapter, typically satisfying d2 ≪ d1. Given an in-
put feature H ∈ RN×d1 , the output of the adapter
module is expressed as:

H ′ = ϕ(HW 1)W 2 +H. (1)

Attention. The self-attention mechanism (Vaswani
et al., 2017) serves as the foundational building
block for LLMs (OpenAI, 2023; Dubey et al., 2024;
Yang et al., 2024; Liu et al., 2024a). Given a query
feature Q ∈ RN×d, a key feature K ∈ RN×d, and
a value feature V ∈ RN×d, the attention mecha-
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nism is computed as follows:

Attn(Q,K,V ) = MV ,

M = Softmax

(
QK⊤
√
d

)
, (2)

where N represents the number of tokens and d
denotes the dimensionality of the query, key, and
value features.
Differential Amplifier. The differential ampli-
fier (Sansen, 2007) is an electronic device designed
to amplify the voltage difference between its two
input signals while rejecting any voltage common
to both inputs. In an analog circuit with input volt-
ages V +

in and V −
in , the ideal output voltage Vout is

proportional to the difference between the two in-
puts, as expressed by:

Vout = Ad(V
+

in − V −
in ), (3)

where Ad represents the differential gain.
Operational Amplifier. In practical applications,
the desired output often deviates from the predic-
tions of Equation (3). For instance, when V +

in and
V −

in are equal, the output voltage does not neces-
sarily become zero. However, according to Equa-
tion (3), the output voltage should theoretically be
zero in such cases. To address this discrepancy,
as shown in Figure 3, the OpAmp (Sansen, 2007)
provides a more accurate and stable output expres-
sion, including an additional term accounting for
common-mode effects:

Vout = V +
in · ( R4

R3 +R4
· R1 +R2

R1
)− V −

in · R2

R1

= Ad(V
+

in − V −
in ) +

Ac

2
(V +

in + V −
in ), (4)

where Ac is the common-mode gain of the ampli-
fier. The common-mode rejection ratio (CMRR) is
defined as the ratio of the differential gain to the

common-mode gain:

K =
Ad

Ac
. (5)

Obviously, Ac → 0 and K → ∞ for an ideal
differential amplifier.

2.2 OpAmp Adaptation

Inspired by the operational amplifier, we propose
the OpAmp adaptation, which modifies the origi-
nal attention mechanism into the OpAmp attention
mechanism. Specifically, the operational amplifier
is employed to denoise the input signals and pro-
duce a refined output in the analog circuit domain.
Building on this concept, we design the OpAmp
attention mechanism to denoise the attention matri-
ces M . As shown in Figure 4, the original attention
mechanism described in Equation (2) is adapted
using Equation (4):

M̄ = Ad(M
+−M−)+

Ac

2
(M++M−), (6)

where M̄ is the denoised attention matrix via
OpAmp adaptation, M+ and M− are formulated
through adapters, the detailed implementation of
which will be elaborated in Section 2.3. As illus-
trated in Equation (6), we can adopt different K to
adapt different scenarios using Equation (5).

Notably, the attention noise for LLMs after align-
ment is relatively small in noisy-context scenarios
as shown in Figure 1. This suggests that attention
denoising requires only a modest CMRR K instead
of high CMRR values. The experiment results pre-
sented in Section 3.4 further support our claim that
excessively high CMRR values can lead to perfor-
mance degradation.

2.3 Architecture Design

Given an input feature X ∈ RN×d, the query fea-
ture Q ∈ RN×d and the key feature K ∈ RN×d

are computed as follows:

Q = XW q,K = XW k, (7)

where W q,W k ∈ Rd×d represent pre-trained
weights used for linear projection. As outlined in
Equation (6), the computation of M+ and M− is
required to implement the OpAmp attention mech-
anism. A straightforward approach involves dupli-
cating WQ and WK to compute two sets of query
and key features, denoted as Q1,K1 and Q2,K2
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Subsequently, M+ and M− can be calculated in-
dependently using Equation (2) as follows:

M+ = Softmax

(
Q1K

⊤
1√

d

)
, (8)

M− = Softmax

(
Q2K

⊤
2√

d

)
, (9)

However, this method incurs substantial computa-
tional overhead, particularly given the large param-
eter scale of LLMs.

Consequently, we introduce an effective and ef-
ficient implementation of OpAmp adaptation to
address this inefficiency. Specifically, we employ
adapters to avoid redundant weight computations
as shown in Figure 4. For a given input X , the
query and key features Q1,K1 and Q2,K2 can
be computed as follows:

Q1 = E1
q (XW q),Q2 = E2

q (XW q), (10)

K1 = E1
k(XW k),K2 = E2

k(XW k), (11)

where Ei
j(x) represents the adapters for OpAmp

adaptation, defined according to Equation (1) as:

Ei
j(x) = ϕ(xW 1)W 2 + x, (12)

with i ∈ {1, 2} and j ∈ {q, k}. This architecture
ensures effective OpAmp adaptation while mini-
mizing computational overhead. Finally, the output
of OpAmp attention can be computed as:

OpAmpAttn(Q,K,V ) = M̄V . (13)

Zero Initialization. At the onset of training, we
employ zero initialization to promote identity map-
ping. Specifically, W 2 is initialized to zero to

guarantee that Ei
j(x) = x. Furthermore, to pre-

vent any disruption to the original M during the
initial phase of training, we set Ac = 1 and regu-
late K = Ad

Ac
by adjusting the values of Ad. As a

result, at the initial stage, Equation (6) reduces to:

M̄ = Ad · (M −M) +
Ac

2
· (M +M),

= Ad · 0 +
Ac

2
· 2M = M , (14)

which aligns with the standard attention mecha-
nism outlined in Equation (2). This strategy en-
sures that the model initiates training with a well-
established mechanism before incorporating more
sophisticated modifications. Moreover, other mod-
ules, such as the normalization and FFN layers, are
replicated directly from the original transformer
block to ensure structural coherence.

3 Experiments

3.1 Training Settings
Training Data. We incorporate some noisy context
data into the general supervised fine-tuning dataset
to enhance LLMs’ denoising capability in noisy
context scenarios. This training involved integrat-
ing three distinct datasets: LongCite-45k (Zhang
et al., 2024), Neural-Bridge-RAG (Neural Bridge
AI, 2024) and Tulu3-SFT-Mix (Lambert et al.,
2024). After data processing, we get the Noisy
Context Fine-Tuning (NCFT) dataset for super-
vised fine-tuning. We provide more details of the
NCFT dataset in Appendix B.
OpAmp Models. We select two pre-trained mod-
els with different model sizes, Qwen2.5-72B (Yang
et al., 2024) and Llama3.1-8B (Dubey et al., 2024),
as our base models to train our OpAmp models
using the NCFT dataset. Moreover, we use the
QLoRA technique to update the other parameters
in the pre-trained models instead of full fine-tuning.
Please refer to Appendix A for more details.

3.2 Evalutaion Settings
Baselines. We compare our OpAmp models with
existing powerful LLMs in our evaluation bench-
mark. These LLMs include Llama3-ChatQA2-
70B (Xu et al., 2024), Qwen2.5-72B-inst (Yang
et al., 2024), Llama3.3-70B-inst (Dubey et al.,
2024), DeepSeek-V3 (Liu et al., 2024a), GPT-
4o-0806 (Hurst et al., 2024), Llama3-ChatQA2-
8B (Xu et al., 2024), Mistral-7B-inst-v0.3 (Jiang
et al., 2023), Llama3.1-8B-inst (Meta, 2024) and
Qwen2.5-7B-inst (Yang et al., 2024).
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Qwen2.5
OpAmp-72B

Llama3
ChatQA2-70B

Qwen2.5
72B inst

Llama3.3
70B inst

DeepSeek
V3

GPT-4o
0806

LooGLE (EM)
(Li et al., 2023) 66.3 59.1 64.9 63.0 63.4 62.7

NarrativeQA (EM)
(Kočiskỳ et al., 2018) 61.7 59.8 60.2 61.5 60.5 61.5

MultiHopRAG (EM)
(Tang and Yang, 2024) 89.6 78.2 89.2 83.7 88.6 87.7

HotpotQA (EM)
(Yang et al., 2018) 77.5 70.5 76.0 74.5 77.0 77.5

MuSiQue (EM)
(Trivedi et al., 2022) 48.0 39.0 44.0 47.5 52.5 53.0

CoQA (EM)
(Reddy et al., 2019) 92.4 80.2 85.8 88.2 88.4 88.6

Table 1: Performance of Qwen2.5-OpAmp-72B on various noisy context benchmarks. We present a detailed
comparison of the Qwen2.5-OpAmp-72B with current SOTA open-source and commercial LLMs. We bold the
highest scores among all models.

Llama3.1
OpAmp-8B

Llama3
ChatQA2-8B

Mistral
7B inst-v0.3

Llama3.1
8B inst

Qwen2.5
7B inst

LooGLE (EM) 56.6 50.7 51.6 56.1 53.8
NarrativeQA (EM) 57.4 53.1 44.7 55.9 47.7
MultiHopRAG (EM) 70.5 50.9 69.5 63.9 66.9
HotpotQA (EM) 61.0 56.5 58.0 58.5 59.5
MuSiQue (EM) 35.0 23.0 28.5 29.5 31.5
CoQA (EM) 85.4 78.2 70.6 82.2 84.2

Table 2: Performance of Llama3.1-OpAmp-8B on various noisy context benchmarks. We present a detailed
comparison of the Llama3.1-OpAmp-8B with various open-source LLMs with similar parameters. We bold the
highest scores among all models.

Evalution Benchmarks. Our evaluation bench-
marks are designed using a spectrum of well-
known datasets and benchmarks including Long-
Bench (Yushi et al., 2024) and ChatQA (Liu et al.,
2024c). After some selection and filtration, these
benchmarks can be categorized as follows:

• Long-Context QA: The evaluation encom-
passes partial match (PM), exact match (EM),
and accuracy (Acc.) metrics for various long-
context QA benchmarks, including Narra-
tiveQA (Kočiskỳ et al., 2018), Qasper (Dasigi
et al., 2021), QuALITY (Pang et al., 2021),
and LooGLE (Li et al., 2023).

• Multi-Hop QA: Assessment of multi-hop rea-
soning performance on various benchmarks,
including HotpotQA (Yang et al., 2018),
MuSiQue (Trivedi et al., 2022), and Multi-
HopRAG (Tang and Yang, 2024), using the
EM metric.

• Noisy-RAG QA: PM and EM scores for RAG
scenarios using CoQA (Reddy et al., 2019),
QuAC (Choi et al., 2018), and QReCC (Anan-
tha et al., 2020) benchmarks.

For a more detailed composition of the evaluation
benchmark, please refer to Appendix C.

3.3 Evaluation on Noisy-Context Benchmarks

We perform various experiments on LLMs with
different sizes to evaluate the capabilities of our
OpAmp adaptation. For LLMs with more than
70B parameters, we compare Qwen2.5-OpAmp-
72B with Llama3-ChatQA2-70B, Qwen2.5-72B-
inst, Llama3.3-70B-inst, DeepSeek-V3, and GPT-
4o-0806. For LLMs with around 7B parameters,
we compare Llama3.1-OpAmp-8B with Llama3-
ChatQA2-8B, Mistral-7B-inst-v0.3, Llama3.1-8B-
inst, and Qwen2.5-7B-inst. The noisy-context
benchmarks cover a wide range of tasks. For long-
context scenarios, LooGLE and NarrativeQA are
selected. We utilize MultiHopRAG, HotpotQA,
and MuSiQue for Multi-Hop reasoning evaluation
and CoQA for noisy-RAG scenarios. Table 1 and
Table 2 demonstrate the superior performance of
our OpAmp models compared to other existing
powerful LLMs, underscoring the significant capa-
bilities and effectiveness of the OpAmp adaptation
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Method K Avg.
Qasper LooGLE NarrativeQA QuALITY MultiHopRAG HotpotQA MuSiQue CoQA QuAC QReCC
(PM) (EM) (EM) (Acc.) (EM) (EM) (EM) (EM) (PM) (PM)

QLoRA - 52.4 38.9 53.1 55.7 76.1 68.4 56.5 31.5 83.6 25.2 35.4

OpAmp
Adapter

1 54.1 (+1.7) 40.8 56.0 56.4 79.2 68.5 57.5 32.5 85.8 26.1 38.3
5 54.3 (+1.9) 41.2 56.5 56.9 77.8 69.5 62.0 31.5 84.6 25.5 37.1
10 55.4 (+3.0) 43.1 56.6 57.4 79.0 70.5 61.0 35.0 85.4 26.5 39.8
20 54.4 (+2.0) 41.5 55.4 56.4 79.3 71.4 59.0 33.0 84.0 26.2 37.0

Table 3: Ablation studies on various noisy context benchmarks using Llama3.1-8B-base as the base model. We bold
the highest scores for each benchmark.

in noisy context scenarios.

Long-Context Evaluation. Long-context evalu-
ation requires LLMs to disregard large volumes
of context-related but question-irrelevant informa-
tion within extensive texts, accurately identify the
paragraphs relevant to the answer, and generate re-
sponses based on these pertinent segments. Our
Qwen2.5-OpAmp-72B model achieves EM scores
of up to 66.3% on the LooGLE benchmark with
a maximum context length of 32K tokens and
61.7% on the NarrativeQA benchmark with a max-
imum context length of 64K tokens. Similarly,
our Llama3.1-OpAmp-8B model attains the high-
est EM score of 56.6% on the LooGLE benchmark
and leads with a score of 57.4% on the NarrativeQA
benchmark. These experiment results underscore
the robust capability of our OpAmp models to fil-
ter out context-related noise and accurately locate
answers within long contexts. Furthermore, they
demonstrate the strong generalization ability of our
approach across different model sizes.

Multi-Hop Evaluation. Multi-hop evaluation is
designed to assess the capability of LLMs to extract
and synthesize relevant information from multiple
documents for reasoning. This task requires LLMs
to filter out irrelevant or noncritical documents to
minimize interference during the reasoning pro-
cess. Our Qwen2.5-OpAmp-72B model demon-
strates strong performance on multi-hop reasoning
tasks, achieving high scores of 89.6% on MultiHo-
pRAG and 77.5% on HotpotQA, with notable ad-
vantages over competing models. Although it per-
forms slightly weaker than top-performing LLMs
on the MuSiQue benchmark, its EM score of 48.0%
remains competitive for multi-hop reasoning tasks.
Additionally, our Llama3.1-OpAmp-8B model also
excels in multi-hop reasoning benchmarks, achiev-
ing top scores of 70.5% on MultiHopRAG, 61.0%
on HotpotQA, and 35.0% on MuSiQue, consis-
tently surpassing other models. These results high-
light the superior ability of our OpAmp models to

handle complex, multi-step reasoning tasks across
various benchmarks, underscoring its effectiveness
in enhancing reasoning capabilities.
Noisy-RAG Evaluation. For the currently most
widely adopted RAG technology, we conduct the
noisy-RAG evaluation to assess the ability of LLMs
to filter out irrelevant documents and accurately
identify the document containing the correct an-
swer in real-world RAG scenarios. Our Qwen2.5-
OpAmp-72B model achieves a top score of 92.4%
on the CoQA benchmark, surpassing the second-
closest LLM, DeepSeek-V3, by a significant mar-
gin of 4%. Our Llama3.1-OpAmp-8B model also
attains a leading score of 85.4% on the CoQA
benchmark, outperforming Qwen2.5-7B-inst by
1.2%. These experimental results highlight the
superior performance of our OpAmp models in
identifying correct answers within real-world RAG
scenarios, exhibiting robust resistance to interfer-
ence and noise.

3.4 Ablation Studies

To further investigate the contribution of K, we
perform a series of ablation studies. Addition-
ally, we compare our OpAmp approach with the
QLoRA (Dettmers et al., 2024) technique. In brief,
we denote the OpAmp adapter as the adapter imple-
mented for our OpAmp adaptation. The QLoRA
technique performs PEFT without modifying the
pre-trained model’s attention mechanism. To en-
sure fair comparisons in these ablation studies, both
OpAmp and QLoRA models are fine-tuned using
the same dataset, NCFT.
CMRR. Table 3 presents a comparative analysis
of QLoRA and the OpAmp adapter for enhancing
the Llama3.1-8B-base model across various noisy
context benchmarks. The OpAmp adapter demon-
strates consistent superiority over QLoRA across
all evaluated benchmarks. Specifically, QLoRA
achieves an average score of 52.4%, whereas
the OpAmp adapter significantly enhances perfor-
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CoQA (EM) QuAC (PM) QReCC (PM)

Noise Ratio 0.0 0.8 0.9 0.0 0.8 0.9 0.0 0.8 0.9

QLoRA 89.8 85.4 83.6 27.5 26.1 25.2 36.5 36.4 35.4

OpAmp
Adapter K =





1
5

10
20

90.4 85.6 85.8 28.5 26.2 26.1 39.4 39.1 38.3
90.0 85.6 84.6 27.5 26.7 25.5 38.2 37.3 37.1
91.2 88.0 85.4 28.5 26.5 26.5 40.8 39.8 39.8
91.8 86.6 84.0 28.6 28.0 26.2 38.5 38.1 37.0

Table 4: Ablation studies on various benchmarks with different noise ratios using Llama3.1-8B-base as the base
model. We bold the highest scores.

Method K
FaithEval

Inconsistent Unanswerable Counterfactual Avg.(EM) (EM) (EM)

QLoRA - 24.1 46.1 71.6 47.3

OpAmp
Adapter

1 45.5 53.1 76.3 58.3 (+11.0)
5 42.1 53.7 75.9 57.2 (+9.90)

10 45.3 53.0 75.1 57.8 (+10.5)
20 22.3 58.8 73.8 51.6 (+4.30)

Table 5: Ablation studies on FaithEval using Llama3.1-8B-base as the base model. We bold the highest scores.

mance, with the best results observed at K = 10,
yielding an average score of 55.4%. When exam-
ining the impact of different values of K, K = 10
emerges as the optimal configuration across multi-
ple benchmarks. Larger value (K = 20) exhibits di-
minishing returns, while smaller values (K = 1, 5)
perform adequately but are marginally less com-
petitive. This suggests our statement that attention
denoising requires only a modest K instead of the
K → ∞ used in the differential transformer archi-
tecture (Ye et al., 2025).

Noise Ratio. The ablation study detailed in Ta-
ble 4 assesses the performance of QLoRA and the
OpAmp adapter across varying noise ratios (0.0,
0.8, 0.9) on noisy-RAG benchmarks, including
CoQA, QuAC, and QReCC. The noise ratio is simu-
lated by introducing noise documents into the origi-
nal golden document, replicating increasingly chal-
lenging real-world RAG scenarios. As expected,
performance across all methods generally degrades
with increasing noise ratios, reflecting the growing
difficulty of extracting relevant information from
cluttered contexts. QLoRA exhibits a steady de-
cline in performance as noise levels increase. For
instance, its score on CoQA drops from 89.8% at a
noise ratio of 0.0 to 83.6% at 0.9. In contrast, the
OpAmp adapter demonstrates greater robustness,
particularly when configured with K = 10. More-
over, higher values of K occasionally underperform
compared to K = 10, indicating that excessive at-
tention denoise may compromise the capability.

Overall, the OpAmp adapter consistently outper-
forms QLoRA across all noise levels, with K = 10
emerging as the optimal configuration for balanc-
ing robustness and performance under noisy con-
ditions. This underscores the effectiveness of our
method in handling challenging RAG scenarios.
Hallucination. As shown in Table 5, the abla-
tion study on FaithEval (Ming et al., 2024) demon-
strates that OpAmp not only enhances robustness
to noisy contexts but also reduces hallucinations
as a valuable secondary benefit. While QLoRA
achieves an average score of 47.3%, OpAmp at-
tains much higher averages, with the best results
with K = 1 (58.3%), indicating consistent improve-
ments. Notably, K = 1, 5, 10 exhibit similar per-
formance levels, suggesting that moderate values
of K effectively balance denoising and model sta-
bility while mitigating hallucinations. However,
performance declines significantly (51.6%) when
K = 20. The degradation demonstrates an exces-
sive attention-denoising process caused by exces-
sive CMRR, which impairs the model’s ability to
avoid hallucination. This analysis underscores that
the optimal performance is achieved with moderate
K values, highlighting the importance of balancing
denoising intensity with model adaptability.

3.5 Visualization of Attention

To provide deeper insights into the OpAmp mecha-
nism, we perform some visualizations of M̄ . As
previously mentioned, transformer-based architec-
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Figure 5: Normalized attention score. Our OpAmp
model demonstrates significant attention denoise capa-
bility compared to the base model and QLoRA model.

tures tend to allocate disproportionate attention to
irrelevant or later-positioned documents. In con-
trast, OpAmp can enhance LLMs’ focus on the
most relevant documents. We employ normalized
attention scores based on Llama3.1-8B to trace
the OpAmp mechanism in a noisy context to in-
vestigate this behavior. As shown in Figure 5,
Llama3.1-8B-base becomes completely lost in the
noisy context, with its attention distribution across
documents generally increasing sequentially from
low to high. Llama3.1-QLoRA-8B model performs
relatively better, with a slight increase in attention
to the golden document. However, the limitation
of a forced backward shift in attention still exists.
In contrast, our Llama3.1-OpAmp-8B uniquely al-
locates the most attention to the golden document
among all documents. This mechanism is a key fac-
tor contributing to the strong performance of our
OpAmp model in noisy context scenarios. Mean-
while, we also investigate the mechanism across
different CMRR values. As illustrated in Figure 6,
only when K = 10 does the OpAmp model al-
locate the highest level of attention to the golden
document, surpassing the other CMRR values and
indirectly confirming that a moderate CMRR value
is crucial for maximizing the effectiveness of the
OpAmp mechanism instead of K → ∞ utilized in
differential transformer (Ye et al., 2025).

4 Discussion

In this paper, we primarily investigate how our
architectural adaptation influences attention distri-
butions and model performance.

We acknowledge the need for a practical solution
to mitigate overhead, and here are some theoreti-
cally viable approaches. Firstly, we can store the
post-adaptation K cache during decoding to avoid
recomputation. Secondly, we can halve the number
of groups in GQA (Ainslie et al., 2023), thereby
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Figure 6: Normalized attention score with different val-
ues of K utilizing for OpAmp adaptation.

preserving computational efficiency and ensuring
no additional memory overhead. This mirrors tech-
niques in the Differential Transformer (Ye et al.,
2025), where reducing the number of heads (while
maintaining or surpassing the performance of mod-
els with 2× heads) keeps memory costs stable.

Regarding the functional differences between
the two distinct attention score matrices, V +

in and
V −

in , we observe that their roles are highly context-
dependent, varying across different data and model
layers. Nevertheless, the coupled mechanism ef-
fectively enhances the model’s focus on the most
relevant (golden) document, as illustrated in Sec-
tion 3. We acknowledge the complexity of this
phenomenon and plan to investigate the precise
roles of V +

in and V −
in in future work.

5 Related Works

5.1 Question Answering with Noisy Contexts

The internal knowledge of LLMs often fails to
meet diverse application needs (He et al., 2022;
Ji et al., 2023), driving research into integrating
external knowledge. Among the proposed solu-
tions (Guu et al., 2020; Beltagy et al., 2020; Wang
et al., 2024), RAG (Borgeaud et al., 2022; Ren et al.,
2024) and long-context modeling techniques (Press
et al., 2022; Chen et al., 2023b) have emerged as
two prominent strategies for incorporating external
knowledge stored in long-text formats. However,
recent studies (Shi et al., 2023; Liu et al., 2024b;
Lv et al., 2024; Ye et al., 2025) have identified a
significant challenge. Specifically, as the number
of retrieved documents grows and the length of in-
put contexts expands, the model is increasingly ex-
posed to noise, which is often the non-critical infor-
mation unrelated to the query. This noisy-context
scenario significantly degrades the performance of
LLMs on QA tasks (Chen et al., 2023a). Conse-
quently, we propose the OpAmp adaptation with
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adapters, a plug-and-play solution that minimizes
noisy context impact with low computation costs,
enhancing the performance in such scenarios.

5.2 Parameter Efficient Fine-Tuning

Traditionally, full fine-tuning is the predominant
approach for fine-tuning pre-trained models, in-
cluding LLMs. However, this method entails sub-
stantial computational costs, particularly regarding
time consumption and GPU memory usage. To
address these challenges, a variety of PEFT meth-
ods have been developed (Houlsby et al., 2019;
Hu et al., 2021; Dettmers et al., 2024; Wu et al.,
2024b; Li and Liang, 2021; Lester et al., 2021; Wu
et al., 2024a), enabling efficient fine-tuning without
compromising performance compared to full fine-
tuning. PEFT focuses on training a limited subset
of parameters within the existing model or newly in-
serted modules. Adapter-based methods (Houlsby
et al., 2019; Hu et al., 2021; Dettmers et al., 2024;
Wu et al., 2024b) insert learnable modules into
Transformer blocks, which contain a small num-
ber of parameters. These adapters are fine-tuned
instead of the original model weights. Among
these methods, QLoRA (Dettmers et al., 2024)
has gained significant attention for its efficiency in
fine-tuning LLMs while maintaining performance
comparable to full fine-tuning. Another emerging
trend in PEFT is prefix-tuning (Lester et al., 2021;
Li and Liang, 2021), which involves adding learn-
able token vectors to the input sequence. In this
study, we introduce adapters to perform OpAmp
adaptation. Specifically, adapters reformulate the
computation of the original attention mechanism
into the OpAmp attention mechanism.

5.3 Adaptation of Pre-trained Models

Recent studies (Chen et al., 2015; Lin et al., 2021;
Komatsuzaki et al., 2023; Wu et al., 2024b) have fo-
cused on improving training efficiency by leverag-
ing pre-trained model weights for a warm start, thus
accelerating convergence and minimizing training
costs. Komatsuzaki et al. (2023) and Wu et al.
(2024b) introduce methods to initialize sparse MoE
models using weights from a pre-trained dense
model. These approaches significantly reduce the
required training resources. In this paper, we train
our OpAmp models with OpAmp attention blocks
using weights from pre-trained LLMs.

6 Conclusion

Inspired by the operational amplifiers, we introduce
the OpAmp adaptation implemented with adapters
in this study. By integrating this adapter into pre-
trained Transformer blocks, our approach enhances
the model’s ability to focus on the most relevant
context without expensive full-scale training from
scratch. We implement our OpAmp models and
other baselines with our noisy-context fine-tuning
dataset, NCFT, for fair comparisons. The OpAmp
adaptation demonstrates significant performance
gains across LLMs of varying model sizes. Exten-
sive empirical evaluations are conducted on exten-
sive noisy-context benchmarks. The results indi-
cate that our Qwen2.5-OpAmp-72B model, fine-
tuned with our OpAmp adaptation, outperforms
current SOTA LLMs, including DeepSeek-V3 (Liu
et al., 2024a) and GPT-4o (Hurst et al., 2024).

Limitation

The OpAmp adaptation with adapters introduces a
marginally higher number of parameters compared
to the standard PEFT training process with QLoRA.
Consequently, the supervised fine-tuning process
for our OpAmp models demands slightly greater
GPU memory allocation and computational time.
Additionally, our OpAmp models incur a minor
latency during inference when compared to the
original pre-trained LLMs.
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lr epoch LoRA r LoRA α Adapter Dim

2× 10−4 1 64 16 512

Table 6: Hyperparameters of supervised fine-tuning.

LongCite-45k Neural-Bridge-RAG Tulu3-SFT-Mix

NCFT 30k 20k 450k

Table 7: The proportion of LongCite-45k, Neural-
Bridge-RAG and Tulu3-SFT-Mix in the NCFT dataset.

A Implementation Details

The training process entailed using a constant learn-
ing rate schedule with a warm-up ratio of 0.03,
and the paged AdamW (Dettmers et al., 2024;
Loshchilov and Hutter, 2017) optimizer with a
learning rate of 2× 10−4, no weight decay, a batch
size of 128, and a sequence length of 8192 tokens.
The models underwent instruction tuning for one
epoch on 16 A100 GPUs, each with 80G memory.

Moreover, we employed the QLoRA (Dettmers
et al., 2024) technique for efficient fine-tuning. As
for the QLoRA configuration, we use a 4-bit quan-
tization scheme for our experiments, which signif-
icantly reduces memory usage while preserving
model performance. We show the hyperparameters
for supervised fine-tuning in Table 6.

B Training Datasets

As shown in Table 7, we shows the proportion of
LongCite-45k (Zhang et al., 2024), Neural-Bridge-
RAG (Neural Bridge AI, 2024) and Tulu3-SFT-
Mix (Lambert et al., 2024) in the NCFT dataset.

Considering the original format and quantity of
LongCite-45k and Neural-Bridge-RAG, we per-
form data processing to simulate the noisy context
scenarios. Firstly, we filter the Chinese corpus and
divide the context into several chunks. Then we
preserve the chunks with golden documents and
introduce relevant or irrelevant chunks as noise.
Finally, we filter low-quality corpora (too long or
too short). We obtained our supervised fine-tuning
dataset after data processing which encompasses
a wide range of topics, and the noise ratio in the
dataset ranges from 0 to 1, aiming to cover a variety
of real-world situations and use cases.

C Evaluation Benchmarks

We show the details of the noisy-context evalua-
tion benchmark in Table 8. Qasper, HotpotQA,

Benchmark Source Max Length Metric # Data

Long-Context QA

NarrativeQA Literature, Film 64K EM 1009
Qasper Science 8K PM 200
QuALITY Literature 8K Acc. 1065
LooGLE Science 32K EM 1427

Multi-Hop QA

HotpotQA Wikipedia 16K EM 200
MuSiQue Wikipedia 16K EM 200
MultiHopRAG News 8K EM 2255

Noisy-RAG QA

CoQA Multi-field 4K EM 500
QuAC Wikipedia 4K PM 996
QReCC Multi-field 4K PM 643

Table 8: An overview of the dataset statistics for the
noisy-context benchmark. The ‘Source’ column indi-
cates the origin of the context.

and MuSiQue are directly derived from the Long-
Bench (Yushi et al., 2024). In contrast, CoQA,
QuAC, and QReCC are QA datasets selected from
ChatQA (Liu et al., 2024c) and have been noise-
augmented in a manner consistent with Appendix B
to align with the noisy-RAG format. For the QuAL-
ITY dataset, we retain only the subset labeled as
“hard”. Similarly, for the NarrativeQA, Loogle,
and MultiHopRAG datasets, we apply filters based
on context length and response quality to further
enhance the benchmark’s ability to differentiate
between models.

The curation of datasets is primarily based on
two criteria to ensure benchmark quality and fair-
ness. Firstly, we removed samples with excessively
short contexts to mitigate noise and maintain high-
quality evaluation. Secondly, since Exact Match
(EM) is our primary metric, we exclude overly long
ground-truth answers to ensure EM’s evaluation sta-
bility. Shorter ground truths align better with EM’s
design, enabling reliable model performance com-
parisons. These filtering steps are model-agnostic
and do not favor any specific approach, thus pre-
serving the benchmark’s impartiality.
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