
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 12756–12790
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

SCAR: Data Selection via Style Consistency-Aware Response Ranking for
Efficient Instruction-Tuning of Large Language Models

Zhuang Li1, Yuncheng Hua2, Thuy-Trang Vu3,
Haolan Zhan3, Lizhen Qu3, Gholamreza Haffari3

1School of Computing Technologies, RMIT University, Australia
2School of Computer Science and Engineering, University of New South Wales

3Department of Data Science & AI, Monash University, Australia
1zhuang.li@rmit.edu.au, 2devin.hua@unsw.edu.au

3{trang.vu1, first.last}@monash.edu

Abstract

Recent studies emphasize that manually en-
suring a consistent response style and main-
taining high data quality in training sets can
significantly improve the performance of fine-
tuned Large Language Models (LLMs) while
reducing the number of training examples
needed. However, the precise definition of
style and the relationship between style, data
quality, and LLM performance remains unclear.
This research identifies two key stylistic el-
ements in responses: linguistic form and in-
structional surprisal. We find that, among train-
ing data of comparable quality, higher consis-
tency in these response elements leads to bet-
ter LLM performance. Inspired by this, we
introduce Style Consistency-Aware Response
Ranking (SCAR), which automatically priori-
tizes instruction-response pairs in the training
set based on their response stylistic consistency.
By selecting the most style-consistent exam-
ples, using only 0.7% of the full dataset in the
best case, the fine-tuned LLMs can match or
even surpass the performance of models trained
on the entire dataset in coding and open-ended
question-answering benchmarks. Code and
data are available at https://github.com/
zhuang-li/SCAR.

1 Introduction

Instruction-following Large Language Models
(LLMs), such as GPT-3.5 and GPT-4 (Achiam et al.,
2023), have demonstrated strong generalization
across diverse language tasks (Chung et al., 2022;
Ouyang et al., 2022). These models are trained
in stages: unsupervised pre-training on large text
corpora, followed by supervised fine-tuning (SFT)
on instruction-response pairs and additional opti-
mization stages (Bai et al., 2022).

Recent studies, such as ALPAGASUS (Chen
et al., 2024) and LIMA (Zhou et al., 2024), demon-
strate that carefully curated, smaller datasets can
outperform larger ones in improving LLM SFT

performance. ALPAGASUS finds that smaller
datasets with higher quality scores, rated by GPT-4
for helpfulness or correctness, outperform signif-
icantly larger ones when used to fine-tune high-
capacity LLMs. Superficial Alignment Hypoth-
esis, proposed in LIMA, suggests that pre-trained
language models already possess the necessary
knowledge, and fine-tuning is to guide the model
toward specific response styles. Consequently,
even a relatively small set of fine-tuning examples
might be sufficient to achieve effective alignment.
LIMA demonstrates strong performance by fine-
tuning LLMs on just 1,000 high-quality instruction-
response pairs, where human experts ensure stylis-
tic consistency across responses. However, this
hypothesis raises three open questions: (i) What
key elements constitute response styles that impact
LLM SFT? (ii) How does data quality (i.e., help-
fulness, correctness) relate to style consistency in
influencing efficient SFT? (iii) Can we develop an
automatic method that measures stylistic elements
to curate smaller, stylistically consistent datasets
for more efficient and effective SFT at a lower cost,
without relying on human experts?

Text style is shaped by consistent choices across
various linguistic elements (Kang and Hovy, 2021;
Karlgren, 2004), such as lexical, syntactic, and se-
mantic features (DiMarco and Hirst, 1993). Our
empirical studies have identified two key stylis-
tic factors within responses that significantly af-
fect LLM SFT performance: Linguistic Form and
Instructional Surprisal. Linguistic Form com-
prises the lexical and syntactic choices that define
how a response is presented, independent of its
meaning. Empirically, this includes transitional and
functional word usage, sentence structure, punctua-
tion patterns, layout features (e.g., headers, bullet
points), etc. Instructional Surprisal, extending
from text surprisal measurement (Oh and Schuler,
2023; Liu et al., 2024), in our definition, measures
how surprising a response is given an instruction.

12756

https://github.com/zhuang-li/SCAR
https://github.com/zhuang-li/SCAR

We demonstrate that among SFT datasets with re-
sponses at similar levels of helpfulness and correct-
ness, those whose responses exhibit greater consis-
tency in linguistic form and instructional surprisal
lead to superior LLM fine-tuning performance.

Achieving style consistency is challenging, even
for human experts. We found that datasets con-
taining LLM-generated responses with consis-
tent styles can significantly outperform human-
crowdsourced data in enhancing LLM performance.
Therefore, we introduce Style Consistency-Aware
Response Ranking (SCAR), a novel ranking-based
model that prioritizes instruction-response pairs
with high stylistic consistency and superior data
quality. SCAR is trained on LLM-synthesized
and human-crowdsourced datasets to reward re-
sponses with higher style consistency regarding
linguistic form and instructional surprisal. En-
hanced with representation learning, SCAR can
better distinguish between these two elements and
prioritize aspects that improve LLM performance.
Experiments show that by selecting the most style-
consistent examples, using just 0.7% of the orig-
inal dataset in some cases, fine-tuned LLMs can
match or surpass the performance of models trained
on full datasets like OCTOCODER-15.5B (Muen-
nighoff et al., 2023) and OLMO-7B-SFT (Groen-
eveld et al., 2024) on coding (HUMANEVAL; Chen
et al. 2021) and open-ended question answering
(ALPACAEVAL; Dubois et al. 2023) benchmarks.

In summary, our key contributions are:

I) We identify linguistic form and instructional
surprisal as critical response style elements,
and demonstrate that within training datasets
with comparable helpfulness and accuracy, re-
sponses exhibiting higher consistency in lin-
guistic form and instructional surprisal yield
better LLMs.

II) We develop SCAR, a ranking method that
selects high-quality, stylistically consistent
examples from style-inconsistent datasets.
When selecting training data for efficient SFT,
SCAR outperforms leading data selection
baselines, enabling LLMs trained on small
subsets (0.7–25% of original data) to match
or exceed full-dataset performance.

2 Impact of Styles on LLM Fine-tuning

In this section, we study two research questions: i)
What key elements in response style can influence

LLM SFT? and ii) How do style consistency and
data quality impact LLM performance?

RQ1: What Factors Constitute Response Style
Through empirical analysis of stylistic differ-
ences between synthetically generated and human-
written instruction-tuning data, we identified two
key sets of stylistic features in responses that sig-
nificantly influence LLM alignment performance.

• Linguistic Form refers to the structure of lan-
guage, including how words and sentences are
organized and interact (Fabb, 2001; Chomsky,
1957; Jurafsky, 2000). In our context, it de-
notes elements that shape the presentation of a
response, mostly independent of semantics, such
as transitional and functional word usage, tone,
sentence structure, punctuation patterns, layout
features (e.g., headers, bullet points), etc. For
example, we observe that GPT-3.5-TURBO re-
sponses often follow a consistent structure, us-
ing bullet points and similar transitional phrases,
whereas human responses, authored by diverse
individuals, show greater variation in linguistic
elements.

• Instructional Surprisal measures how surpris-
ing the content (solutions, ideas, and approaches)
of a response is in addressing a given instruc-
tion. For example, when asked about sorting algo-
rithms, GPT-3.5-TURBO consistently provides
predictable solutions like merge sort or quick
sort, while human responses show a range of
surprisal–from conventional approaches to unex-
pected choices like StoogeSort or novel answers.
Instructional surprisal can be estimated using per-
plexity scores, computed as the average negative
log-likelihood of the response given the instruc-
tion, or through semantic relatedness metrics
such as cosine similarity between instruction and
response embeddings. These approaches extend
word-level surprisal measures based on language
model predictions (Oh and Schuler, 2023; Liu
et al., 2024) or word-to-context embedding sim-
ilarity (Sayeed et al., 2015; Karampiperis et al.,
2014) to the sequence level. Further discussion
is provided in Appendix B.5.

RQ2: Influence of Style Consistency and Data
Quality on LLM Performance
We collect both human-written and synthetic data
in coding and general open-ended domains, and
conduct stylometric and quality analyses on this

12757

data. Following this, we fine-tune base LLMs using
this data to explore how style consistency and data
quality influence LLM SFT performance.

We control style variations to create three dataset
types–human-written, referenced, and direct–to ex-
plore how linguistic form and response surprisal im-
pact LLM performance. In the coding domain, we
collect 10,000 human-written instruction-response
pairs from STACKEXCHANGE1, an online platform
that includes 11 million pairs of coding questions
and answers. We use the LIMA dataset, including
1,000 human-generated examples, for the general
domain. Additionally, we generate two synthetic
response types with controlled styles: “referenced”
and “direct.” “Referenced” responses are crafted
by a chat-LLM that rewrites human responses to re-
tain their semantic meaning, similar to the method
in Yang et al. (2024). This process retains the sur-
prisal levels of human responses but alters their
linguistic form. We also filter out examples where
“referenced” responses deviate significantly from
human responses in surprisal metrics, reducing the
datasets to 944 STACKEXCHANGE and 407 LIMA
examples. In contrast, the chat-LLM generates “di-
rect” responses to the remaining instructions with-
out any references, potentially producing differ-
ent semantics, thereby significantly varying their
surprisal levels compared to human-referenced re-
sponses. Table 1 illustrates the similarities and
differences among these three style variants.

Instruction
Why is FIFA against adding instant replay to the game?
Human Response
There are a few fundamental considerations:
Uncertainty is a part of the game. ... Football is global. ... Football is a
fast-paced game with few opportunities for stoppage. ... In 2008, FiFA
President Sepp Blatter said: ...
Human Referenced Response from GPT-3.5-turbo
FIFA is against adding instant replay to the game for several reasons. One
of the main concerns is that uncertainty is seen as a natural part of the
game,... Additionally, football is a global sport;... Another factor is that
football is a fast-paced game with minimal stoppages;...
Direct Response from GPT-3.5-turbo
FIFA is against adding instant replay to the game because they believe it
would disrupt the flow of the game ... They also argue that human error is
a part of the game ... Additionally, implementing instant replay would
require significant changes to the rules and regulations ...

Table 1: Examples of different response types for a
given instruction. Some details are abbreviated as ‘...’.
Shared surprisal-related style elements between “Hu-
man” and “Referenced” responses are highlighted in
orange, and shared linguistic form elements between
“Referenced” and “Direct” responses are in green.

We also isolate the effects of data quality on
LLM performance by using three chat-LLMs
with different capabilities to generate synthetic

1https://stackexchange.com/

40 20 0 20 40

40

20

0

20

40

T-SNE Visualization of Linguistic Form Based on Function Words Features

Human
Referenced
Direct

0 2 4 6 8 10 12

Perplexity Score
0.0

0.1

0.2

0.3

0.4

0.5

0.6

De
ns

ity

Density Plot of Perplexities

Human
Referenced
Direct

Figure 1: (Left) T-SNE plot showing embeddings of
the linguistic forms of human and GPT-3.5-TURBO
responses to LIMA instructions. (Right) Density plot of
perplexity detailing the surprisal levels of the responses.

“referenced” and “direct” datasets. The mod-
els employed are GPT-3.5-TURBO, LLAMA2-
70B-CHAT, and LLAMA2-13B-CHAT (Touvron
et al., 2023), with GPT-3.5-TURBO being the
most advanced, followed by LLAMA2-70B-CHAT

and LLAMA2-13B-CHAT, according to the arena-
leaderboard (Zheng et al., 2024). We find that hallu-
cinations occurring in LLM-generated “referenced”
and “direct” responses can significantly affect the
quality of the resulting synthetic data.

Stylometric Analysis. To analyze the linguis-
tic form of human and synthetic responses, we
employ six authorship attribution metrics (Tripto
et al., 2023; Zheng and Jin, 2023) that capture non-
semantic features. These include the Type Token
Ratio (TTR) (Templin, 1957), Measure of Tex-
tual Lexical Diversity (MTLD) (McCarthy, 2005)
for functional words, Flesch score (Kincaid et al.,
1975), average sentence length, and the frequency
of punctuation and layout features (e.g., bullet
points and headers). Higher TTR and MTLD
values indicate greater lexical diversity, while a
higher Flesch score suggests improved readabil-
ity. We identify functional words in the response
using a lexicon based on heuristic POS-tagging
rules. To assess instructional surprisal, we com-
pute the perplexity of a response given its instruc-
tion, denoted as PPL(y | x), using META-LLAMA-
3-8B (AI@Meta, 2024).

T-SNE (Van der Maaten and Hinton, 2008) plots
(Figure 1, left) show that embeddings of GPT-
3.5-TURBO-generated “referenced” and “direct” re-
sponses cluster tightly in the center, indicating that
both synthetic response types share consistent and
similar linguistic forms. These embeddings are cre-
ated by vectorizing six authorship metrics and the
unigrams of functional words. Conversely, human
responses are more dispersed in the outer region,

12758

STACKEXCHANGE LIMA

Data Curation
Methods

Stylometric
Analysis

Data
Quality

CODELLAMA-7B
Performance

Stylometric
Analysis

Data
Quality

META-LLAMA-3-8B
Performance

Std. TTR ↓ /
Std. PPL(y|x)↓

Helpfulness /
Correctness

Avg. Pass@1 /
Avg. Pass@10

Std. TTR↓ /
Std. PPL(y|x)↓

Helpfulness /
Correctness L.C. WinRate

Human Response 24.23 / 0.33 3.29 / 3.70 26.56 / 41.63 20.49 / 1.53 3.86 / 4.14 1.93
GPT-3.5-TURBO

Referenced 8.16 / 0.33 3.44 / 3.70 29.82 / 46.89 18.43 / 1.52 3.79 / 4.00 3.64
Direct 8.14 / 0.30 3.32 / 3.45 31.00 / 47.12 16.06 / 0.64 3.91 / 4.16 5.67

LLAMA2-70B-CHAT

Referenced 11.90 / 0.36 3.14 / 3.54 29.82 / 44.03 16.51 / 1.45 3.89 / 4.11 3.96
Direct 13.52 / 0.28 3.18 / 2.71 30.89 / 45.31 15.63 / 0.42 3.85 / 4.22 6.25

LLAMA2-13B-CHAT

Referenced 7.46 / 0.27 2.65 / 2.68 26.61 / 41.91 13.64 / 1.19 3.75 / 3.89 3.77
Direct 8.86 / 0.28 1.85 / 1.70 26.42 / 40.00 14.22 / 0.38 3.29 / 3.48 6.22

Table 2: Performance comparison of CODELLAMA-7B and META-LLAMA-3-8B fine-tuned on STACKEXCHANGE
and LIMA instructions paired with human responses and two variants (‘Referenced’/‘Direct’) generated by
three chat-LLMs, analyzing response quality (helpfulness/correctness) and style consistency (TTR/PPL standard
deviations).

showing lower consistency. Figure 1 (right) shows
“direct” responses have a more skewed perplexity
distribution towards lower values, indicating higher
consistency in instructional surprisal compared to
both “referenced” and human ones.

Standard deviations (Std.) of TTR and perplex-
ity for different response types are listed in Table 2,
with additional linguistic form and text surprisal
metrics detailed in Table 6 (Appendix B.2). We
observe human responses have higher Std. values
regarding TTR, perplexity and other metrics com-
pared to synthetic responses, and “referenced” re-
sponses show a higher perplexity Std. than “direct”
responses. The Std. values of these metrics across
“referenced” and “direct” responses from LLAMA2-
70B-CHAT, LLAMA2-13B-CHAT, and GPT-3.5-
TURBO indicate synthetic responses from all these
LLMs have higher consistency in both stylistic ele-
ments than human ones.

Data Quality Analysis. We evaluate a sample
of 100 examples from each dataset using GPT-4-
1106-PREVIEW. We rate the scores for two data
quality metrics, helpfulness and correctness, us-
ing the adjusted prompt from the automatic data
evaluator ICE-Score (Zhuo, 2024) for the coding
domain and AlpaGasus (Chen et al., 2024) for the
open-ended domain, and then calculate the aver-
age scores across the samples. Higher scores indi-
cate better quality. Table 2 reveals that in the cod-
ing domain, GPT-3.5-TURBO-generated responses
match the quality of human-written ones, while
other LLMs produce lower-quality data. In the
open domain, LLAMA2-70B-CHAT and GPT-3.5-
TURBO responses are comparable in quality to
human-written responses, whereas LLAMA2-13B-

CHAT responses are of slightly lower quality.

Impact on LLM Performance. We evaluate
the CODELLAMA-7B model fine-tuned with
LoRA (Hu et al., 2021) on various datasets us-
ing HUMANEVAL (Python) (Chen et al., 2021)
and MULTIPL-E (Java, JavaScript, C++) (Cassano
et al., 2023) benchmarks. For the coding domain,
we report average Pass@1 and average Pass@10
execution accuracies across all coding questions
spanning four programming languages. We mea-
sure the length control win rate (L.C. WinRate)
(Dubois et al., 2024) by comparing responses from
the LoRA fine-tuned META-LLAMA-3-8B with
those from GPT-4-PREVIEW-1106 on 2500 open-
domain instructions from AlpacaEval2. We use
LLAMA-3-70B-CHAT (AI@Meta, 2024) as our au-
tomatic evaluator for its cost-effectiveness ($0.9
per evaluation). This evaluator correlates with hu-
man judgment as well as GPT-4 evaluators and
even surpasses human-to-human agreement, with
an agreement rate of 67.5% compared to 65.7% in
tests conducted on ALPACAEVAL.

When comparing synthetic responses of similar
or slightly different quality generated from capa-
ble chat-LLMs, “direct” responses outperform their
“referenced” counterparts in downstream LLM SFT
tasks through higher instructional surprisal consis-
tency. Both synthetic types exhibit greater con-
sistency in both stylistic elements, thereby out-
performing human-authored data. However, style
consistency alone cannot compensate for substan-
tial quality deficits. This is evidenced by a no-
table exception in coding tasks, where LLAMA2-
13B-CHAT’s “direct” responses, despite having

2https://github.com/tatsu-lab/alpaca_eval/

12759

higher style consistency, achieve poorer fine-tuning
outcomes due to their significantly lower quality
scores (1.8) compared to both “referenced” re-
sponses (2.6) and human data (3.5).

Takeaway. The analysis reveals several insights:

I) Linguistic form and instructional surprisal
inherent in the response styles of the train-
ing data significantly influence the LLM SFT
performance.

II) LLM-generated responses show higher style
consistency than human ones, with “direct”
responses showing the greatest consistency in
linguistic form and instructional surprisal.

III) Enhancing data quality and ensuring response
style consistency both contribute to improved
LLM SFT performance. Among datasets with
shared instructions and similar quality, those
with more consistent response styles yield bet-
ter LLM performance.

3 Style Consistency-Aware Ranking

Inspired by these findings, we develop a Style
Consistency-Aware Ranker to select training ex-
amples with consistent response styles, improving
LLM SFT performance.

Ranking Objective. Given a dataset D =
{(xi, ydi , yri , yhi)}Ni=1, where xi represents the in-
struction, ydi and yri are the “direct” and human
“referenced” responses from chat-LLMs, respec-
tively, and yhi represents the human response. We
aim to learn a ranking function R(x, y) that as-
signs higher scores to high-quality responses ad-
hering to the consistent style of a specific LLM’s
outputs. The objective for each instance is to learn
the ranking function:

Lr(x, y
d, yr, yh) =

∑

(ya,yb)∈P
max(0, α−Rθ(x, y

a) +Rθ(x, y
b)) (1)

s.t. min(f(x, ya), f(x, yb)) > σ (2)

where P = {(yd, yr), (yr, yh), (yd, yh)} repre-
sents the set of desired pairwise orderings, based
on the findings from Section 2, that “direct” re-
sponses are more consistent in surprisal levels than
“referenced” ones, “referenced” responses are more
consistent in linguistic form than human data, and
“direct” responses are more consistent than human

data in both stylistic feature types. The margin
α ensures the difference in the ranking scores as-
signed by Rθ(x, y), while the quality measure func-
tion f(x, y) evaluates the quality (e.g., helpfulness,
correctness) of the response y given the instruction
x. The quality measure function f can be imple-
mented using strong LLMs such as GPT-3.5 or
GPT-4 with a prompt, as in Chen et al. (2024),
to evaluate the helpfulness and correctness of the
answers and average these scores to obtain the fi-
nal quality score. The quality threshold σ ensures
the ranker only rewards responses that are both
style-consistent and high-quality.

Reward Function. The reward function
Rθ(x, y) is modelled as a neural network that
takes representations of instructional surprisal
vc ∈ R1×M and linguistic form vp ∈ R1×M , and
computes a scalar reward score using a multi-layer
perceptron (MLP):

Rθ(x, y) = MLPr([vp;vc])

vp = Max-Pool(Vy)

vc = MLPc([V
0
x;V

0
y]) (3)

Our experiments demonstrate that linguistic form,
when compared to semantic content, shows both
minimal influence on the variance of instructional
surprisal and significantly lower instruction de-
pendence. These findings motivate us to adopt
disentangled modeling strategies. For linguistic
form, we capture surface-level features through
max pooling over the response sequence Vy, in-
dependent of the instruction. For instructional sur-
prisal, we approximate related features using se-
mantic relatedness, motivated by prior work that
models surprisal through embedding similarities be-
tween words and their contextual text (Sayeed et al.,
2015). Specifically, we compute multi-dimensional
semantic alignment by concatenating the [CLS]
embeddings of the instruction V0

x and response V0
y,

and processing them through MLPc. To generate
sequence representations V, we use a pre-trained
encoder, such as ROBERTA-BASE (Liu et al.,
2019) and CODET5P-110M-EMBEDDING (Wang
et al., 2023c). Further details are provided in Ap-
pendix B.4 and B.5.

Style Representation Learning. Accurately cap-
turing distinct representations for linguistic form
(vp) and instructional surprisal (vc) is challeng-
ing, as these features can still become entangled

12760

during the learning process, even with our special-
ized separation design. To address this, we lever-
age observed similarities: the linguistic form of
“referenced” responses is more similar to “direct”
responses than to human responses, and the instruc-
tional surprisal of “referenced” responses is closer
to that of human responses than to “direct” ones, as
shown in Figure 1. We introduce a regularization
term using triplet margin losses to enforce these
similarity patterns:

Lrl(x, y
d, yr, yh) =

λpmax{0, d(vd
p,v

r
p)− d(vr

p,v
h
p) + βp}

+λcmax{0, d(vh
c ,v

r
c)− d(vd

c ,v
h
c) + βc} (4)

where d(vi,vj) = ∥vi − vj∥2 is the distance func-
tion and β values are the margins.

Final Loss Function. The final loss function
combines the ranking loss and the representation
learning losses: Lscar = Lr + Lrl

Ranking and Filtering. After training reward
function Rθ(x, y), it ranks instruction-response
pairs (x, y) in a held-out dataset. The top k% of
examples with the highest scores are selected to cre-
ate a high-quality style-consistent subset for fine-
tuning LLMs. This filtered dataset is expected to
improve fine-tuned LLM performance on target
tasks to levels comparable to or exceeding those
achieved using the entire original dataset.

4 Experiments

We train SCAR using data from the coding and
open-ended question-answering domains to select
examples for LLM SFT from the full dataset in
these same domains.

Ranker Data. We collect instructions for SCAR
training and evaluation, which include 10,000 ran-
domly selected examples from STACKEXCHANGE

for the code domain, and 6,000 instructions from
a combination of 5,000 random DOLLY (Conover
et al., 2023) data samples and the full LIMA dataset.
DOLLY is a human-curated dataset with 15,000
high-quality instruction-response pairs. We cre-
ate the data by pairing instructions with human
responses and the “referenced” and “direct” re-
sponses generated by GPT-3.5-TURBO, as de-
scribed in Section 2. Due to budget limitations,
we use GPT-3.5-TURBO to rate the helpfulness
and correctness of responses according to the con-
straint in Eq. (2).

LLM SFT Data. SCAR and other baselines
select data from two sources, held out from
the ranking training data. These sources pro-
vide diverse but style-inconsistent examples: i)
Human-Crowdsourced Data, curated by many au-
thors, making it diversified and naturally style-
inconsistent. ii) Mixed Synthetic Data, generated
by GPT-3.5-TURBO using various system prompts,
reflecting the practical use of multiple open-source
synthetic datasets to enhance diversity.

For the code domain, human-written data comes
from a sample of 20,000 crowdsourced STACKEX-
CHANGE examples. To ensure quality, we select
examples with instructions that include code blocks
and answers with a rating above 2.

The mixed synthetic data comprises 20,000 ex-
amples, sourced evenly from: i) 5,000 STACKEX-
CHANGE instructions with “direct” responses, ii)
5,000 STACKEXCHANGE instructions with “refer-
enced” responses, iii) 5,000 coding examples cu-
rated using EVOL-INSTRUCT (Luo et al., 2023)
by Zan et al. (2023), iv) 5,000 coding examples gen-
erated using SELF-INSTRUCT (Wang et al., 2023b).

The instructions cover Python, Java, JavaScript,
and C++. For SELF-INSTRUCT, we use GPT-3.5-
TURBO to generate responses in the target program-
ming languages identified using guesslang3.

For the open-ended domain, human-written
data comes from 10,000 DOLLY examples, held out
from the DOLLY examples used for ranker training.

Mixed synthetic data includes 10,000 examples,
evenly sourced from: i) 2,500 held-out DOLLY

instructions with “direct” answers, ii) 2,500 DOLLY

instructions with “referenced” answers, iii) 2500
open-domain examples using SELF-INSTRUCT by
LaMini (Wu et al., 2023b), iv) examples curated
using EVOL-INSTRUCT from Xu et al. (2023).

Data Selection and LLM SFT. The data selec-
tion methods sample 50%, 25%, and 12.5% of
coding-domain data to fine-tune CODELLAMA-7B,
and 50%, 25%, and 10% of open-domain data to
fine-tune META-LLAMA-3-8B. Both LLM train-
ings use LoRA due to computational constraints.

LLM Evaluation. We evaluate code generation
performance using HUMANEVAL and MULTIPL-
E, and report the metric:

Avg. Pass@(1+10) =
Pass@1 + Pass@10

2

3https://github.com/yoeo/guesslang

12761

https://github.com/yoeo/guesslang

averaged over four languages for the fine-tuned
CODELLAMA-7B. For general tasks, we use AL-
PACAEVAL and report the L.C. WinRate of outputs
from fine-tuned META-LLAMA-3-8B compared to
GPT-4-PREVIEW-1106, as in Section 2.

Data Selection Baselines. We compare SCAR
in two settings with 7 baselines:

1. RANDOM: Randomly select examples.

2. PERPLEXITY (Albalak et al., 2024): Select en-
tries with lowest response perplexity (PPL(y|x))
computed using META-LLAMA-3-8B.

3. SUPERFILTERING (Li et al., 2024): Select the
most challenging examples for LLMs with the
highest Instruction-Following Difficulty (IFD)
score. Here, we compute IFD as PPL(y|x)

PPL(y) using
META-LLAMA-3-8B.

4. HUMAN FEEDBACK RANKING (HFR): Uses
the same ranker architecture as SCAR, trained
on 10,000 Stack Exchange pairs (Lambert et al.,
2023) annotated with human preferences (each
instruction paired with positive and negative
responses) for the coding domain, and 6,000
human preference examples from HH-RLHF
data (Bai et al., 2022) for the general domain.

5. ALPAGASUS (Chen et al., 2024): Select data
based on response quality scores rated by GPT-
3.5-TURBO, consistent with the rating method
used in our ranker.

6. DIVERSITY: Apply k-means clustering to di-
versify examples by selecting randomly from
each cluster, a method commonly used in active
learning (Li and Haffari, 2023; Li et al., 2023b;
Zhdanov, 2019).

7. LONGEST: Select examples with longest re-
sponse token lengths (Zhao et al.).

8. SCAR(ID): SCAR trained on in-domain (ID)
data (e.g., code) and selects examples within the
same domain.

9. SCAR(OOD): SCAR trained on in-domain
data and select examples from an out-of-domain
(OOD) dataset. For instance, SCAR(OOD)
is trained on the code domain and selects data
from the open domain or vice versa.

4.1 Main Results and Discussion

Effectiveness of SCAR-Selected Data. As in
Figure 2, SCAR(ID) can enhance SFT perfor-
mance while lowering computational costs. LLMs
fine-tuned on only 25% and 10% of SCAR(ID)-
selected data achieve comparable or superior per-
formance to models trained on full datasets in cod-
ing and general domains, respectively.

SCAR(ID) and SCAR(OOD) generally outper-
form other data selection methods for fine-tuning
LLMs, with SCAR(OOD) slightly lagging be-
hind SCAR(ID) due to challenges in cross-domain
generalization. Some baselines show unstable per-
formance. SUPERFILTERING performs poorly in
the coding domain. We observe it may assign
high IFD scores to erroneous examples in crowd-
sourced coding data of varying quality. PERPLEX-
ITY and ALPAGASUS-selected data result in simi-
lar LLM performance trends. However, their per-
formance is inferior to SCAR(ID), which we at-
tribute to their lack of style consistency. Tradi-
tional active learning methods like RANDOM and
DIVERSITY sampling prove less effective, as our
style-inconsistent target scenario inherently incor-
porates diversity, limiting their additional benefits.
HFR’s underperformance across most scenarios
suggests that training the ranker on inconsistent hu-
man preferences from diverse authors may impair
its ability to select optimal training data. Notably,
LONGEST performs comparably to our method in
open-domain synthetic data selection, though in-
ferior elsewhere. This aligns with our style con-
sistency framework, as length serves as a strong
style indicator, with EVOL-INSTRUCT responses
consistently being longer.

Impact of Data Sizes. Figure 2 shows that in
the coding domain, using fewer data selected by
various methods usually lowers LLM performance.
However, in the open-ended domain, most methods
can select fewer synthetic data to fine-tune LLMs
that outperform those trained on the full dataset.
With SCAR(ID), reducing data consistently im-
proves LLM performance in the open domain. This
suggests that while dataset size, diversity, and style
consistency can all benefit LLM SFT, their optimal
balance varies across different scenarios.

Stylometric and Data Quality Analysis of SCAR-
Selected Data. Table 3 shows that SCAR(ID)
improves style consistency in the selected DOLLY

data, reflected by consistently lower TTR and per-

12762

50% 25% 12.5%

30

32

34

36

38

40
Human

50% 25% 12.5%

38

39

40

41

42

43

Mixed Synthetic

50% 25% 10%
1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

Human

50% 25% 10%

3

4

5

6

Mixed Synthetic

Code Domain Open-ended Domain
Random Perplexity Superfiltering HFR ALPAGASUS Diversity Longest SCAR(OOD) SCAR(ID) Full Data

Figure 2: The performance of LLMs fine-tuned on human and synthetic data subsets of various sizes in code and
open domains, sampled with different data selection approaches.

Std. TTR Std. PPL Helpful Correct
STACKEXCHANGE

100% 21.48 1.80 2.84 2.68
50% 16.78 1.61 3.02 3.01
25% 14.85 1.61 2.78 2.72

12.5% 14.29 1.94 2.67 2.77
DOLLY

100% 30.96 65.70 3.95 3.91
50% 28.43 54.32 3.98 3.99
25% 24.74 49.51 3.96 3.93
10% 23.73 39.58 3.98 3.99

Table 3: Stylometric and quality analysis of data sub-
sets selected by SCAR(ID) from the full human-
crowdsourced STACKEXCHANGE and DOLLY datasets.

OLMO-7B
Data Sizes 320k 10k 5k 2.5k

L.C. WinRate 3.86 5.37 5.64 4.08

STARCODER-15.5B
Data Sizes 13k 10k 5k 2.5k

Avg. Pass@(1+10) 37.85 39.69 40.09 40.14

Table 4: L.C. WinRate for OLMO-7B and Avg.
Pass@(1+10) for STARCODER-15.5B fine-tuned on
original (320k, 13k) and subset sizes (10k, 5k, 2.5k).

plexity standard deviation compared to the full
dataset. However, for code data, while the TTR
standard deviation decreases, the perplexity stan-
dard deviation increases when selecting smaller
subsets (25%, 12.5%), suggesting that differen-
tiating instructional surprisal features in code is
challenging. This may explain the sudden perfor-
mance drop in LLMs fine-tuned on these smaller
code subsets. Moreover, our method preserves aver-
age data quality (helpfulness, correctness), as rated
using GPT-4-1106-PREVIEW, comparable to the
full dataset, likely due to the use of the data quality
constraint in Eq. (2) during ranker training.

Effectiveness of SCAR on Open-Source LLMs.
Specifically, we apply the SCAR(ID) method
to select 2.5k, 5k, and 10k instruction–response
pairs from the allenai/tulu-v2-sft-mixture
(320k examples) and bigcode/guanaco-commits
(13k examples), after removing non-English en-
tries and exact duplicates. Both datasets con-
tain a high degree of stylistic inconsistency in the

responses, due to either merging multiple exist-
ing datasets (Tulu) or scraping content authored
by many individuals (Guanaco-commits). We
then compare their performance to the official
checkpoints, OLMO-7B-SFT and OCTOCODER-
15.5B (Muennighoff et al., 2023), which were
instruction-tuned on the full datasets. Table 4
shows that SCAR-selected subsets significantly
boost performance, achieving these results with
only 0.7% to 20% of the original data, as measured
by L.C. WinRate on ALPACAEVAL and average
Pass@(1+10) on HUMANEVAL and MULTIPL-E.
Further evaluation of OLMO-7B variants on diverse
benchmarks (Table 15, Appendix C.7)–including
ARC-CHALLENGE (Clark et al., 2018), TRUTH-
FULQA (Lin et al., 2022), HELLASWAG (Zellers
et al., 2019) and MMLU (Hendrycks et al.)–
demonstrates that all our subset-fine-tuned OLMO-
7B outperform the full 320k-trained model in aver-
age performance across various LLM capabilities.

4.2 Ablation Study
To evaluate the effectiveness of SCAR(ID) compo-
nents, we compare the full ranker training setting
(Full, GPT-3.5) against variations without the qual-
ity constraint in Eq. (2) (w/o con, GPT-3.5), with-
out representation learning in Eq. (4) (w/o rl, GPT-
3.5), and without “referenced” responses during
training (w/o ref, GPT-3.5). We also generate syn-
thetic data to train the ranker using LLAMA2-13B-
CHAT (Full, Llama2-13b), LLAMA2-70B-CHAT

(Full, Llama2-70b), LLAMA-3-70B-CHAT (Full,
Llama3-70b), and LLAMA2-13B-CHAT without
using quality constraint (w/o con, Llama2-13b).

Style Representation Learning. Figure 3 shows
that removing the representation learning loss (w/o
rl, GPT-3.5) or excluding “referenced” responses
(w/o ref, GPT-3.5) only slightly reduces LLM per-
formance in the code domain. The objective in

12763

50% 25% 12.5%
Percentage

35

36

37

38

39

40

41

42
Sc

or
e

Human, GPT-3.5
Full, GPT-3.5
w/o con, GPT-3.5
w/o rl, GPT-3.5
w/o ref, GPT-3.5

50% 25% 12.5%
Percentage

35

36

37

38

39

40

41

42

Sc
or

e

Human, Llama
Full, Llama2-70b
Full, Llama3-70b
Full, Llama2-13b
w/o con, Llama2-13b

Full, GPT-3.5
w/o con, GPT-3.5

w/o rl, GPT-3.5
w/o ref, GPT-3.5

Full, Llama2-70b
Full, Llama3-70b

Full, Llama2-13b
w/o con, Llama2-13b

Figure 3: Performance of LLMs fine-tuned on subsets
of human-written data selected by SCAR(ID), trained
with different configurations and synthetic data sources
(e.g., GPT-3.5, Llama).

Eq. (4) is likely satisfied even without the loss
because “referenced” responses provide an inter-
mediate style during training, which is why we
set a low coefficient (0.1) for this loss. However,
excluding “referenced” responses significantly de-
grades performance in the open domain (Table 19,
Appendix D.1) and disrupts the optimization of
Eq. (4). Table 20, Appendix D.2 further analyses
the representation learning results.

Data Quality Constraint. Figure 3 (2nd) shows
that removing the data quality constraint in Eq. (2)
significantly worsens the performance of LLMs
fine-tuned on human-crowdsourced data when
SCAR is trained on lower-quality datasets, such
as LLAMA2-13B-CHAT-generated responses (w/o
con, Llama2-13b), compared to using the constraint
(Full, Llama2-13b). In this case, SCAR tends to
select style-consistent but erroneous or unhelpful
examples from LLM SFT data with varying quality
(e.g. crowdsourced data). However, in other cases,
removing the quality constraint has minimal impact
on data selection performance.

LLMs for Generating SCAR Training Data.
Figure 3 shows that the choice between LLAMA

and GPT-3.5-TURBO for generating synthetic
training data for SCAR has minimal impact when
the trained ranker selects from human-written
data. However, when selecting from mixed syn-
thetic GPT-3.5-TURBO data for LLM SFT, using
LLAMA-generated data to train the ranker leads
to slightly lower LLM performance (Table 18 in
Appendix D). This disparity likely results from
stylistic differences between LLAMA and GPT-
3.5-TURBO-generated responses.

5 Related Work

Instruction-Tuning Data Selection. Instruction-
tuning trains LLMs to follow complex instructions

in various contexts (Wei et al., 2021; Sanh et al.,
2021). Data are sourced from human-curated ex-
amples (Wang et al., 2022b; Zhou et al., 2024)
and LLM outputs (Xu et al., 2023; Wang et al.,
2022a). Studies (Zhou et al., 2024; Chen et al.,
2024; Li et al., 2024, 2023a; Lu et al., 2023; Liu
et al.) show that smaller, high-quality datasets can
outperform significantly larger ones in boosting
LLM performance. LIMA uses expert human cu-
ration for stylistic consistency (Zhou et al., 2024),
while AlpaGasus (Chen et al., 2024) utilizes LLMs
to assess data quality. Other methods select ef-
fective examples based on Instruction Following
Difficulty scores (Li et al., 2024, 2023a), diversity
metrics (Lu et al., 2023; Bukharin and Zhao, 2023),
or response length (Zhao et al.).

Automatic Authorship Detection. Our method
relates to authorship detection studies. Traditional
authorship detection used lexical features like
TTR, MTLD, and Flesch readability scores (Tripto
et al., 2023; Zheng and Jin, 2023). Recent focus
has shifted to distinguishing human and machine-
generated texts using advanced neural networks
to analyze styles at the corpus (Mitchell et al.,
2023; Su et al., 2023) or the sentence levels (Zeng
et al., 2024b, 2023; Wang et al., 2023a; Zeng et al.,
2024a). The studies (Xu and Sheng, 2024; Su et al.,
2023; Wang et al., 2023a; Mitchell et al., 2023; Wu
et al., 2023a), like ours, show perplexity effectively
differentiates between human and machine styles.

6 Conclusion

Our empirical study demonstrates that among train-
ing datasets with responses of comparable helpful-
ness and correctness, those exhibiting higher con-
sistency in two key response style elements, linguis-
tic form and instructional surprisal, significantly en-
hance the performance of fine-tuned LLMs. Build-
ing on this insight, we propose SCAR, a ranking
method designed to identify and select stylistically
consistent training data for LLM fine-tuning. Our
experiments reveal that LLMs fine-tuned on care-
fully selected small subsets can outperform models
trained on complete datasets, with SCAR achiev-
ing superior performance using only 0.7% of the
original data in the best case. Furthermore, SCAR
consistently outperforms other data selection base-
lines across various LLM fine-tuning scenarios.

12764

Limitations

Discussion of Bias
Reducing the training dataset size can potentially
introduce biases. To address this concern, we dis-
cuss two types of bias: fairness bias and lexical
diversity bias.

Fairness Bias. Our experiments (Tables 21
and 22 at Appendix E.1) show that LLMs fine-
tuned with SCAR-selected subsets produce re-
sponses with minimal levels of toxicity and sen-
timent polarity toward certain demographic and
occupational groups. Overall, the fairness perfor-
mance of models trained on SCAR-selected data
is comparable to, or even better than, models
trained on full datasets or data selected using other
methods. While fairness biases may persist, we
argue that this issue is not unique to SCAR but
remains a broader challenge for all LLMs. Re-
fining selection criteria to further mitigate these
biases is a promising direction for future work. See
Appendix E.1 for a detailed analysis.

Lexical Diversity Bias. Table 23 in the Appendix
evaluates lexical diversity in instructions and re-
sponses separately using TTR and MTLD. Results
show that SCAR-selected instructions exhibit a
slightly lower TTR compared to the full dataset
and other subsets, with a more noticeable TTR re-
duction observed in responses. However, MTLD
scores, which measure length-independent lexi-
cal richness, remain comparable across SCAR-
selected data, the full dataset, and subsets chosen
by other baselines. This suggests that while SCAR
reduces surface-level lexical variation (reflected
by TTR), it does not significantly affect the over-
all depth and richness of vocabulary (captured by
MTLD) in instructions or responses.

Importantly, instruction-level diversity is more
critical for LLM fine-tuning performance (Lu et al.,
2023; Bukharin and Zhao, 2023), and SCAR-
selected subsets retain this essential instruction di-
versity. The slight reduction in TTR does not pose
a significant concern, as evidenced by SCAR’s
strong performance across our experiments. See
Appendix E.2 for a detailed analysis.

Additionally, we note that SCAR does not per-
form instruction deduplication. When datasets
contain duplicate instructions with high-scoring
responses, SCAR may select multiple instances of
these duplicates, resulting in the same high-quality
instruction-response pairs appearing repeatedly in

the selected subset. This repetition reduces the di-
versity of selected subsets. Therefore, we highly
recommend preprocessing datasets to remove
duplicates before applying our method for opti-
mal results.

Discussion of Initial Data Pool

Another potential limitation is the initial data
pool to be selected. SCAR is specifically de-
signed to improve LLM SFT performance by select-
ing subsets from datasets with style-inconsistent
responses. When responses are already style-
consistent, such as all responses generated by a
single LLM, SCAR’s advantages become limited
due to reduced stylistic variation for the ranker to
distinguish between responses. Our experiments on
coding tasks with all GPT-3.5-TURBO-generated
responses (Table 24 in Appendix F) demonstrate
that SCAR achieves only marginal improvements
over baseline methods in such scenarios, with per-
formance differences typically within 1-3 percent-
age points.

We argue that style-inconsistent data are preva-
lent in real-world scenarios, including crowd-
sourced human data and synthetic data collected
from different sources, highlighting the practical
benefits of SCAR. Moreover, the insight that style
elements of linguistic form and instructional sur-
prisal within responses significantly impact LLM
SFT performance may be even more important than
the data selection method itself, as this understand-
ing can inform future dataset curation practices.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

AI@Meta. 2024. Llama 3 model card.

Alon Albalak, Yanai Elazar, Sang Michael Xie, Shayne
Longpre, Nathan Lambert, Xinyi Wang, Niklas
Muennighoff, Bairu Hou, Liangming Pan, Haewon
Jeong, et al. 2024. A survey on data selection for
language models. arXiv preprint arXiv:2402.16827.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al.
2022. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv
preprint arXiv:2204.05862.

12765

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md

Alexander Bukharin and Tuo Zhao. 2023. Data diversity
matters for robust instruction tuning. arXiv preprint
arXiv:2311.14736.

Federico Cassano, John Gouwar, Daniel Nguyen, Syd-
ney Nguyen, Luna Phipps-Costin, Donald Pinckney,
Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson,
Molly Q Feldman, et al. 2023. Multipl-e: a scal-
able and polyglot approach to benchmarking neu-
ral code generation. IEEE Transactions on Software
Engineering.

Lichang Chen, Shiyang Li, Jun Yan, Hai Wang,
Kalpa Gunaratna, Vikas Yadav, Zheng Tang, Vi-
jay Srinivasan, Tianyi Zhou, Heng Huang, et al.
2024. Alpagasus: Training a better alpaca with
fewer data. International Conference on Learning
Representations.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Noam Chomsky. 1957. Syntactic Structures. De
Gruyter Mouton, Berlin, Boston.

Hyung Won Chung, Le Hou, Shayne Longpre, Bar-
ret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie,
Jun Wan, Sam Shah, Ali Ghodsi, Patrick Wendell,
Matei Zaharia, and Reynold Xin. 2023. Free dolly:
Introducing the world’s first truly open instruction-
tuned llm.

Jwala Dhamala, Tony Sun, Varun Kumar, Satyapriya
Krishna, Yada Pruksachatkun, Kai-Wei Chang, and
Rahul Gupta. 2021. Bold: Dataset and metrics for
measuring biases in open-ended language genera-
tion. In Proceedings of the 2021 ACM conference
on fairness, accountability, and transparency, pages
862–872.

Chrysanne DiMarco and Graeme Hirst. 1993. A com-
putational theory of goal-directed style in syntax.
Computational Linguistics, 19(3):451–500.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tat-
sunori B Hashimoto. 2024. Length-controlled al-
pacaeval: A simple way to debias automatic evalua-
tors. arXiv preprint arXiv:2404.04475.

Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang,
Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. 2023. Alpaca-
farm: A simulation framework for methods that learn
from human feedback. Preprint, arXiv:2305.14387.

N. Fabb. 2001. Language and literature. In Neil J.
Smelser and Paul B. Baltes, editors, International
Encyclopedia of the Social & Behavioral Sciences,
pages 8292–8297. Pergamon, Oxford.

Adam Goodkind and Klinton Bicknell. 2018. Predictive
power of word surprisal for reading times is a linear
function of language model quality. In Proceedings
of the 8th workshop on cognitive modeling and
computational linguistics (CMCL 2018), pages 10–
18.

Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bha-
gia, Rodney Kinney, Oyvind Tafjord, Ananya Harsh
Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang,
et al. 2024. Olmo: Accelerating the science of lan-
guage models. arXiv preprint arXiv:2402.00838.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. Measuring massive multitask language under-
standing. In International Conference on Learning
Representations.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. 2021. Lora: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Daniel Jurafsky. 2000. Speech and language processing.

Dongyeop Kang and Eduard Hovy. 2021. Style is
NOT a single variable: Case studies for cross-
stylistic language understanding. In Proceedings
of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 2376–
2387, Online. Association for Computational
Linguistics.

Pythagoras Karampiperis, Antonis Koukourikos, and
Evangelia Koliopoulou. 2014. Towards machines
for measuring creativity: The use of computational
tools in storytelling activities. In 2014 IEEE 14th
International Conference on Advanced Learning
Technologies, pages 508–512. IEEE.

Jussi Karlgren. 2004. The wheres and whyfores for
studying textual genre computationally. In AAAI
Technical Report (7), pages 68–70. Citeseer.

J Peter Kincaid, Robert P Fishburne Jr, Richard L
Rogers, and Brad S Chissom. 1975. Derivation of
new readability formulas (automated readability in-
dex, fog count and flesch reading ease formula) for
navy enlisted personnel.

12766

https://doi.org/doi:10.1515/9783112316009
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://arxiv.org/abs/2305.14387
https://arxiv.org/abs/2305.14387
https://arxiv.org/abs/2305.14387
https://doi.org/10.1016/B0-08-043076-7/03063-1
https://doi.org/10.18653/v1/2021.acl-long.185
https://doi.org/10.18653/v1/2021.acl-long.185
https://doi.org/10.18653/v1/2021.acl-long.185

Nathan Lambert, Lewis Tunstall, Nazneen Rajani, and
Tristan Thrush. 2023. Huggingface h4 stack ex-
change preference dataset.

Ming Li, Yong Zhang, Shwai He, Zhitao Li, Hongyu
Zhao, Jianzong Wang, Ning Cheng, and Tianyi
Zhou. 2024. Superfiltering: Weak-to-strong data
filtering for fast instruction-tuning. arXiv preprint
arXiv:2402.00530.

Ming Li, Yong Zhang, Zhitao Li, Jiuhai Chen, Lichang
Chen, Ning Cheng, Jianzong Wang, Tianyi Zhou,
and Jing Xiao. 2023a. From quantity to qual-
ity: Boosting llm performance with self-guided
data selection for instruction tuning. arXiv preprint
arXiv:2308.12032.

Zhuang Li and Gholamreza Haffari. 2023. Active learn-
ing for multilingual semantic parser. In Findings
of the Association for Computational Linguistics:
EACL 2023, pages 633–639.

Zhuang Li, Lizhen Qu, Philip R Cohen, Raj Tumuluri,
and Gholamreza Haffari. 2023b. The best of both
worlds: Combining human and machine translations
for multilingual semantic parsing with active learning.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 9511–9528.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.
Truthfulqa: Measuring how models mimic human
falsehoods. In Proceedings of the 60th Annual
Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 3214–
3252.

Tong Liu, Iza Škrjanec, and Vera Demberg. 2024.
Temperature-scaling surprisal estimates improve
fit to human reading times – but does it do
so for the “right reasons”? In Proceedings
of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), pages 9598–9619, Bangkok, Thailand. As-
sociation for Computational Linguistics.

Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and
Junxian He. What makes good data for alignment?
a comprehensive study of automatic data selection
in instruction tuning. In The Twelfth International
Conference on Learning Representations.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Keming Lu, Hongyi Yuan, Zheng Yuan, Runji Lin,
Junyang Lin, Chuanqi Tan, Chang Zhou, and Jin-
gren Zhou. 2023. # instag: Instruction tagging for
analyzing supervised fine-tuning of large language
models. In The Twelfth International Conference on
Learning Representations.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:
Empowering code large language models with evol-
instruct. arXiv preprint arXiv:2306.08568.

Philip M McCarthy. 2005. An assessment of the range
and usefulness of lexical diversity measures and the
potential of the measure of textual, lexical diversity
(MTLD). Ph.D. thesis, The University of Memphis.

JA Michaelov, MD Bardolph, CK Van Petten,
BK Bergen, and S Coulson. 2023. Strong predic-
tion: Language model surprisal explains multiple
n400 effects. neurobiology of language, 1–71. Tech-
nical report, Retrieved 2023-04-25, from https://doi.
org/10.1162/nol a 00105 doi: 10.1162

Eric Mitchell, Yoonho Lee, Alexander Khazatsky,
Christopher D Manning, and Chelsea Finn. 2023.
Detectgpt: Zero-shot machine-generated text detec-
tion using probability curvature. In International
Conference on Machine Learning, pages 24950–
24962. PMLR.

Niklas Muennighoff, Qian Liu, Armel Randy Ze-
baze, Qinkai Zheng, Binyuan Hui, Terry Yue Zhuo,
Swayam Singh, Xiangru Tang, Leandro Von Werra,
and Shayne Longpre. 2023. Octopack: Instruc-
tion tuning code large language models. In
The Twelfth International Conference on Learning
Representations.

Byung-Doh Oh and William Schuler. 2023. Why
Does Surprisal From Larger Transformer-Based Lan-
guage Models Provide a Poorer Fit to Human Read-
ing Times? Transactions of the Association for
Computational Linguistics, 11:336–350.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744.

N Reimers. 2019. Sentence-bert: Sentence embed-
dings using siamese bert-networks. arXiv preprint
arXiv:1908.10084.

Lavinia Salicchi, Emmanuele Chersoni, and Alessandro
Lenci. 2023. A study on surprisal and semantic relat-
edness for eye-tracking data prediction. Frontiers in
Psychology, 14:1112365.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun
Raja, et al. 2021. Multitask prompted training en-
ables zero-shot task generalization. arXiv preprint
arXiv:2110.08207.

Asad Sayeed, Stefan Fischer, and Vera Demberg. 2015.
Vector-space calculation of semantic surprisal for pre-
dicting word pronunciation duration. In Proceedings
of the 53rd Annual Meeting of the Association for

12767

https://huggingface.co/datasets/HuggingFaceH4/stack-exchange-preferences
https://huggingface.co/datasets/HuggingFaceH4/stack-exchange-preferences
https://doi.org/10.18653/v1/2024.acl-long.519
https://doi.org/10.18653/v1/2024.acl-long.519
https://doi.org/10.18653/v1/2024.acl-long.519
https://doi.org/10.1162/tacl_a_00548
https://doi.org/10.1162/tacl_a_00548
https://doi.org/10.1162/tacl_a_00548
https://doi.org/10.1162/tacl_a_00548

Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 763–773.

Emily Sheng, Kai-Wei Chang, Premkumar Natarajan,
and Nanyun Peng. 2019. The woman worked as a
babysitter: On biases in language generation.

Jinyan Su, Terry Zhuo, Di Wang, and Preslav Nakov.
2023. Detectllm: Leveraging log rank information
for zero-shot detection of machine-generated text.
In Findings of the Association for Computational
Linguistics: EMNLP 2023, pages 12395–12412.

Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang,
Philip HS Torr, and Timothy M Hospedales. 2018.
Learning to compare: Relation network for few-shot
learning. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1199–
1208.

Mildred C Templin. 1957. Certain language skills in
children: Their development and interrelationships,
volume 10. JSTOR.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Nafis Tripto, Adaku Uchendu, Thai Le, Mattia
Setzu, Fosca Giannotti, and Dongwon Lee. 2023.
HANSEN: Human and AI spoken text benchmark for
authorship analysis. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
13706–13724, Singapore. Association for Computa-
tional Linguistics.

Laurens Van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(11).

Eva Vanmassenhove, Dimitar Shterionov, and Matthew
Gwilliam. 2021. Machine translationese: Effects of
algorithmic bias on linguistic complexity in machine
translation. In Proceedings of the 16th Conference
of the European Chapter of the Association for
Computational Linguistics: Main Volume, pages
2203–2213, Online. Association for Computational
Linguistics.

Bertie Vidgen, Tristan Thrush, Zeerak Waseem, and
Douwe Kiela. 2021. Learning from the worst: Dy-
namically generated datasets to improve online hate
detection. In ACL.

Pengyu Wang, Linyang Li, Ke Ren, Botian Jiang, Dong
Zhang, and Xipeng Qiu. 2023a. Seqxgpt: Sentence-
level ai-generated text detection. In Proceedings
of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 1144–1156.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-
isa Liu, Noah A Smith, Daniel Khashabi, and Han-
naneh Hajishirzi. 2022a. Self-instruct: Aligning lan-
guage model with self generated instructions. arXiv
preprint arXiv:2212.10560.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-
isa Liu, Noah A Smith, Daniel Khashabi, and Han-
naneh Hajishirzi. 2023b. Self-instruct: Aligning lan-
guage models with self-generated instructions. In
The 61st Annual Meeting Of The Association For
Computational Linguistics.

Yizhong Wang, Swaroop Mishra, Pegah Alipoor-
molabashi, Yeganeh Kordi, Amirreza Mirzaei,
Anjana Arunkumar, Arjun Ashok, Arut Selvan
Dhanasekaran, Atharva Naik, David Stap, et al.
2022b. Super-naturalinstructions: Generalization via
declarative instructions on 1600+ nlp tasks. arXiv
preprint arXiv:2204.07705.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare,
Nghi DQ Bui, Junnan Li, and Steven CH Hoi. 2023c.
Codet5+: Open code large language models for
code understanding and generation. arXiv preprint
arXiv:2305.07922.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. In International
Conference on Learning Representations.

Kangxi Wu, Liang Pang, Huawei Shen, Xueqi Cheng,
and Tat-Seng Chua. 2023a. Llmdet: A third party
large language models generated text detection tool.
In Findings of the Association for Computational
Linguistics: EMNLP 2023, pages 2113–2133.

Minghao Wu, Abdul Waheed, Chiyu Zhang, Muham-
mad Abdul-Mageed, and Alham Fikri Aji. 2023b.
Lamini-lm: A diverse herd of distilled mod-
els from large-scale instructions. arXiv preprint
arXiv:2304.14402.

A.D. Wyner. 1978. A definition of conditional mutual
information for arbitrary ensembles. Information
and Control, 38(1):51–59.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023. Wizardlm: Empowering large lan-
guage models to follow complex instructions. arXiv
e-prints, pages arXiv–2304.

Zhenyu Xu and Victor S Sheng. 2024. Detecting
ai-generated code assignments using perplexity of
large language models. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38,
pages 23155–23162.

Zhaorui Yang, Tianyu Pang, Haozhe Feng, Han
Wang, Wei Chen, Minfeng Zhu, and Qian Liu.
2024. Self-distillation bridges distribution gap
in language model fine-tuning. In Proceedings
of the 62nd Annual Meeting of the Association

12768

https://doi.org/10.48550/ARXIV.1909.01326
https://doi.org/10.48550/ARXIV.1909.01326
https://doi.org/10.18653/v1/2023.findings-emnlp.916
https://doi.org/10.18653/v1/2023.findings-emnlp.916
https://doi.org/10.18653/v1/2021.eacl-main.188
https://doi.org/10.18653/v1/2021.eacl-main.188
https://doi.org/10.18653/v1/2021.eacl-main.188
https://doi.org/10.1016/S0019-9958(78)90026-8
https://doi.org/10.1016/S0019-9958(78)90026-8
https://doi.org/10.18653/v1/2024.acl-long.58
https://doi.org/10.18653/v1/2024.acl-long.58

for Computational Linguistics (Volume 1: Long
Papers), pages 1028–1043, Bangkok, Thailand. As-
sociation for Computational Linguistics.

Daoguang Zan, Ailun Yu, Bo Shen, Jiaxin Zhang, Tai-
hong Chen, Bing Geng, Bei Chen, Jichuan Ji, Yafen
Yao, Yongji Wang, and Qianxiang Wang. 2023. Can
programming languages boost each other via instruc-
tion tuning? Preprint, arXiv:2308.16824.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4791–4800.

Zijie Zeng, Shiqi Liu, Lele Sha, Zhuang Li, Kaixun
Yang, Sannyuya Liu, Dragan Gašević, and Guan-
liang Chen. 2024a. Detecting ai-generated sen-
tences in human-ai collaborative hybrid texts: chal-
lenges, strategies, and insights. In Proceedings of
the Thirty-Third International Joint Conference on
Artificial Intelligence, pages 7545–7553.

Zijie Zeng, Lele Sha, Yuheng Li, Kaixun Yang, Dra-
gan Gašević, and Guangliang Chen. 2024b. Towards
automatic boundary detection for human-ai collab-
orative hybrid essay in education. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 38, pages 22502–22510.

Zijie Zeng, Lele Sha, Yuheng Li, Kaixun Yang, Dragan
Gašević, and Guanliang Chen. 2023. Towards auto-
matic boundary detection for human-ai hybrid essay
in education. arXiv preprint arXiv:2307.12267.

Hao Zhao, Maksym Andriushchenko, Francesco Croce,
and Nicolas Flammarion. Long is more for align-
ment: A simple but tough-to-beat baseline for in-
struction fine-tuning. In Forty-first International
Conference on Machine Learning.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Or-
donez, and Kai-Wei Chang. 2018. Gender bias in
coreference resolution: Evaluation and debiasing
methods. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 2 (Short Papers), pages 15–
20.

Fedor Zhdanov. 2019. Diverse mini-batch active learn-
ing. arXiv preprint arXiv:1901.05954.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2024.
Judging llm-as-a-judge with mt-bench and chatbot
arena. Advances in Neural Information Processing
Systems, 36.

Wanwan Zheng and Mingzhe Jin. 2023. A review
on authorship attribution in text mining. Wiley
Interdisciplinary Reviews: Computational Statistics,
15(2):e1584.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer,
Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping
Yu, Lili Yu, et al. 2024. Lima: Less is more for align-
ment. Advances in Neural Information Processing
Systems, 36.

Terry Yue Zhuo. 2024. Ice-score: Instructing large
language models to evaluate code. In Findings of the
Association for Computational Linguistics: EACL
2024, pages 2232–2242.

12769

https://arxiv.org/abs/2308.16824
https://arxiv.org/abs/2308.16824
https://arxiv.org/abs/2308.16824

Appendix Table of Contents

A Implementation Details 15
A.1 Model Training Configurations . 15
A.2 Prompt for Generating Referenced Response . 16
A.3 Prompt for Generating Direct Response . 16

B Extended Analysis of Style Effects on LLM Fine-Tuning Performance 16
B.1 Extended Analysis of LLM Performance on Coding Tasks 16
B.2 Extended Stylometric Analysis . 17
B.3 Impact of Maintaining Instructional Surprisal Consistency in Referenced Responses on

Stylometric Analysis and Model Performance . 18
B.4 Independence Tests of Linguistic Form and Instructional Surprisal 19
B.5 Background on Instructional Surprisal . 21
B.6 Identification of Semantic and Non-Semantic (Functional) Words 22

C Extended Analysis of Main Experiments 22
C.1 Extended Analysis of Evaluation Results for Data Selection in Human-Written Coding Data 22
C.2 Extended Analysis of Evaluation Results for Data Selection in Mixed Synthetic Coding Data 24
C.3 Extended Analysis of Evaluation Results for Open-Domain Data Selection Experiments . . . 25
C.4 Extended Analysis of Style and Quality Analysis in SCAR-Selected Data 25
C.5 Analysis of Ranker Performance . 26
C.6 Extended Evaluation Analysis of StarCoder-15.5B . 26
C.7 Extended Evaluation of Data Selection Performance for LLMs on Four Additional Bench-

marks: ARC-Challenge, HellaSwag, MMLU and TruthfulQA 27
C.8 Sampling Efficiency Analysis . 28

D Extended Analysis of Ablation Studies 29
D.1 Impact of Training SCAR without Referenced Responses 30
D.2 Representation Similarities Analysis . 31

E Bias Analysis 32
E.1 Fairness Bias Analysis . 32
E.2 Lexical Diversity Bias Analysis . 33

F Effect of Style-Consistent Responses on Data Selection 34

G Response Examples 34

A Implementation Details

A.1 Model Training Configurations
We fine-tune the META-LLAMA-3-8B and CODELLAMA-7B models using LoRA, a parameter-efficient
tuning method, on NVIDIA A100 GPUs to minimize computational costs. Both models undergo three
training epochs with a learning rate of 2×10−5, using a cosine learning rate scheduler and a warm-up ratio
of 0.03. Training is performed with BF16 and TF32 precision modes enabled. For META-LLAMA-3-8B,
we employ a single GPU with a batch size of 2, while for CODELLAMA-7B, two GPUs are used with
the same batch size, incorporating LoRA parameters set to r = 8 and α = 16. For the OpenAI models,
we adopt GPT-3.5-TURBO-0125 and GPT-4-1106-PREVIEW as our default configurations. We set the
maximum input length for the LLMs to 2048 tokens.

The SCAR ranker is trained with a learning rate of 2 × 10−5 for up to 20 epochs, using early
stopping based on validation performance. For code domain tasks, we utilize CODET5P-110M-
EMBEDDING (Wang et al., 2023c) for contextual representation encoding, while for open-domain tasks,

12770

we employ ROBERTA-BASE (Liu et al., 2019). When curating STACKEXCHANGE examples for the
ranker and LLM training, we ensure quality by selecting instructions containing code blocks and answers
with ratings above 2.

A.2 Prompt for Generating Referenced Response
The prompt used to rewrite the human response to generate the “referenced” response is as follows:

Reference Answer:
{human response}

Background
You are a knowledgeable AI assistant.
Above is the reference answer. Below is an instruction that describes
a task. Given the reference answer , write a response that

appropriately completes the request.
Please keep the semantics of the reference answer unchanged in your
response , while pretending as if you have never seen the reference
answer , when crafting your final response.

Instruction:
{instruction}

Response:

A.3 Prompt for Generating Direct Response
The prompt instruction to generate “direct” response is as follows:

Background
You are a knowledgeable AI assistant.
Below is an instruction that describes a task. Please write a
response that appropriately completes the request.

Instruction:
{instruction}

Response:

B Extended Analysis of Style Effects on LLM Fine-Tuning Performance

B.1 Extended Analysis of LLM Performance on Coding Tasks
Table 5 presents the detailed results for the coding tasks mentioned in Table 2, providing a comprehensive
breakdown of the Pass@1 and Pass@10 metrics for each task, rather than just the average scores.

Table 5 reveals that “direct” responses outperform “referenced” responses across most programming
benchmarks, suggesting that generating answers without mirroring human semantic content yields better
results for coding tasks. For instance, GPT-3.5-TURBO-generated “direct” achieves a Pass@1 of 33.00%
on the HUMANEVAL benchmark, compared to 28.58% for GPT-3.5-TURBO-generated “referenced,”
and similar trends are observed across Java, JavaScript, and C++ benchmarks. Human responses also
lag behind “direct” and “referenced” responses, indicating that synthetic data can offer better stylistic
consistency, which can boost LLM SFT performance. LLAMA2-70B-CHAT performs notably better than

12771

its smaller counterpart, LLAMA2-13B-CHAT, showing a clear advantage due to larger model scale, though
it still falls short of GPT-3.5-TURBO in most metrics, highlighting GPT-3.5-TURBO ’s stronger coding
capabilities. Interestingly, fine-tuned base LLMs perform particularly well in JavaScript, likely due to its
simpler syntax and predictable patterns, which chat-LLMs like GPT-3.5-TURBO can easily understand
and replicate, leading to high-quality training data. These findings highlight the effectiveness of “direct”
responses and underscore the importance of data quality and style consistency in fine-tuning LLMs for
code generation.

Data Curation
Methods

HUMANEVAL MULTIPL-E
Python Java JavaScript C++

Pass@1 / Pass@10 Pass@1 / Pass@10 Pass@1 / Pass@10 Pass@1 / Pass@10
Human Response 23.45 / 39.99 27.13 / 39.14 30.14 / 47.39 25.52 / 40.00
GPT-3.5-TURBO

Referenced 28.58 / 52.64 29.46 / 41.91 33.53 / 50.84 27.70 / 42.17
Direct 33.00 / 51.48 29.38 / 42.03 33.19 / 51.72 28.45 / 43.27

LLAMA2-70B-CHAT

Referenced 31.64 / 45.58 29.09 / 40.59 31.79 / 49.20 26.77 / 40.74
Direct 33.62 / 48.18 30.23 / 41.79 32.91 / 50.24 26.80 / 41.05

LLAMA2-13B-CHAT

Referenced 23.88 / 43.31 27.58 / 37.92 29.90 / 47.72 25.09 / 38.67
Direct 28.32 / 40.99 24.67 / 36.41 28.88 / 45.65 23.81 / 36.96

Table 5: Detailed performance comparison of fine-tuned CODELLAMA-7B evaluated on HUMANEVAL (Python)
and MULTIPL-E (Java, JavaScript, C++) coding benchmarks. The LLMs are fine-tuned on training sets curated with
different response generation strategies and LLMs. The data examples are further filtered based on the perplexity
similarity between “referenced” and human responses, excluding those with significant deviation. Pass@1 and
Pass@10 scores for each programming language are reported.

B.2 Extended Stylometric Analysis
Evaluation Settings. To quantitatively evaluate stylistic consistency across datasets, we employ six
stylometric metrics that capture distinct aspects of linguistic form, the structural elements that shape
response presentation independent of semantics. Specifically, these metrics measure key linguistic form
elements: transitional and functional word usage measured by TTR and MTLD of functional words, tone
assessed by Flesch score, sentence structure quantified through Average Sentence Length, punctuation
patterns captured by Punctuation Frequency, and layout features such as headers and bullet points measured
by Layout Feature Frequency. Together with perplexity for assessing instructional surprisal, these metrics
provide a comprehensive framework for analyzing response styles:

Linguistic Form Metrics:

1. Type-Token Ratio (TTR) (Templin, 1957): Measures lexical diversity by calculating the ratio of
unique words (types) to the total number of words (tokens) in a text. A higher TTR indicates greater
lexical diversity.

2. Measure of Textual Lexical Diversity (MTLD) (McCarthy, 2005): MTLD is less sensitive to text
length compared to TTR. It computes the average length of sequential word strings that maintain a
given TTR value, where higher MTLD scores suggest greater lexical diversity.

3. Average Sentence Length (Avg. Sent. Len.): Calculates the average number of words per sentence,
providing insights into the syntactic complexity of the text.

4. Punctuation Frequency (Punct. Freq.): Computes the frequency of punctuation marks within each
response, reflecting the density of punctuation usage.

5. Flesch Reading Ease Score (Flesch Score): Assesses readability based on the average sentence
length and the average number of syllables per word. Higher scores indicate greater readability.

12772

Data Curation
Methods

TTR MTLD Avg. Sent. Len. Punct. Freq. Flesch Score Avg. Layout Freq. PPL(y|x)
Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

StackExchange
Human Response 62.06 24.23 11.58 7.71 124.37 100.22 42.80 31.96 38.33 43.97 0.42 1.36 1.85 0.33
GPT-3.5-TURBO

Referenced 31.65 8.16 13.61 2.51 46.49 20.90 44.88 25.38 57.32 16.16 0.10 0.28 1.84 0.33
Direct 34.15 8.14 13.34 2.57 46.31 23.59 38.80 20.48 54.66 16.92 0.26 0.41 1.78 0.30

LLAMA2-70B-CHAT

Referenced 44.01 11.90 14.28 3.66 70.34 51.50 42.30 36.70 54.12 21.73 0.18 0.52 1.81 0.36
Direct 45.67 13.52 14.20 4.23 83.18 84.01 35.82 26.28 51.78 24.34 0.28 0.72 1.57 0.28

LLAMA2-13B-CHAT

Referenced 31.97 7.46 15.64 3.06 43.03 25.11 50.31 28.81 62.73 17.23 0.13 0.42 1.76 0.27
Direct 33.35 8.86 14.90 3.12 43.49 27.49 39.60 22.64 61.44 16.92 0.22 0.38 1.76 0.28

LIMA
Human Response 31.77 20.49 15.21 4.38 32.41 49.18 64.54 63.70 63.71 27.98 0.43 1.37 4.42 1.53
GPT-3.5-TURBO

Referenced 48.40 18.43 15.28 6.04 26.51 21.36 14.27 10.73 59.45 19.25 0.15 0.64 4.02 1.52
Direct 47.53 16.06 15.08 5.31 24.87 17.04 14.08 9.33 55.59 21.00 0.26 0.58 2.51 0.64

LLAMA2-70B-CHAT

Referenced 39.32 16.51 15.15 4.88 25.67 21.47 27.76 19.84 61.77 18.43 0.33 0.46 3.51 1.45
Direct 37.02 15.63 14.62 4.84 24.76 18.59 27.94 17.11 59.66 18.16 0.43 0.50 2.09 0.42

LLAMA2-13B-CHAT

Referenced 35.74 13.64 15.98 4.42 24.65 14.75 27.44 17.70 64.46 17.45 0.16 0.42 3.10 1.19
Direct 31.90 14.22 15.08 3.78 22.60 12.61 35.22 18.74 62.30 15.40 0.37 0.39 2.06 0.38

Table 6: Comprehensive performance comparison of stylometric analysis across datasets using instructions from
STACKEXCHANGE and LIMA, paired with responses generated by human writers and various LLMs, presenting
the average (Mean) and standard deviation (Std.) for six authorship detection metrics and Perplexity(y|x).

6. Layout Feature Frequency (Avg. Layout Freq.): Calculates the frequency of structural elements
(bullet points, headers, bold text) per sentence, representing the consistency of formatting and
organizational patterns.

Instructional Surprisal Metric:

• Perplexity of P (y|x): Captures the overall response surprisal given the instruction.

Discussion. Table 6 presents the average and standard deviation (Std.) of these metrics across responses
from human-written and LLM-generated texts for both LIMA and STACKEXCHANGE instructions. Our
analysis reveals that LLM-generated responses consistently demonstrate higher stylistic consistency
compared to human-written ones, with responses synthesized by GPT-3.5-TURBO and LLAMA2 showing
lower standard deviations across most metrics. This indicates greater consistency in functional word
diversity, sentence length, punctuation usage, readability, and layout features. Furthermore, “direct”
responses achieve higher consistency in response surprisal than “referenced” and human responses, as
evidenced by their lower standard deviation values of perplexities.

Notably, even the LIMA dataset, despite being optimized and curated by human experts for style
consistency, exhibits lower stylistic consistency in our metrics compared to LLM-synthesized datasets.
These results highlight both the inherent challenge of achieving style consistency through manual curation
and the significant potential of using LLMs to generate stylistically consistent training data.

In conclusion, our stylometric analysis quantitatively validates that LLM-synthesized datasets demon-
strate superior stylistic consistency compared to human-written responses across most measured dimen-
sions.

B.3 Impact of Maintaining Instructional Surprisal Consistency in Referenced Responses on
Stylometric Analysis and Model Performance

In Section 2, we used perplexity-based filtering to exclude instructions where the surprisal of “Referenced”
responses significantly differed from that of human responses. Specifically, we excluded instructions
where the PPL(y|x) of at least one “Referenced” response exceeded thresholds of 0.15 or 2.5. This
filtering process reduced the dataset to 944 instructions from STACKEXCHANGE and 407 instructions
from LIMA.

12773

StackExchange (10k) LIMA (1k)

Data Curation
Methods

Stylometric
Analysis

Data
Quality

CODELLAMA-7B
Performance

Stylometric
Analysis

Data
Quality

META-LLAMA-3-8B
Performance

Std. TTR /
Std. PPL

Helpfulness /
Correctness

Avg. Pass@1 /
Avg. Pass@10

Std. TTR /
Std. PPL

Helpfulness /
Correctness L.C. WinRate

Human Response 22.27 / 1.41 3.34 / 3.57 31.65 / 46.63 19.54 / 8.01 4.32 / 4.37 2.29
GPT-3.5-TURBO

Referenced 7.95 / 0.31 3.65 / 3.60 31.66 / 48.82 17.43 / 5.86 4.05 / 4.32 4.07
Direct 7.75 / 0.28 3.55 / 3.50 35.11 / 49.68 16.43 / 3.61 4.18 / 4.49 7.15

LLAMA2-70B-CHAT

Referenced 11.09 / 0.48 3.47 / 3.33 30.16 / 46.44 16.08 / 5.04 4.25 / 4.36 4.27
Direct 12.49 / 0.25 3.03 / 3.03 33.11 / 47.35 15.60 / 3.11 4.33 / 4.44 8.14

LLAMA2-13B-CHAT

Referenced 7.29 / 0.24 2.82 / 2.54 26.88 / 42.87 12.96 / 3.49 4.03 / 4.00 3.94
Direct 8.27 / 0.22 2.09 / 1.93 25.13 / 37.73 13.18 / 1.13 3.66 / 3.78 6.80

Table 7: Performance comparison of CODELLAMA-7B and META-LLAMA-3-8B fine-tuned on training sets curated
using different methods and various LLMs, without applying surprisal-based instruction filtering, along with data
quality and stylometric analysis metrics for the training sets.

Table 7 highlights the impact of dataset size on LLM fine-tuning performance in the coding do-
main. For human responses, the average Pass@1 score across all four programming languages in-
creased from 26.56 to 31.65 after adding more data. Notably, the official base model CODELLAMA-7B

achieves a Pass@1 score of 29.98, while CODELLAMA-7B-INSTRUCT achieves 34.8 on HUMANEVAL

on BigCodeLeaderboard4. In contrast, Table 5 reports a significantly lower Pass@1 of 23.45, mainly due
to the reduced dataset size (944 examples). With sufficient data and effective selection strategies, the
Pass@1 score on HUMANEVAL for base CODELLAMA-7B trained on human responses can reach
33, while synthetic responses can further boost performance to around 40, as shown in Tables 9
and 10. As achieving high model performance is not the primary goal in Section 2, controlled filtering is
essential for accurately analyzing variations in the instructional surprisal of responses and their impact on
LLM fine-tuning.

A key observation from the stylometric analysis is the measurement of instructional surprisal through
perplexity. Interestingly, Table 7 shows, without filtering, “referenced” responses exhibit greater surprisal
consistency compared to human-written responses, particularly within the STACKEXCHANGE code
data. This finding is somewhat counterintuitive, as one might expect “referenced” responses–rewritten
versions of human responses–to closely mirror the surprisal consistency of their human counterparts. We
hypothesize that this discrepancy arises because LLMs, even when explicitly instructed to semantically
align closely with human responses, may introduce subtle variations that affect surprisal metrics.

While perplexity-based filtering is critical for achieving a more accurate analysis of LLM performance
under varying stylistic consistency conditions, it was not used for our SCAR training for the following
reasons: i) Our goal is to learn a function that ranks responses based on style consistency. As shown in
Table 7, “Direct” responses already demonstrate higher stylistic consistency compared to “Referenced”
and human responses, fulfilling the ranking objective without the need for additional filtering. ii) Filtering
removes a substantial number of examples, which could negatively impact training performance by
reducing the dataset size.

B.4 Independence Tests of Linguistic Form and Instructional Surprisal

In this section, we examine whether the linguistic form features of responses are correlated with instruc-
tional surprisal and whether linguistic form depends on instructions. Understanding these relationships is
essential for justifying the design of our ranking model, which employs distinct structures to represent
these two sets of features.

Independence Between Linguistic Form and Instructional Surprial. To validate the independence
between linguistic form and instructional surprisal, we conduct two complementary analyses:

4https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard

12774

https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard

Regression Analysis: We perform regression modeling on the LIMA dataset to predict the instructional
surprisal metric, perplexity PPL(y|x), based on two feature sets:

• Linguistic form features: unigrams of functional words, TTR and MTLD of functional words,
punctuation and layout patterns, and Flesch readability scores.

• Semantic features: contextual token embeddings derived from SENTENCE-TRANSFORMERS/ALL-
MINILM-L6-V2 (Reimers, 2019), a model pre-trained for semantic encoding and paraphrase
detection tasks.

The average absolute regression coefficients indicate that semantic features are significantly more
influential in predicting instructional surprisal, with an average importance score of 1.193, compared to
only 0.236 for each linguistic form feature.

Variance Analysis. We further investigate the independence of linguistic form and instructional surprisal
by analyzing variance patterns in PPL(y|x). Responses are decomposed into semantic tokens (yc) and
functional non-semantic tokens (yp), which represent a key component of linguistic form elements (see
Section B.6 for token separation details). By comparing the variance contributions of PPL(yc|yp, x) and
PPL(yp|yc, x) to PPL(y|x), we find:

• Semantic tokens (yc): explain 283.67% of the variance.

• Functional tokens (yp): explain only 4.01% of the variance.

The combined evidence from our regression and variance analyses suggests that linguistic form and
instructional surprisal are distinct dimensions of response style, with only a weak correlation between
them. Semantic features are the primary contributors to instructional surprisal, with linguistic form playing
a much smaller role.

Independence Tests between Linguistic Form and Instructions We employ Conditional Mutual
Information (CMI) (Wyner, 1978) to quantify the dependencies between semantic tokens (yc) and non-
semantic tokens (yp) with respect to instructions (x). For semantic content and instructions, CMI is
defined as:

I(yc;x | yp) =
1

N

N∑

i=1

log

(
P (y

(i)
c | x(i), y(i)p)

P (y
(i)
c | y(i)p)

)
,

with an analogous formulation for functional tokens:

I(yp;x | yc) =
1

N

N∑

i=1

log

(
P (y

(i)
p | x(i), y(i)c)

P (y
(i)
p | y(i)c)

)
.

Using META-LLAMA-3-8B to estimate conditional probabilities and a POS-based approach to separate
semantic and non-semantic functional tokens (detailed in Appendix B.6), we analyze both human-written
and GPT-3.5-TURBO-generated responses with LIMA and STACKEXCHANGE instructions.

For LIMA instructions, the mutual information scores reveal that semantic tokens show a stronger
dependence on instructions, with I(yc;x | yp) = 0.4, compared to I(yp;x | yc) = 0.15. Similarly,
for STACKEXCHANGE instructions, semantic tokens again dominate with I(yc;x | yp) = 0.49, while
functional tokens exhibit a much weaker dependence at I(yp;x | yc) = 0.03. Since functional tokens are
key indicators of linguistic form, these findings confirm that linguistic form has a significantly weaker
dependence on instructions compared to semantic tokens. Therefore, in Eq. (3), we aim to use max pooling
over their representations to capture linguistic form features as non-semantic surface characteristics of
responses without explicitly modeling their relationship to the instruction. This approach aligns with
our findings, indicating that linguistic form is only weakly correlated with instructional context and has
minimal impact on instructional surprisal.

12775

B.5 Background on Instructional Surprisal

Surprisal, traditionally defined as the negative log-probability of a word given its preceding context,

− logP (w | context),

is a well-established indicator of cognitive processing difficulty and neural activation, including the
N400 ERP component (Oh and Schuler, 2023; Goodkind and Bicknell, 2018; Michaelov et al., 2023;
Karampiperis et al., 2014). This word-level metric quantifies how unexpected a word is given its context
and is naturally derived from autoregressive language models trained on next-token prediction.

Extending Surprisal to Instruction-Level Evaluation. At the sequence level, surprisal can be general-
ized to assess the probability of an entire response W given an instruction:

P (W | instruction) =
N∏

i=1

P (wi | w1, . . . , wi−1, instruction), (5)

where wi denotes the i-th token in W , and N is the length of the response. Based on this formulation, we
define instructional surprisal as the surprisal of a full response conditioned on its instruction, reflecting
the response’s predictability under the language model.

Approaches to Modeling Instructional Surprisal. We consider two main approaches to estimating
instructional surprisal: perplexity and semantic relatedness.

Perplexity (PPL) is a widely-used metric derived from the average surprisal of each token in a sequence.
It is computed as:

PPL(W) = exp

(
− 1

N

N∑

i=1

logP (wi | w1, . . . , wi−1)

)
,

which corresponds to the exponentiated average negative log-likelihood. Perplexity thus provides a
global measure of the predictability of a response. Since perplexity is a monotonic transformation of
sequence-level surprisal (Eq. 5), it serves as a proxy for instructional surprisal.

Semantic Relatedness captures the semantic alignment between an instruction and its response. It
reflects how topically and conceptually coherent the two are (Salicchi et al., 2023). While originally
proposed for word-level prediction, prior work has used semantic similarity between a word vector w⃗ and
its context vector h⃗, often computed via cosine similarity, to estimate semantic surprisal (Sayeed et al.,
2015):

Surprisal(w | h) = − logP (w | h), where P (w | h) ∝ cos(w⃗, h⃗) =
w⃗ · h⃗

∥w⃗∥∥h⃗∥
. (6)

In our case, we adapt this idea to the instruction-response level by using sentence embeddings in place of
word vectors. However, such linear approaches may fail to fully capture complex, non-linear semantic
dependencies between instruction and response.

Please note that while prior studies have reported significant correlations between semantic relatedness
and surprisal (Salicchi et al., 2023; Michaelov et al., 2023), and some (Sayeed et al., 2015) even estimate
surprisal directly from semantic relatedness as in Eq.(6), other work has highlighted important distinctions
between the two (Salicchi et al., 2023).

Our Approach: Non-Linear Semantic Modeling via SCAR. To overcome the limitations of conven-
tional methods, SCAR adopts a more expressive modeling strategy. Rather than relying on perplexity
or simple embedding distances, it leverages a Relation Network (Sung et al., 2018) implemented as a
multilayer perceptron (MLPc, Eq. 3) to learn rich, non-linear alignment patterns between instructions and
responses.

This design offers several advantages:

12776

• Preservation of Surprisal Semantics: SCAR is trained using a triplet loss (Eq. 4) that enforces a
structured representation space. Pairs with similar surprisal values are encouraged to lie closer in
the embedding space, allowing the network to learn a disentangled representation that captures both
linguistic form and instructional surprisal.

• End-to-End Differentiability: Unlike perplexity, which must be computed using non-differentiable
external LLMs, the ROBERTA-based encoder and MLP components in SCAR can be jointly
optimized with downstream objectives, enabling unified training across the entire ranking model.

• Practical Efficiency: Token-level perplexity computation with large LLMs (e.g., LLAMA-3-8B) is
computationally intensive and unsuitable for large-scale filtering. In contrast, SCAR’s relatedness
scores are computed with a single forward pass through a lightweight transformer and MLP, offering
a more scalable alternative.

B.6 Identification of Semantic and Non-Semantic (Functional) Words
To distinguish between semantic content (yc) and non-semantic (linguistic form-related) words (yp)
in the responses, we adopt a heuristic approach based on part-of-speech (POS) tagging. Specifically,
content words–nouns, verbs, adjectives, and adverbs–are classified as semantic, while other POS tags
(e.g., pronouns, conjunctions, prepositions, and determiners) are categorized as non-semantic.

For code-related responses, we also treat code blocks as semantic content, given their integral role in
conveying the main content of the response. Code blocks are identified using regular expressions that
capture common code delimiters, such as triple backticks (```), tildes (~~~), and inline code marked by
single backticks (`).

Given the limitations of current NLP techniques, achieving perfect separation between semantic and
non-semantic elements is challenging. However, our primary goal is not absolute precision, but to perform
independence tests on various stylistic features relative to instructions and estimate instructional surprisal
to inform our data selection ranker design. By focusing on comparative patterns, our approach effectively
captures the impact of semantic and non-semantic content on stylistic consistency, and how these patterns
influence data selection, ultimately improving LLM alignment through SFT.

To illustrate, Table 8 provides an example of how a response is split into semantic and non-semantic
content using this method.

Instruction
Why is FIFA against adding instant replay to the game?
Response

FIFA is against adding instant replay to the game because they believe it would disrupt the flow of the
game and potentially lead to delays. They also argue that human error is a part of the game and adding
instant replay could take away from the excitement and unpredictability of live sports. Additionally,
implementing instant replay would require significant changes to the rules and regulations of the
game, which FIFA may be hesitant to do.

Table 8: Visualization of semantic and non-semantic words selected based on the POS tags in the response. Semantic
words are in blue and functional words are in black.

C Extended Analysis of Main Experiments

C.1 Extended Analysis of Evaluation Results for Data Selection in Human-Written Coding Data
Table 9 offers a comprehensive breakdown of LLM performance when fine-tuned on datasets sampled
using various data selection strategies, expanding upon the average results presented in Figure 2. While
the figure provides aggregated metrics, this table delivers a detailed view of Pass@1 and Pass@10 scores
for each programming language across the HUMANEVAL and MULTIPL-E benchmarks. This detailed
presentation highlights performance variations in Python, Java, JavaScript, and C++.

12777

Data Sampling
Methods

HUMANEVAL MULTIPL-E
Python Java JavaScript C++

Pass@1 / Pass@10 Pass@1 / Pass@10 Pass@1 / Pass@10 Pass@1 / Pass@10
Full Data 32.87 / 48.24 30.92 / 44.92 33.84 / 52.62 28.51 / 43.91
SCAR(OOD)

50% 31.94 / 47.80 30.85 / 43.29 33.91 / 52.45 29.23 / 45.28
25% 31.85 / 46.80 29.97 / 43.24 33.14 / 52.75 29.20 / 45.21
12.5% 30.77 / 46.80 28.92 / 41.86 31.23 / 48.38 28.17 / 43.61

SCAR(ID)
50% 33.83 / 50.24 30.10 / 44.95 34.46 / 53.10 28.25 / 43.71
25% 31.48 / 48.68 30.76 / 44.60 32.91 / 52.15 28.92 / 43.98
12.5% 31.10 / 47.14 29.46 / 43.06 31.38 / 49.11 27.61 / 42.39

RANDOM

50% 29.79 / 44.06 30.14 / 43.90 32.86 / 51.61 28.48 / 43.89
25% 30.04 / 45.76 30.22 / 42.35 33.06 / 51.05 28.89 / 43.89
12.5% 27.94 / 45.79 27.53 / 40.47 31.48 / 51.25 25.29 / 40.51

PERPLEXITY

50% 33.27 / 47.90 29.73 / 42.16 32.67 / 52.13 28.46 / 43.40
25% 32.29 / 47.05 29.33 / 42.40 32.45 / 50.10 28.73 / 44.78
12.5% 27.40 / 45.13 28.67 / 40.77 31.30 / 50.71 26.36 / 41.75

SUPERFILTERING

50% 26.50 / 42.00 29.72 / 43.53 32.97 / 52.40 27.86 / 44.86
25% 24.12 / 38.51 29.29 / 42.76 32.50 / 53.20 26.89 / 41.01
12.5% 8.22 / 25.58 26.79 / 38.83 30.11 / 49.20 23.99 / 36.82

HFR
50% 20.29 / 41.52 30.41 / 44.11 33.49 / 51.27 28.71 / 44.83
25% 11.20 / 25.73 29.38 / 42.81 31.73 / 51.51 28.09 / 43.07
12.5% 11.04 / 27.74 27.51 / 40.82 30.71 / 49.41 24.91 / 39.77

ALPAGASUS

50% 31.30 / 44.90 30.59 / 43.41 34.21 / 52.48 29.45 / 43.91
25% 30.32 / 45.00 29.73 / 42.78 32.24 / 51.65 28.29 / 44.15
12.5% 24.76 / 41.90 28.24 / 42.12 30.84 / 49.56 26.17 / 41.12

DIVERSITY

50% 33.05 / 48.38 30.53 / 44.06 34.02 / 53.99 28.84 / 42.60
25% 30.38 / 44.52 30.04 / 42.53 33.34 / 52.71 28.68 / 44.66
12.5% 25.87 / 44.07 27.35 / 39.37 30.48 / 49.65 24.99 / 40.38

LONGEST

50% 30.99 / 50.90 30.74 / 44.74 32.17 / 52.47 28.32 / 43.55
25% 30.10 / 48.41 29.35 / 42.65 30.72 / 51.98 28.92 / 45.07
12.5% 28.12 / 47.60 28.54 / 41.97 29.53 / 48.43 27.40 / 41.65

Table 9: Detailed performance comparison of fine-tuned CODELLAMA-7B evaluated on the HUMANEVAL (Python)
and MULTIPL-E (Java, JavaScript, C++) coding benchmarks. The models are fine-tuned on human-written datasets
selected with different selection methods and proportions. The table reports Pass@1 and Pass@10 scores for each
individual programming language.

The performance ranking of data selection methods aligns consistently with the trends shown in
Figure 2, reinforcing our findings’ reliability. Strategies such as SCAR(ID) and Perplexity-based
sampling demonstrate robust performance across most languages, while approaches like HFR and
SUPERFILTERING yield less favourable results, particularly with smaller data proportions. Notably, LLMs
trained on our SCAR(ID)-selected data outperform those trained on the full dataset when the selection
portion exceeds 25%, highlighting the superiority of our method. This result indicates that a carefully
curated subset can sometimes produce better outcomes than using the entire dataset.

For a detailed explanation of the Pass@1 and Pass@10 metrics, please refer to the HUMANEVAL paper
by Chen et al. (2021).

12778

C.2 Extended Analysis of Evaluation Results for Data Selection in Mixed Synthetic Coding Data

Data Sampling
Methods

HUMANEVAL MULTIPL-E
Python Java JavaScript C++

Pass@1 / Pass@10 Pass@1 / Pass@10 Pass@1 / Pass@10 Pass@1 / Pass@10
Full Data 40.63 / 54.93 32.67 / 44.24 36.89 / 54.10 32.68 / 45.65
SCAR(OOD)

50% 40.15 / 55.25 32.15 / 44.44 37.01 / 55.59 31.96 / 46.59
25% 38.23 / 52.58 32.57 / 45.44 37.04 / 53.20 30.60 / 45.67
12.5% 38.29 / 52.74 32.46 / 45.45 36.07 / 53.45 31.91 / 45.56

SCAR(ID)
50% 40.98 / 56.57 32.80 / 45.75 37.58 / 55.69 32.73 / 45.71
25% 39.84 / 56.75 32.52 / 43.83 36.67 / 55.32 32.00 / 46.26
12.5% 36.93 / 52.96 32.62 / 44.82 36.45 / 52.33 30.43 / 45.42

RANDOM

50% 39.04 / 51.80 31.75 / 44.85 35.59 / 55.13 32.76 / 46.34
25% 35.61 / 52.40 31.33 / 44.24 36.68 / 54.23 30.53 / 44.60
12.5% 34.99 / 51.90 31.34 / 44.29 35.91 / 51.63 31.08 / 44.49

PERPLEXITY

50% 31.91 / 50.94 32.44 / 45.37 37.02 / 54.75 33.22 / 46.19
25% 35.55 / 48.65 31.85 / 45.44 35.40 / 51.75 31.28 / 43.32
12.5% 27.37 / 43.06 30.90 / 44.19 36.34 / 48.74 30.46 / 42.96

SUPERFILTERING

50% 38.93 / 54.55 31.80 / 44.48 35.03 / 54.40 32.22 / 47.25
25% 35.93 / 51.41 32.47 / 44.10 34.46 / 53.13 30.89 / 44.90
12.5% 34.35 / 49.81 30.34 / 42.81 32.97 / 50.60 30.46 / 44.22

HFR
50% 39.09 / 53.59 32.42 / 43.90 36.11 / 53.51 31.60 / 45.51
25% 38.04 / 53.36 32.57 / 43.51 36.45 / 54.10 31.27 / 46.28
12.5% 29.20 / 50.06 31.87 / 43.85 35.17 / 53.94 30.02 / 44.31

ALPAGASUS

50% 36.88 / 53.05 32.20 / 45.65 36.57 / 54.84 33.07 / 45.77
25% 32.52 / 49.55 31.37 / 42.82 33.32 / 51.72 30.37 / 44.69
12.5% 29.08 / 45.07 31.09 / 43.09 34.82 / 52.53 29.73 / 44.16

DIVERSITY

50% 39.21 / 54.95 32.10 / 45.48 37.25 / 54.58 32.60 / 46.33
25% 35.29 / 51.33 32.00 / 43.41 36.10 / 55.44 30.98 / 45.19
12.5% 33.60 / 50.18 31.78 / 44.92 34.82 / 51.92 30.91 / 44.10

LONGEST

50% 36.83 / 53.90 32.73 / 45.15 36.73 / 55.92 33.85 / 46.83
25% 35.60 / 53.50 32.34 / 45.54 36.25 / 54.65 32.57 / 46.43
12.5% 34.54 / 49.89 32.41 / 46.31 35.57 / 54.64 31.42 / 45.30

Table 10: Detailed performance comparison of fine-tuned CODELLAMA-7B evaluated on the HUMANEVAL (Python)
and MULTIPL-E (Java, JavaScript, C++) coding benchmarks. The models are all fine-tuned using GPT-3.5-TURBO-
generated datasets selected with different data selection methods and varying proportions. The table reports the
Pass@1 and Pass@10 scores for each individual programming language.

Table 10 offers a detailed breakdown of the LLM performance results summarized in Figure 2. It
presents Pass@1 and Pass@10 scores across four programming languages, evaluating LLMs fine-tuned
on synthetic dataset subsets chosen through various selection methods. This comprehensive view provides
insights into the LLM’s performance on individual tasks and programming languages, complementing the
aggregated results shown in the figure.

12779

Methods
SCAR(ID) SCAR(OOD) RANDOM PERPLEXITY SUPERFILTERING HFR ALPAGASUS DIVERSITY LONGEST

Human
100% 2.34
50% 2.24 1.90 2.03 1.74 2.00 1.50 2.09 1.99 1.46
25% 2.43 2.59 1.92 2.12 1.82 1.66 1.83 1.97 1.75
10% 2.67 2.02 2.13 2.51 2.04 2.21 1.96 2.03 1.27

Synthetic
100% 3.64
50% 5.56 5.31 2.61 4.17 4.22 3.86 3.86 3.56 6.29
25% 5.89 5.08 3.00 4.04 5.70 4.30 3.94 2.51 5.32
10% 6.61 4.94 2.38 4.54 5.38 4.06 4.78 3.02 6.61

Table 11: Detailed comparison of Length Control WinRate for fine-tuned META-LLAMA-3-8B models evaluated
on ALPACAEVAL benchmarks. Models are trained using human-written and synthetic GPT-3.5-TURBO-generated
data, sampled with various selection methods and proportions.

C.3 Extended Analysis of Evaluation Results for Open-Domain Data Selection Experiments

Table 11 presents the detailed numerical values for the Length Control WinRate, complementing the visual
representation provided in Figure 2. The results show that for the selection of human data, SCAR(ID)
and SCAR(OOD) achieve competitive performance even at reduced data proportions, with SCAR(ID)
showing a slight advantage as the data size decreases, especially at the 25% and 10% subsets. In contrast,
methods such as RANDOM and HFR struggle to maintain consistently high performance across different
data scales.

For the selection of synthetic GPT-3.5-TURBO-generated data, SCAR(ID) consistently outperforms
all methods except Longest, with WinRates peaking at 6.61 for the 10% subset. Interestingly, Longest
performs comparably to SCAR(ID) when selecting synthetic data, as it tends to favour EVOL-INSTRUCT-
generated data, which produces longer responses. This finding highlights that response token length can
serve as a strong stylistic indicator, aligning with the principles of our style consistency framework.

These results suggest that well-curated synthetic datasets can enable high-performing chat-LLMs
even at significantly reduced data proportions. Furthermore, traditional methods such as Random and
Perplexity exhibit lower performance, underscoring the importance of selection strategies tailored to
stylistic consistency in synthetic data scenarios. Striking a balance between data size, diversity, and style
consistency remains crucial for optimizing performance.

C.4 Extended Analysis of Style and Quality Analysis in SCAR-Selected Data

Table 12 presents an extensive set of results, expanding upon the data shown in Table 3. In addition to
helpfulness and correctness scores, as well as the standard deviations of TTR and perplexity, this table
includes a comprehensive range of stylometric and quality metrics with their corresponding average
and standard deviation values. The results are consistent with our findings in Table 3. SCAR selection
effectively enhances the consistency of the linguistic form in the selected data, as evidenced by the
consistently decreasing standard deviation values across most linguistic form metrics as the selection
portion decreases. Similarly, the standard deviation of instructional surprisal metrics generally decreases,
except in a few cases when selecting smaller portions (e.g., 25%, 12.5%) of human-written or synthetic
code data.

Interestingly, while the standard deviations of TTR and MTLD for functional words decrease, their
mean values remain largely unaffected–and, in some cases, even increase. This suggests that SCAR
selection preserves the overall lexical diversity of functional words while narrowing their variability across
examples, resulting in more consistent usage. In other words, the coverage of functional word choices is
maintained (as reflected by stable or higher mean values); however, SCAR’s ranking mechanism enhances
response stylistic consistency by reducing outliers and extreme variations of linguistic forms, leading
to lower standard deviations. This indicates that SCAR does not inherently restrict lexical diversity in
linguistic form; rather, it ensures that linguistic form features are applied more uniformly throughout the
dataset.

12780

TTR MTLD Avg. Sent. Len. Punct. Freq. Flesch Score Avg. Layout Freq. PPL(y | x) Helpful CorrectMean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.
Code Domain

Human
100% 59.16 21.48 15.05 8.37 69.40 66.43 30.77 27.17 42.75 44.36 0.25 0.81 3.83 1.81 2.84 2.68
50% 50.80 16.78 16.34 6.30 68.16 65.49 37.23 28.53 48.59 30.68 0.21 0.67 3.77 1.72 3.02 3.01
25% 47.43 14.85 16.58 5.28 53.36 48.11 34.93 27.10 49.84 24.60 0.20 0.63 3.84 1.73 2.78 2.72
12.5% 45.78 14.29 16.45 4.98 50.50 49.46 33.35 25.42 51.26 22.25 0.20 0.54 3.93 1.86 2.67 2.77

Synthetic
100% 36.67 14.45 12.13 3.87 60.88 61.39 37.72 24.62 49.17 23.10 0.10 0.49 1.67 0.31 3.63 3.64
50% 36.79 10.52 13.07 2.80 52.85 36.48 35.49 22.01 50.52 16.87 0.14 0.63 1.74 0.31 3.52 3.56
25% 36.67 9.33 13.29 2.75 48.71 27.26 31.70 17.62 51.19 15.94 0.21 0.85 1.83 0.34 3.47 3.44
12.5% 37.19 9.22 13.52 2.98 48.36 28.54 28.93 17.02 51.42 16.03 0.25 0.45 1.94 0.35 3.55 3.39

Open Domain
Human

100% 54.51 30.96 8.93 8.00 19.90 16.66 7.62 12.22 61.21 28.03 0.25 1.42 5.23 3.26 3.95 3.91
50% 61.24 28.43 9.55 7.92 21.35 16.36 6.58 8.84 58.27 24.33 0.34 1.76 4.57 2.69 3.98 3.99
25% 62.81 24.74 18.58 7.52 23.49 17.22 6.92 9.32 55.54 21.76 0.40 2.03 4.17 2.41 3.96 3.93
10% 57.01 23.73 11.26 6.77 25.44 20.01 7.71 7.16 51.78 22.40 0.60 2.71 3.93 2.18 3.98 3.99

Synthetic
100% 55.15 30.04 9.87 7.67 23.76 32.82 12.30 20.53 54.40 71.06 0.29 1.27 2.75 1.16 3.93 3.96
50% 47.78 21.08 13.30 5.71 27.33 25.25 18.12 22.09 48.61 21.62 0.35 1.17 2.38 0.72 3.99 3.99
25% 41.96 17.34 13.83 4.40 24.59 18.42 20.54 19.19 46.47 19.89 0.41 1.14 2.33 0.61 3.98 4.02
10% 40.53 14.83 14.15 3.87 21.49 11.93 20.99 15.92 42.04 17.74 0.39 0.80 2.46 0.52 4.00 4.02

Table 12: Detailed performance comparison of the stylometric analysis conducted across the full datasets and the
subsets of the full datasets selected by SCAR(ID) in both code and open domains. The table reports the average
and standard deviation for six authorship metrics, perplexity, and average helpfulness and correctness scores.

SCAR(ID) SCAR(OOD)
Code Open Code Open

Acc(yd ≻ yr ≻ yh) 98.20 64.77 64.26 45.85
Acc(yd ≻ yr) 98.40 80.80 68.29 67.88
Acc(yr ≻ yh) 99.80 81.47 95.58 69.89

Table 13: SCAR’s ranking accuracies when trained with in-domain or out-of-domain examples and tested on
ranking data from code and open domains.

C.5 Analysis of Ranker Performance
Evaluation Settings. We report the accuracy of the ranker in correctly rating responses on the test,
where the goal is to rate “direct” responses higher than “referenced” responses and “referenced” responses
higher than human responses. These accuracies are denoted as Acc(yd ≻ yr ≻ yh), Acc(yr ≻ yh), and
Acc(yd ≻ yr), respectively.

Impact of SCAR Performance. Table 13 shows accuracies of SCAR(OOD) are lower than SCAR(ID)
in both domains, explaining the lower LLM performance with SCAR(OOD)-selected data. Despite this,
SCAR(OOD) outperforms selection baselines in most cases, demonstrating its cross-domain robustness.
The ranking accuracy gap between SCAR(OOD) and SCAR(ID) is larger in the open domain, indicating
that generalizing from code to open-ended data is more challenging than the reverse. Differentiating
surprisal-related features is more difficult than differentiating linguistic form, especially for selecting code
data in out-of-domain settings, as shown by comparing Acc(yd ≻ yr) (68.29) and Acc(yr ≻ yh) (95.58).

C.6 Extended Evaluation Analysis of StarCoder-15.5B
Table 14 presents the full Pass@1 and Pass@10 results for the HUMANEVAL and MULTIPL-E coding
benchmarks, comparing STARCODER-15.5B fine-tuned with various portions of SCAR-selected data
against OCTOCODER-15.5B. The original dataset, comprising 13k examples, was curated by the BigCode
team, who developed both STARCODER-15.5B and OCTOCODER-15.5B and fine-tuned STARCODER-
15.5B into OCTOCODER-15.5B. Notably, STARCODER-15.5B models fine-tuned on SCAR-selected
subsets outperform the original OCTOCODER-15.5B in Pass@1 and Pass@10 across all programming
languages.

Our paper reports OCTOCODER-15.5B’s Pass@1 score of 35.56 on the standard HUMANEVAL (Python)
benchmark to maintain consistency with widely accepted evaluation protocols and the default settings

12781

used in our experiments. However, the BigCodeLeaderboard shows a higher Pass@1 score of 45.3 for
OCTOCODER-15.5B, which corresponds to the HUMANEVALSYNTHESIZE (Python) benchmark rather
than the standard HUMANEVAL. The HUMANEVALSYNTHESIZE variant employs improved prompt
formatting that results in higher performance compared to the standard benchmark. Both results are
sourced from the official BigCodeLeaderboard data files5. For detailed information about the design
differences between these two benchmark variants, please refer to the provided data file URL and the
benchmark descriptions in Muennighoff et al. (2023).

Data Sampling
Methods

HUMANEVAL MULTIPL-E
Python Java JavaScript C++

Pass@1 / Pass@10 Pass@1 / Pass@10 Pass@1 / Pass@10 Pass@1 / Pass@10
OCTOCODER-15.5B 35.56 / 51.81 26.03 / 38.44 32.80 / 46.97 29.32 / 41.90
STARCODER-15.5B

10,000 36.29 / 53.99 28.29 / 39.58 33.22 / 49.79 30.17 / 46.20
5,000 36.95 / 54.07 28.96 / 39.02 34.53 / 49.90 32.83 / 44.47
2,500 37.57 / 55.65 29.29 / 41.06 34.09 / 49.47 31.19 / 42.83

Table 14: Detailed performance comparison of OCTOCODER-15.5B and STARCODER-15.5B fine-tuned on various
subsets of the 13k data used to train OCTOCODER-15.5B. The models are evaluated on the HUMANEVAL (Python)
and MULTIPL-E (Java, JavaScript, C++) coding benchmarks.

C.7 Extended Evaluation of Data Selection Performance for LLMs on Four Additional
Benchmarks: ARC-Challenge, HellaSwag, MMLU and TruthfulQA

Model Variants Data Size ARC-CHALLENGE HELLASWAG MMLU TRUTHFULQA ALPACAEVAL Average
ACC (LHH) ACC (LHH) ACC (SM) BLEU L.C. WinRate Rank↓

OLMO-7B

(allenai/tulu-v2-sft-mixture)

320k 39.42 75.06 38.60 33.90 3.86 3.2
10k 41.04 75.18 25.40 38.31 5.37 2.6
5k 39.08 75.33 26.28 40.02 5.64 2.2

2.5k 39.76 75.29 26.41 40.39 4.08 2.0

META-LLAMA-3-8B
(Mixed Synthetic Data)

10k 55.72 79.02 40.04 19.34 3.64 3.4
5k 50.85 79.06 54.45 37.21 5.56 2.7

2.5k 49.40 79.31 54.60 37.58 5.89 2.0
1k 51.88 79.06 48.79 39.90 6.61 1.9

META-LLAMA-3-8B
(Human-written Data)

10k 53.41 81.07 34.02 33.90 2.34 2.6
5k 55.46 80.56 28.28 34.52 2.24 2.8

2.5k 54.35 80.22 31.13 34.88 2.43 2.4
1k 47.35 80.15 35.62 37.09 2.67 2.2

Table 15: Performance comparison on five benchmarks: ARC-CHALLENGE (Accuracy calculated with Likelihood),
HELLASWAG (Accuracy calculated with Likelihood), MMLU (Accuracy using String Matching), TRUTHFULQA
(BLEU comparison), ALPACAEVAL (L.C. WinRate), and Average Rank. The table includes fine-tuned versions of
OLMO-7B on human-written data and META-LLAMA-3-8B fine-tuned on mixed synthetic and human-written data
across varying dataset sizes (320k, 10k, 5k, 2.5k, and 1k).

Evaluation Settings. Table 15 provides a detailed evaluation of fine-tuned OLMO-7B and META-
LLAMA-3-8B models across five diverse benchmarks: ARC-CHALLENGE, TRUTHFULQA, HEL-
LASWAG, MMLU, and ALPACAEVAL. These benchmarks include a wide range of tasks, from general
knowledge and reasoning to language understanding and text generation, offering a comprehensive
assessment of LLM SFT performance.

• ARC-CHALLENGE (Clark et al., 2018): Evaluates scientific reasoning through multiple-choice
questions by employing a likelihood-based approach (LHH). For each question, the system ranks
possible answers based on their predicted likelihood, selects the highest-scoring option, and compares
it with the ground truth to calculate a normalized accuracy score.

5https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard/tree/main/community_results/
bigcode_octocoder_loubnabnl/metrics_octocoder

12782

https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard/tree/main/community_results/bigcode_octocoder_loubnabnl/metrics_octocoder
https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard/tree/main/community_results/bigcode_octocoder_loubnabnl/metrics_octocoder

• TRUTHFULQA (Lin et al., 2022): Evaluates the factual precision and correctness of LLM responses
by comparing them to ground truth answers using BLEU scores.

• HELLASWAG (Zellers et al., 2019): Assesses common-sense reasoning and contextual understanding
capabilities through a multiple-choice format. The system employs likelihood-based ranking (LHH)
to evaluate potential answers, selects the highest probability option, and compares it with the ground
truth to derive a normalized accuracy score.

• MMLU (Hendrycks et al.): Measures the multi-task language understanding capabilities of LLMs
by evaluating accuracy through String Matching between model outputs and gold-standard answers.

• ALPACAEVAL: Assesses open-domain instruction-following abilities using the Length Control
WinRate (L.C. WinRate) metric.

Additionally, an average ranking metric is used to aggregate performance across benchmarks, with
lower ranks indicating better overall performance. The average ranking is chosen instead of average
performance because it balances variations across metrics, preventing benchmarks with different scales
(e.g., BLEU and accuracy) from disproportionately influencing the results.

For TRUTHFULQA and MMLU, String Matching and BLEU scores are used instead of Likelihood-
based metrics to better align with the nature of instruction-tuned models, which are optimized for
generating complete answers rather than reproducing ground truth tokens. However, as we rely on
lm-evaluation-harness6, it lacks direct support for implementing these metrics for ARC-CHALLENGE

and TRUTHFULQA, constraining us to use Likelihood for these benchmarks.

Discussion. Table 15 demonstrates that subsets selected by SCAR(ID) from larger datasets can con-
sistently outperform models trained on full data in most cases, aligning with our findings in Table 4
in the main body of the paper. Notably, subsets selected using our SCAR method show substantial
performance improvements. For example, OLMO-7B fine-tuned on a SCAR-selected subset (e.g., 2.5k
examples) achieves superior average rankings compared to the 320k full dataset on benchmarks like
TRUTHFULQA (BLEU: 40.39 vs. 33.90) and ALPACAEVAL (L.C. WinRate: 4.08 vs. 3.86). Similarly,
META-LLAMA-3-8B fine-tuned on a 2.5k subset of mixed synthetic data curated with SCAR outperforms
larger subsets on MMLU (Accuracy: 54.60) and ALPACAEVAL (L.C. WinRate: 5.89), achieving a top
average rank of 2.0.

These results highlight the effectiveness of our SCAR selection method in optimizing fine-tuned LLM
performance across diverse benchmarks. By prioritizing data quality and style consistency, SCAR-selected
subsets not only reduce computational costs but also enhance model generalization.

C.8 Sampling Efficiency Analysis
We compare the estimated time required to select 1,000 examples from a pool of 10,000 using various
data selection methods. For CPU-based approaches, we conduct evaluations on an M4 Pro laptop, and
for GPU-based methods, we use an A100 GPU with 40GB of memory. Batch sizes are set to 16 for
GPT-2-based methods and our method, and 2 for those using LLAMA3-8B due to memory constraints.

Metric ALPAGASUS RANDOM DIVERSITY LONGEST PERPLEXITY PERPLEXITY SUPERFILTERING HFR SCAR

Model GPT-3.5-TURBO - - - GPT-2 LLAMA3-8B GPT-2 ROBERTA-BASE ROBERTA-BASE

Time 27 min 0.1 sec 6 min 4 sec 1.5 min 1.5 hr 3 min 1.8 min 1.8 min

Table 16: Sampling time and model type for selecting 1,000 examples from 10,000.

Analysis. As shown in Table 16, SCAR achieves a strong balance between computational efficiency
and data selection performance. While methods such as RANDOM and LONGEST are extremely fast,
they typically underperform in data quality. On the other hand, PERPLEXITY (LLAMA3-8B) incurs a
prohibitive runtime of 1.5 hours, making it impractical for large-scale filtering.

6https://github.com/EleutherAI/lm-evaluation-harness

12783

https://github.com/EleutherAI/lm-evaluation-harness

SCAR performs comparably to HFR and SUPERFILTERING (GPT-2) in runtime, all within the
low-minute range. Notably, SCAR significantly outpaces computationally expensive LLAMA3-based
methods while maintaining top-tier data selection effectiveness in our experiments. This makes SCAR a
practical and scalable solution for real-world scenarios where both quality and efficiency are critical.

D Extended Analysis of Ablation Studies

Data Sampling
Methods

HUMANEVAL MULTIPL-E
Python Java JavaScript C++

Pass@1 / Pass@10 Pass@1 / Pass@10 Pass@1 / Pass@10 Pass@1 / Pass@10
Human Data

Full, GPT-3.5
50% 32.44 / 50.38 30.67 / 44.86 34.40 / 53.16 29.49 / 45.73
25% 31.98 / 49.25 30.41 / 43.65 34.04 / 52.72 29.19 / 43.41
12.5% 31.10 / 47.14 29.46 / 43.06 31.38 / 49.11 27.61 / 42.39

w/o con, GPT-3.5
50% 31.21 / 50.01 30.14 / 44.23 34.67 / 51.90 28.67 / 43.90
25% 31.19 / 47.83 31.22 / 45.73 32.91 / 52.41 28.32 / 44.85
12.5% 30.13 / 45.39 28.72 / 42.68 30.99 / 49.60 27.39 / 42.85

w/o rl, GPT-3.5
50% 33.60 / 50.02 30.47 / 44.53 33.88 / 52.96 28.91 / 45.22
25% 31.76 / 47.47 30.73 / 43.98 32.51 / 51.11 29.42 / 43.47
12.5% 30.56 / 45.26 28.82 / 43.19 31.24 / 49.35 26.89 / 40.95

w/o ref, GPT-3.5
50% 33.63 / 49.22 31.06 / 45.11 34.45 / 53.41 28.66 / 43.96
25% 31.57 / 48.06 30.84 / 44.26 32.89 / 52.58 29.24 / 45.05
12.5% 30.62 / 45.98 28.06 / 40.71 30.80 / 48.08 28.16 / 42.80

Full, Llama2-70b
50% 33.27 / 49.42 30.49 / 43.21 33.70 / 51.46 29.24 / 44.27
25% 29.47 / 46.12 29.75 / 43.19 33.33 / 49.69 29.17 / 44.39
12.5% 30.76 / 46.79 28.13 / 40.52 31.23 / 50.34 27.66 / 41.58

Full, Llama2-13b
50% 31.90 / 50.38 30.75 / 44.29 33.34 / 51.81 28.62 / 42.57
25% 31.71 / 48.49 29.78 / 43.73 32.20 / 51.25 28.40 / 43.16
12.5% 30.29 / 46.03 28.18 / 42.03 30.70 / 48.19 27.47 / 41.58

w/o con, Llama2-13b
50% 30.76 / 43.63 29.84 / 44.11 32.07 / 51.50 28.04 / 43.07
25% 30.15 / 42.78 29.44 / 43.66 32.88 / 54.14 27.93 / 44.26
12.5% 27.93 / 41.07 27.28 / 39.27 31.18 / 49.99 25.57 / 41.35

Full, Llama3-70b
50% 32.48 / 50.39 30.68 / 45.30 33.49 / 53.01 29.28 / 45.13
25% 32.28 / 49.14 30.04 / 43.86 32.09 / 51.54 28.09 / 43.63
12.5% 30.40 / 48.36 28.14 / 41.71 30.67 / 49.67 26.99 / 42.47

Table 17: Comprehensive performance comparison of CODELLAMA-7B models fine-tuned on human-written
datasets, evaluated on HUMANEVAL (Python) and MULTIPL-E (Java, JavaScript, C++) coding benchmarks. The
training datasets were sampled using various methods at different proportions. Pass@1 and Pass@10 scores are
reported for each programming language.

Tables 17 and 18 present detailed performance metrics for various CODELLAMA-7B-based models.
These models were fine-tuned on different data subsets selected by SCAR from full datasets with either
human-written or synthetic responses, with instructions derived from StackExchange. The tables illustrate
the performance of fine-tuned LLMs when using SCAR with various components removed during
SCAR training. This comparison allows us to assess the impact of each SCAR component on the LLM
fine-tuning performance. Unlike the summary results in Figure 3, these tables offer specific numerical
values, enabling clearer and more precise comparisons. The results demonstrate that removing almost

12784

Data Sampling
Methods

HUMANEVAL MULTIPL-E
Python Java JavaScript C++

Pass@1 / Pass@10 Pass@1 / Pass@10 Pass@1 / Pass@10 Pass@1 / Pass@10
Mixed Synthetic Data

Full, GPT-3.5
50% 40.98 / 56.57 32.80 / 45.75 37.58 / 55.69 32.73 / 45.71
25% 39.84 / 56.75 32.52 / 43.83 36.67 / 55.32 32.00 / 46.26
12.5% 36.93 / 52.96 32.62 / 44.82 36.45 / 52.33 30.43 / 45.42

w/o con, GPT-3.5
50% 39.65 / 55.05 32.30 / 44.40 38.21 / 54.92 32.17 / 45.66
25% 39.30 / 56.87 32.76 / 45.87 37.43 / 54.76 32.11 / 45.77
12.5% 36.56 / 51.72 33.00 / 44.48 35.53 / 53.10 31.02 / 45.44

w/o rl, GPT-3.5
50% 39.83 / 54.27 32.28 / 43.66 37.66 / 55.99 32.53 / 46.31
25% 38.62 / 56.03 32.55 / 43.67 36.75 / 53.65 32.25 / 45.06
12.5% 36.02 / 51.78 32.71 / 45.68 35.70 / 52.15 31.70 / 45.51

w/o ref, GPT-3.5
50% 39.85 / 55.81 32.13 / 44.00 36.87 / 56.79 32.67 / 46.43
25% 36.80 / 54.70 32.68 / 45.91 36.87 / 57.04 31.61 / 47.02
12.5% 36.41 / 50.96 32.66 / 44.58 35.78 / 52.21 30.99 / 44.88

Full, Llama2-70b
50% 39.21 / 52.49 32.39 / 45.21 37.45 / 54.87 33.03 / 46.36
25% 39.23 / 53.77 31.59 / 45.21 37.35 / 55.15 30.81 / 45.04
12.5% 37.59 / 51.64 31.44 / 44.82 37.04 / 52.55 30.67 / 44.80

Full, Llama2-13b
50% 37.29 / 53.60 33.24 / 43.86 37.04 / 56.29 32.36 / 44.65
25% 36.70 / 51.88 31.97 / 44.57 36.35 / 56.33 31.12 / 46.04
12.5% 33.78 / 48.61 30.61 / 41.77 34.21 / 51.66 31.11 / 45.27

w/o con, Llama2-13b
50% 37.72 / 53.82 32.18 / 44.19 37.23 / 56.76 32.57 / 46.31
25% 38.59 / 53.47 32.68 / 44.97 37.19 / 55.59 32.00 / 46.58
12.5% 33.34 / 49.78 32.05 / 43.76 35.58 / 53.38 31.02 / 46.13

Full, Llama3-70b
50% 39.40 / 54.46 32.87 / 45.00 36.99 / 57.26 32.52 / 46.38
25% 38.40 / 54.73 32.54 / 44.79 37.40 / 54.46 30.92 / 44.06
12.5% 35.48 / 50.33 31.80 / 45.40 36.45 / 53.71 30.99 / 46.66

Table 18: Comprehensive performance comparison of CODELLAMA-7B models fine-tuned on GPT-3.5-TURBO-
generated datasets, evaluated on HUMANEVAL (Python) and MULTIPL-E (Java, JavaScript, C++) coding bench-
marks. The training datasets were selected from the full mixed synthetic dataset with different sample sizes using
our selection approach, SCAR(ID), with various training configurations. Pass@1 and Pass@10 scores are reported
for each programming language.

any component of SCAR during ranker training reduces LLM fine-tuning performance, regardless of
whether the data is sourced from human or synthetic origins in the coding domain. This finding validates
the importance of each element in our ranker design.

To further explore the impact of representation learning (w/o rl, GPT-3.5) and “referenced” responses
(w/o ref, GPT-3.5) during SCAR training, we conducted two additional analyses, which are detailed in
the following sections.

D.1 Impact of Training SCAR without Referenced Responses
As shown in Table 19, excluding “referenced” responses during SCAR(ID) training significantly reduces
the performance of META-LLAMA-3-8B fine-tuned on SCAR-selected open-domain data subsets when
evaluated on the AlpacaEval benchmark. This result underscores the importance of incorporating “ref-
erenced” responses during ranker training to ensure the ranker effectively captures representations that
model the instructional surprisal of responses in the open domain. In the code domain, however, excluding

12785

Human Mix Synthetic
50% 25% 10% 50% 25% 10%

Full 2.24 2.43 2.67 5.56 5.89 6.61
w/o ref 1.95 2.25 1.99 3.59 4.74 4.44

Table 19: Comparison of L.C. WinRate on the AlpacaEval benchmark for META-LLAMA-3-8B fine-tuned on
subsets of human-written and synthetic data selected by SCAR(ID), with and without incorporating “referenced”
responses during ranker training.

“referenced” responses during SCAR training has only a minor effect on data selection and LLM SFT
performance.

D.2 Representation Similarities Analysis

Linguistic Form Representation Instructional Surprisal Representation
cos(vd

p,v
r
p) cos(vr

p,v
h
p) cos(vd

p,v
h
p) cos(vd

c ,v
r
c) cos(vr

c ,v
h
c) cos(vd

c ,v
h
c)

LIMA
SCAR(ID) 0.9368 0.8970 0.7884 0.8312 0.8801 0.7209
SCAR(ID) w/o rl 0.9050 0.7962 0.6369 0.9406 0.9587 0.8717
SCAR(ID) w/o ref 0.9442 0.7970 0.7249 0.9696 0.8935 0.8544
SCAR(OOD) 0.9416 0.9344 0.8884 0.8887 0.9115 0.8574

StackExchange
SCAR(ID) 0.9020 0.8574 0.6867 -0.4330 0.9646 -0.4803
SCAR(ID) w/o rl 0.9274 0.8224 0.6968 0.7312 0.8978 0.4480
SCAR(ID) w/o ref 0.9778 0.8844 0.8660 0.9836 0.9143 0.8952
SCAR(OOD) 0.9702 0.8502 0.8249 0.7451 0.0083 -0.1289

Table 20: Cosine similarities between linguistic form representations (vp) and instructional surprisal representations
(vc) for “direct”, “referenced”, and human-written responses. The table reports the cosine similarities between (1)
“direct” and “referenced” responses, (2) “referenced” and human-written responses, and (3) “direct” and human-
written responses, separately for linguistic form and instructional surprisal representations. These similarities are
computed using representations from SCAR rankers trained with different configurations: SCAR(ID) trained on
in-domain data, SCAR(ID) without representation learning regularization (w/o rl), SCAR(ID) without “referenced”
responses (w/o ref), and SCAR(OOD) trained on out-of-domain data. The SCAR rankers are applied to response
triplets generated for the same instructions in the LIMA and STACKEXCHANGE datasets. Results are reported
separately for each dataset, with higher cosine similarity values indicating greater alignment between the respective
representations.

As shown in Table 20, we calculate the cosine similarities between linguistic form representations (vp)
and instructional surprisal representations (vc) for “direct”, “referenced”, and human-written responses.
Specifically, the table reports the cosine similarities between i) “direct” and “referenced” responses,
ii) “referenced” and human-written responses, and iii) “direct” and human-written responses for both
linguistic form and instructional surprisal representations. According to Eq. 4, we expect the similarity
between “direct” and “referenced” responses to be higher than those between “referenced” and human or
“direct” and human responses for linguistic form representations. Conversely, for instructional surprisal
representations, the similarity between “referenced” and human responses should be the highest.

Interestingly, even without the representation learning regularization loss in Eq. 4 and while incorpo-
rating “referenced” responses during SCAR training, the observed cosine similarities still align with
our optimization objectives for representation similarities. However, when SCAR training excludes
“referenced” responses or utilizes out-of-domain data, these expected similarity patterns are significantly
disrupted. Consequently, the performance of the META-LLAMA-3-8B model deteriorates when fine-tuned
on data selected by such SCAR configurations.

In summary, incorporating “referenced” responses and utilizing in-domain data during SCAR training

12786

are crucial for maintaining the desired representation similarities. These findings emphasize the importance
of carefully curating training data within SCAR to effectively model both linguistic form and instructional
surprisal. This approach ensures robust SCAR data selection performance and, ultimately, enhances LLM
performance across different domains.

E Bias Analysis

We categorize bias into two types–fairness bias and lexical diversity bias (Vanmassenhove et al., 2021)–and
conduct separate experiments to evaluate each.

E.1 Fairness Bias Analysis

Model Data Type Data Size Regard Diff. (Positive + Negative, % ↓) Toxicity Ratio (Male, % ↓) Toxicity Ratio (Female, % ↓)

Meta-LLaMA-8B

Full Human Written 10k 1.03 0.97 1.66
Subset Human Written 1k 2.33 0.00 0.83
Full Mixed Synthetic 10k 1.63 0.28 1.66
Subset Mixed Synthetic 1k 0.22 1.25 2.50

OLMo-7B
Full 320k 0.82 0.28 0.28
Subset 2.5k 0.42 0.83 1.11

Table 21: Fairness and safety metrics for models trained on full datasets and subsets. REGARD difference (Positive
+ Negative, % ↓) reflects the absolute value of the sum of positive and negative differences, with lower values
(indicated by ↓) signifying better fairness. Toxicity ratios for male and female prompts (% ↓) highlight model safety,
where lower values are better.

Data Type SCAR(ID) RANDOM PERPLEXITY SUPERFILTERING HFR ALPAGASUS DIVERSITY LONGEST

Human Subset 2.33 2.42 0.97 0.88 0.87 2.36 0.80 2.17

Mixed Synthetic Subset 0.22 0.75 1.04 0.38 0.82 0.16 0.62 0.28

Table 22: REGARD difference results (|Positive + Negative|) for models trained on subsets selected from Human
full data and Mixed Synthetic full data using different selection methods. Lower values (↓) indicate better fairness
across domains.

Evaluation Settings. To evaluate fairness bias, we analyze the toxicity and sentiment polarity of
model responses across different demographic and occupational groups. The evaluation consists of two
components:

• Gender Bias: Using prompts from WINOBIAS (Zhao et al., 2018), we generate model responses
and assess toxicity levels using a pre-trained hate speech detection model from Vidgen et al. (2021).
Lower toxicity ratios for male and female prompts (% ↓) indicate better fairness.

• Occupational Bias: Using prompts from BOLD (Dhamala et al., 2021), we generate model re-
sponses and evaluate language sentiment polarity with the REGARD metric (Sheng et al., 2019). This
analysis includes comparisons across categories such as professions (e.g., artistic versus computer
occupations), gender (e.g., actors versus actresses), political ideologies (e.g., anarchism versus capital-
ism), race (e.g., African Americans versus Asian Americans), and religious ideologies (e.g., atheism
versus Buddhism). We report the absolute value of the sum of positive and negative REGARD
differences (% ↓), with lower values indicating reduced bias.

We compare models fine-tuned on subsets selected by various methods with those trained on full
datasets, evaluating the impact of human-written and mixed synthetic subsets on fairness bias in LLM
training.

Discussion. The results (Tables 21 and 22) demonstrate that SCAR-selected subsets maintain fairness
while significantly reducing dataset size. For human-written data, SCAR(ID) achieves a fairness score of
2.33, which is comparable to the full dataset score of 1.03. Additionally, SCAR(ID)-selected subsets

12787

show improvements in toxicity ratios, achieving 0.00 for male prompts and 0.83 for female prompts
compared to 0.97 (male) and 1.66 (female) for the full dataset, indicating its capability to maintain fairness
with smaller data.

When compared to other selection methods, SCAR(ID) achieves comparable or slightly better fairness
in some cases. For mixed synthetic data, SCAR(ID)-selected subsets achieve the lowest REGARD
difference (0.22% ↓) compared to Random (0.75%) and Perplexity (1.04%). These findings confirm
that SCAR maintains fairness on par with other methods while balancing data efficiency, making it an
effective strategy for fine-tuning fair LLMs.

E.2 Lexical Diversity Bias Analysis

Methods for Data Selection
Full Data SCAR(ID) RANDOM PERPLEXITY SUPERFILTERING HFR ALPAGASUS DIVERSITY LONGEST

Instruction
TTR 29.54 27.92 30.04 30.04 30.63 27.18 29.32 32.78 33.57
MTLD 14.71 14.72 14.77 14.83 14.80 14.61 14.85 14.71 14.69

Response
TTR 23.37 16.60 23.22 22.37 21.79 18.09 23.13 24.69 5.35
MTLD 14.43 14.40 14.44 14.53 14.31 14.52 14.55 14.40 13.77

Table 23: Lexical diversity metrics (TTR and MTLD) for instructions and responses within different datasets, either
the full open-domain human-written dataset (Full Data) or subsets with 2500 examples selected using various data
selection methods: SCAR (ID), Random, Perplexity, Superfiltering, HFR, AlpaGasus, Diversity, and Longest.

Evaluation Settings. We measure lexical bias in instructions and responses separately using two
complementary metrics: TTR and MTLD. Type-Token Ratio (TTR) measures the ratio of unique words
(types) to the total number of words (tokens) in a text. Higher TTR values indicate a greater immediate
variety of words, making it sensitive to text length; shorter texts typically have higher TTR scores as
they are less likely to repeat words. Measure of Textual Lexical Diversity (MTLD), on the other hand,
evaluates how lexical diversity is maintained throughout an entire text. It considers how often unique words
appear relative to repeated words across longer segments, offering a more robust and length-independent
view of lexical richness. We apply these metrics to the full open-domain human-written dataset (Full
Data) and to 2,500-example subsets selected by various methods-SCAR(ID), RANDOM, PERPLEXITY,
SUPERFILTERING, HFR, ALPAGASUS, DIVERSITY, and LONGEST-to understand how each selection
method influences lexical diversity.

Discussion. As shown in Table 23, SCAR-selected subsets exhibit slightly reduced lexical diversity
in responses, indicated by lower TTR values, decreasing from 23.4 to 16.6 compared to the full dataset.
We conjecture this is due to SCAR’s focus on instructional surprisal consistency. As shown in Table 12,
SCAR enhances the consistency of linguistic forms (lower standard deviations of TTR) in selected
responses without affecting their mean TTR. This indicates that the reduced response-level TTR is likely
due to instructional surprisal consistency rather than consistency in linguistic forms. In contrast, the
impact on instructions is less pronounced, with TTR decreasing only slightly from 29.5 to 28 compared
to the full dataset, indicating that SCAR does not significantly limit the coverage of instructional content.

Despite these shifts in TTR, our MTLD scores remain comparable to both the full dataset and other
selection methods, for both instructions and responses. In other words, while the immediate variety
of word choices (as reflected by TTR) decreases, the overall, sustained richness of vocabulary (as
measured by MTLD) is preserved. Since instruction-level diversity is more crucial for LLM fine-tuning
performance (Lu et al., 2023; Bukharin and Zhao, 2023), SCAR-selected subsets still preserve the kind of
lexical variety that matters most. These findings align with results from the extensive experiments in the
main body of the paper, where SCAR-selected subsets continue to achieve strong performance.

12788

F Effect of Style-Consistent Responses on Data Selection

To evaluate how different data selection methods perform when selecting from style-consistent versus style-
inconsistent responses, we curate a dataset of 20,000 STACKEXCHANGE instructions with all responses
generated by GPT-3.5-TURBO without using human reference answers. We then apply RANDOM,
PERPLEXITY and SCAR(ID) to select subsets from this dataset and fine-tune CODELLAMA-7B with the
selected data to evaluate the performance of the resulting models on HUMANEVAL.

Data Sampling
Methods

HUMANEVAL MULTIPL-E
Python Java JavaScript C++

Pass@1 / Pass@10 Pass@1 / Pass@10 Pass@1 / Pass@10 Pass@1 / Pass@10
Full Data 40.61 / 54.96 32.11 / 43.81 37.52 / 54.11 32.91 / 46.71
SCAR (ID)

50% 40.02 / 54.48 33.34 / 46.55 39.52 / 54.74 32.36 / 47.19
25% 39.24 / 52.15 33.62 / 44.72 37.88 / 53.60 32.20 / 46.87
12.5% 35.70 / 49.10 31.65 / 45.26 35.54 / 52.83 31.13 / 45.94

Random
50% 39.38 / 54.50 32.52 / 44.65 37.65 / 54.83 31.83 / 45.70
25% 38.00 / 53.50 33.03 / 45.09 37.66 / 56.08 32.02 / 46.54
12.5% 35.85 / 51.33 32.06 / 45.65 35.78 / 53.43 31.71 / 45.88

Perplexity
50% 38.94 / 54.29 32.43 / 45.48 38.01 / 55.35 33.32 / 46.21
25% 37.76 / 52.48 32.43 / 45.70 37.83 / 54.45 32.83 / 47.39
12.5% 35.90 / 50.31 32.28 / 44.35 36.63 / 54.32 31.32 / 46.05

Table 24: Performance comparison of CODELLAMA-7B models fine-tuned on STACKEXCHANGE instructions with
GPT-3.5-TURBO-generated responses and evaluated on HUMANEVAL (Python) and MULTIPL-E (Java, JavaScript,
C++) coding benchmarks. Models are trained on subsets selected using different sampling methods at varying
proportions, with Pass@1 and Pass@10 scores reported for each programming language.

Results Analysis. Table 24 demonstrates that when the initial data pool contains style-consistent
responses (all generated by GPT-3.5-TURBO), the advantages of SCAR over baseline methods are
significantly diminished. Unlike the substantial performance gaps observed with style-inconsistent data in
our main experiments, SCAR(ID) achieves only marginal improvements over Random and Perplexity-
based selection, with differences typically within 1-3 percentage points across all programming languages.
For instance, at 25% data size, SCAR achieves 39.24% Pass@1 on Python compared to RANDOM’s
38.00% and PERPLEXITY’s 37.76%, a much smaller gap than seen with mixed data sources. This validates
our limitation that SCAR’s effectiveness depends on having sufficient stylistic variation in the initial
data pool to enable meaningful ranking distinctions. While smaller subsets can still achieve performance
comparable to the full dataset, the transformative benefits of SCAR are most evident when applied to
datasets with diverse response styles.

G Response Examples

Table 25 provides complete examples of human, “referenced,” and “direct” responses to the instruction,
preserving all details. As shown, the “referenced” response closely aligns with the semantic content of the
human response, thereby reflecting comparable instructional surprisal. In contrast, the “direct” response
maintains similar transitional phrases and formatting to the “referenced” response, indicating a shared
linguistic form between them.

12789

Instruction
Why is FIFA against adding instant replay to the game?
Human Response
There are a few fundamental considerations:

Uncertainty is a part of the game. The referee and linesmen are the arbiters of the action.
Instant replay would limit their authority.
Football is global. Many places do not have access to the technology necessary to implement
instant replay.
Football is a fast-paced game with few opportunities for stoppage. Instant replay would
unnecessarily slow the pace.
In 2008, FiFA President Sepp Blatter said:

"Let it be as it is and let’s leave [football] with errors. The television companies will have the
right to say [the referee] was right or wrong, but still the referee makes the decision – a man,
not a machine."

Blatter and others at FIFA have repeatedly argued against using instant replay. But lately, FIFA
has begun to come around on the idea. At FIFA’s Congress in São Paulo prior to the 2014
World Cup, Blatter proposed allowing managers 2 challenges per game, much like the NFL
handles challenges today.
Although it’s not quite “instant replay,” in 2012 FIFA approved two different goal-line technolo-
gies to improve referee accuracy: “Hawk-Eye” – which uses visual triangulation to determine
ball location – and “GoalRef” – which uses a microchip in the ball and magnetic sensors
within goalposts. (Many say FIFA approved the technologies in response to Frank Lampard’s
snubbed “goal” against Germany in the 2010 World Cup.) In 2013, FIFA announced it would
use GoalControl, a German competitor to Hawk-Eye, at the Confederations Cup, basically a
rehearsal for the World Cup. After a successful run at that tournament, FIFA announced it
would implement GoalControl at the 2014 World Cup. The Guardian provides a pretty helpful
FAQ on the technology.
FIFA may choose to implement further changes to approved goal-line technology and referee
rules when it meets again after the World Cup.
Human Referenced Response from GPT-3.5
FIFA is against adding instant replay to the game for several reasons. One of the main concerns
is that uncertainty is seen as a natural part of the game, and implementing instant replay would
limit the authority of the referees and linesmen. Additionally, football is a global sport, and
many regions may not have the necessary technology to support instant replay. Another factor
is that football is a fast-paced game with minimal stoppages, so introducing instant replay could
potentially disrupt the flow of the game. Ultimately, FIFA has historically been hesitant to
embrace instant replay, preferring to maintain the human element in decision-making on the
field.
Direct Response from GPT-3.5
FIFA is against adding instant replay to the game because they believe it would disrupt the flow
of the game and potentially lead to delays. They also argue that human error is a part of the
game and adding instant replay could take away from the excitement and unpredictability of
live sports. Additionally, implementing instant replay would require significant changes to the
rules and regulations of the game, which FIFA may be hesitant to do.

Table 25: Comparison of the three responses regarding FIFA’s stance on instant replay.

12790

