
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 12187–12204
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

SAM Decoding: Speculative Decoding via Suffix Automaton

Yuxuan Hu1,2, Ke Wang1,2, Xiaokang Zhang1,2, Fanjin Zhang4

Cuiping Li1,3, Hong Chen1,3, Jing Zhang1,3*

1School of Information, Renmin University of China, Beijing, China
2Key Laboratory of Data Engineering and Knowledge Engineering, Beijing, China

3Engineering Research Center of Database and Business Intelligence, Beijing, China
4Knowledge Engineering Group, Tsinghua University, Beijing, China

Abstract

Speculative decoding (SD) has been demon-
strated as an effective technique for lossless
LLM inference acceleration. Retrieval-based
SD methods, one kind of model-free method,
have yielded promising speedup, but they often
rely on single retrieval resources, inefficient re-
trieval methods, and are constrained to certain
tasks. This paper presents a novel retrieval-
based speculative decoding method that adapts
suffix automaton (SAM) for efficient and ac-
curate draft generation by utilizing the gener-
ating text sequence and static text corpus. Un-
like existing n-gram matching methods, SAM-
Decoding finds the exact longest suffix match,
achieving an average time complexity of O(1)
per generation step of SAM update and suf-
fix retrieval. It can also integrate with existing
methods, adaptively selecting a draft genera-
tion strategy based on match length to general-
ize to broader domains. Extensive experiments
on Spec-Bench show that our method is 18%+
faster than other retrieval-based SD methods.
Additionally, when combined with advanced
EAGLE-2, it provides an additional speedup
of 3.28% – 11.13% across various-sized LLM
backbones. Our code is available at our reposi-
tory.

1 Introduction

The Transformer-based Large Language Models
(LLMs) (Brown et al., 2020; Dubey et al., 2024;
Yang et al., 2024) have demonstrated remarkable
abilities and are extensively adopted in numerous
domains. The scaling law drives LLMs to become
deeper, reaching hundreds of billions of parameters,
which makes them inefficient for generating text
in a token-by-token autoregressive manner. Spec-
ulative decoding (SD) methods (Leviathan et al.,
2023; Cai et al., 2024) seek to tackle this problem
by quickly generating multiple draft tokens and sub-
sequently concurrently verifying them with LLMs.

*Corresponding author. zhang-jing@ruc.edu.cn

vicuna-7B vicuna-13B vicuna-33B
0

20

40

60

80

100

120

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

62.0

34.3

13.7

80.5

45.3

17.6

74.6

44.1

19.4

95.6

51.5

21.4

111.3

67.6

30.5

120.1

70.3

31.5

PLD
SAM-Decoding
Token Recycling
SAM-Decoding[T]
EAGLE-2
SAM-Decoding[E2]

Figure 1: Throughput of Vicuna-7B, Vicuna-13B,
Vicuna-33B on MT-Bench with A6000 GPU using PLD,
Token Recycling, EAGLE-2, and SAM-Decoding vari-
ant, where SAM-Decoding is our proposed method.

These methods can decrease inference latency sub-
stantially while maintaining decoding accuracy.

Most speculative methods can be categorized
into generation-based methods. For these meth-
ods, one or more small-sized draft models need
to be carefully chosen and trained. For exam-
ple, Medusa (Cai et al., 2024) utilizes multiple
decoding heads to generate multiple future tokens
while EAGLE-2 (Li et al., 2024b) leverages shal-
low Transformer layers to predict the next last hid-
den states and corresponding decoding tokens. To-
ken cycling (Luo et al., 2024) is a special case of
generation-based methods that dynamically main-
tain the posterior distribution of each token, re-
sulting in a model-free generative approach. Al-
though these methods achieve impressive speedup,
they often fail to generate long draft tokens due to
drafting overhead or decaying prediction accuracy.
Retrieval-based speculative decoding methods, a
major type of model-free method, aim to remedy
this issue by generating draft tokens from the exist-
ing text corpus or the current text sequence.

However, current retrieval-based methods have

12187

https://github.com/hyx1999/SAM-Decoding
https://github.com/hyx1999/SAM-Decoding

notable limitations. Firstly, diverse retrieval
sources contribute to the efficiency of retrieval-
based SD methods, but existing methods typically
rely on a single retrieval source: PLD (Saxena,
2023) focuses on current text while REST (He
et al., 2024) uses a static text corpus. Secondly, re-
stricted by n-gram matching, the retrieval methods
used in existing methods have limitations in effi-
ciency and accuracy. As an example, PLD finds n-
gram matching from the current text sequence via
brute force, it has poor theoretical computational
complexity and limited applicability to larger text
corpus. Thirdly, the limited integration between
retrieval-based and generation-based methods re-
stricts their inference speed. For instance, PLD is
capable of producing highly effective drafts in a
few positions but performs poorly in others. On
the other hand, generation-based methods, such as
Token Recycling and EAGLE-2, are able to gen-
erate quality drafts across most positions. Conse-
quently, integrating retrieval-based methods with
generation-based approaches has the potential to
further enhance their inference speed.

To address limitations in previous retrieval-based
methods, this paper introduces SAM-Decoding, an
innovative speculative decoding technique based
on suffix automaton. (1) To enhance the coverage
of the retrieved corpus, we utilize both the gener-
ating text sequence and the static text corpus as
retrieved sources. (2) To improve the retrieval effi-
ciency and accuracy, we adapt a suffix automaton
(SAM) to solve the longest suffix match problem,
which yields more accurate match positions and
exact match lengths compared to n-gram match-
ing. As for retrieval efficiency, the average time
complexity of SAM update and suffix retrieval is
O(1) by capturing relationships between adjacent
suffixes. (3) To combine the retrieval-based method
and the generation-based method, we adaptively
select either the retrieval method or the generation
method to provide drafts at each position based on
the match length of the automaton, which can better
utilize the advantages of retrieval-based methods
and generation-based methods.

Specifically, SAM-Decoding creates both a dy-
namic suffix automaton for the generating text se-
quence and a static suffix automaton for the text
corpus. The nodes of the suffix automaton repre-
sent substrings in the text sequence and text corpus.
The earliest position of each substring is recorded
in each node. During generation, we can directly
retrieve drafts from the automaton using the match

C
B

B

C

B

A
B C

C

next

CB,
BCB,
ABCB

CBC,
BCBC,
ABCBCABCAB

C,BCB
A

link

Figure 2: The suffix automaton corresponding to the
string “ABCBC”.

position and the match length. After each gen-
eration step, for the static automaton, the match
position is updated, while for the dynamic automa-
ton, its structure and the match position are updated
simultaneously. The primary contributions of this
work are as follows.

• We introduce a model-free, retrieval-based
SD method leveraging the suffix automaton,
which incorporates multiple retrieval sources and
achieves higher efficiency compared to existing
approaches.

• We propose integrating retrieval-based meth-
ods with generation-based methods by utiliz-
ing the match length of the automaton from re-
trieval methods, enabling better exploitation of
the strengths of both approaches.

• Extensive evaluations demonstrate the compet-
itive performance of our method across tasks.
On Spec-Bench, SAM-Decoding achieves 18%+
faster than previous retrieval-based speculative
decoding methods (e.g., PLD, REST, etc.). When
combined with EAGLE-2 (Li et al., 2024b), as
shown in Figure 1, our method outperforms the
state-of-the-art, delivering an additional 3.28%
– 11.13% speedup on MT-Bench w.r.t. various
LLM backbones.

2 Background

2.1 Suffix Automaton

Suffix Automaton is an efficient data structure for
representing the substring index of a given string,
which allows fast substring retrieval. The time
complexity of constructing a suffix automaton is
O(L), where L is the length of the string and it can
be constructed incrementally.

As shown in Figure 2, a suffix automaton con-
tains a series of nodes and two types of edges, ex-
tension edges (next) and suffix link edges (link).

12188

ABCBCABCBC

… … B C … … … … B CDEFGH

B
C

CC B

B

C

B

A
B C

C
Build

Build

① Drafting

Static SAM Dynamic SAMText Corpus

Generated Text

S-SAM: BCDEF

D-SAM: DEFGH

 CDEFGAuxiliary:
Select

DEFGH

DEFGH DEF② Verify

Accepted Tokens

③ Update
… B C D E F

… B C
B

C

C

Update D-SAM

D

D

…

Generated Draft Update text

match
position

match
position

Figure 3: Overview of SAM-Decoding’s workflow. In each round of generation, the suffix automaton matches
the suffixes of the generating text and retrieves the draft from the text corpus and the generated text respectively
according to the matching position. Our method can be combined with an auxiliary SD algorithm (Auxiliary) to
deal with the scenarios where the retrieval is not applicable. We select the best draft from the three candidate drafts
based on the match length, and then the drafts are verified by the LLM for accepted tokens. Using these accepted
tokens, we finally extend the dynamic SAM and generate text for the next round of generation.

A node in the automaton corresponds to all sub-
strings that have the same ending position in the
string. Meanwhile, extension edges are standard
edges that represent a possible extension of the
current substring by appending a new token. In
contrast, suffix link edges create a path that allows
the automaton to quickly jump to states represent-
ing shorter suffixes of the current substring.

Based on the two types of transfer edges, for a
progressively generated token sequence, we can
find the longest suffix that matches the sequence
in a suffix automaton at each generation step with
an average O(1) time complexity. To better under-
stand the matching process, it can be viewed as
starting from the root node and then transitioning
based on tokens generated by the LLM. The final
node reached represents the matching result.

2.2 Speculative Decoding

Given the model input x = (x1, x2, . . . , xt), an
LLM generates a new token xt+1 at each gener-
ation step autoregressively. The key idea of
speculative decoding is to utilize a lightweight
draft model to generate multiple candidate to-
kens quickly, i.e., xdraft = (xt+1, xt+2, . . . , xt+n),
and then the target LLM simultaneously evaluates
these candidates and accept those aligned with
the output distribution of the LLM, i.e., xaccept =

(xt+1, xt+2, . . . , xt+m), where n and m denote the
size of the draft and the number of accepted tokens.

In the above, we assume that the draft is a se-
quence of tokens. Recent works proposed to ver-
ify a candidate token tree via a tree mask in the
attention module to make the target LLM simulta-
neously evaluate multiple branches of this token
tree, thereby increasing the acceptance length of
the draft model.

3 SAM-Decoding

In this section, we introduce our proposed method,
SAM-Decoding. SAM-Decoding is a retrieval-
based speculative decoding method designed to
address three key limitations in existing retrieval-
based speculative methods: (1) The use of insuf-
ficient retrieval sources. (2) The employment of
inefficient retrieval methods and restrictions on n-
gram matching lengths. (3) Lack of integration
with generation-based methods

To tackle the first two limitations, SAM-
Decoding leverages suffix automaton on diverse
text sources, which significantly enhances the cov-
erage of retrieved corpus and the efficiency of
the retrieval process while allowing for flexible
matching lengths (Section 3.1, 3.2, and 3.3). In
what follows, we detail how SAM-Decoding can
be integrated with generation-based methods (Sec-

12189

tion 3.4). By utilizing the precise matching in-
formation provided by the suffix automaton, our
method not only overcomes the third limitation but
also ensures consistent performance improvements
across a wide range of tasks. The workflow of
SAM-Decoding is shown in Figure 3.

3.1 Suffix Automaton Construction
To cover comprehensive retrieval sources, SAM-
Decoding builds suffix automaton (SAM) by uti-
lizing the generating text sequence and static text
corpus. Thus, we construct two types of suffix
automatons: a dynamic suffix automaton and a
static suffix automaton.

For the generating text sequence, we create and
expand a dynamic suffix automaton incrementally
as generation progresses and perform text matching
concurrently. At each node of the dynamic suffix
automaton, we record the earliest position of all
substrings corresponding to that node in the refer-
ence string, termed as min_endpos, which allows
us to efficiently locate the previous ending posi-
tion of the matched longest suffix. Hereafter, the
subsequent tokens after the matched suffix can be
regarded as potential drafts.

For the static text corpus, we pre-build a static
suffix automaton offline, which is used for text
matching during inference. At each node of the
static suffix automaton, we compute the top-k suc-
cessor tokens of each node, termed as topk_succ,
and subsequently use them to construct tree-
structured drafts. Although computing the succes-
sor token requires additional computation, this can
be done offline, eliminating the need to account for
this time overhead in real-time processing.

A suffix automaton can be constructed in lin-
ear time using Blumer’s algorithm (Blumer et al.,
1984). Since the suffix automaton is designed for a
single text, to this end, for static suffix automation,
we concatenate multiple strings in the corpus by us-
ing special symbols like an End-of-Sentence (EOS)
token and then construct a static suffix automaton
for this concatenated string. The construction pro-
cess of the suffix automaton is detailed in Appendix
A.1.

3.2 Drafting with Suffix Automaton
Let S denote the suffix automaton, T denote its
associated reference text, and x = (x1, x2, . . . , xt)
denote the current text sequence. The state within
the suffix automaton corresponding to the sequence
x is denoted as st (including match position and

match length). The initial state s0 corresponds to
the root node of the suffix automaton. As shown
in Algorithm 1, in each round of generation, the
transition to the next state is performed based on
the newly generated token xt+1 and the current
state st:

st+1 = Transfer(S, xt+1, st).

Then, for dynamic suffix automaton, we extract
n consecutive tokens from the reference text T to
form a draft, using the min_endpos value stored
in the node corresponding to state st+1, termed as
pt+1. Then the draft dt+1 is defined as:

dt+1 = T [pt+1 : pt+1 + n],

where dt+1 represents the generated draft and n
denotes the length of the draft.

And for static suffix automaton, we construct a
tree-structured draft by Prim’s algorithm based on
top-k successors, as detailed in Appendix A.4,

dt+1 = Prim(S, st+1, xt+1).

We use different draft generation strategies for
dynamic suffix automaton and static suffix automa-
ton, this is due to the dynamic automaton prefer-
ring to generate high quality drafts at few posi-
tions, while the static automaton prefers to gener-
ate average-quality drafts at most positions, so we
use sequence-structured drafts for the dynamic au-
tomaton to enhance max accept length, while uses
tree-structured drafts for the static automaton to
enhance average accept length.

We track the match length (denoted as l) to de-
termine whether to use the static suffix automaton
or the dynamic suffix automaton. Specifically, let
l1 and l2 be the matching lengths of the static and
dynamic automata, respectively. We use the draft
from the static automaton if l1 > l2 + lbias, other-
wise, we use the draft from the dynamic automaton,
where lbias is a predefined constant.

3.3 Update of Suffix Automaton

After the draft is generated, we verify it using the
LLM and accept the correct tokens, denoted as
xaccept = (xt+1, xt+2, . . . , xt+m). We then up-
date the match state and suffix automaton based
on these accepted tokens. For the dynamic suffix
automaton, we transfer the match state and update
the automaton simultaneously. Let St denote the

12190

Algorithm 1 State Transfer of Suffix Automaton
1: function Transfer
2: Input: suffix automaton S, next token t,

current state s, current matching length l
3: while s ̸= S.root and t /∈ s.next do
4: s, l = s.link, s.link.length
5: end while
6: if t ∈ s.next then
7: s, l = s.next[t], l + 1
8: else
9: l = 0

10: end if
11: Output: next state s, next match length l
12: end function

dynamic suffix automaton for the generated text
(x1, x2, . . . , xt). The process is as follows:

st+i = Transfer(St+i−1, st+i−1, xt+i),

St+i = Expand(St+i−1, xt+i),

i ∈ {1, 2, ...,m},

For the static suffix automaton, we transfer to new
states without updating the automation:

st+i = Transfer(S, st+i−1, xt+i), i ∈ {1, 2, ...,m}.

The process of transfer is detailed in Algorithm 1
and the process of updating the suffix automaton is
detailed in Appendix A.1.

Using amortized analysis, we can prove that the
average complexity of state transfer is O(1), where
L is the length of the current generated text (C.f.
proof in Appendix A.5). Existing methods like
PLD uses a brute-force search for n-gram matches,
resulting in a time complexity of O(n2L). REST
also employs n-grams but searches using suffix ar-
rays, leading to a time complexity of O(n2 logC).
Here, n is the predefined maximum matching
length, L is the length of the current text, and C
is the size of the static corpus. Therefore, our pro-
posed SAM-Decoding has a lower time complexity
and can find the exact longest suffix match without
any limit on matching length, making it faster and
more accurate for draft generation.

3.4 Generation-based Method Integration
The retrieval-based speculative decoding methods
excel at generating drafts from the corpus or the
current text sequence effectively. If it fails to pro-
duce a satisfactory draft, other speculative decod-
ing techniques can be employed to generate more

diverse drafts. To combine different types of drafts,
a straightforward idea is that the length of the suf-
fix match can indicate the confidence of the draft
produced by the automaton, where long matches
imply that more tokens are likely to be acceptable.

To implement this, we concurrently use an auxil-
iary speculative decoding technique alongside the
suffix automaton. During each generation step,
we adaptively select the drafts offered by the au-
tomaton or the auxiliary SD method based on the
match length of the generated text within the au-
tomaton. For the auxiliary SD method, we set a
fixed virtual match length lthreshold. In our study,
we consider two auxiliary cutting-edge specula-
tive decoding methods: the model-free Token Re-
cycling and the model-based EAGLE-2. Among
them, Token Recycling maintains an adjacency list
of the top-k probable next tokens for each token.
It builds a draft tree using breadth-first search and
continuously updates the list based on the latest
tokens. EAGLE-2, on the other hand, leverages
a Transformer decoder layer to jointly predict the
last hidden states of the LLM and the next token
autoregressively.

4 Experiments

In this section, we first introduce our experimental
setup, then present the experimental results, and
finally present the ablation experiments.

Models and Tasks. We conducted experiments on
Vicuna-7B-v1.3 (Zheng et al., 2023). We evaluated
SAM-Decoding on Spec-Bench (Xia et al., 2024),
HumanEval (Chen et al., 2021), and HARGID (Ka-
malloo et al., 2023). Spec-Bench is a comprehen-
sive benchmark designed for assessing SD meth-
ods across diverse scenarios. It is based on six
commonly used datasets, MT-Bench (Zheng et al.,
2023), WMT14 DE-EN, CNN/Daily Mail (Nalla-
pati et al., 2016), Natural Question (Kwiatkowski
et al., 2019), GSM8K (Cobbe et al., 2021), and
DPR (Karpukhin et al., 2020), including six as-
pects: Multi-turn Conversation (MT), Translation
(Trans), Summarization (Sum), Question Answer-
ing (QA), Mathematical Reasoning (Math), and
Retrieval-augmented Generation (RAG). In addi-
tion, HumanEval, and HARGID are used to evalu-
ate the speed of SD methods in the Code Genera-
tion task and Context Q&A task, respectively.

Baselines. We considered the following base-
line methods, including the model-based method

12191

Method
Spec-Bench HumanEval HAGRID

#MAT Tokens/s Speedup #MAT Tokens/s Speedup #MAT Tokens/s Speedup

Lookahead 1.63 44.37 1.20× 1.76 30.81 1.54× 1.46 23.58 1.32×
REST 1.63 51.34 1.38× 1.85 34.60 1.74× 1.53 24.91 1.39×
PIA 2.08 55.45 1.47× 2.62 65.49 1.68× 2.43 66.65 1.95×
PLD 1.75 59.02 1.56× 1.65 59.04 1.52× 2.03 44.11 1.29×
SAM-Decoding 2.30 69.37 1.84× 2.64 88.91 2.29× 2.44 76.72 2.24×
Token Recycling 2.83 69.65 1.84× 2.78 75.44 1.94× 2.88 66.17 1.93×
SAM-Decoding[T] 3.03 85.73 2.27× 2.94 95.08 2.45× 3.23 87.93 2.57×
EAGLE-2 4.36 90.14 2.38× 5.13 125.77 3.24× 4.15 82.61 2.41×
SAM-Decoding[E2] 4.62 97.56 2.58× 4.95 130.28 3.35× 4.75 96.60 2.81×

Table 1: Inference efficiency of different methods on Spec-Bench, HumanEval, and HAGRID, where each method
was compared with the autoregressive decoding method provided in its environment.

Trans

MT

Sum

QA

Math

RAG

1.22×

0.95× 2.07×

1.29×

2.44×

1.22×

1.62×

1.07×
1.91×

1.38×

1.81×

1.13×

Lookahead
REST

PIA
PLD

SAM-Decoding

Figure 4: Speedup of SAM-Decoding
compared to retrieval-based SD base-
lines on Spec-Bench.

Trans

MT

Sum

QA

Math

RAG

1.93×

1.61× 3.09×

1.92×

2.95×

1.96×

2.28×

1.71×2.93×

2.16×

2.28×

1.68×

Token Recycling
SAM-Decoding[T]

EAGLE-2 SAM-Decoding[E2]

Figure 5: Speedup of SAM-Decoding combined
with auxiliary SD methods compared to SD base-
lines on Spec-Bench.

EAGLE-2 (Li et al., 2024b), the model-free method
Token Recycling (Luo et al., 2024), and the
retrieval-based methods Lookahead Decoding (Fu
et al., 2024), PIA (Zhao et al., 2024b), PLD (Sax-
ena, 2023) and REST (He et al., 2024).

Metrics. We evaluated speculative decoding meth-
ods from the following aspects (Li et al., 2024c).
(1) Mean Number of Accepted Tokens (#MAT):
The average number of tokens accepted per gener-
ation step. (2) Throughput (Tokens/s): The av-
erage number of tokens generated per second. (3)
Speedup: The wall-time speedup ratio of specula-
tive decoding methods compared to autoregressive
generation.

Experiment Setup. Experiments were run on

a server with a 20-core CPU and an NVIDIA
RTX A6000 GPU (48GB). We used PyTorch 2.3.0,
Transformers 4.46.1, and CUDA 12.1. Models uti-
lized float16 and greedy decoding with a batch
size of 1. Hyperparameters lbias and lthreshold
were set to 5, but lbias was 0 without auxiliary
methods. The draft size was 40 by default and
16 for code datasets. Default settings from the
original papers were applied for auxiliary specula-
tive decoding methods. For SAM-Decoding, we
constructed a static suffix automaton based on the
Vicuna-7B generation results on datasets Stanford-
alpaca, python-code-instruction-18k, and GSM8k.
Details of the static SAM construction process
and its overhead are shown in Appendices A.2
and A.3. To enhance our model, we incorporated

12192

EAGLE-2 SAM-Decoding[E2]

Prefill 7.54(1.4%) 7.83(1.6%)

DraftGen 141.92(26.6%) 103.83(21.1%)

Decoding 346.7(62.5%) 326.34(65.7%)

Verification 13.34(2.5%) 32.98(7.0%)

Updating 23.84(4.5%) 17.97(3.7%)

Table 2: Fine-grained comparison of EAGLE-2 and
SAM-Decoding[E2] in HumanEval

two auxiliary approaches: the model-free Token
Recycling and the model-based EAGLE-2. Here,
SAM-Decoding[T], and SAM-Decoding[E2] de-
note the combinations of our base model with To-
ken Recycling, and EAGLE-2, respectively.

Experiment Results. Experimental results on
Spec-Bench, HumanEval and HAGRID when us-
ing Vicuna-7B-v1.3 are shown in Table 1. It can be
seen that SAM-Decoding has higher speedups on
all datasets compared to all the retrieval-based base-
lines, achieving speedup ratios of 1.84×, 2.29×,
and 2.24× on each of the three datasets. Combin-
ing SAM-Decoding with generation-based meth-
ods can further speed up processing. In the Spec-
Bench and HAGRID datasets, integrating SAM-
Decoding improves the inference speed of To-
ken Recycling and EAGLE-2. For Spec-Bench,
this enhancement raises the speedup ratios from
1.84× and 2.38× to 2.27× and 2.58× respec-
tively. On the HAGRID dataset, the improvement
is from 1.93× and 2.41× to 2.57× and 2.81×. In
the HumanEval dataset, the integration of SAM-
Decoding speedup the Token Recycling, increas-
ing its speedup ratios from 1.94× to 2.45×. It
also slightly improves the throughput of the model-
based EAGLE-2, though decreases the mean ac-
cepted tokens. We additionally compare EAGLE-
2 and SAM-Decoding[E2] at a finer granularity.
The results are shown in Table 2. It can be seen
that EAGLE-2 incurs a non-negligible time over-
head when generating drafts, accounting for 26.6%
of total inference time. In contrast, SAM gener-
ates drafts more quickly. Thus, although SAM-
Decoding[E2]’s mean accepted tokens are slightly
lower than those of EAGLE-2, the overall inference
speed is faster due to faster draft generation.

In Figures 4 and 5, we further show the speedup
of the different methods on each task of Spec-
Bench. Compared to retrieval-based SD base-

Method
Spec-Bench

#MAT Tokens/s Speedup

PLD 1.75 59.02 1.56×
SAM-Decoding 2.30 69.37 1.84×

w/o Static SAM 1.85 61.93 1.64×
w/o Dynamic SAM 1.63 50.37 1.33×

Table 3: The impact of different draft generation mod-
ules on inference speed.

lines, SAM-Decoding shows better inference speed
across all tasks. Meanwhile, SAM-Decoding can
effectively improve the inference speed of Token
Recyling on each task, as well as the inference
speed of EAGLE-2 on MT, SUM, and RAG tasks.

Finally, we investigated the impact of different
modules within SAM-Decoding on inference speed.
SAM-Decoding comprises two draft generation
modules: the static suffix automaton and the dy-
namic suffix automaton. We measured the infer-
ence speed of SAM-Decoding after removing each
of these two modules individually. The results are
presented in Table 3. From the experimental results,
it is clear that each module contributes to the accel-
eration of the decoding process. Notably, the dy-
namic suffix automaton has a significantly greater
impact compared to the static suffix automaton.
This suggests that, in many cases, generating drafts
from the dynamic context is more effective than
retrieving drafts from a pre-existing text corpus.
However, although the main improvement comes
from dynamic SAM, static SAM also proves effec-
tive. When used together, the enhancements are
most pronounced, as we select dynamic and static
SAM based on the token matching length. Notice
that SAM-Decoding is slightly slower than REST
when only static SAM is used according to Table 1,
which we consider stemming from differences in
the static corpus used and the implementation de-
tail, and we analyze this in Appendix D. In addition
to Vicuna-7B, we also conducted experiments on
more models as shown in Figure 1. Please refer to
Appendix B for more experimental results.

Ablation Experiments. To further understand
the contributions of various components of SAM-
Decoding and the influence of different hyperpa-
rameters on inference speed, we conducted a series
of ablation studies. Firstly, we examined the effects
of lbias and lthreshold on inference speed through
a grid search. These parameters control the pref-

12193

2
3

4
5

6

lthreshold 2

3

4
5

6

l bia
s

2.0
2.2
2.4

2.6

2.8

3.0

3.2

2.12

2.08

2.16

2.21

2.22

2.27
2.24

2.18

2.16 2.17

2.80

2.88

2.89

2.96

2.93

3.03
2.97

2.97

3.03
2.96

#MAT
Speedup

Figure 6: The speedup and mean accepted toknes of
SAM-Decoding[T] under different lbias and lthreshold.

20 30 40 50 60 70
Draft size (#tokens)

77

78

79

80

81

82

83

84

85

To
ke

ns
/s

82.49
82.97

83.51 83.36 83.06

77.97

Figure 7: The throughput of SAM-Decoding[T] under
different draft size.

erence for generating drafts from the current text
over text corpus and the preference for using suffix
automaton over the auxiliary SD method when cre-
ating drafts. The findings are summarized in Figure
6. We observe that both the mean accepted tokens
(MAT) and the speedup ratio increase with lbias
and lthreshold before they equal 5 and then begin
to decrease.. Figure 7 illustrates the throughput of
SAM-Decoding[T] at varying draft sizes. Increas-
ing the draft size improves throughput when the
draft size is less than 40. Above 40, throughput
began to drop, and at 70, it dropped significantly.
This is because increasing the draft size below the
threshold reduces the number of generation rounds,
thus improving efficiency. However, sizes above
this threshold do not provide additional benefits,
but rather strain the GPU compute density, which
slows down inference. For more ablation experi-
ment results, please refer to Appendix C.

5 Related Work

Speculative decoding is an approach that can sig-
nificantly speed up large language models (LLMs)
without compromising the quality of their outputs.
The majority of speculative decoding techniques
rely on smaller neural networks to create drafts dur-
ing the inference process. These techniques are re-
ferred to as generation-based speculative decoding
methods. Early implementations of model-based
speculative decoding, such as those Speculative De-
coding (Leviathan et al., 2023), primarily focused
on generating draft sequences using pre-existing,
smaller-scale LLMs. Subsequently, advancements
like Medusa (Cai et al., 2024), SpecInfer (Miao
et al., 2024), and EAGLE (Li et al., 2024c,b) in-
troduced tree-based speculative methods (Du et al.,
2024; Ankner et al., 2024; Chen et al., 2024b,a)
and began to train additional model with special ar-
chitecture tailored for speculative decoding. Token
Recycling (Luo et al., 2024), on the other hand, uti-
lizes the previously generated token distribution to
generate drafts, becoming a specialized generation-
based method. Additionally, beyond the additional
model, research works also conducted on specu-
lative decoding that relies either on the model it-
self (Kou et al., 2024; Yi et al., 2024) or on sub-
layers within the LLM (Elhoushi et al., 2024; Liu
et al., 2024). In contrast to generation-based meth-
ods, certain approaches focus on generating drafts
through retrieval, utilizing n-gram matching, which
we refer to as the retrieval-based method (Zhao
et al., 2024a; Li et al., 2024a; Oliaro et al., 2024).
Notable among these are Lookahead Decoding (Fu
et al., 2024), PIA(Zhao et al., 2024b), PLD (Saxena,
2023) and REST (He et al., 2024).

6 Conclusion

In this work, we propose SAM-Decoding, a spec-
ulative decoding method via suffix automatons
constructed from both generated text and text cor-
pus. SAM-Decoding can efficiently retrieve drafts
from retrieval sources, thereby accelerating infer-
ence. SAM-Decoding is also designed to seam-
lessly integrate with existing SD methods. Conse-
quently, in scenarios where retrieval is not feasible,
SAM-Decoding can adaptively switch to alterna-
tive methods for draft generation. Experimental
results demonstrate that SAM-Decoding outper-
forms retrieval-based SD baselines. Meanwhile,
when combined with state-of-the-art techniques,
SAM-Decoding can significantly enhance their per-

12194

formance in Multi-turn Conversation, Summariza-
tion, Retrieval-augmented Generation, and Context
Q&A tasks.

7 Limitation

Firstly, when combining SAM-Decoding with
other types of methods, we use a very heuristic
approach, i.e., we choose different methods de-
pending on the match length. This does not fully
utilize the exact match lengths provided by the suf-
fix automaton, so subsequently, we will try to train
the classifier to select different decoding methods
at each generation round.

Secondly, the performance of retrieval-based
methods is highly correlated with the usage sce-
narios, and the existing datasets do not well reflect
the performance of retrieval-based methods in real
usage, so in the future, we also need to construct
datasets that are more compatible with real scenar-
ios to evaluate the performance of retrieval-based
methods.

Finally, we developed the suffix automaton uti-
lizing Python, which introduced unnecessary re-
dundancy in its storage and concurrently compro-
mised the efficiency of the automaton. Conse-
quently, a pivotal direction for future work involves
implementing the suffix automaton in more effi-
cient programming languages to mitigate these is-
sues. Moreover, alternative data structures such as
full-text indexes (Ferragina et al., 2007) and com-
pressed suffix trees (Shareghi et al., 2016) offer
enhanced memory efficiency compared to the suf-
fix automaton. Therefore, further investigation into
whether these structures can facilitate more time-
and memory-efficient draft retrieval is necessary.

Acknowledgments

This work is supported by the National Key Re-
search & Develop Plan (2023YFF0725100), the
National Natural Science Foundation of China
(62322214, U23A20299, U24B20144, 62172424,
62276270, 62406164), and the Postdoctoral Fel-
lowship Program of CPSF under Grant Number
GZB20240358 and 2024M761680.

We also sincerely thank Cunxiao Du from the
Sea AI Lab and Heming Xia from the Hong Kong
Polytechnic University for their recognition of this
work.

References
Zachary Ankner, Rishab Parthasarathy, Aniruddha

Nrusimha, Christopher Rinard, Jonathan Ragan-
Kelley, and William Brandon. 2024. Hydra:
Sequentially-dependent draft heads for medusa de-
coding. arXiv preprint arXiv:2402.05109.

Anselm Blumer, Janet Blumer, Andrzej Ehrenfeucht,
David Haussler, and Ross McConnell. 1984. Build-
ing the minimal dfa for the set of all subwords of a
word on-line in linear time. In Automata, Languages
and Programming: 11th Colloquium Antwerp, Bel-
gium, July 16–20, 1984 11, pages 109–118. Springer.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. Preprint, arXiv:2005.14165.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng,
Jason D Lee, Deming Chen, and Tri Dao. 2024.
Medusa: Simple llm inference acceleration frame-
work with multiple decoding heads. arXiv preprint
arXiv:2401.10774.

Jian Chen, Vashisth Tiwari, Ranajoy Sadhukhan,
Zhuoming Chen, Jinyuan Shi, Ian En-Hsu Yen,
and Beidi Chen. 2024a. Magicdec: Breaking the
latency-throughput tradeoff for long context gen-
eration with speculative decoding. arXiv preprint
arXiv:2408.11049.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Zhuoming Chen, Avner May, Ruslan Svirschevski,
Yuhsun Huang, Max Ryabinin, Zhihao Jia, and
Beidi Chen. 2024b. Sequoia: Scalable, robust, and
hardware-aware speculative decoding. arXiv preprint
arXiv:2402.12374.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Cunxiao Du, Jing Jiang, Xu Yuanchen, Jiawei Wu,
Sicheng Yu, Yongqi Li, Shenggui Li, Kai Xu, Liqiang
Nie, Zhaopeng Tu, et al. 2024. Glide with a cape: A
low-hassle method to accelerate speculative decoding.
arXiv preprint arXiv:2402.02082.

12195

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, and Aiesha Let-
man et al. 2024. The llama 3 herd of models.
Preprint, arXiv:2407.21783.

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich,
Basil Hosmer, Bram Wasti, Liangzhen Lai, Anas
Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed
Roman, et al. 2024. Layer skip: Enabling early
exit inference and self-speculative decoding. arXiv
preprint arXiv:2404.16710.

Paolo Ferragina, Giovanni Manzini, Veli Mäkinen, and
Gonzalo Navarro. 2007. Compressed representations
of sequences and full-text indexes. ACM Trans. Al-
gorithms, 3(2):20–es.

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang.
2024. Break the sequential dependency of llm in-
ference using lookahead decoding. arXiv preprint
arXiv:2402.02057.

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason Lee, and
Di He. 2024. Rest: Retrieval-based speculative de-
coding. In Proceedings of the 2024 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (Volume 1: Long Papers), pages 1582–1595.

Ehsan Kamalloo, Aref Jafari, Xinyu Zhang, Nan-
dan Thakur, and Jimmy Lin. 2023. Hagrid:
A human-llm collaborative dataset for generative
information-seeking with attribution. arXiv preprint
arXiv:2307.16883.

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. arXiv preprint
arXiv:2004.04906.

Siqi Kou, Lanxiang Hu, Zhezhi He, Zhijie Deng, and
Hao Zhang. 2024. Cllms: Consistency large lan-
guage models. arXiv preprint arXiv:2403.00835.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: A benchmark for question answering
research. Transactions of the Association for Compu-
tational Linguistics, 7:452–466.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding. In International Conference on
Machine Learning, pages 19274–19286. PMLR.

Minghan Li, Xilun Chen, Ari Holtzman, Beidi Chen,
Jimmy Lin, Wen-tau Yih, and Xi Victoria Lin.
2024a. Nearest neighbor speculative decoding
for llm generation and attribution. arXiv preprint
arXiv:2405.19325.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang
Zhang. 2024b. Eagle-2: Faster inference of language
models with dynamic draft trees. arXiv preprint
arXiv:2406.16858.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang
Zhang. 2024c. Eagle: Speculative sampling re-
quires rethinking feature uncertainty. arXiv preprint
arXiv:2401.15077.

Jiahao Liu, Qifan Wang, Jingang Wang, and Xunliang
Cai. 2024. Speculative decoding via early-exiting for
faster llm inference with thompson sampling control
mechanism. arXiv preprint arXiv:2406.03853.

Xianzhen Luo, Yixuan Wang, Qingfu Zhu, Zhiming
Zhang, Xuanyu Zhang, Qing Yang, Dongliang Xu,
and Wanxiang Che. 2024. Turning trash into treasure:
Accelerating inference of large language models with
token recycling. arXiv preprint arXiv:2408.08696.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao
Cheng, Zeyu Wang, Zhengxin Zhang, Rae Ying Yee
Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al.
2024. Specinfer: Accelerating large language model
serving with tree-based speculative inference and
verification. In Proceedings of the 29th ACM Interna-
tional Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Vol-
ume 3, pages 932–949.

Ramesh Nallapati, Bowen Zhou, Caglar Gulcehre, Bing
Xiang, et al. 2016. Abstractive text summarization
using sequence-to-sequence rnns and beyond. arXiv
preprint arXiv:1602.06023.

Gabriele Oliaro, Zhihao Jia, Daniel Campos, and Aurick
Qiao. 2024. Suffixdecoding: A model-free approach
to speeding up large language model inference. arXiv
preprint arXiv:2411.04975.

Apoorv Saxena. 2023. Prompt lookup decoding.

Ehsan Shareghi, Matthias Petri, Gholamreza Haffari,
and Trevor Cohn. 2016. Fast, small and exact:
Infinite-order language modelling with compressed
suffix trees. Transactions of the Association for Com-
putational Linguistics, 4:477–490.

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang,
Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and
Zhifang Sui. 2024. Unlocking efficiency in large
language model inference: A comprehensive sur-
vey of speculative decoding. arXiv preprint
arXiv:2401.07851.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, et al. 2024. Qwen2
technical report. arXiv preprint arXiv:2407.10671.

Hanling Yi, Feng Lin, Hongbin Li, Peiyang Ning, Xi-
aotian Yu, and Rong Xiao. 2024. Generation meets
verification: Accelerating large language model infer-
ence with smart parallel auto-correct decoding. arXiv
preprint arXiv:2402.11809.

12196

https://arxiv.org/abs/2407.21783
https://doi.org/10.1145/1240233.1240243
https://doi.org/10.1145/1240233.1240243
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://github.com/apoorvumang/prompt-lookup-decoding/
https://doi.org/10.1162/tacl_a_00112
https://doi.org/10.1162/tacl_a_00112
https://doi.org/10.1162/tacl_a_00112

Weilin Zhao, Yuxiang Huang, Xu Han, Chaojun Xiao,
Zhiyuan Liu, and Maosong Sun. 2024a. Ouroboros:
Speculative decoding with large model enhanced
drafting. arXiv preprint arXiv:2402.13720.

Yao Zhao, Zhitian Xie, Chen Liang, Chenyi Zhuang,
and Jinjie Gu. 2024b. Lookahead: An inference ac-
celeration framework for large language model with
lossless generation accuracy. In Proceedings of the
30th ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining, pages 6344–6355.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023.
Judging llm-as-a-judge with mt-bench and chatbot
arena. Advances in Neural Information Processing
Systems, 36:46595–46623.

A Suffix Automaton

A.1 Construction Process of Suffix Automaton
Algorithm 2 introduces the construction (Build-
SAM) and expansion process (Expand) of Suffix
Automaton, where the INIT_SAM function cre-
ates a suffix automaton that only contains the root
node. For the root node, the link attribute value is
None, the next attribute value is empty, the length
attribute value is 0, and the min_endpos attribute
value is 0. Meanwhile, Algorithm 3 shows the con-
struction process of the top-k successors for each
node of the static suffix automaton. Each node in
the algorithm involves the variable, “freq”, which
represents the frequency of occurrence of the cor-
responding substring for each node, and can be
initialized at the time of constructing the suffix au-
tomaton, i.e., “freq” is initialized to 1 for nodes
generated by expansion, and “freq” is initialized
to 0 for nodes generated based on cloning (line
15 and line 32 in Algorithm 2). For each node,
the recording of variable ’freq’ is used to estimate
the probability of generating different successor
tokens, thus determining the top-k successors.

A.2 Construction Detail
To construct static SAM, we converted instructions
and inputs from the Stanford-Alpaca, Python-Code-
Instruction-18K, and GSM8K datasets into model
inputs using Vicuna’s default template, as shown
in Listing 1. We then generated responses for these
inputs based on the Vicuna-7B-v1.3 model. Finally,
the generated corpus—including the template, in-
structions, inputs, and responses—was used to con-
struct our static SAM.

For the instructions and inputs, we selected
Stanford-Alpaca due to its reputation for being
lightweight and containing a diverse range of in-
structions. Since Stanford-Alpaca lacks math and
coding instructions, we incorporated the Python-
Code-Instruction-18K and GSM8K datasets to ad-
dress these gaps.

For the responses, as the main experiments were
based on the Vicuna series of models, we gener-
ated the responses for the instructions and inputs
using the Vicuna-7B-v1.3 model to ensure align-
ment with the data distribution of the Vicuna series
of models.

{
"description ": "Template used by

Vicuna.",
"prompt_input ": "A chat between a

curious user and an artificial

12197

Corpus Size #MAT Tokens/s Speedup

100% 2.30 69.37 1.84×
50% 2.24 68.35 1.81×
25% 2.21 67.90 1.80×
0% (w/o static SAM) 1.85 61.93 1.64×

Table 4: Inference speed of SAM-Decoding under dif-
ferent corpus size.

intelligence assistant. The
assistant gives helpful ,
detailed , and polite answers to
the user 's questions .\n\nUSER: {
instruction }\n\n{input}\n\
nASSISTANT :",

"prompt_no_input ": "A chat between a
curious user and an artificial

intelligence assistant. The
assistant gives helpful ,
detailed , and polite answers to
the user 's questions .\n\nUSER: {
instruction }\n\nASSISTANT :"

}

Listing 1: Vicuna’s default template

A.3 Resources Usage and Effect of Static
Corpus

The corpus we used to build the static SAM consists
of 22,438,527 tokens, and the resulting static SAM
takes up 1.5GB of memory. Each token needs
approximately 72 bytes of storage space on average.
In addition, it takes about 5 minutes to build static
SAM and about 2 minutes to load static SAM from
disk to memory.

Meanwhile, to further demonstrate how the cor-
pus size of static SAM affects SAM-Decoding’s
inference speed, we tested subsets containing 50%
and 25% of the data from our corpus. The results
of these experiments are shown in Table 4. These
results indicate that incorporating static SAM im-
proves SAM-Decoding’s inference speed. How-
ever, increasing the corpus size does not signifi-
cantly further enhance performance.

In summary, currently, the memory costs associ-
ated with the corpus are low, while further increas-
ing the corpus size does not significantly improve
performance.

A.4 Drafting Process of Suffix Automaton
Algorithm 4 introduces the drafting process based
on Prim’s algorithm to find a maximum spanning
tree. The insight of the algorithm is to approxi-
mate the probability distribution of the token based

on the frequency and find the draft tree with the
highest probability based on the maximum span-
ning tree algorithm. As shown in Algorithm 3,
for static suffix automaton, we can offline main-
tain the frequency of occurrence of the correspond-
ing substring for each node. Then, based on the
recorded frequency for each node in the automaton,
we can compute the top-k successor tokens and
corresponding transition probabilities, where the
transition probability is computed by dividing the
frequency of occurrence of the target state by the
frequency of occurrence of the current state. The
time complexity of Prim’s algorithm is O(n log n),
where n denotes the draft size.

A.5 Time Complexity of Suffix Automaton
Consider a suffix automaton S with the initial state
s0, which corresponds to the root node of the au-
tomaton (representing the empty string). Suppose
that state s0 undergoes transitions through a se-
quence of L tokens x = (x1, x2, . . . , xL):

si = Transfer(S, xi, si−1), i ∈ {1, 2, . . . , L}.

We aim to demonstrate that the average time
complexity of each state transition is O(1), while
the worst-case time complexity is O(L).

First, let us define the matching length associ-
ated with the state si as li. Given that each state
transition can increase the length of the match by
at most 1, it follows that 0 ≤ li ≤ i. Next, we
introduce the concept of energy ϕ for each state si,
defined as ϕ(si) = li. Let ci represent the time cost
of the transition of the i-th state. We then define
the amortized cost ĉi as:

ĉi = ci + ϕ(si)− ϕ(si−1).

We can now express the total amortized cost over
all transitions as:

L∑

i=1

ĉi =
L∑

i=1

(ci + ϕ(si)− ϕ(si−1))

=
L∑

i=1

ci + ϕ(sL)− ϕ(s0).

Since ϕ(si) ≥ 0 and ϕ(s0) = 0, it follows that:

L∑

i=1

ĉi ≥
L∑

i=1

ci.

Next, we analyze the upper bound of ĉi. Each
state transition involves moving through the link

12198

edge zero or more times, followed by a move
through the next edge. Transitioning through the
link edge incurs a cost of 1 but decreases the poten-
tial by at least 1. Conversely, transitioning through
the next edge incurs a cost of 1 and increases the
potential by 1. Consequently, the amortized cost ĉi
is bounded above by 2, leading to:

L∑

i=1

ĉi ≤ 2L.

Thus, the average time complexity of state tran-
sitions is: ∑L

i=1 ci
L

≤ 2L

L
= 2,

which is O(1). In the worst case, a single operation
may require up to li transitions through the link
edge, followed by one transition through the next
edge, resulting in a worst-case time complexity of
O(L).

B Additional Experiment Results

In this section, we first present the results of the
experiment on Llama3-8B-instruct, Vicuna-13B-
v1.3, and Vicuna-33B-v1.3.

Tables 5 and 6 present the speedup ratios of
SAM-Decoding compared to baseline methods
across the Spec-Bench, HumanEval, and HAGRID
datasets, utilizing the Llama3-8B-instruct model.
It can be seen that the inference speed of SAM-
Decoding outperforms the strongest retrieval-based
baseline PLD on all tasks. Meanwhile, SAM-
Decoding, when paired with Token Recycling
(SAM-Decoding[T]), brings speedups on all tasks.
Specifically, SAM-Decoding enhances the speedup
ratio of Token Recycling from 1.92×, 1.85×, and
1.82× to 2.09×, 2.04×, and 2.12× for Multi-
turn Conversation, Summarization, and Retrieval-
Augmented Generation tasks, respectively. This
improvement raises the overall speedup ratio of
token recycling in the Spec-Bench dataset from
1.91× to 2.05×. On the HumanEval and HAGRID
datasets, SAM-Decoding increases the speedup ra-
tio of Token Recycling from 1.99× and 2.17×
to 2.16× and 2.30×, respectively. Furthermore,
SAM-Decoding also amplifies the performance
gains of EAGLE-2 in Multi-turn Conversation,
Summarization, Retrieval-augmented Generation,
Code Generation and Context Q&A tasks. The
speedup ratios were increased from 2.08×, 1.85×,
1.87×, 2.37×, and 2.18× to 2.36×, 1.98×, 2.11×,
2.54× and 2.35× respectively.

4.2%

65.5%

0.6%

23.4%

6.3%

Prefill (4.2%)
Decoding (65.4%)
Draft Generation (0.6%)
Verification (23.4%)
Updating (6.3%)

Figure 8: The percentage of inference time of different
modules in SAM-Decoding.

Token Recycling Dynamic SAM Static SAM0

20

40

60

80

100
Pe

rc
en

ta
ge

(%
)

85.96%

11.59%
2.45%

0

1

2

3

4

5

6

7

8

#M
AT

2.51

6.57

3.39

Percentage
#MAT

Figure 9: The percentage of usage and mean accept
tokens of different draft modules.

Tables 7, 8, 9 and 10 present the speedup ratios
of SAM-Decoding compared to baseline methods
across the Spec-Bench, HumanEval, and HAGRID
datasets, utilizing the Vicuna-13B-v1.3 and Vicuna-
33B-v1.3. On both models, SAM-Decoding still
has inference speed exceeding the retrieval-based
baseline, while by combining Token Recycling
and EAGLE-2 also further improves the inference
speed of the model on the Multi-turn Conversation,
Summarization, Retrieval-augmented Generation
and Context Q&A tasks.

Then, we present additional experiments, in-
cluding the percentage of inference time of dif-
ferent modules in the decoding process of SAM-
Decoding, the percentage of drafts provided by
different draft modules in SAM-Decoding, and the
effect of different hyperparameters on the inference
speed of SAM-Decoding for each task in Spec-
Bench.

12199

Model Method MT Trans Sum QA Math RAG #MAT Tokens/s Speedup

Llama3-8B

PLD 1.30× 1.12× 1.41× 1.03× 1.30× 1.53× 1.39 44.26 1.28×
SAM-Decoding 1.59× 1.35× 1.50× 1.35× 1.54× 1.75× 1.72 52.35 1.51×
Token Recycling 1.92× 1.88× 1.85× 1.75× 2.24× 1.82× 2.76 66.42 1.91×
SAM-Decoding[T] 2.09× 1.93× 2.04× 1.82× 2.32× 2.12× 2.63 71.73 2.05×
EAGLE-2 2.08× 1.95× 1.85× 1.80× 2.31× 1.87× 3.90 68.69 1.98×
SAM-Decoding[E2] 2.36× 1.96× 1.98× 1.79× 2.32× 2.11× 3.92 72.47 2.08×

Table 5: Speedup of SAM-Decoding compared to the baselines on Spec-Bench.

Model Method
HumanEval HAGRID

#MAT Tokens/s Speedup #MAT Tokens/s Speedup

Llama3-8B

PLD 1.30 42.39 1.18× 1.50 45.15 1.56×
SAM-Decoding 2.06 64.38 1.79× 1.88 58.40 2.02×
Token Recycling 2.93 71.49 1.99× 2.84 62.77 2.17×
SAM-Decoding[T] 2.77 78.04 2.16× 2.70 66.76 2.30×
EAGLE-2 4.74 85.58 2.37× 3.97 63.30 2.18×
SAM-Decoding[E2] 4.76 91.50 2.54× 3.93 67.94 2.35×

Table 6: Speedup of SAM-Decoding compared to the baselines on HumanEval and HAGRID.

The inference process of SAM-Decoding is di-
vided into five stages: prefill, draft generation, de-
coding, verification, and updating. During the pre-
fill stage, the model processes the input prompt to
establish an initial state. In the first draft generation
stage, a draft is produced based on this initial state.
The decoding phase consists of further processing
of the draft by the model, i.e., feeding the draft
into the LLM to obtain sampling results for each
position. Next comes verification, where the cor-
rect parts of the draft are evaluated based on the
information processed during the decoding stage.
Finally, the update phase modifies the state of the
model based on the valid parts of the draft. Figure
8 illustrates the proportion of time each stage con-
sumes within the SAM-Decoding[T] process based
on Spec-Bench. As shown, the decoding stage
takes up the largest portion of time, accounting for
65.4% of the entire process. This is followed by
the verification stage, which occupies 23.4% of the
total time. The updating stage requires 6.3% of the
time, whereas the draft generation stage contributes
only 0.6% to the overall duration. Furthermore, the
pre-fill stage comprises 4.2% of the total process-
ing time.

Figure 9 shows the frequency of usage of differ-
ent draft modules of SAM-Decoding[T] on Spec-

Bench and the corresponding mean accept tokens.
It can be seen that in 85.96% of the cases, due to
insufficient matching length, we generate drafts
based on the auxiliary method, corresponding to an
average accept length of 2.51, while in the remain-
ing 11.59% and 2.45% of the cases, the dynamic
suffix automaton and static suffix automaton are
used to generate drafts, corresponding to average
accept lengths of 6.57 and 3.39, respectively. Ta-
ble 12 further shows the frequency of use of dif-
ferent modules in each task and the corresponding
mean accept tokens.

Finally, Table 11 shows the inference speed of
different methods based on Vicuna-7B-v1.3 on
NVIDIA A800 GPU. It can be seen that SAM-
Decoding can still effectively combine Token Re-
cycling and EAGLE-2 to achieve higher inference
speed, which shows the effectiveness of our ap-
proach for different devices.

C Additional Ablation Experiments

In Figures 6 and 7, we illustrated the effect of
lthreshold, lbias, and draft size on the inference
speed of SAM-Decoding[T], and here we further
show the effect of these hyperparameters for each
task in Spec-Bench. The experimental results are
shown in Tables 14 and 15.

12200

Model Method MT Trans Sum QA Math RAG #MAT Tokens/s Overall

Vicuna-13B

PLD 1.61× 1.10× 2.36× 1.11× 1.69× 1.80× 1.66 33.89 1.59×
SAM-Decoding 2.08× 1.26× 2.23× 1.53× 2.09× 1.89× 2.19 39.24 1.84×
Token Recycling 2.03× 1.84× 2.07× 1.83× 2.42× 1.84× 2.81 42.74 2.01×
SAM-Decoding[T] 2.36× 1.80× 2.63× 1.83× 2.49× 2.22× 2.91 47.27 2.22×
EAGLE-2 3.10× 2.15× 2.58× 2.38× 3.19× 2.33× 4.42 56.06 2.63×
SAM-Decoding[E2] 3.27× 2.12× 2.89× 2.34× 3.12× 2.54× 4.51 57.88 2.72×

Table 7: Speedup of SAM-Decoding compared to the baselines on Spec-Bench.

Model Method
HumanEval HAGRID

#MAT Tokens/s Speedup #MAT Tokens/s Speedup

Vicuna-13B

PLD 1.54 32.06 1.44× 1.90 43.38 2.15×
SAM-Decoding 2.42 48.92 2.20× 2.21 41.93 2.08×
Token Recycling 2.79 46.03 2.07× 2.90 40.97 2.03×
SAM-Decoding[T] 2.79 50.87 2.28× 2.99 48.33 2.40×
EAGLE-2 5.15 77.85 3.49× 4.24 52.28 2.59×
SAM-Decoding[E2] 5.12 78.96 3.54× 4.41 56.17 2.78×

Table 8: Speedup of SAM-Decoding compared to the baselines on HumanEval and HAGRID.

D Comparison Between REST and
SAM-Decoding with only Static SAM

In Table 3, we find that SAM-Decoding is slightly
slower than REST when only static SAM is used
(SAM-Decoding w/o Dynamic SAM) with the
same mean accept tokens. We note that REST
implements suffix arrays in C, whereas SAM-
Decoding implements the SAM in Python. This
difference results in a higher average per-operation
overhead for SAM compared to suffix arrays,
since Python is much slower than C. As a result,
SAM-Decoding using only static SAM is currently
slightly slower than REST. However, REST uses
more corpus than SAM-Decoding. Specifically,
the REST utilizes the ShareGPT dataset which
is 10 times larger than the dataset employed by
SAM-Decoding. Given this disparity, we augment
our corpus with 10% of ShareGPT data and sub-
sequently evaluate the SAM-Decoding inference
speed on this enhanced dataset, which includes
38,521,232 tokens and 3 GB of memory for static
SAM storage and is 1/5 the size of ShareGPT. Fol-
lowing this adjustment, SAM-Decoding demon-
strated a mean accept token and inference speed
that surpassed that of REST. In addition, it also in-
dicates that static the suffix automaton have higher
retrieval accuracy compared to the suffix arrays

used by REST. The results are shown in Table 13.

12201

Model Method MT Trans Sum QA Math RAG #MAT Tokens/s Overall

Vicuna-33B

PLD 1.50× 1.07× 2.06× 1.09× 1.59× 1.51× 1.65 13.33 1.46×
SAM-Decoding 1.91× 1.25× 1.98× 1.48× 1.83× 1.66× 1.97 15.35 1.68×
Token Recycling 2.10× 1.84× 2.19× 1.88× 2.42× 1.92× 2.70 18.80 2.06×
SAM-Decoding[T] 2.31× 1.79× 2.53× 1.90× 2.48× 2.06× 2.68 19.87 2.18×
EAGLE-2 3.29× 2.31× 2.73× 2.51× 3.65× 2.46× 4.06 25.86 2.83×
SAM-Decoding[E2] 3.40× 2.25× 2.93× 2.43× 3.45× 2.54× 4.08 25.91 2.84×

Table 9: Speedup of SAM-Decoding compared to the baselines on Spec-Bench.

Model Method
HumanEval HAGRID

#MAT Tokens/s Speedup #MAT Tokens/s Speedup

Vicuna-33B

PLD 1.58 14.18 1.51× 1.55 15.74 1.80×
SAM-Decoding 2.05 19.08 2.03× 1.90 16.15 1.85×
Token Recycling 2.64 19.64 2.09× 2.71 18.29 2.09×
SAM-Decoding[T] 2.73 22.44 2.39× 2.60 19.74 2.26×
EAGLE-2 3.53 28.18 3.00× 3.84 24.28 2.78×
SAM-Decoding[E2] 3.61 29.56 3.14× 3.82 25.08 2.87×

Table 10: Speedup of SAM-Decoding compared to the baselines on HumanEval and HAGRID.

Model Method MT Trans Sum QA Math RAG #MAT Tokens/s Overall

Vicuna-7B

Token Recycling 2.08× 1.76× 1.97× 1.85× 2.35× 1.76× 2.82 98.39 1.96×
SAM-Decoding[T] 2.62× 1.82× 2.92× 2.09× 2.60× 2.21× 3.02 119.21 2.38×
EAGLE-2 2.66× 1.76× 2.18× 2.03× 2.63× 1.97× 4.34 110.56 2.21×
SAM-Decoding[E2] 3.19× 1.97× 2.86× 2.28× 2.84× 2.32× 4.52 129.36 2.58×

Table 11: Speedup of SAM-Decoding on A800 GPU compared to the baselines on Spec-Bench.

Token Recycling Dynamic SAM Static SAM

Percentage #MAT Percentage #MAT Percentage #MAT

MT 86% 2.43 11% 7.44 3% 3.55

Trans 99% 2.18 1% 2.67 0% NAN

Sum 81% 2.71 19% 8.24 0% NAN

QA 92% 2.27 6% 11.22 2% 3.91

Math 79% 2.86 16% 4.01 5% 3.13

RAG 84% 2.57 13% 4.93 3% 2.93

Table 12: The frequency of use of different modules of SAM-Decoding[T] in each task of Spec-Bench.

12202

Algorithm 2 Construction Process of Suffix Au-
tomaton

1: function Expand-State
2: Input: suffix automaton S, link l, next nxt,

length len, position p, frequency f
3: s = S.expand_state() {A constructor}
4: s.link = l
5: s.next = nxt
6: s.length = len
7: s.min_endpos = p
8: s.freq = f
9: Output: new state s

10: end function
11: function Expand
12: Input: suffix automaton S, token t
13: S.max_length = S.max_length + 1
14: l = S.max_length
15: c = Expand-State(S,None, {}, l, l, 1)
16: p = S.last
17: while p ̸= None and t /∈ p.next do
18: p.next[t] = c
19: p = p.link
20: end while
21: if p = None then
22: c.link = S.root
23: else
24: q = p.next[t]
25: if p.length + 1 = q.length then
26: c.link = q
27: else
28: cl = Expand-State(S)
29: cl.link = q.link, cl.next = q.next
30: cl.length = p.length + 1
31: cl.min_endpos = q.min_endpos
32: cl.freq = 0
33: while p ̸= None and p.next[t] = q do
34: p.next[t] = cl
35: p = p.link
36: end while
37: q.link = c.link = cl
38: end if
39: end if
40: S.last = c
41: end function
42: function Build-SAM
43: Input: token sequence s
44: S = INIT_SAM()
45: for t in s do
46: Expand(S, t)
47: end for
48: Output: suffix automaton S
49: end function

Algorithm 3 Construction Process of Top-k Suc-
cessors and Transition Probabilities

1: function dfs
2: Input: state s
3: for tn, sn ∈ s.next do
4: dfs(sn)
5: s.freq = s.freq + sn.freq
6: end for
7: s.topk_succs = TopKfreq(s.next)
8: s.topk_prob = []
9: for tn, sn ∈ s.topk_succ do

10: s.topk_prob.append(sn.freq/s.freq)
11: end for
12: end function
13: function Init_topk
14: Input: suffix automaton S
15: dfs(S.root)
16: end function

Algorithm 4 Drafting via Prim’s Algorithm

1: function Prim
2: Input: suffix automaton S, state s, start

token t
3: q = PriorityQueue()
4: q.push({1.0, s, t})
5: tokens = [], parents = []
6: while q.size() > 0

and d.size() ̸= MAX_SIZE do
7: p, idx, s, t = q.top()
8: q.pop()
9: tokens.append(t)

10: parents.append(idx)
11: for (tn, sn, pn) in

zip(s.topk_succ, s.topk_prob) do
12: pnew = p ∗ pn
13: snew = sn
14: tnew = tn
15: q.push(pnew, len(tokens), snew, tnew)
16: end for
17: end while
18: Output: draft tree (tokens, parents)
19: end function

Dataset #MAT Tokens/s

REST ShareGPT 1.63 51.34

SAM-Decoding Ours 1.63 50.37

+ ShareGPT(10%) 1.68 51.98

Table 13: Comparison between REST and SAM-
Decoding with only static SAM.

12203

(lthreshold, lbias)

(3, 3) (5, 3) (5, 5) (5, 8) (8, 8)

MT 2.36× 2.44× 2.49× 2.32× 2.39×
Trans 1.51× 1.72× 1.70× 1.57× 1.71×
Sum 2.92× 2.89× 2.94× 2.84× 2.70×
QA 1.79× 1.82× 1.97× 1.79× 1.90×
Math 2.06× 2.19× 2.40× 2.16× 2.36×
RAG 2.11× 2.11× 2.14× 2.08× 2.06×

Table 14: The effect of lthreshold, lbias for each task in
Spec-Bench.

Draft Size

20 40 60

MT 2.48× 2.49× 2.43×
Trans 1.70× 1.70× 1.70×
Sum 2.86× 2.94× 2.93×
QA 1.96× 1.97× 1.96×
Math 2.39× 2.40× 2.31×
RAG 2.13× 2.14× 2.14×

Table 15: The effect of draft size for each task in Spec-
Bench.

12204

