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Abstract

Large language models (LLMs) face signifi-
cant challenges in handling long-context tasks
because of their limited effective context win-
dow size during pretraining, which restricts
their ability to generalize over extended se-
quences. Meanwhile, extending the context
window in LLMs through post-pretraining is
highly resource-intensive. To address this, we
introduce LongRecipe, an efficient training
strategy for extending the context window of
LLMs, including impactful token analysis, po-
sition index transformation, and training opti-
mization strategies. It simulates long-sequence
inputs while maintaining training efficiency
and significantly improves the model’s under-
standing of long-range dependencies. Experi-
ments on three types of LLMs show that Lon-
gRecipe can utilize long sequences while re-
quiring only 30% of the target context win-
dow size, and reduces computational training
resource over 85% compared to full sequence
training. Furthermore, LongRecipe also pre-
serves the original LLM’s capabilities in gen-
eral tasks. Ultimately, we can extend effec-
tive context window of open-source LLMs from
8k to 128k, achieving performance close to
GPT-4 with just one day of dedicated train-
ing using a single GPU with 80G memory.
Our code is released at https://github.com/
zhiyuanhubj/LongRecipe.

1 Introduction

LLMs are crucial for NLP tasks. However, they
face challenges in applications involving long con-
text, such as in-context learning (Brown et al.,
2020), long document summarization (Koh et al.,
2022), long-form QA (Krishna et al., 2021),
document-level retrieval (Callan, 1994) and and
multi-modal QA (Yang et al., 2025a,b). These chal-
lenges stem from their limited effective context
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window size during the pretraining process, mak-
ing long-context generalization difficult.

A straightforward approach is to continually pre-
train or fine-tune these models on long context
input (Fu et al., 2024). However, expanding the
context window usually results in a quadratic in-
crease in computational and memory costs. Ac-
cording to the training setup in (Fu et al., 2024),
extending the Llama-2 7B model’s context window
from 4k to 80k using 8 A100 GPUs (80G each)
takes five days. The costs of resources and time
increase significantly for larger models and more
extended training periods. In addition to the meth-
ods mentioned, there are techniques aimed at ex-
tending the length of the context window more effi-
ciently during fine-tuning, including PI (Chen et al.,
2023), Yarn (Peng et al., 2024), and LongLoRA
(Chen et al., 2024b). However, these techniques
still require full-length fine-tuning, meaning they
must fine-tune with the context of the target length,
which is both memory- and time-intensive. Mean-
while, Randomized Positional Encoding Scheme
(Ruoss et al., 2023) and PoSE (Zhu et al., 2023)
simulate longer inputs within a fixed window by
adjusting position indices, allowing LLMs that are
trained on shorter contexts to be extended to longer
context windows. However, randomized position
embeddings in (Ruoss et al., 2023) disrupt local
sentence structures by exaggerating the dependency
lengths between neighboring tokens. PoSE, on the
other hand, only considers two chunks to mimic
the position index, consistently omitting longer de-
pendencies in the sequence. This distortion creates
a significant generalization gap in understanding
token relationships across the sequence when ex-
tending LLMs to a long context window.

To address the aforementioned issues and fur-
ther uncover the potential of efficient training for
long-context generalization in LLMs, we present
LongRecipe, an efficient framework designed to
enhance long-context capabilities in models. Long
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Figure 1: Method Overview

context generalization depends on token distances
set by position indexs, which are then combined
with token representations. LongRecipe is primar-
ily focused on optimizing the learning process by
efficiently handling both position indexs and token
representations. Our framework introduces Impact-
ful Token Analysis to identify tokens that signif-
icantly influence long-text training. By focusing
on these tokens, we extract shorter segments from
long-text corpora, reducing text length while pre-
serving key information. We then apply Position In-
dex Transformation to simulate long-sequence po-
sitional indices using these shortened texts, extend-
ing the model’s ability to handle long sequences
without needing actual long texts. Additionally, we
implement training optimizations — pretraining
data replay and model merging — to enhance the
model’s long-text processing capabilities. As illus-
trated in Figure 1, LongRecipe compares the logits
of output tokens from an untuned LLM with those
from a tuned LLM within a longer context. This
reveals significant token logit changes from long
context generalization training. Sentences or para-
graphs with these tokens are selected, upsampled,
and segmented with continuous positional indices,
then used to train the LLM, effectively extending
its context window. This method efficiently cap-
tures key changes in long-context training while im-
proving training efficiency by streamlining samples.
The position index transformation also sharpens the

model’s understanding of long-range dependencies
and sequences in extended texts.

To validate the effectiveness of LongRecipe,
we conduct the empirical evaluation with Llama3-
8B, Mistral-7B, Qwen2-7B on Multi-Needle In A
Haystack (gkamradt, 2023), RULER (Hsieh et al.,
2024) and LongBench (Bai et al., 2023). Applied
with LongRecipe, we can extend the effective con-
text window of an open-source LLM from 8k or
32k to 80k or 128k. The experimental results
demonstrate that LongRecipe achieves an average
improvement of approximately 5.5% across four
metrics in three types of models, with context win-
dows 80k and 128k. Additionally, using as little as
30% of the tokens with around 1/8 of the GPU
computational resources can achieve nearly the
same performance as full context window training.
Currently, we can extend an open-source LLM’s
context window from 8k to 128k, matching GPT-4-
Turbo’s performance with just one day of training
on a single H100 GPU. Furthermore, we test the
performance of our method in general tasks, in-
cluding MMLU (Hendrycks et al., 2021), GSM8K
(Cobbe et al., 2021), and HumanEval (Chen et al.,
2021) to assess if our method impacts LLMs’ gen-
eral abilities, showing it largely preserves their orig-
inal performance. To summarize, our contributions
are as follows:

• We introduce LongRecipe, leveraging impact-
ful token analysis and position index transfor-
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mation to fully uncover the potential of effi-
cient training for long context generalization.

• LongRecipe uses training strategies of the pre-
training data replay and model merging to
enable LLMs to preserve the original foun-
dational abilities and enhance long context
generalization ability stably.

• Experiments on context lengths from 8k–128k
across three types of LLMs validate Lon-
gRecipe’s effectiveness.

2 Preliminary

The approach that is widely used in previous pre-
trained language models such as BERT (Devlin
et al., 2018) is to add position embedding vectors
to word embedding vectors directly. For a sequence
of tokens represented as w1, w2, · · · , wL, with
their corresponding embeddings x1,x2, · · · ,xL,
let p1,p2, ...pL be absolute position embedding,
the position encoding of query(q) and key(k) are
qm = Wq(xm + pm) and kn = Wk(xn +
pn). Then the unnormalized attention scores
are calculated by dot-producting two vectors:
score(qm,kn) = qT

m · kn.
Rotary Position Embedding (RoPE) (Su et al.,

2024) is proposed to integrate relative positional
information by modulating the query and key vec-
tors in the attention mechanism. Let D denote the
dimension of hidden layers, the transformations
applied are as follows:

qm = Wqxm · eimθ (1)

kn = Wkxn · einθ (2)

where Wq and Wk are |D| × |D| projection ma-
trices, m and n are the positions of the tokens, and
θ is a constant that adjusts the rotation based on
token positions.

θi = 10000
−2i
D
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The real part of the inner product between qm and
kn captures the relative positional information, fa-
cilitating the model’s understanding of token dis-
tances.

3 Related Works

Position Encoding Various position encoding
methods have been proposed to support extrapola-
tion beyond the pretraining window, such as AL-
iBi (Press et al., 2022), xPos (Sun et al., 2023),
and KERPLE (Chi et al., 2022) introduce bias
terms, scaling, or kernel-based functions to im-
prove length generalization.

RoPE (Su et al., 2024) and CoPE (Golovneva
et al., 2024), two widely used mechanisms, intro-
duce more structured encoding strategies. RoPE
applies fixed-frequency complex rotations to query
and key vectors, encoding absolute positions in
a way that allows relative position differences
to emerge naturally through phase shifts. Un-
like methods that explicitly model relative posi-
tions or learn position embeddings, RoPE is non-
parametric, architecture-free, and enables smooth
extrapolation by design.

Efficient Pretraining or Fine-tuning Methods
Position Interpolation (PI)(Chen et al., 2023) down-
sizes position indices of long text to the origi-
nal window size. NTK Interpolation(Peng and
Quesnelle, 2023) adjusts rotation speed for small
positions and linear interpolation for large ones.
YaRN (Peng et al., 2024) improves NTK Interpo-
lation with NTK-by-parts scaling to accommodate
different RoPE features. Resonance RoPE (Wang
et al., 2024a) refines RoPE features with inte-
ger wavelengths, improving upon YaRN for bet-
ter out-of-distribution position recognition. LM-
Infinite (Han et al., 2024) encodes absolute posi-
tions for starter tokens and masks middle tokens,
retaining relative positions for rare tokens. Ran-
domized Positional Embedding (Ruoss et al., 2023)
simulates long text input with shorter texts by ran-
domly selecting position indices. PoSE (Zhu et al.,
2023) uses a fixed context window, dividing it
into chunks with skipping bias terms, enabling
adaptation to all positions within the target length.
CREAM (Wu et al., 2024) builds upon PoSE and
proposes a truncated Gaussian sampling strategy to
address the “Lost-in-the-Middle” issue, enabling
the model to better capture middle-position infor-
mation during fine-tuning without exceeding the
original context window. LongLoRA (Chen et al.,
2024b) replaces ordinary attention with shift short
attention. Temp Lora (Wang et al., 2024b) inte-
grates context details into a temporary Lora mod-
ule, incrementally trained with previously gener-
ated text. SelfExtend (Jin et al., 2024) and DCA
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(An et al., 2024) convert the attention computation
for long sequences into chunk-based modules to
achieve the training-free extension.

4 Methodology

4.1 Impactful Token Analysis
Consider a base large language model H with a
context window size L. This model is further
trained to extend its context window to L′, result-
ing in a new model denoted as H ′. Using the Lon-
gRecipe methodology, we can calculate the logit
offset for each token by comparing the differences
between the logits produced by H and H ′. We then
identify the token types with the most significant
changes in logits to serve as anchors for selecting
sentences containing these token types, which are
then used for upsampling.

Formally, for each token t, we condition both
the base model H and the extended model H ′ on
the preceding prompt x < t to obtain the logit
probability scores SH(t | x < t) and SH′(t | x <
t), respectively. These scores represent the final
unnormalized logits from the language modeling
head over the vocabulary. The distribution of logit
probability changes is then given by:

p(Xt | x < t) =softmax[SH′(Xt | x < t)

− SH(Xt | x < t)] (3)

To formally describe the process of selecting
token types with the most significant logit changes,
we define a significance score ∆(t) for each token
type t as:

∆(t) =

N∑

i=1

∣∣SH′(X
(i)
t | x < t(i))

− SH(X
(i)
t | x < t(i))

∣∣ (4)

where N represents the total number of samples.
We then rank all token types by their significance
score ∆(t), and select the token types with the
highest scores as anchors. The selected tokens
are used to identify and upsample sentences that
contain these tokens.

Intuitively, we aggregate the distributions across
all samples to derive the statistics of token types
whose logit probability changes are most signifi-
cant. We select the top 20% of tokens based on
their significance scores ∆(t) at each position (e.g.,
the i-th token in the sample). We then calculate the
frequency of each token type (part-of-speech).

Subsequently, for a given sample, we first re-
move sentences that do not contain these token
types, which generally constitute a significant por-
tion of the total sentences. Then, from the remain-
ing sentences, we select a fixed number of tokens
to use for further training.

4.2 Position Index Transformation
We aim to utilize the current data with context win-
dow L to enable the model with larger input con-
text length L̂ by further continual pretraining in
the data with synthesized position indices. Let S
be the original sequence. We define a function
seg : S → {s1, s2, . . . , sN} that partitions S into
N segments, where each segment si can be either
a sentence or a paragraph, for 1 ≤ i ≤ N . The
function seg satisfies the following conditions:

S = s1 ∪ s2 ∪ · · · ∪ sN (5)

The union of all segments reconstructs the original
sequence and segments are disjoint:

si ∩ sj = ∅ for all i ̸= j (6)

To vary the spacing between each segment, we will
randomly skip some position indices from 0 to M ,
where M is a parameter of our method. When
M = 0, the position indices of the two segments
will be continuous.

We start by defining pos(si) as the position index
of the first token of segment si. For each segment,
the position indices are sequentially increased by
1 for each token within that segment. The position
index of the first token in the first segment is set to
0, i.e., pos(s1) = 0.

For subsequent segments, we introduce a ran-
dom skip represented by a function g(si) which
takes values from 0, 1, . . . ,M . This function rep-
resents the gap before the start of segment si and is
determined randomly for each segment. Thus, the
position index of the first token of segment si, for
i ≥ 2, can be defined recursively as follows:

pos(si) = pos(si−1) + |si−1|+ g(si) + 1 (7)

Where |si−1| represents the number of tokens in
segment si−1. We repeat this process until the
position index of the last token of the last segment
sN does not exceed L̂.

To achieve comprehensive coverage of the tar-
get context window, we re-sample both the length
and skipping term of every chunk for each training
example.
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4.3 Training Optimization Strategies
When we extend the effective context window of
LLMs, we also want to enable the LLMs with
strong general abilities within their original con-
text window. Therefore, we explore the below two
training optimization strategies to achieve that.

Pretraining Data Replaying In this module,
we address the issue of maintaining a model’s gen-
eral capabilities during post-training by employing
a Pretraining Data Replay strategy. Specifically,
we define two datasets: D1, which represents the
original pretraining data, and D2, which is a replay
dataset derived from D1. Both D1 and D2 share
the same distribution.

The replay dataset D2 is used for further train-
ing after the model undergoes long-sequence ex-
tension training. This process is intended to help
the model recover and reinforce its general capa-
bilities that may have been affected during the
length extension training. Formally, during the
replay phase, the model is trained on D2 to restore
and enhance its generalization abilities: Θreplay =
Train(Θextended,D2). Here, Θextended represents the
model after it has undergone long-sequence exten-
sion training, and Θreplay is the model after the
replay phase using D2.

Model Merging To maintain the general abil-
ities of original LLMs trained in short context
window, we utilize a model merging technique to
integrate the capabilities of two distinct models:
one that is the original model without context win-
dow extension (Θ(o)) and another that is trained
with longer context and pretraining data replaying
(Θ(replay)). We use two hyperparameters λ1 and
λ2 to retains the general abilities of original mod-
els and the long context generalization of tuned
model. The merged model can be represented by
the following equation:

Θmerge = λ1Θ
(o) + λ2Θ

(replay) (8)

5 Experimental Setup

5.1 Baselines
We use the following long context training method
as our baseline:

1. Full-length Text Training (FLT). We train
the LLMs using a corpus that contains the full
target context length. This approach serves as
a baseline for comparing the performance and
observing any potential loss when applying
our method.

2. Randomized Positional Encoding Scheme
(RPES) (Ruoss et al., 2023) simulates the po-
sitions of longer sequences and randomly se-
lects an ordered subset to match the longer
length.

3. Positional Skip-wisE (PoSE) (Zhu et al.,
2023) simulates long inputs using a fixed con-
text window. It divides the original context
window into two chunks and applies distinct
skipping bias terms to manipulate the position
indices of each chunk. These bias terms and
the lengths of the chunks are changed for each
training example, enabling the model to adapt
to positions within the target length.

5.2 Dataset and Evaluation
Dataset for Training We use the dataset in the
work (Fu et al., 2024) as training set. The dataset
derived from SlimPajama (Cerebras, 2023), incor-
porates domain balancing and length upsampling.
This dataset includes 80k samples and 128k tokens
for each, we use 10k samples in the experiments
for all baselines.

Benchmarks of Long Context Generalization
We use the following benchmarks to evaluate our
method:

1. The Needle In A Haystack (NIAH) frame-
work (gkamradt, 2023) tests LLMs’ ability to
retrieve hidden information by embedding a
"needle" (fact) within a "haystack" (long doc-
ument). As the current LLMs can almost per-
form perfectly in a single-needle retrieval task,
we use a more challenging multi-needle re-
trieval task to evaluate LLMs’ ability, namely
NIAH(M).

2. RULER (Hsieh et al., 2024) offers flexible
sequence lengths and task complexities with
13 sub-task categories, including retrieval and
question answering.

We supplement more details about these benchmark
in Appendix E.

Datasets for Assessment of Fundamental Abili-
ties of LLMs We use three benchmarks to test
if the continual pretraining process affects LLMs’
fundamental abilities within their original context
length:

1. MMLU covers 57 subjects across STEM, the
humanities, the social sciences, philosophy,
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law, medicine and more (Hendrycks et al.,
2021). It serves as a comprehensive bench-
mark for evaluating a model’s general lan-
guage understanding and broad factual knowl-
edge.

2. GSM8K (Cobbe et al., 2021) is a benchmark
of grade school-level math word problems
that test a model’s ability to perform multi-
step arithmetic reasoning. The dataset con-
tains 7,473 training problems and 1,319 test
problems, each requiring multiple computa-
tion steps to arrive at the correct answer.

3. HumanEval (Chen et al., 2021) is a code gen-
eration benchmark consisting of 164 hand-
written programming problems. It evaluates a
model’s ability to generate correct and seman-
tically accurate Python code.

5.3 Setup

Long Context Training We train the LLMs
using samples with 30% of the extended con-
text window length and optimize efficiency with
FlashAttention 2 (Dao et al., 2022) and DeepSpeed
Zero 3 (Aminabadi et al., 2022). To further train
the LLMs with longer context window, we utlize
Accelerator of Huggingface (Face) and Sequence
Parallel technique (e.g. DeepSpeed-Ulysses (Ja-
cobs et al., 2023) and Ring Attention (Liu et al.,
2023; Zhu)) to optimize the GPU memory demands.
More details including RoPE scaling, Batch Size,
Hours to Train and others are in Appendix B.

Pretraining Data Replay We use WizardLM-
evol-instruct-70k (Luo et al., 2023) and Magicoder-
OSS-Instruct-75K(Wei et al., 2024), totally with
68M tokens. Based on the findings in (Yang et al.,
2024b), replaying 5% to 10% of the post-training
dataset is considered the optimal configuration. For
our setup, we use a batch size of 96, a learning rate
of 5e-6, and a decay rate of 0.1. Model Merging
We set λ1 and λ2 as 0.5, hence it would be the
average weight for model merging.

LLMs We test various LLMs to evaluate
our approach, including Llama3 (Meta.AI, 2024),
Mistral (Mistral.AI, 2024), Qwen2 (Yang et al.,
2024a), GPT-4 (OpenAI: Josh Achiam et al., 2023),
Gemini-1.5-Pro (Reid et al., 2024) and others. In-
formation about all models is in Appendix C.

6 Experimental Performance

6.1 Long Context Generalization

The LongRecipe method shows an average im-
provement of 6.6% over RPES and 7.8% over PoSE
in the NIAH(M) task. In the RULER evaluation,
LongRecipe outperforms RPES by 2.9% and PoSE
by 4.7%. Especially, In the NIAH task, Llama3-
8B-I (80k) shows a 10.1% improvement with Lon-
gRecipe over PoSE. In the RULER task, Mistral-
7B (128k) improves by 11.9%. In addition, our
method remains competitive on Llama3-8B and
Qwen2 while outperforming others on Mistral on
LongBench (Bai et al., 2023), which is the first
bilingual benchmark for long context understand-
ing. We report the results of the experiments and
provide further discussion in Appendix A.

Compared to the performance of current closed-
source and open-source LLMs with a 128k context
window, LongRecipe not only surpasses base mod-
els like Yi-9B, Llama3.1-8B, and the instruction
model Qwen2-7B-Instruct but also achieves perfor-
mance comparable to Gradient-Llama3-8B, which
uses four times the tokens and full-length training.
Additionally, LongRecipe approaches the perfor-
mance levels of GPT-4.

6.2 Maintaining General Abilities

Table 1 shows that LLMs can nearly maintain their
general abilities with short inputs, as seen by the
minor performance drop in MMLU. Despite some
remaining gaps in mathematical (GSM8K) and pro-
gramming (HumanEval) abilities, the model merg-
ing and pretraining data replay strategy success-
fully restored approximately 75% and 65% of the
original capabilities.

6.3 Ablation Study

Benefits of Impactful Token Analysis and Po-
sition Index Transformation As shown in Ta-
ble 3, the performance will drop significantly in
NIAH(M) and RULER metrics when we randomly
select sentence from long sequence (LongRecipe
(Random T)) rather than using analyzed token pat-
tern. Additionally, the application of Position Index
Transformation can bring average 3.3% improve-
ment from PoSE to LongRecipe (w/o T).

Effect of Pre-training Data Replay and Model
Merging for Maintaining General Abilities In
Table 2, comparing the models before and after
replaying shows noticeable improvement, partic-
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Model Length Method Long Context Generalization General Abilities

NIAH(M) RULER MMLU GSM8K HumanEval

Llama3-8B-I

8k Base Model - - 65.7 71.4 37.5

80k

FLT 82.3 75.7 62.2 54.5 32.7
RPES 71.8 71.4 61.4 53.1 15.4
PoSE 68.8 69.9 62.6 58.2 25.6
LongRecipe 78.9 74.5 63.0 57.9 29.3

128k

FLT 73.2 75.8 58.3 50.9 16.5
RPES 72.7 71.5 59.2 46.0 16.8
PoSE 80.1 75.3 61.9 51.1 21.1
LongRecipe 82.6 76.0 62.1 54.9 24.2

Mistral-7B

32k Base Model - - 55.7 28.4 31.1

80k

FLT 43.0 57.4 52.6 25.2 25.6
RPES 60.4 65.1 51.8 27.4 24.7
PoSE 64.7 65.0 54.9 29.4 27.6
LongRecipe 64.7 67.2 53.7 28.0 27.6

128k
RPES 41.9 52.5 52.8 26.5 24.8
PoSE 35.9 46.3 53.4 25.9 22.6
LongRecipe 53.4 58.2 53.1 26.0 24.2

Qwen2-7B

32k Base Model - - 66.1 58.3 20.3

80k

FLT* 64.7 69.5 68.4 63.1 27.4
RPES 73.7 68.9 65.7 55.1 16.0
PoSE 70.0 66.7 66.6 58.9 17.7
LongRecipe 79.5 70.8 65.7 57.2 19.1

128k

FLT* 52.7 51.3 68.4 63.1 27.4
RPES 64.6 64.6 65.5 56.1 14.8
PoSE 58.5 60.1 67.1 58.2 20.9
LongRecipe 65.8 64.8 65.9 58.7 17.3

Other LLMs 128k

Llama3.1-8B 72.0 69.8 62.0 41.8 38.4
Yi-9B-200k 65.7 62.3 42.5 51.3 21.3
Yi-34B-200k 84.9 77.3 76.3 67.2 23.2
Qwen2-7B-Instruct 38.8 52.5 69.5 55.6 43.3
Gradient-Llama3-8B 89.6 78.4 59.4 49.9 13.4
Llama3.1-8B-Instruct 89.0 77.7 73.0 84.5 72.6
GLM4-9B-Chat-1M 90.2 79.9 74.7 84.0 70.1
Llama3.1-70B-Instruct 68.3 66.6 86.0 95.1 80.5
Qwen2-72B-Instruct 83.4 53.7 84.2 89.5 64.6
Gradient-Llama3-70B 79.2 72.1 72.5 73.4 33.5
GPT-4 76.2 81.2 80.5 93.0 73.2
Gemini-1.5-Pro 82.0 94.4 81.9 91.7 71.9

Table 1: Performance of different methods in long context generalization tasks and general abilities benchmarks.
FLT* in Qwen2-7B denotes the Qwen2-7B base model combined with YARN and DCA methods for targeting
the context window, as detailed in their technical report. In ‘Other LLMs’ part, the models above dashed line are
the base model and blow are instruction tuned models. All the experiment results of FLT, RPES and PoSE are
implemented by us.

ularly on the GSM8K dataset. By further merg-
ing with the original model, we can enhance the
model’s general capabilities, as seen in the MMLU
performance (63% vs. 65.7%). Although there are
still some gaps in mathematical (GSM8K) and cod-
ing (HumanEval) capabilities, the model merging
and pretraining data replaying successfully recov-
ers approximately 75% and 65% of the original
abilities.

Performance Comparison Based on Various
Number of Tokens As the number of tokens per
sample increases, the performance of each sample
improves consistently. However, the benefit gained
from increasing the number of tokens (i.e., extend-

ing the context length) diminishes. Even when we
increase the token ratio from 30% to 100%, only
around 1% improvement can be obtained. This is
particularly evident in the results of Llama3-8B for
a 128-token context window, as shown in Table 1,
where we achieve even better performance than
FLT with 100% of the tokens.

6.4 Analysis

Distance Among Tokens and Continual Length
of Segments We suppose the effectiveness of po-
sition index transformation stems from improving
distances among token while maintaining local in-
formation via continual segment. Therefore, we
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Method Before Replaying After Replaying After Model Merging

MMLU GSM8K HE MMLU GSM8K HE MMLU GSM8K HE

FLT 58.1 39.7 20.9 58.2 47.2 17.5 62.2 54.5 32.3
RPES 54.0 33.6 15.2 59.7 46.7 3.3 61.8 53.9 12.6
PoSE 58.1 39.1 17.0 60.7 49.5 5.7 62.6 58.2 25.6
LongRecipe 58.6 42.7 20.1 62.1 50.9 6.7 63.0 57.9 29.3

Table 2: Performance of different stages in long context generalization training, pretraining data replaying and
model merging. HE represents HumanEval. All experiments are conducted using the Llama3-8B-instruct model,
with 30% of tokens utilized within an 80k token target context window.

Method NIAH(M) RULER

PoSE 68.8 69.9
LongRecipe (w/o T) 71.9 71.7

LongRecipe (Random T) 70.1 69.8
LongRecipe 78.9 74.5

Table 3: Performance of different ablation setings, Lon-
gRecipe (w/o T) uses the short exiting samples as PoSE
and apply position index transformation on it. Lon-
gRecipe (Random T) select the sentence randomly from
long sequence of sample and construct a new short sam-
ples. All experiments are based on Llama3-8B-instruct
and we use 30% tokens of 80k target context window.

Ratio NIAH(M) RULER

10% 65.3 67.4
20% 70.9 70.7
30% 78.9 74.5
40% 72.0 71.0
100% 82.3 75.7

Table 4: We conduct context window extension exper-
iments using Llama3-8B-I with an 80k token length.
Starting from 10%, which represents 8k tokens per sam-
ple, 20% corresponds to 16k tokens, 30% to 24k tokens,
and 40% to 32k tokens. The 100% configuration utilizes
the entire long sample.

calculated average distance among tokens and aver-
age continuous segment length for each methods.

As shown in Figure 2, the LongRecipe approach
achieves approximately twice the token distance
compared to PoSE in the 128k setting. Addition-
ally, LongRecipe maintains an average continuous
segment length of 88, which helps the LLM recog-
nize local dependency structures. In contrast, the
average continuous segment length with RPES is
nearly 0, disrupting local sentence structures.

This chart displays the frequency distribution
and relative relationships of parts of speech for to-
kens with significant logits changes across different
positions in the text. NUM (numerals) has the high-
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Figure 2: Comparison of average distance among tokens
for different methods and context window.

est frequency, stabilizing around 0.4 throughout
the text. In contrast, other parts of speech have sig-
nificantly lower frequencies. For example, PRON
(pronouns) and AUX (auxiliary verbs) have fre-
quencies around 0.15, while CCONJ (conjunctions)
and ADP (adpositions) have frequencies around
0.1. The frequency of NUM is approximately 2.67
times that of PRON and AUX and about 4 times
that of CCONJ and ADP. These findings suggest
that long-context tuning has varying effects on dif-
ferent token types, which further reinforces the
motivation behind our method.

Analysis of Token Type In the LongRecipe ap-
proach, we first compare the change in token logits
before and after tuning the long context window.
We then select the top 20% of tokens that exhibit
the most significant change at each index. These
selected tokens are further analyzed for their part
of speech distribution patterns. The results of this
analysis are presented in Figure 3.

Do Coherence and Cohesion Matter in Long
Context Generalization? In this work, we select
sentences from long samples based on analyzed
token patterns, which may impact semantic coher-
ence and cohesion. However, our current results
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based on LongRecipe can match or even surpass
those from some full-length samples, suggesting
that coherence and cohesion may not be as criti-
cal for long-context training. To further investi-
gate this, we utilize the Long Dependency Score
(Chen et al., 2024a) to assess the long dependen-
cies in different datasets, which may be more cru-
cial for long context training. After calculation,
PoSE and RPES, which use the same existing short
samples, achieved a score of 12.07, while the data
constructed by LongRecipe and that concatenated
from several short documents in FLT scored 17.88.
Since the data used in FLT is concatenated rather
than naturally occurring long context, the semantic
quality is not satisfactory. LongRecipe does not sig-
nificantly harm the long dependencies required for
long-context training, even though it may influence
coherence and cohesion to some extent.

Furthermore, during the pretraining process, the
model primarily focuses on learning grammar and
semantics. However, in the post-training phase on
long texts, the model has already acquired grammar
and semantic knowledge, so the focus may shift to
capturing long dependencies among tokens. At this
stage, it is possible to ignore certain tokens that are
less important. These sentence might significantly
influence overal semantic but contribute little to
the learning of more complex attention patterns
across longer sequences. Although this approach
may slightly affect the model’s general capabilities,
the impact is minimal, and the model can quickly
recover. More importantly, we can leverage Lon-
gRecipe method to achieve the efficient training for
long context training.

7 Conclusion

In this work, we presented LongRecipe, a novel
and efficient framework for extending the context
window of LLMs to enhance their performance on
long-context tasks. By integrating impactful token
analysis, position index transformation, and train-
ing strategies, LongRecipe effectively simulates
long-sequence inputs while maintaining training
efficiency. Our extensive experiments on various
LLMs, with extended context windows in 80k to
128k, demonstrated that LongRecipe could achieve
substantial improvements in long-context general-
ization with significantly reduced computational
resources. Notably, the method requires only 30%
of the target context window size and cuts down
training costs over 85% compared to full-length
post-training. Moreover, LongRecipe preserves
the original capabilities of the LLMs in general
tasks, ensuring a balanced enhancement of both
long-range dependency understanding and founda-
tional model performance. These results highlight
LongRecipe as a general and scalable solution for
efficient long-context adaptation in LLMs.

8 Limitation and Onging Work

Supervised Fine-Tuning (SFT) While our cur-
rent post-training approach, based on instruction
or base models, yields satisfactory performance in
NIAH and RULER, the absence of SFT still cre-
ates a gap between our method and the state-of-the-
art (SOTA) LLMs. Recently, the release of Long-
Writer (Zhipu, 2024) for long-context SFT presents
a promising option for further enhancing our fine-
tuning process. Integrating such long-context SFT
techniques into our pipeline is a promising direc-
tion for bridging the remaining performance gap.

Longer Context Generalization The latest
LLMs have pushed the boundaries of long-context
capabilities to handle up to 1 million tokens, en-
abling users to input vast amounts of data. We
plan to train and release models with 512k and 1M
token capacities using the effective training strate-
gies outlined in LongRecipe. This approach will
further enhance the generalization of our method.
Such scaling not only benchmarks the robustness
of our method but also brings it closer to real-world
long-document applications.
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A LongBench Experiment Results

Shown by Table 5, our method remains competitive
on Llama3-8B and Qwen2 while outperforming
others on Mistral. Additionally, as mentioned in
the section Limitation and Ongoing Work, our cur-
rent experiments involve post-continual pretraining
but have not yet included supervised fine-tuning
(SFT). In future work, we will conduct SFT experi-
ments and include the results in the next version to
further validate the effectiveness of LongRecipe in
the whole process of post-training.

For LongBench, we report the average score
across all 21 subsets for the models.

Model Method LongBench

Llama3-8B-I

FLT 28.1
RPES 27.3
PoSE 26.7
LongRecipe 25.5

Mistral-7B

FLT 17.7
RPES 21.8
PoSE 22.3
LongRecipe 23.7

Qwen2-7B

FLT 17.7
RPES 26.8
PoSE 27.7
LongRecipe 26.2

Table 5: LongBench scores for different models and
methods on 80k length experiments.

B Training Setup

We elaborate the setup of our training method in
Table 6.

C Models

We select in total 15 models for evaluation and
analysis. We assess two commercial close-source
GPT-4 and Gemini-1.5, and 13 open-source models.
The details are demonstrated in Table 7.

D Pseudo Code for Position Index
Transformation

Algorithm 1 Position Index Transformation
1: Initialize:
2: Initialize source length Ls and target length Lt

3: Load dataset D with each sample having length
Ls

4: Position Index Transformation:
5: for each sample S in D do
6: Split S into N sentences based on delimiters

’. ! ? \n’
7: Initialize a list L of length Lt, filled with

zeros
8: Randomly select N − 1 distinct positions

in L
9: Insert the first sentence at position 0 and

each of the remaining sentences at the selected
N − 1 positions in L

10: Flatten L by removing zeros, and the in-
dices of the non-zero elements represent the
new position indexes

11: end for
12: Save New Position Indexes

E Details about Long Context
Benchmarks

NIAH (M) and RULER: For NIAH (M), we
report the average score across three tasks in
RULER: niah_multikey, niah_multivalue, and
niah_multiquery. For RULER, we present the av-
erage score for all 13 subsets with Llama3-8B-
Instruct and Mistral-7B-v0.3, and the average score
for 12 subsets (excluding Variable Tracking) with
Qwen2-7B.
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Model Llama3-8B Qwen2-7B

Extended Context Length 80k 128k 80k 128k
Training Sample Length 24k 38.4k 24k 38.4k
RoPE scaling (Dynamic NTK) 48.9M 131.5M 13.5M 13.5M
RoPE factor (Dynamic NTK) 10 16 4 4
Batch Size 96 96 96 96
Steps 104 104 104 104
Total Tokens 240M 384M 240M 384M
Learning Rate 5e-5 5e-5 5e-5 5e-5
# GPUs and Type 1×A800/H100 2×A800/H100 1×A800/H100 1×A800/H100
Total GPU Memory 56G 104G 64G 72G
Total CPU Memory 148G 172G 168G 208G
Hours to Train 26/16 30/20 23/15 44/28

Table 6: Training Configuration Details

Model Size Context Length Huggingface (Wolf et al., 2019) / API

GPT-4 (OpenAI: Josh Achiam et al., 2023) - 128K gpt-4-1106-preview
Gemini-1.5-Pro (Reid et al., 2024) - 1M gemini-1.5-pro

Llama3-8B-I (Meta.AI, 2024) 8B 8K meta-llama/Meta-Llama-3-8B-Instruct
Llama3.1-8B (Meta.AI, 2024) 8B 128K meta-llama/Meta-Llama-3.1-8B
Llama3.1-8B-Instruct (Meta.AI, 2024) 8B 128K meta-llama/Meta-Llama-3.1-8B-Instruct
Llama3.1-70B-Instruct (Meta.AI, 2024) 70B 128K meta-llama/Meta-Llama-3.1-70B-Instruct
Qwen2-7B (Yang et al., 2024a) 7B 128K Qwen/Qwen2-72B-Instruct
Qwen2-7B-Instruct (Yang et al., 2024a) 7B 128K Qwen/Qwen2-7B-Instruct
Qwen2-7B-Instruct (Yang et al., 2024a) 72B 128K Qwen/Qwen2-72B-Instruct
Yi-9B-200k (Young et al., 2024) 9B 200K 01-ai/Yi-34B-200K
Yi-34B-200k (Young et al., 2024) 34B 200K 01-ai/Yi-34B-200K
Mistral-7B (Mistral.AI, 2024) 7B 32K mistralai/Mistral-7B-Instruct-v0.3
GLM4-9B-Chat-1M (GLM et al., 2024) 9B 1M THUDM/glm-4-9b-chat-1m
Gradient-Llama3-8B (AI, 2024) 8B 1M gradientai/Llama-3-8B-Instruct-Gradient-1048k
Gradient-Llama3-70B (AI, 2024) 70B 1M gradientai/Llama-3-70B-Instruct-Gradient-1048k

Table 7: Information of evaluated and analyzed models.
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