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Abstract

Long Context Understanding (LCU) is a crit-
ical area for exploration in current large lan-
guage models (LLMs). However, due to the
inherently lengthy nature of long-text data, ex-
isting LCU benchmarks for LLMs often re-
sult in prohibitively high evaluation costs, like
testing time and inference expenses. Through
extensive experimentation, we discover that
existing LCU benchmarks exhibit significant
redundancy, which means the inefficiency in
evaluation. In this paper, we propose a con-
cise data compression method tailored for long-
text data with sparse information characteris-
tics. By pruning the well-known LCU bench-
mark LongBench, we create MiniLongBench.
This benchmark includes only 237 test sam-
ples across six major task categories and 21
distinct tasks. Through empirical analysis of
over 60 LLMs, MiniLongBench achieves an
average evaluation cost reduced to only 4.5%
of the original while maintaining an average
rank correlation coefficient of 0.97 with Long-
Bench results. Therefore, our MiniLongBench,
as a low-cost benchmark, holds great potential
to substantially drive future research into the
LCU capabilities of LLMs. See Github for our
code, data and tutorial.

1 Introduction

The ability for long context understanding, a.k.a
LCU, (Press et al., 2022; Sun et al., 2022; Chen
et al., 2023; Zeng et al., 2023; Li et al., 2023a;
Beltagy et al., 2020; Roy et al., 2021) is one of
the most important areas of exploration for cur-
rent large language models (LLMs). Tasks with
broad applications, such as summarization and
question answering based on books, papers, and
documents, as well as repository-level code gener-
ation, require the capability to handle long context
sequences spanning thousands or even tens of thou-
sands of tokens. Currently, the LCU capabilities
of LLMs are still in their early stages, and their
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Figure 1: The computational cost of LongBench and
MiniLongBench. The proposed MiniLongBench effec-
tively reduces the computational cost of the LongBench,
thereby achieving a low-cost LCU benchmark.

rapid development relies on recent proposals of
LCU benchmarks (Shaham et al., 2022, 2023; An
et al., 2023; Bai et al., 2024d). However, unlike nor-
mal LLM benchmarks (Li et al., 2024; Guo et al.,
2023; Zhong et al., 2024b, 2023a), LCU bench-
marks inherently involve a large number of tokens
due to the nature of long context data. Combined
with the high number of test samples, the primary
challenge these benchmarks face is their high evalu-
ation cost. As shown in Fig. 1, some popular LLMs
on 8×RTX3090 GPUs require approximately up
to 15 ∼ 30 hours to complete an evaluation on
LongBench with one batch size. Moreover, due
to the large number of tokens in each long-text
data, which significantly increases GPU memory
consumption, it is challenging to accelerate test-
ing through multi-batch processing. Therefore, the
computational cost illustrated in Fig. 1 cannot be
overlooked. Furthermore, when researchers de-
velop new LLM models and need to conduct mul-
tiple analyses of LCU capabilities, the time and
computational costs become even more prohibitive.
Given these challenges, we ask a critical question:

Do LCU benchmarks really need such a large
number of test samples?

To answer this question, in this paper, we explore
the compression of the well-known LCU bench-
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Figure 2: The redundancy of LongBench. "Reduce 95%" means randomly removing 95% of the dataset with
equal probability. A Spearman correlation (Sp) ≥ 0.8 indicates a strong correlation and Sp ≥ 0.6 means moderate
correlation between the results of randomly sampled subset and LongBench. The abscissa labels from "SQA" to
"SYN" represent the abbreviations of the six main tasks in LongBench, with details provided in Section 2.

mark, LongBench (Bai et al., 2024a). In Section 2,
we first validate the significant redundancy in the
LongBench through a series of random sampling
experiments. Furthermore, in Section 3, we pro-
pose a simple-yet-effective compression method
for long-text data with sparse information, resulting
in a compact LCU benchmark, MiniLongBench.
Finally, we explore the evaluation results of Mini-
LongBench across a range of existing LLMs. Our
findings indicate that the proposed MiniLongBench
substantially lowers the evaluation cost of LCU ca-
pabilities, reducing it to merely 4.5% of the origi-
nal, while maintaining the assessment outcomes of
LLM on LongBench. We show the related works
in Appendix D, and summarize the contributions
of this paper as follows:

• In this paper, we analyze the redundancy of
current LCU benchmark for LLMs and propose
an effective method to reduce the number of
test samples for low-cost testing.

• Analyzing on over 60 LLMs, our MiniLong-
Bench achieves an average ranking correlation
of about 0.97 with LongBench while reducing
computational cost to only 4.5% of the original.

2 The Redundancy of LCU Benchmark

In this section, we consider the well-known LCU
benchmark, LongBench (Bai et al., 2024a), as an
example to demonstrate that current LCU bench-
marks suffer from significant redundancy. Long-
Bench includes nearly 5000 test samples and covers
six main task categories, such as single-document
question answering (SQA), multi-document ques-
tion answering (MQA), summarization (SUM),
few-shot learning (FSL), code completion (CODE),
and synthetic tasks (SYN), which represent key
long-text application scenarios. For specific details
of LongBench, please refer to the Appendix A.

First, we randomly sample the long-text data
from different categories of LongBench n=10,000
times to obtain n subsets of test samples with com-
pression ratio p, where p represents the proportion
of remaining samples after sampling. We then test
these subsets using dozens of LLMs (see the Ap-
pendix B for details), and compute the Spearman
correlation (Sp) coefficient (Spearman, 1961) to
measure the ranking correlation between the evalu-
ation results of each subset and those of the original
LongBench SL. The closer "Sp" is to 1.0, the more
the evaluation of the sampled subset aligns with the
evaluation of SL. We take p ∈ {0.99, 0.98, 0.95}
and select the top 7500 results based on Sp for
statistical analysis. The experimental results are
shown in Fig 2. We find that even though Long-
Bench data is randomly reduced by a large amount,
some subsets of LongBench still exhibit strong
ranking correlations with the original benchmark,
e.g., with Sp greater than 0.8 and even 0.9. This in-
dicates that LongBench contains significant redun-
dancy and does not require so many test samples.
Therefore, in this paper, we will design an efficient
method to create a more compact LCU benchmark.

3 Compression for LCU Benchmark

In this section, we explore how to filter long-text
data to reduce the size of LCU benchmark, en-
abling our MiniLongBench for low-cost estimation
of LCU capabilities. Although Fig. 2 shows that
random sampling can also yield subsets with large
Sp, due to its high variance, we need to develop
a more stable compression method. A straight-
forward intuition is that, given a set of m LLMs
{ℓi}mi=1, we can leverage their performance on all
test samples from LongBench SL = {sj}|SL|

j=1 . Us-
ing their performance record, we aim to construct
a regression model to map these sparsely infor-
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Figure 3: The compression process of the LCU benchmark. "Emb." and "Per." respectively denote embedding and
the performance of LLM ℓi on sample sj under the given metric metr(·, ·).

Algorithm 1 The construction of MiniLongBench.
Input: The long-text data SL = (s1, s2, ..., s|SL|), reduced
dimension d and ratio p. The performance record metr(ℓi, sj)
from LLM ℓi and sample sj . Text embedding κtest.
Output: Compact LCU benchmark.

▷ Data preprocessing
Intra-sample dimension reduction s′j ← κtext(sj);
Inter-sample dimension reduction by
{ej}|SL|

j=1 ← PCAd[s
′
1, s

′
2, ..., s

′
|SL|];

▷ Representation learning for test samples
Initialize LLM ℓi’s representation by θi ∼ N (0, Id);
Initialized βj ← 0;
Update learnable (ej , βj) and θi by Eq. (2);

▷ Clustering
Determine the number of cluster centers K ← (1−p)|SL|;
Obtain K centers (c1, c2, .., cK) by clustering and (ej , βj);
Smini ← (c1, c2, .., cK);
return Compact LCU benchmark Smini

mative long-text samples into a denser text space
first, and gradually project them into a performance
space. After that, we can learn the representation
of the test samples. Moreover, we then cluster
these samples and retain only a certain number
of cluster centers as representative test samples,
forming Smini, thereby compressing the benchmark.
Fig. 3 and Alg. 1 show the compression process of
the LCU benchmark and construction of proposed
MiniLongBench. Specifically,
(1) Data Preprocessing. Unlike data from conven-
tional LLM benchmarks, the effective information
in long-text data is highly sparse. Without proper
compression of this information, it can significantly
impact subsequent representation learning and clus-
tering processes. Therefore, for the sparse infor-
mation in these long-text data, we initially den-
sify them using a text encoder κtext OpenAIEmbed-
ding (Xian et al., 2024) and a principal component
analysis, a.k.a PCA, (Abdi and Williams, 2010) to
obtain part of dense d−dimentional initialization
of test samples, i.e.,

{ej}|SL|
j=1 = PCAd[{κtext(sj)}|SL|

j=1 ], (1)

For a detailed discussion on how data preprocess-
ing influences the construction of MiniLongBench,

please refer to Section 5.
(2) Representation Learning. Moreover, similar
to (Polo et al., 2024), which utilizes the Item Re-
sponse Theory in psychology and education (Cai
et al., 2016), we can perform representation learn-
ing for test samples. Suppose we have LLMs
{ℓi}mi=1 and test samples sj ∈ SL with perfor-
mance measured by the metric metr(·, ·). We then
assume that the probability of LLM ℓi correctly
answering sample sj is given by:

P(metr(ℓi, sj) = 1|θi, ej , βj)
= [1 + exp(−ej⊤θi + βj)]

−1, (2)

where the learnable parameter θi ∈ Rd represents
the d-dimensional embedding of LLM ℓi, initial-
ized using a d-dimensional standard normal dis-
tribution. Eq. (2) is classical logistic regression
model (Kleinbaum et al., 2002). The parameters
(ej , βj) are the learnable representations of the test
sample sj , where βj is initialized to zero vector
and ej initialized by Eq. (1). In this paper, we set
d = 10. See further analysis on these representa-
tions, initialization and d in Section 5.

It is worth noting that in Eq. (2), we use a bi-
nary classification example for the metric, where
metr(ℓi, sj) = 1 if ℓi performs correctly on sj , and
metr(ℓi, sj) = 0 otherwise. If metr(·, ·) is con-
tinuous metrics, it can also be transformed into a
binary classification scenario. Specifically, the met-
ric metr(·, ·) is generally bounded. For example,
in LongBench, metrics such as F1 score, edit dis-
tance, etc., are used. We can normalize them to
the interval [0, 1] , and then consider the following
optimization problem.

min
c

∥
∑m

i=1

∑|SL|
j=1

metr(ℓi, sj)

−
∑m

i=1

∑|SL|
j=1

1[metr(ℓi,sj)≥c]∥, (3)

Note that the existence of a solution to Eq. (3) is
evident. It can be obtained by simply searching
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Dataset Index Metric Language Long. Avg len MiniLong. Avg len Long. #data MiniLong. #data

Single-Document QA
NarrativeQA 1-1 F1 English 18,409 22,967 200 6 (↓ 97%)
Qasper 1-2 F1 English 3,619 2,933 200 9 (↓ 96%)
MultiFieldQA-en 1-3 F1 English 4,559 4,519 150 7 (↓ 95%)
MultiFieldQA-zh 1-4 F1 Chinese 6,701 6,300 200 15 (↓ 93%)

Multi-Document QA
HotpotQA 2-1 F1 English 9,151 8,856 200 13 (↓ 94%)
2WikiMultihopQA 2-2 F1 English 4,887 4,286 200 13 (↓ 94%)
MuSiQue 2-3 F1 English 11,214 10,910 200 7 (↓ 97%)
DuReader 2-4 Rouge-L Chinese 15,768 12,996 200 6 (↓ 97%)

Summarization
GovReport 3-1 Rouge-L English 8,734 7592 200 12 (↓ 94%)
QMSum 3-2 Rouge-L English 10,614 8,253 200 6 (↓ 97%)
MultiNews 3-3 Rouge-L English 2,113 1,785 200 11 (↓ 95%)
VCSUM 3-4 Rouge-L Chinese 15,380 10,400 200 6 (↓ 97%)

Few-shot Learning
TREC 4-1 Acc. (CLS) English 5,177 6,077 200 8 (↓ 96%)
TriviaQA 4-2 F1 English 8,209 9,719 200 12 (↓ 94%)
SAMSum 4-3 Rouge-L English 6,258 5,974 200 15 (↓ 93%)
LSHT 4-4 Acc. (CLS) Chinese 22,337 22,759 200 8 (↓ 96%)

Synthetic Task
PassageCount 5-1 Acc. (EM) English 11,414 10,627 200 4 (↓ 98%)
PassageRetrieval-en 5-2 Acc. (EM) English 9,289 9,394 200 15 (↓ 93%)
PassageRetrieval-zh 5-3 Acc. (EM) Chinese 6,745 6,684 200 15 (↓ 93%)

Code Completion
LCC 6-1 Edit Sim Python/C#/Java 1,235 1,187 500 26 (↓ 95%)
RepoBench-P 6-2 Edit Sim Python/Jave 4,206 3,723 500 23 (↓ 95%)

Table 1: The dataset statistics in LongBench and MiniLongBench. "Long." and "MiniLong." denote LongBench
and MiniLongBench. "Avg len" (average length) is computed using the number of words for the English (code)
datasets and the number of characters for the Chinese datasets. "Acc. (CLS)" refers to classification accuracy, while
"Acc. (EM)" refers to exact match accuracy. "#data" means the number of data.
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the interval [0, 1] to get an approximate solution
for c. Once c is obtained, we replace the origi-
nal metr(ℓi, sj) with metr(ℓi, sj)′ = 1[metr(ℓi,sj)≥c]

which can transform the continuous metric into a
discrete binary scenario similar to Eq. (2).
(3) Clustering. Next, we update θi, ej , and βj
simultaneously using the training approach of lo-
gistic regression. Once these learnable parameters
converge, we concatenate (ej , βj) as the final rep-
resentation of the test sample sj , and perform clus-
tering analysis on them using K-Means (Hamerly
and Elkan, 2003) under Euclidean distance, where
K = (1−p)|SL|. Finally, the all cluster centers are
integrated as the test samples of MiniLongBench

Smini. In Section 4, we will further validate the
effectiveness of MiniLongBench from an experi-
mental perspective.

4 Compact LCU Benchmark:
MiniLongBench

In this section, we present our compact MiniLong-
Bench and demonstrate through comprehensive
experiments that it significantly reduces computa-
tional costs while preserving original LongBench’s
evaluation effectiveness. We select over 60 LLMs
for analysis, with m = 20 of them participating in
the training described in Section 3, and the rest serv-
ing as candidates for validating the effectiveness
of MiniLongBench. See Appendix B for details of
LLMs considered.

4.1 The Details of MiniLongBench
Chosing compression ratio p = 0.95, we use the
compression method shown in Section 3 for Long-
Bench to obtain compact LCU benchmark Mini-
LongBench. This benchmark includes only 237
test samples across six task categories, with an av-
erage length of 6193 words (English) and 10344
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Model SQA MQA SUM FSL SYN CODE

DeepSeek-V3-128k 0.43 0.31 0.12 0.67 0.26 0.88
GPT-4o-mini-128k 0.41 0.30 0.10 0.65 0.23 0.87
GPT-3.5-Turbo-16k 0.37 0.25 0.07 0.58 0.17 0.81
Internlm3-8B-32k 0.33 0.24 0.04 0.53 0.12 0.64
ChatGLM3-6B-8k 0.17 0.08 0.02 0.39 0.02 0.48
ChatGLM4-9B-128k 0.36 0.27 0.06 0.58 0.14 0.75
Qwen-7B-8k 0.20 0.10 0.04 0.48 0.07 0.71
Qwen2-7B-128k 0.29 0.22 0.05 0.55 0.09 0.71
Qwen2.5-7B-128k 0.34 0.24 0.04 0.55 0.12 0.67
Qwen2.5-14B-128k 0.35 0.26 0.05 0.56 0.12 0.66
Qwen2.5-32B-128k 0.36 0.26 0.06 0.59 0.15 0.74
Llama-7B-2k 0.09 0.04 0.02 0.39 0.02 0.61
Llama2-7B-4k 0.11 0.04 0.02 0.41 0.04 0.66
Llama3-8B-8k 0.11 0.03 0.04 0.47 0.08 0.71
Llama-30B-2k 0.10 0.04 0.02 0.41 0.04 0.65
OPT-30B-2k 0.08 0.03 0.01 0.33 0.02 0.48
Wizard-Vicuna-2k 0.20 0.13 0.02 0.41 0.05 0.59
LwQ-Instruct-2k 0.23 0.18 0.04 0.45 0.07 0.70
30B-Epsilon-2k 0.20 0.13 0.04 0.48 0.07 0.73

Table 2: Specific evaluation results on MiniLongBench.
See Appendix C and Appendix G for the more analysis
and detail results on various advanced LLMs.

characters (Chinese). Consistent with LongBench,
MiniLongBench has six major task categories and
21 distinct tasks, covering key long-text application
scenarios. Through the long-text dataset compres-
sion method proposed in Alg. 1, these different
tasks have been compressed by about 95%, greatly
reducing the computational consumption of the
LCU benchmark in the testing process. The spe-
cific statistics is shown in Table 1.

As shown in Table 1, the average length of Mini-
LongBench is smaller compared to that of Long-
Bench due to data pruning, but it generally main-
tains a similar magnitude. This indicates that Long-
Bench retains a good diversity of long-text data
even after compression. Moreover, we further illus-
trate the length distribution of data across different
languages, including English and Chinese, in Fig. 4.
We observe that for different languages, our pro-
posed MiniLongBench significantly reduces the to-
tal length of data input to the LLM, thereby greatly
decreasing the number of tokens in the model in-
put and reducing computational costs. The further
discussions with other compression ratio p and m
trained LLMs are shown in Section 5.

4.2 The Evaluation Method

In this section, we explore how to evaluate the
LCU capabilities of LLMs using MiniLongBench.
A straightforward approach is to directly assess
them on MiniLongBench, yielding reliable results
with a Sp of 0.95 compared to LongBench (see
Appendix G for details). However, it’s important
to note that MiniLongBench, having significantly
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Figure 5: The analysis of rank correlation (Sp) between
LongBench and MiniLongBench.

fewer test samples than LongBench, may introduce
some evaluation bias. To mitigate this, we can use
MiniLongBench samples to estimate the perfor-
mance (Polo et al., 2024; Pacchiardi et al., 2024)
of the LLMs on LongBench, thereby reducing bias
and achieving an improved Sp of up to 0.97.

Specifically, For a new LLM ℓ0 to be tested,
we first evaluate it on all test samples cj from
MiniLongBench Smini and obtain its performance
metr(ℓ0, cj). Subsequently, we apply consistent
normalization and discretization for metr(ℓ0, cj) as
outlined in Section 3, and initialize a d-dimensional
feature vector θ̄ for the LLM ℓ0 using a standard
normal distribution.

Next, we fine-tune θ̄ on the test samples of Smini
using Eq. (2) to adapt it to the representation space
of the test samples. After completing the fine-
tuning, we can construct the following MiniLong-
Bench score through Eq. (2) to estimate the perfor-
mance of ℓ0 across the entire SL:

∑|SL|
j=1

[1 + exp(−ej⊤θ̄ + βj)]
−1/|SL|, (4)

The time required for fine-tuning in the aforemen-
tioned evaluation process and the storage cost for
the features of SL are both minimal, requiring only
about 10 MB of disk space and as little as 0.03 sec-
onds of GPU time, even on a laptop. For specific
statistics, please refer to Appendix H.

4.3 The Evaluation Results
Moreover, Fig. 5 shows the rank correlation be-
tween LongBench and the proposed MiniLong-
Bench are 0.96∼0.98, whether on the LLMs that
participated in the training or on other unseen
LLMs. Moreover, in conjunction with the results
presented in Fig.1, this indicates that the proposed
MiniLongBench can effectively replicate the evalu-
ation outcomes of LongBench while maintaining
very low computational costs.

Additionally, we present in Table 2 the specific
performance of various advanced LLMs across dif-
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ferent tasks on the proposed MiniLongBench. For
more detailed results, please refer to Appendix C.

5 Analysis

In this Section, We conduct a more comprehensive
analysis of the proposed MiniLongBench.

(1) How does the reduced dimension d affect
the compression of the LCU benchmark?

In Eq. (1) of Session 3, we perform initial compres-
sion of the long-text data in LongBench using text
embedding OpenAIEmbedding (Xian et al., 2024)
and a PCA (Abdi and Williams, 2010), allowing
the long-text information to be initialized as some
vectors with dimension d.

In this section, we further explore the specific
impact of the compressed dimension d on construct-
ing a compact MiniLongBench. Specifically, fol-
lowing the experiment setting in Section 4, we con-
sider d ∈ {5, 10, 15, 20, 25, 30, 50, 70, 100} and
present the Sp of the evaluation results for Long-
Bench and MiniLongBench under different values
of d in Fig. 6. We observe that a negative corre-
lation between Sp and d. This indicates that for
long-texts data with sparse information, using ex-
cessively high-dimensional representations is not
advisable, as it can still lead to sparse representa-
tions even after representation learning. Further
information compression is crucial. In this paper,
we set d = 10 by default.

(2) Is PCA necessary for MiniLongBench?

In data preprocessing, PCA is employed to fur-
ther reduce the dimensionality of features after text
embedding. If we remove the PCA operation in
Eq. (1), on one hand, the high dimension of κtext,
which reaches 1024, would result in significant ad-
ditional computational overhead during training.

(a)Various compression ratio

(b) text embedding (c) For bias
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Figure 7: Further analysis for MiniLongBench. The
results of (a) various compression ratio p, (b) various
text embedding κtext. (c) The influence of various βj .
The bars with darker color represent the settings adopted
by our settings. "rand" and "randn" denote the standard
uniform and normal distribution. "Longf." and "Open."
are Longformer and OpenAIEmbedding.

Moreover, due to the large dimensionality, we ob-
serve that the average Sp of MiniLongBench and
LongBench drops from 0.95 to 0.67, which aligns
with the phenomenon observed in Fig. 6. There-
fore, the dimension reducing method, like PCA, is
essential for the construction of MiniLongBench.

(3) How to select the text embedding κtext.

In the data preprocessing phase, we utilize Ope-
nAIEmbedding (Xian et al., 2024) for text em-
bedding. In Fig. 7 (b), we present the results of
employing alternative text embeddings, including
Longformer (Zhu et al., 2021) and BERT (Liu et al.,
2019). We observe that BERT, which only supports
token inputs with a maximum length of 512, sig-
nificantly underperforms compared to OpenAIEm-
bedding and Longformer, which support lengths of
8192 and 4096, respectively. This is primarily due
to BERT’s weaker capability in information densi-
fication and the inevitable information loss when
handling test samples exceeding the token length
limit, as they can only be processed through chun-
ked densification. Therefore, this paper defaults to
using the more capable OpenAIEmbedding.

(4) How about other compression ratios p?

In this paper, we set the compression ratio p = 0.95
as the default. Subsequently, we further explore the
selection of p in Fig. 7 (a). We observe that as p ap-
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proaches 1, meaning more test samples are reduced,
the Sp between MiniLongBench and LongBench
decreases, which aligns with the observations in
Fig. 2. This is because, although the LCU bench-
mark has significant redundancy in test samples,
an extremely low compression ratio can easily dis-
rupt the data distribution or diversity of the bench-
mark, leading to substantial bias in the evaluation
of LLMs. Based on the experimental results in
Fig. 7 (a), p = 0.95 is a favorable choice, as it
balances both the testing cost and the evaluation
capability of the benchmark.

(5) Is the learnable bias βj important?

In Eq. (2), we introduce a learnable bias βj for the
logistic regression model. In Fig. 7 (c), we explore
its impact on the construction of MiniLongBench
by testing different initializations and removing it
entirely. We observe that, on one hand, the inclu-
sion of βj aids in the representation learning of
test samples, as removing it results in a noticeable
decline in Sp. On the other hand, different ini-
tializations yield varying performance levels, with
zero initialization achieving the best results. In con-
clusion, the setting of learnable βj is important, and
we employ a learnable bias with zero initialization.

(6) About the selection of m LLMs.

In this section, we further analyze the impact of the
LLMs involved in training on the construction of
MiniLongBench from the selection of LLMs.

We fix the number of LLMs, m, and then inde-
pendently sample 1000 times from all the LLMs

considered in this paper. Using the method men-
tioned in Section 3, we obtain various compact
new "MiniLongBench" and compute its Sp distri-
bution against LongBench evaluation results. The
results are shown in Fig. 8. We find that the choice
of LLMs involved in training significantly affects
the construction of MiniLongBench, which is in-
tuitive. This is because the representation of test
samples depends on the performance records of
the LLMs on LongBench, and when the selected
LLMs perform poorly, their representations strug-
gle to correctly project the test samples into the
performance space. In this paper, we manually se-
lect a few LLMs with generally good performance
across various aspects to participate in the construc-
tion of MiniLongBench. A list of the chosen LLMs
can be found in Appendix B. In the future, the
automated LLMs selection is needed.

(7) What is the appropriate number of
LLMs m to involve in training?

Moreover, we further explore the impact of the
number of LLMs involved in training. For a spe-
cific number of LLMs, m, we repeat the indepen-
dent sampling 5 times and compute the average Sp
of the constructed MiniLongBench and LongBench
evaluation results across all LLMs. The results are
shown in Fig. 9. We observe that as m increases,
Sp gradually increases and approaches 1.0. This
indicates that involving enough LLMs is benefi-
cial for the representation learning of test samples.
And we also note that when m = 20, the Sp in
different tasks seems acceptable, suggesting that

11448



Single-Document QA Multi-Document QA Summarization

Few-shot Learning Code Completion Synthetic Task
# Trained LLMs

5 10 15 20 25 30
# Trained LLMs

5 10 15 20 25 30
# Trained LLMs

5 10 15 20 25 30

# Trained LLMs
5 10 15 20 25 30

# Trained LLMs
5 10 15 20 25 30

# Trained LLMs
5 10 15 20 25 30

Sp
ea

rm
an

 C
or

r. 1.00

0.80

0.90

Sp
ea

rm
an

 C
or

r. 1.00

0.90

0.95

0.85

1.00

0.76

0.82

0.89 0.89 0.90

0.95

0.79

0.87
0.91 0.92

0.94 0.96

0.71
0.73

0.80
0.84 0.86 0.87

0.86

0.89
0.90 0.90

0.93 0.93

0.79 0.80

0.89 0.91 0.92 0.93

0.80
0.84

0.87 0.87 0.88 0.90

1.00

0.80

0.90

1.00

0.80

0.90

0.70

1.00

0.80

0.90

1.00

0.80

0.90

Figure 9: The impact of the number of LLMs m on the construction of MiniLongBench .

although the number of LLMs aids in representa-
tion learning, there is still considerable redundancy.
Considering the computational cost, we take the
acceptable m = 20 as default.

(8) Is the average Sp ≥ 0.97 enough?

In Section 4, we show that the proposed MiniLong-
Bench achieves an average Sp of 0.97 compared to
LongBench. And, we also find that the p-value is
less than 0.001, indicating the ranking correlation
is not only very strong but also highly statistically
significant. Next, It is noted that since Sp cannot
completely reach 1.0, therefore, the errors are in-
evitably present.

To demonstrate the usability of MiniLongBench
with Sp = 0.97, in addition to the experiment in
Fig. 5, we consider directly visualizing the ranking
results of different LCU benchmarks. As shown
in Fig. 10, for some random test samples, we also
randomly selected 8 different LLMs to compare
their ranking results on MiniLongBench and Long-
Bench. We can observe that the ranking results
are quite similar, despite some minor discrepancies.
For more results, please refer to Appendix F. In
the future, we should further refine the compres-
sion methods to bring Sp as close as possible to 1.0
across all subtasks.

(9) Why not just random sampling?

In Fig. 2, we show that through random sampling,
we identify a significant amount of redundancy in
LongBench. However, relying solely on random

LongBench
MiniLongBench

R
an

k

2
4

0

6
8

Example 1 Example 2

LLM Index
2 3 4 51 7 86

LLM Index
2 3 4 51 7 86

LongBench
MiniLongBench

Figure 10: The visualization of ranking. See more
ranking examples in Appendix F.

sampling to compress LongBench is insufficient.
The primary reason is that while random sampling
can probabilistically yield high Sp results, as shown
in Fig. 2, the variance is substantial, making it easy
to achieve suboptimal compression.

The compression method we propose in Sec-
tion 3 for the LCU benchmark effectively mitigates
these issues, consistently achieving high Sp across
various subtasks.

6 Conclusion

In this paper, we propose a concise data compres-
sion method for long-text data with sparse informa-
tion. By pruning the well-known LCU benchmark
LongBench, we created MiniLongBench. Through
empirical analysis of over 60 LLMs with varying
performance levels, MiniLongBench achieved an
average evaluation cost reduction to 4.5% of the
original, while maintaining strong consistency with
LongBench results. This phenomenon indicates
that the proposed MiniLongBench has great poten-
tial to greatly promote the exploration of LLMs’
LCU capabilities in the future.

11449



Limitations

The LCU benchmark compression method shown
in this paper requires performance records from
various LLMs as training data. However, most of
this data is not open-source in practice. Conse-
quently, we need to incur significant API costs and
GPU computational resources to obtain this data.
On the other hand, although we have achieved ef-
fective compression for LongBench, since Sp can-
not be 1.0, we cannot expect MiniLongBench to
have exactly the same evaluation capabilities as
LongBench, only nearly identical. Additionally,
there is still considerable room for performance
improvement in the summarization and synthetic
tasks, which are worthwhile directions for future
enhancements.
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A The Details of LongBench

LongBench (Bai et al., 2024a) represents the first
bilingual, multi-task benchmark specifically devel-
oped for assessing long-context comprehension.
The benchmark encompasses six primary task cate-
gories and 21 distinct tasks, spanning crucial long-
text application domains (Dasigi et al., 2021; Yang
et al., 2018; Ho et al., 2020; Trivedi et al., 2022;
Huang et al., 2021a; Zhong et al., 2021; Fabbri
et al., 2019; Ainslie et al., 2023; Li and Roth, 2002)
including multi-document QA, single-document
QA, summarization, few-shot learning, code com-
pletion, and synthetic tasks, as detailed in Table 1.

To thoroughly evaluate large models’ bilingual
proficiency in long-context processing, LongBench
incorporates tasks in both Chinese and English.
The dataset comprises 4,750 test instances, with
average lengths of 6,711 words and 13,386 charac-
ters for English and Chinese respectively, ensuring
extensive coverage of diverse scenarios. The chal-
lenge of long-context understanding (Press et al.,
2022; Sun et al., 2022; Chen et al., 2023; Zhong
et al., 2024a, 2022) can be formally defined as
follows: given an input sequence I and a context
sequence C, the model is tasked with generating an
output A. For example, in a QA task, I represents
the question, C corresponds to the document, and
A is the answer. Across LongBench, I and A are
typically short, whereas C can span thousands of
tokens. Specific instantiations of (I, C,A) for each
task are provided in Table 7 of (Bai et al., 2024a).

B The LLMs Considered in
MiniLongBench

In this section, we list all LLMs we considered
in Table 3. Among them, 20 LLMs were utilized
for training to aid in obtaining effective represen-
tations of test samples in the LCU benchmark. In
this study, we have carefully curated a selection of
LLMs that demonstrate consistently strong perfor-
mance across multiple dimensions to contribute to
the development of MiniLongBench. These mod-
els were chosen based on their proven capabili-
ties in various tasks and benchmarks. However, to
enhance the scalability and objectivity of our ap-
proach, future work should focus on implementing
an automated LLM selection mechanism. This ad-
vancement would not only streamline the selection
process but also ensure a more systematic and un-
biased evaluation of potential models for inclusion
in MiniLongBench.

Model Type Model Type
ALMA-7B-Ja-V2 T Amd-llama-135m A
GOAT-7B-Community T Amd-llama-135m-code A
Koss-7B-chat T Distilled-HermesChat-7B A
Kunoichi-7B T Loyal-Macaroni-Maid-7B A
Llama-2-7b-ft-instruct-es T Llama-3-8b-hf A
Llama-2-7b-hf T Llama-7b-SFT_ds_wiki65k A
Llama-7b-hf T Llama-shishya-7b-ep3-v1 A
Mistral-7B-Instruct-v0.2 T Llama-30b A
OLMo-1B T OLMo-1B-SFT A
Airoboros-7b T StopCarbon-10.7B-v6 A
Gemma2-9b-hf T Synatra-RP-Orca-2-7b-v0.1 A
Giraffe-7b T TowerInstruct-7B-v0.1 A
Mistral-7b-v0.1-hf T Gemma2-2b-hf A
Perry-7b T Manatee-7b A
Qwen-7b-hf T Mistral-7b-v0.3-hf A
Qwen1.5-0.5b-hf T Qwen1.5-1.8b-hf A
Qwen2-0.5b-hf T Qwen2.5-0.5b-instruct-hf A
Qwen2.5-0.5b-base T Qwen2.5-3b-base A
Qwen2.5-1.5b-base T Qwen2.5-3b-instruct-hf A
Tulu-7B-fp16 T Recycled-wizardlm-7b-v2.0 A
OPT-30B A Wizaed-Vicuna A
Llama-30B A LwQ-Instruct A
30B-Epsilon A DeepSeek V3 A
GPT o1 mini A GPT-3.5-turbo A
ChatGLM-6B A ChatGLM3-6B A
ChatGLM3-9B A Qwen-7B A
Qwen2-7B A Qwen2.5-7B A
Qwen2.5-14B A Qwen2.5-32B A
Gemma2-9B A Llama-7B-2k A
Llama2-7B-4k A Llama3-8B A

Table 3: The LLMs considered in MiniLongBench. "T"
and "A" denote "for tranining" and "for analysis".

C The Details Results of Advanced LLMs

In Section 4.3, we present the direct performance
results of some Advanced LLMs on the six main
tasks of MiniLongBench. Note that MiniLong-
Bench includes not only the six main tasks but also
21 subtasks. Therefore, in this section, we will dis-
play the detailed results. The results are shown in
Table 4 and Table 5, where the indices in the table
correspond to those in Table 2 in the main text.

In addition to the performance estimation of the
target LLM on the entire LongBench using Mini-
LongBench’s test samples, as demonstrated in Sec-
tion 4.3, we further propose a more straightforward
but slightly less effective method for evaluating
LCU capabilities in Appendix G. Specifically, the
target LLM is directly tested on MiniLongBench’s
test samples without requiring any additional steps.

D Related Works

D.1 Long Context Understanding (LCU)

Existing research on LCU in LLMs primarily ad-
dresses two critical challenges in long-text model-
ing: the substantial runtime overhead associated
with extended contexts and the issue of catastrophic
forgetting during long sequence processing.

A significant body of work has concentrated on
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Model Single-Doc QA Multi-Doc QA Summarization

1-1 1-2 1-3 1-4 Avg 2-1 2-2 2-3 2-4 Avg 3-1 3-2 3-3 3-4 Avg
DeepSeek-V3-128k 0.29 0.43 0.50 0.52 0.43 0.51 0.45 0.21 0.10 0.31 0.24 0.08 0.16 0.01 0.12
GPT-4o-mini-128k 0.27 0.41 0.49 0.48 0.41 0.48 0.42 0.19 0.09 0.30 0.19 0.07 0.15 0.01 0.10
GPT-3.5-Turbo-16k 0.21 0.36 0.47 0.43 0.37 0.42 0.37 0.15 0.07 0.25 0.13 0.04 0.10 0.01 0.07
Internlm3-8B-32k 0.17 0.32 0.43 0.40 0.33 0.40 0.39 0.14 0.05 0.24 0.07 0.02 0.06 0.01 0.04
ChatGLM3-6B-8k 0.05 0.14 0.28 0.21 0.17 0.12 0.14 0.03 0.03 0.08 0.03 0.01 0.03 0.01 0.02
ChatGLM4-9B-128k 0.21 0.36 0.44 0.45 0.36 0.44 0.42 0.17 0.06 0.27 0.10 0.04 0.09 0.01 0.06
Qwen-7B-8k 0.08 0.18 0.30 0.24 0.20 0.17 0.15 0.05 0.04 0.10 0.07 0.02 0.06 0.00 0.04
Qwen2-7B-128k 0.15 0.30 0.38 0.34 0.29 0.37 0.36 0.12 0.05 0.22 0.08 0.03 0.07 0.01 0.05
Qwen2.5-7B-128k 0.18 0.32 0.43 0.41 0.34 0.40 0.38 0.14 0.05 0.24 0.08 0.03 0.07 0.01 0.04
Qwen2.5-14B-128k 0.19 0.33 0.43 0.43 0.35 0.42 0.41 0.15 0.06 0.26 0.08 0.03 0.07 0.01 0.05
Qwen2.5-32B-128k 0.21 0.36 0.43 0.46 0.36 0.43 0.40 0.16 0.06 0.26 0.11 0.03 0.09 0.01 0.06
Llama-7B-2k 0.03 0.07 0.17 0.08 0.09 0.06 0.05 0.02 0.02 0.04 0.03 0.01 0.04 0.00 0.02
Llama2-7B-4k 0.05 0.10 0.20 0.11 0.11 0.06 0.06 0.02 0.02 0.04 0.03 0.01 0.04 0.00 0.02
Llama3-8B-8k 0.03 0.10 0.17 0.13 0.11 0.03 0.05 0.01 0.03 0.03 0.09 0.02 0.04 0.00 0.04
Llama-30B-2k 0.04 0.09 0.18 0.11 0.10 0.05 0.05 0.02 0.02 0.04 0.05 0.01 0.04 0.00 0.02
OPT-30B-2k 0.02 0.07 0.16 0.08 0.08 0.04 0.05 0.01 0.02 0.03 0.03 0.00 0.02 0.00 0.01
Wizard-Vicuna-2k 0.10 0.18 0.33 0.17 0.20 0.24 0.20 0.06 0.02 0.13 0.04 0.01 0.04 0.00 0.02
LwQ-Instruct-2k 0.16 0.22 0.34 0.19 0.23 0.34 0.24 0.11 0.02 0.18 0.06 0.02 0.08 0.00 0.04
30B-Epsilon-2k 0.13 0.19 0.30 0.16 0.20 0.24 0.17 0.08 0.02 0.13 0.05 0.02 0.07 0.01 0.04

Table 4: Results on single-doc QA, multi-doc QA and summarization tasks. The indexes, like "1-1" or "4-1", are
following Table 1. "avg" represents the average performance of subtasks under different main tasks.

Figure 11: The visualization of learned representation (ej , βj) of test sample.

enhancing the efficiency and memory retention of
Transformers (Tay et al., 2022). This includes inno-
vations in sparse and efficient computation (Child
et al., 2019; Kitaev et al., 2020; Beltagy et al., 2020;
Zaheer et al., 2020; Wang et al., 2020; Fedus et al.,
2022; Ding et al., 2023), as well as the integration
of recurrent and memory modules (Dai et al., 2019;
Rae et al., 2020; Wu et al., 2022; Martins et al.,
2022; Bulatov et al., 2022; Orvieto et al., 2023;
Liang et al., 2023; Zhou et al., 2023).

More recently, several advanced methods (Press
et al., 2022; Sun et al., 2022; Chen et al., 2023)
have been developed to facilitate length extrapola-
tion in Transformers. These techniques have been
incorporated into the training frameworks of long-
context LLMs such as ChatGLM2-32k (Zeng et al.,
2023) and LongChat-32k (Li et al., 2023a), among
others. These models have successfully extended
their context lengths to 128k tokens or more (An-

thropic, 2024; OpenAI, 2024; Reid et al., 2024;
GLM et al., 2024; Dubey et al., 2024; Xiong et al.,
2024; Fu et al., 2024; Bai et al., 2024b; Gao et al.,
2024), marking a significant advancement in the
field.

D.2 The LCU Benchmarks for LLMs

Given the critical importance of LCU capabilities
for LLMs, an increasing number of benchmarks
have been proposed to evaluate these capabilities,
playing a pivotal role in exploring and advanc-
ing LLMs’ LCU proficiency. A significant por-
tion of these benchmarks of LLMs focuses on
comprehensive LCU assessment, encompassing
tasks such as Question Answering, information
retrieval, and summarization. Notable examples
include L-Eval (An et al., 2024), LongBench (Bai
et al., 2024c), ZeroSCROLLS (Shaham et al.,
2023), BAMBOO (Dong et al., 2024), LooGLE (Li
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Model Few-show Learning Synthetic Code Overall

4-1 4-2 4-3 4-4 Avg 5-1 5-2 5-3 Avg 6-1 6-2 Avg EN ZH All
DeepSeek-V3-128k 0.77 0.93 0.63 0.35 0.67 0.05 0.38 0.34 0.26 0.90 0.86 0.88 0.43 0.26 0.45
GPT-4o-mini-128k 0.76 0.93 0.60 0.32 0.65 0.04 0.35 0.28 0.23 0.90 0.85 0.87 0.42 0.24 0.43
GPT-3.5-Turbo-16k 0.70 0.88 0.49 0.23 0.58 0.03 0.27 0.21 0.17 0.84 0.78 0.81 0.37 0.19 0.37
Internlm3-8B-32k 0.61 0.86 0.48 0.17 0.53 0.01 0.18 0.16 0.12 0.67 0.62 0.64 0.32 0.16 0.32
ChatGLM3-6B-8k 0.47 0.69 0.26 0.13 0.39 0.00 0.03 0.04 0.02 0.49 0.48 0.48 0.19 0.09 0.19
ChatGLM4-9B-128k 0.69 0.89 0.51 0.24 0.58 0.02 0.24 0.16 0.14 0.79 0.70 0.75 0.36 0.18 0.36
Qwen-7B-8k 0.58 0.78 0.34 0.20 0.48 0.01 0.12 0.08 0.07 0.74 0.68 0.71 0.25 0.11 0.27
Qwen2-7B-128k 0.66 0.89 0.44 0.20 0.55 0.01 0.15 0.11 0.09 0.74 0.69 0.71 0.32 0.14 0.32
Qwen2.5-7B-128k 0.65 0.87 0.49 0.21 0.55 0.01 0.19 0.16 0.12 0.69 0.65 0.67 0.33 0.17 0.33
Qwen2.5-14B-128k 0.65 0.87 0.49 0.22 0.56 0.01 0.19 0.16 0.12 0.68 0.64 0.66 0.33 0.17 0.33
Qwen2.5-32B-128k 0.69 0.90 0.54 0.25 0.59 0.02 0.24 0.19 0.15 0.76 0.71 0.74 0.36 0.20 0.36
Llama-7B-2k 0.47 0.71 0.21 0.15 0.39 0.00 0.04 0.03 0.02 0.64 0.58 0.61 0.18 0.06 0.20
Llama2-7B-4k 0.53 0.75 0.22 0.15 0.41 0.00 0.07 0.05 0.04 0.69 0.63 0.66 0.20 0.07 0.21
Llama3-8B-8k 0.60 0.74 0.30 0.24 0.47 0.01 0.10 0.14 0.08 0.74 0.68 0.71 0.22 0.11 0.24
Llama-30B-2k 0.50 0.72 0.24 0.17 0.41 0.00 0.08 0.05 0.04 0.67 0.62 0.65 0.20 0.07 0.21
OPT-30B-2k 0.40 0.65 0.16 0.11 0.33 0.00 0.02 0.03 0.02 0.49 0.47 0.48 0.15 0.05 0.16
Wizard-Vicuna-2k 0.52 0.76 0.24 0.13 0.41 0.01 0.08 0.05 0.05 0.62 0.55 0.59 0.23 0.08 0.23
LwQ-Instruct-2k 0.54 0.78 0.30 0.16 0.45 0.01 0.13 0.07 0.07 0.73 0.66 0.70 0.28 0.09 0.28
30B-Epsilon-2k 0.58 0.83 0.34 0.18 0.48 0.01 0.13 0.07 0.07 0.76 0.70 0.73 0.27 0.09 0.27

Table 5: Results on few-shot learning, synthetic, and code tasks. ‘Overall’ is computed by the macro-average (the
mean of ‘Avg’) over major task categories. This is computed on English (EN) tasks, Chinese (ZH) tasks, and all
(All) tasks, code tasks are included in both languages. The indexes, like "1-1" or "4-1", are following Table 1. "avg"
represents the average performance of subtasks under different main tasks.

et al., 2023b), ∞-bench (Zhang et al., 2024b),
Ruler (Hsieh et al., 2024), and HELMET (Yen et al.,
2024). Another category of benchmarks is specifi-
cally designed to explore particular aspects of LCU
capabilities. These include retrieval and attribution
tasks (Kamradt, 2023; Kuratov et al., 2024; Song
et al., 2024; Laban et al., 2024; Zhang et al., 2024a;
Vodrahalli et al., 2024; Krishna et al., 2024), doc-
ument QA (Dua et al., 2019; Dasigi et al., 2021;
Pang et al., 2022; Wang et al., 2024), summariza-
tion (Zhong et al., 2021; Huang et al., 2021a; Wang
et al., 2022), coding (Liu et al., 2023; Bogomolov
et al., 2024), many-shot learning (Agarwal et al.,
2024), and long-text generation (Bai et al., 2024e;
Wu et al., 2024; Liu et al., 2024; Que et al., 2024).

These specialized benchmarks provide targeted
insights into the diverse and complex facets of
LCU, contributing to a more nuanced understand-
ing and development of LLMs’ long-context pro-
cessing abilities.

D.3 Low-cost Deep Learning

Recently, there has been a surge of efforts aimed
at achieving low-cost deep learning, encompass-
ing strategies such as the compression of model
parameters or the design of lightweight archi-
tectures (Yang et al., 2024; Muralidharan et al.,
2024; Lin et al., 2024; Kim et al., 2024; Zhong
et al., 2023b; He et al., 2021; Huang et al., 2022,

2021b; Liang et al., 2020). Concurrently, some
research has explored compressing the training
dataset (Gadre et al., 2024; Sachdeva and McAuley,
2023; Yu et al., 2023; Lei and Tao, 2023; Tou-
vron et al., 2021) to reduce computational costs
while maintaining performance. Beyond these
approaches, in the era of large language models,
works including this paper consider compressing
test data (Polo et al., 2024; Pacchiardi et al., 2024;
Kipnis et al., 2024) as an effective means to aid in
model architecture design, parameter tuning, and
other training-related processes, thereby accelerat-
ing the iteration speed of robust models.

E The Visualization of Learned
Representation of Test Samples

In Section 3, we use the performance record of m
LLMs on various test samples in LongBench, and
use a logistic regression model for representation
learning, obtaining their representations (ej , βj).
In Fig. 11, we visualize test samples from certain
sub-tasks listed in Table 1 using t-SNE (Van der
Maaten and Hinton, 2008). It can be observed that
many test samples form clusters, and the repre-
sentations of samples within the same cluster are
highly similar. This further demonstrates that Long-
Bench contains a significant amount of redundancy
in its data, and the representation learning method
proposed in Section 3 is effective for identifying
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Figure 12: The more examples of visualization of ranking by MiniLongBench and LongBench..

redundant data in LongBench through clustering.

F More Visualizations of Ranking

In the Fig. 10, we provided some examples of rank-
ings by MiniLongBench and LongBench. In this
section, we will present more random examples
to illustrate the usability and reliability of Mini-
LongBench. The results are shown in Fig. 12. As
illustrated in Fig. 12, similar to the observations
in the main text’s Fig. 10, the results from 16 ran-
dom sampling trials consistently demonstrate that
the ranking outcomes of various LLMs on Mini-
LongBench closely align with those on LongBench.
Although minor discrepancies exist, they are within
an acceptable range, particularly considering that
the Spearman correlation coefficient (Sp) does not
reach a perfect 1.0. These visualizations further
validate that MiniLongBench achieves evaluation
results comparable to LongBench while signifi-
cantly reducing computational costs. This high-
lights MiniLongBench’s effectiveness as a low-cost
alternative for assessing LLM performance.

G Evaluating Directly by MiniLongBench

In Section 4.2 of the main text, we primarily intro-
duce a method that utilizes test samples from Mini-
LongBench to assist in evaluating the performance
of a target LLM on LongBench. This method

Model SQA MQA SUM FSL SYN CODE

DeepSeek-V3-128k 0.58 0.61 0.17 0.72 0.67 0.72
GPT-4o-mini-128k 0.54 0.57 0.18 0.61 0.67 0.70
GPT-3.5-Turbo-16k 0.43 0.47 0.17 0.40 0.64 0.61
Internlm3-8B-32k 0.38 0.55 0.16 0.34 0.67 0.19
ChatGLM3-6B-8k 0.31 0.15 0.17 0.30 0.07 0.36
ChatGLM4-9B-128k 0.48 0.56 0.18 0.56 0.58 0.36
Qwen-7B-8k 0.30 0.22 0.14 0.34 0.20 0.65
Qwen2-7B-128k 0.42 0.42 0.16 0.49 0.36 0.43
Qwen2.5-7B-128k 0.48 0.50 0.17 0.60 0.67 0.10
Qwen2.5-14B-128k 0.46 0.56 0.18 0.65 0.67 0.01
Qwen2.5-32B-128k 0.50 0.53 0.17 0.71 0.67 0.18
Llama-7B-2k 0.13 0.09 0.12 0.25 0.05 0.57
Llama2-7B-4k 0.16 0.10 0.10 0.23 0.14 0.59
Llama3-8B-8k 0.15 0.08 0.10 0.35 0.21 0.70
Llama-30B-2k 0.15 0.08 0.09 0.25 0.15 0.64
OPT-30B-2k 0.11 0.09 0.11 0.15 0.07 0.44
Wizard-Vicuna-2k 0.29 0.26 0.16 0.27 0.16 0.43
LwQ-Instruct-2k 0.34 0.36 0.16 0.31 0.18 0.61
30B-Epsilon-2k 0.26 0.21 0.17 0.42 0.20 0.62

Table 6: Specific evaluation results on evaluating di-
rectly by MiniLongBench. Due to differences in evalu-
ation methods, the score values presented in this table
vary somewhat from those in Table 2, but they yield a
similar ranking of LLMs in terms of LCU capability.

achieves a performance of up to 0.97 in Sp. In prac-
tice, we can also directly test the target LLM on
MiniLongBench’s test samples to obtain an assess-
ment of its LCU capability. The results in Fig. 13
confirm that this evaluation method achieves good
Sp across various tasks in MiniLongBench, with an
average Sp of 0.95, slightly lower than the evalua-
tion method presented in Section 4.2. Furthermore,
in Table 6, we present the results of this evaluation
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Figure 13: The analysis of rank correlation (Sp) between LongBench and MiniLongBench where the result of
MiniLongBench is evaluating directly.

method across six main tasks. Additionally, we
provide more detailed results for each subtask in
Table 7 and Table 8.

It is noteworthy that, in practice, whether directly
evaluating on LongBench or MiniLongBench, or
using the predictive method in Section 4.2, there
may be some discrepancies in the score values.
However, these discrepancies do not affect the
ranking of LLMs’ LCU capabilities. For instance,
Fig. 13 and the main text’s Fig. 5 demonstrate that
the results from different evaluation methods are
highly consistent, despite minor deviations in score
values. This phenomenon primarily arises from
several factors: first, MiniLongBench involves sig-
nificant pruning of test samples compared to Long-
Bench, leading to unavoidable errors; second, dur-
ing the logistic regression in Section 3’s Eq. (2),
normalization and discretization introduce certain
errors, particularly in scaling. Fortunately, the pri-
mary goal of the LCU benchmark is to rank LLMs
based on their LCU capabilities, so the absolute
score values do not impact the final outcomes.

H The Cost by Fine-tuning θ̄

In Section 4.2, additional fine-tuning of θ̄ is re-
quired, which primarily involves two costs: the
training cost for fine-tuning and the storage cost
for the representation vectors of LongBench’s test
samples. In practice, these costs are minimal and

entirely acceptable. Specifically, storing the test
samples of MiniLongBench and the representation
vectors of LongBench’s test samples requires only
9.01MB and 1.13MB of disk space, respectively.
This is significantly lower and entirely acceptable
compared to the original storage cost of nearly
200MB for LongBench’s test samples. This re-
duction is largely due to the two-step dimension-
ality compression method described in Section 3,
which uses text embedding and PCA to compress
each feature vector to a dimension of just d = 10,
thereby greatly reducing storage costs.

On the other hand, the cost of fine-tuning θ̄ is
also very low and can even be performed on a
standard laptop without the need for server-grade
GPUs. This is because MiniLongBench contains
only about 200 test samples, and the dimensions
of all representation vectors are all d = 10, so
the logistic regression training does not require
significant computational power. Through 100 re-
peated experiments, the average time required for
fine-tuning θ̄ was calculated. on a server (CPU:
AMD EPYC 7K62, GPU: RTX 3090 24GB) and
a laptop (CPU: AMD Ryzen 6 5600H, GPU: RTX
3050 4GB), fine-tuning takes approximately 0.02
seconds and 0.03 seconds, respectively. Compared
to the original testing time of LongBench shown in
Fig. 1, this is almost negligible.
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Model Single-Doc QA Multi-Doc QA Summarization

1-1 1-2 1-3 1-4 Avg 2-1 2-2 2-3 2-4 Avg 3-1 3-2 3-3 3-4 Avg
DeepSeek-V3-128k 0.66 0.40 0.53 0.72 0.58 0.74 0.89 0.59 0.22 0.61 0.18 0.21 0.16 0.15 0.17
GPT-4o-mini-128k 0.51 0.47 0.52 0.67 0.54 0.64 0.81 0.54 0.29 0.57 0.16 0.20 0.17 0.18 0.18
GPT-3.5-Turbo-16k 0.12 0.53 0.48 0.60 0.43 0.51 0.72 0.44 0.20 0.47 0.14 0.20 0.17 0.17 0.17
Internlm3-8B-32k 0.07 0.36 0.44 0.64 0.38 0.59 0.77 0.63 0.22 0.55 0.18 0.17 0.16 0.14 0.16
ChatGLM3-6B-8k 0.17 0.28 0.38 0.42 0.31 0.11 0.20 0.12 0.15 0.15 0.15 0.18 0.16 0.18 0.17
ChatGLM4-9B-128k 0.33 0.40 0.56 0.62 0.48 0.63 0.76 0.67 0.20 0.56 0.16 0.21 0.16 0.19 0.18
Qwen-7B-8k 0.16 0.28 0.46 0.32 0.30 0.29 0.22 0.22 0.13 0.22 0.17 0.16 0.17 0.06 0.14
Qwen2-7B-128k 0.38 0.40 0.38 0.52 0.42 0.64 0.71 0.19 0.15 0.42 0.18 0.18 0.15 0.13 0.16
Qwen2.5-7B-128k 0.50 0.37 0.46 0.58 0.48 0.71 0.66 0.50 0.14 0.50 0.18 0.21 0.14 0.15 0.17
Qwen2.5-14B-128k 0.41 0.43 0.44 0.56 0.46 0.67 0.89 0.44 0.23 0.56 0.16 0.23 0.15 0.16 0.18
Qwen2.5-32B-128k 0.45 0.43 0.42 0.68 0.50 0.66 0.76 0.48 0.21 0.53 0.16 0.21 0.15 0.17 0.17
Llama-7B-2k 0.03 0.11 0.23 0.12 0.13 0.07 0.08 0.15 0.04 0.09 0.14 0.05 0.18 0.12 0.12
Llama2-7B-4k 0.13 0.20 0.23 0.09 0.16 0.05 0.11 0.13 0.10 0.10 0.16 0.07 0.04 0.14 0.10
Llama3-8B-8k 0.02 0.20 0.17 0.22 0.15 0.04 0.10 0.13 0.06 0.08 0.18 0.14 0.01 0.09 0.10
Llama-30B-2k 0.03 0.17 0.27 0.11 0.15 0.07 0.12 0.08 0.04 0.08 0.16 0.05 0.05 0.11 0.09
OPT-30B-2k 0.03 0.18 0.11 0.11 0.11 0.06 0.09 0.14 0.07 0.09 0.18 0.05 0.14 0.08 0.11
Wizard-Vicuna-2k 0.28 0.21 0.49 0.16 0.29 0.46 0.26 0.19 0.13 0.26 0.16 0.16 0.18 0.14 0.16
LwQ-Instruct-2k 0.33 0.36 0.46 0.20 0.34 0.58 0.40 0.37 0.09 0.36 0.17 0.18 0.19 0.10 0.16
30B-Epsilon-2k 0.24 0.21 0.40 0.18 0.26 0.27 0.22 0.28 0.07 0.21 0.14 0.18 0.18 0.17 0.17

Table 7: Results on single-doc QA, multi-doc QA and summarization tasks based on evaluating directly by
MiniLongBench. The indexes, like "1-1" or "4-1", are following Table 1. "avg" represents the average performance
of subtasks under different main tasks.

Model Few-show Learning Synthetic Code Overall

4-1 4-2 4-3 4-4 Avg 5-1 5-2 5-3 Avg 6-1 6-2 Avg EN ZH All
DeepSeek-V3-128k 0.63 1.00 0.38 0.88 0.72 0.00 1.00 1.00 0.67 0.83 0.62 0.72 0.52 0.59 0.58
GPT-4o-mini-128k 0.63 1.00 0.31 0.50 0.61 0.00 1.00 1.00 0.67 0.80 0.61 0.70 0.49 0.53 0.54
GPT-3.5-Turbo-16k 0.63 0.60 0.38 0.00 0.40 0.00 0.93 1.00 0.64 0.73 0.49 0.61 0.42 0.39 0.45
Internlm3-8B-32k 0.00 1.00 0.38 0.00 0.34 0.00 1.00 1.00 0.67 0.19 0.18 0.19 0.36 0.40 0.38
ChatGLM3-6B-8k 0.50 0.01 0.30 0.38 0.30 0.00 0.00 0.20 0.07 0.45 0.27 0.36 0.19 0.26 0.22
ChatGLM4-9B-128k 0.63 0.83 0.35 0.44 0.56 0.00 1.00 0.73 0.58 0.59 0.13 0.36 0.44 0.44 0.45
Qwen-7B-8k 0.44 0.25 0.16 0.50 0.34 0.00 0.40 0.20 0.20 0.76 0.55 0.65 0.28 0.24 0.31
Qwen2-7B-128k 0.38 0.96 0.35 0.27 0.49 0.00 0.47 0.60 0.36 0.54 0.32 0.43 0.37 0.34 0.38
Qwen2.5-7B-128k 0.50 0.83 0.37 0.69 0.60 0.00 1.00 1.00 0.67 0.10 0.11 0.10 0.39 0.51 0.42
Qwen2.5-14B-128k 0.63 0.86 0.35 0.75 0.65 0.00 1.00 1.00 0.67 0.00 0.03 0.01 0.39 0.54 0.42
Qwen2.5-32B-128k 0.63 0.97 0.35 0.88 0.71 0.00 1.00 1.00 0.67 0.29 0.07 0.18 0.41 0.59 0.46
Llama-7B-2k 0.31 0.31 0.12 0.25 0.25 0.00 0.07 0.07 0.05 0.71 0.44 0.57 0.18 0.12 0.20
Llama2-7B-4k 0.25 0.25 0.14 0.29 0.23 0.00 0.20 0.22 0.14 0.71 0.48 0.59 0.18 0.17 0.22
Llama3-8B-8k 0.38 0.20 0.16 0.69 0.35 0.00 0.17 0.47 0.21 0.84 0.57 0.70 0.19 0.30 0.27
Llama-30B-2k 0.31 0.24 0.15 0.31 0.25 0.00 0.32 0.13 0.15 0.76 0.52 0.64 0.19 0.14 0.23
OPT-30B-2k 0.17 0.21 0.11 0.13 0.15 0.02 0.10 0.09 0.07 0.51 0.37 0.44 0.14 0.09 0.16
Wizard-Vicuna-2k 0.25 0.42 0.17 0.23 0.27 0.00 0.27 0.20 0.16 0.51 0.35 0.43 0.26 0.17 0.26
LwQ-Instruct-2k 0.31 0.31 0.17 0.44 0.31 0.00 0.33 0.20 0.18 0.71 0.52 0.61 0.32 0.21 0.33
30B-Epsilon-2k 0.24 0.80 0.26 0.38 0.42 0.00 0.40 0.20 0.20 0.75 0.50 0.62 0.30 0.20 0.31

Table 8: Results on few-shot learning, synthetic, and code tasks based on evaluating directly by MiniLongBench.
‘Overall’ is computed by the macro-average (the mean of ‘Avg’) over major task categories. This is computed on
English (EN) tasks, Chinese (ZH) tasks, and all (All) tasks, code tasks are included in both languages. The indexes,
like "1-1" or "4-1", are following Table 1. "avg" represents the average performance of subtasks under different
main tasks.
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