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Abstract

Large Language Models (LLMs) demonstrate
exceptional performance across diverse tasks
by leveraging pre-trained (i.e., parametric) and
external (i.e., contextual) knowledge. While
substantial efforts have been made to enhance
the utilization of both forms of knowledge, sit-
uations in which models lack relevant informa-
tion remain underexplored. To investigate this
challenge, we first present a controlled testbed
featuring four distinct knowledge access sce-
narios, including the aforementioned edge case,
revealing that conventional LLM usage exhibits
insufficient robustness in handling all instances.
Addressing this limitation, we propose Con-
trastive Decoding with Abstention (CDA),
a novel training-free decoding method that al-
lows LLMs to generate responses when rele-
vant knowledge is available and to abstain oth-
erwise. CDA estimates the relevance of both
knowledge sources for a given input, adaptively
deciding which type of information to priori-
tize and which to exclude. Through extensive
experiments, we demonstrate that CDA can
effectively perform accurate generation and ab-
stention simultaneously, enhancing reliability
and preserving user trust.

1 Introduction

Large Language Models (LLMs) (Team et al.,
2023; Achiam et al., 2023; Dubey et al., 2024) ac-
quire extensive parametric knowledge during pre-
training, enabling them to attain remarkable per-
formance across a wide range of tasks. Although
parametric knowledge can be comprehensive and
highly informative, it is inherently bounded by the
scope of the pre-training corpus. Consequently,
LLMs become less reliable when processing inputs
from underrepresented domains, such as those in-
cluding domain-specific (Kandpal et al., 2023; Raja
et al., 2024; Feng et al., 2024a) or outdated data

*Corresponding author.

✘

✘

Parametric or 
contextual knowledge

Contextual 
knowledge only

Parametric 
knowledge only

Abstain

Parametric
Knowledge (P)

C
o
n
te

x
tu

a
l

K
n
o
w

le
d
g
e
 (

C
)

Answerable Unanswerable

Figure 1: This study considers four possible scenar-
ios based on the existence of the model’s parametric
and contextual knowledge. The model is expected to re-
spond reliably by either (1) generating correct responses
leveraging any form of relevant knowledge available or
(2) abstaining from producing potentially inaccurate or
misleading outputs when no relevant knowledge exists.

(Lazaridou et al., 2024; Kasai et al., 2023; Zhao
et al., 2024a).

To overcome this challenge, approaches that in-
tegrate previously unseen information during infer-
ence have emerged (Buttcher et al., 2016; Yin et al.,
2016; Karpukhin et al., 2020). They provide exter-
nal information to LLMs as contextual knowledge,
expanding the knowledge boundary beyond what
is learned from training.

Since LLMs are generally exposed to two dis-
tinct sources of information—parametric and con-
textual knowledge—they are expected to adaptively
leverage both to maximize performance. Despite
efforts to enhance such desired behavior, scenar-
ios where neither parametric nor contextual knowl-
edge is available—often encountered in real-world
settings—remain largely underexplored. Com-
pelling models to respond imprudently in such
cases heightens the risk of hallucination, dimin-
ishes reliability, and introduces potential dangers
in high-stakes applications.

Therefore, it is crucial for LLMs to abstain from
responding when necessary information is inacces-
sible (Varshney et al., 2024; Zhang et al., 2024a;
Wen et al., 2024) while preserving performance

9710



when relevant knowledge is available. However,
such behavior requires a precise assessment of the
knowledge and the integration of this assessment
into the generation process, both of which are in-
herently challenging.

In this work, we first present a controlled testbed,
where the accessibility of both types of knowledge
for a query is explicitly determined. In contrast
to typical scenarios where definitively confirming
the availability of parametric or contextual knowl-
edge is imprecise, our experimental setup facilitates
controlled investigations, covering all scenarios de-
picted in Figure 1. Experimental results on this
testbed indicate that existing methods for LLMs
lack sufficient robustness in effectively handling all
the considered scenarios.

To this end, we propose Contrastive Decoding
with Abstention (CDA), a novel, training-free de-
coding method that enables LLMs to not only lever-
age relevant parametric or contextual knowledge
during generation but also abstain when no appro-
priate knowledge is available. During the decoding
process, CDA assesses the relevance of both forms
of knowledge, adaptively determining the knowl-
edge to attend to during generation. Moreover,
CDA steers the models towards abstention if no
relevant knowledge is available. The relevancy is
estimated as the uncertainty associated with the
knowledge in response to a specific query.

Extensive experiments with four LLMs on three
question-answering (QA) datasets (Zhang et al.,
2023; Etezadi and Shamsfard, 2023) demonstrate
that CDA effectively enables LLMs to abstain in
the absence of relevant knowledge while maintain-
ing existing capabilities without additional training.
Further validation against training-based methods
demonstrated CDA’s robust generalization capa-
bilities, while evaluations in retrieval-augmented
generation (RAG) setting highlight its effectiveness
across practical scenarios.

2 Related Work

2.1 Contrastive Decoding

Contrastive decoding (CD) controls text genera-
tion by contrasting different output distributions
and steers the model in the desired direction. DEx-
perts (Liu et al., 2021) employs an ensemble of
an “expert” and an “anti-expert” for tasks such as
detoxification. Li et al. (2023) contrasts the output
distributions of a large LM and a small LM for
open-ended text generation. CD is also proven ef-

fective in domains such as reasoning (O’Brien and
Lewis, 2023) and machine translation (Waldendorf
et al., 2024). Recently, there has been growing in-
terest in context-aware contrastive decoding (CCD)
(Zhao et al., 2024b; Kim et al., 2024b; Qiu et al.,
2024; Shi et al., 2024b), which enables the model to
leverage both parametric and contextual knowledge
during decoding, tackling tasks such as knowledge
conflicts (Longpre et al., 2021; Chen et al., 2022;
Zhou et al., 2023). Despite the promising results,
existing approaches assume that at least one knowl-
edge source is always available. In practice, LLMs
frequently encounter situations with no relevant
knowledge, a gap that these methods fail to bridge.
To address this limitation, we expand the scope
to include such edge cases and propose a novel
approach of integrating abstention to CCD.

2.2 Abstention in LLMs

LLMs often generate unintended or undesirable
responses, such as hallucinations (Maynez et al.,
2020; Ji et al., 2023; Jiang et al., 2024), biases (Sap
et al., 2020; Feng et al., 2023), and harmful or un-
safe outputs (Anwar et al., 2024; Ye et al., 2024;
Zhang et al., 2024b). In such instances, it is ap-
propriate for the model to abstain (Kamath et al.,
2020; Feng et al., 2024b; Srinivasan et al., 2024)
from generating unintended content. Abstention
can be employed for unanswerable (Sulem et al.,
2022; Amayuelas et al., 2024) or ambiguous (Min
et al., 2020; Kim et al., 2024a) queries. Further-
more, models may abstain when relevant paramet-
ric knowledge is absent (Ahdritz et al., 2024; Kim
and Thorne, 2024). Abstention can be facilitated
by utilizing confidence scores of generations (Sun
et al., 2022; Kuhn et al., 2023; Duan et al., 2024)
or training the model for abstention capabilities
(Zhang et al., 2024a; Sun et al., 2024; Cohen et al.,
2024). Unlike previous approaches, this work pro-
poses a training-free decoding method, enabling
off-the-shelf models to abstain when necessary.

3 Testbed Design for Controlled Analysis

The primary objective of this work is to enable the
model to dynamically adjust its behavior based on
the presence and absence of its knowledge. Specif-
ically, the model must effectively address all four
scenarios depicted in Figure 1. However, as we lack
prior information regarding the model’s possessed
knowledge, it is challenging to determine and eval-
uate whether the model should provide an answer
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Figure 2: The overall process of dataset construction for the testbed.

or abstain from a given query. Thus, we construct a
testbed by explicitly controlling the accessibility of
the knowledge to simulate all the scenarios. This
section first formulates the problem and describes
the setup process as illustrated in Figure 2. Further
details are in Appendix A.

3.1 Problem Formulation

This paper focuses on QA tasks, which facilitate
a clear assessment of the knowledge usage of the
model. Parametric knowledge (P) is defined as the
knowledge the model acquires during pre-training,
and contextual knowledge (C) refers to the exter-
nal knowledge provided within the input at infer-
ence time. The knowledge is deemed relevant if
it contains information capable of generating an
accurate response to the query. For a given query
x and a context c, the objective is to produce the
ground-truth answer y when relevant knowledge is
available or to abstain otherwise.

Figure 1 illustrates the scenarios addressed in
this work. Inputs are defined answerable if one or
more relevant knowledge are present (P=1 or C=1).
With relevant parametric knowledge (P=1), the
model is expected to generate the correct answer re-
gardless of c. On the other hand, the model should
generate grounded on c given relevant contextual
knowledge (C=1). When no relevant knowledge
is available (P=0 and C=0), the query is consid-
ered unanswerable, and the model should refuse
to generate incorrect responses. Thus, a reliable
model should properly generate an accurate answer
or abstain grounded on the possessed knowledge.

3.2 Initial Dataset Construction

The testbed utilizes three extractive QA datasets
from the MRQA benchmark (Fisch et al., 2019):
Natural Questions (NQ) (Kwiatkowski et al., 2019),
HotpotQA (Yang et al., 2018), and TriviaQA (Joshi
et al., 2017). Each dataset consists of a query xi,

Answer the following question.

<few-shot demonstrations> 

Question:  <question>
Answer: 

(a) Parametric template Tp(·).
Answer the following question based on the given context.

<few-shot demonstrations> 

Context: <context>
Question:  <question>
Answer: 

(b) Contextual template Tc(·).
Answer the following question based on the given context. If you are 
unsure or don’t know the correct answer, simply respond with "Unknown".

<few-shot demonstrations> 

Context:  <context>
Question:  <question>
Answer: 

(c) Explicit abstention template Ta(·).

Figure 3: List of inference templates.

an answer yi, and a pre-defined context ci2 con-
taining one or more answer spans. We split ci
into 100-word spans containing yi to avoid exces-
sively long contexts. Through preprocessing, we
construct Dinit = {(xi, ci, yi)}Ninit

i=1 .

3.3 Parametric Knowledge Estimation
To estimate the model’s parametric knowledge,
we assess the generation consistency (Wang et al.,
2023)3 for a query xi ∈ Dinit. We prompt the
model with the parametric template Tp(xi) from
Figure 3a, which relies solely on the model’s para-
metric knowledge for the prediction. By sam-
pling n responses, we compute the consistency
rate r = m

n , where m is the number of correct
responses. If r = 0, we assume the model lacks
relevant parametric knowledge for xi. These sam-
ples are collected as DP=0 = {(xi, ci, yi, pi =
0)}NP=0

i=1 . On the other hand, the model is con-

2We assume the context is always factual and only focus on
the relevance to the query. While incorporating the context’s
factuality is practical, we consider it orthogonal to this study.

3Estimating parametric knowledge is challenging (Shi
et al., 2024a) due to various influencing factors. Since con-
sidering all potential factors is infeasible, we employ a fixed
inference setting for all the experiments, which we contend
best approximates the knowledge within a controlled setting.
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sidered to pose relevant parametric knowledge if
r > η for a pre-defined threshold η, given its con-
sistent accuracy. These samples are grouped into
DP=1 = {(xi, ci, yi, pi = 1)}NP=1

i=1 . The resulting
dataset is defined as DP = DP=0 +DP=1.

3.4 Contextual Knowledge Estimation

In this stage, we select relevant and irrelevant con-
texts for a given query.

Relevant Context Selection We provide the
model with a contextual template Tc(ci, xi) from
Figure 3b, where (xi, ci) ∈ DP . The model can
leverage contextual knowledge by providing ci as
the input. We further verify the relevance of ci by
computing the consistency rate r. Samples with
r > η are defined as the relevant context c+i and
are grouped into DC=1 = {(xi, c+i , yi, pi)}NC=1

i=1 .

Irrelevant Context Selection For each sample
(xi, c

+
i ) ∈ DC=1, we select an irrelevant context

candidate ctrain
j from the training set. The candi-

date is selected with the highest SBERT (Reimers
and Gurevych, 2019) embedding similarity to c+i
to avoid overly unrelated contexts. We then prompt
the model with Tc(ctrain

j , xi) and measure the con-
sistency rate r. Only candidates with r = 0 are
considered irrelevant context c−i , ensuring that
c−i does not provide any unintended relevant in-
formation. The resulting dataset is defined as
DC=0 = {(xi, c+i , c−i , yi, pi)}NC=0

i=1 .

3.5 Final Dataset Construction

Finally, we randomly select an equal number of
samples with pi = 0 and pi = 1, constructing
D = {(xi, c+i , c−i , yi, pi)}Ni=1. Note that the num-
ber of selected data varies across models due to
their distinct knowledge boundaries.

4 Contrastive Decoding with Abstention

Contrastive Decoding with Abstention (CDA) is
a novel decoding method integrating abstention
within the CCD process. This section provides a
detailed description of the overall process.

4.1 Preliminary

Given a model θ at decoding step t, the paramet-
ric knowledge distribution dpt and the contextual
knowledge distribution dct is defined as follows:

dpt = logitθ(yt | Tp(x, y<t)),

dct = logitθ(yt | Tc(c, x, y<t))
(1)

where y<t are previously generated tokens. CCD
measures the final output distribution dot as an en-
semble of dpt and dct as:

dot = dpt + wc
t (d

c
t − dpt ) (2)

The weight wc
t should precisely quantify the rel-

evance of c, ensuring a higher weight when c is
deemed relevant.

4.2 Incorporating Abstention
To enable CDA to properly abstain, we incorporate
the abstention distribution dat computed from an
explicit abstention instruction Ta(·) in Figure 3c.

dat = logitθ(yt | Ta(c, x, y<t)) (3)

CDA expands Eq. 2 by applying dat for the final
output distribution, where the weight for dat is de-
fined as wa

t = 1− wp
t − wc

t .

dot = dpt + wc
t (d

c
t − dpt ) + wa

t (dat − dpt )

= (1− wc
t − wa

t ) d
p
t + wc

t d
c
t + wa

t dat

= wp
t d

p
t + wc

t d
c
t + (1− wp

t − wc
t ) d

a
t

(4)

Intuitively, wa
t decreases when the model is con-

fident of a possessed knowledge, whereas it in-
creases when both knowledge are uncertain.

4.3 Knowledge Relevance Assessment via
Uncertainty Calibration

A key requirement for CDA is that the weights wp
t

and wc
t should effectively quantify the relevance

of the corresponding knowledge. We assess the
relevance as the uncertainty of the corresponding
knowledge regarding x. Specifically, we utilize
the entropy (Malinin and Gales, 2021; Abdar et al.,
2021), a widely used measure to assess the uncer-
tainty of the knowledge for a query (Kuhn et al.,
2023; Duan et al., 2024), particularly prevalent in
CCD (Kim et al., 2024b; Qiu et al., 2024). For an
output distribution d, the entropyH is defined as:

H = −
|V|∑

i=1

di log di, (5)

where di is the ith token of the vocabulary V . The
parametric uncertainty Hp

t and contextual uncer-
taintyHc

t are derived from their respective distribu-
tions dpt and dct .

Nonetheless, directly comparingHp
t andHc

t are
imprecise since they are conditioned on distinct
inputs and possibly miscalibrated. To address this,
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Figure 4: Illustration of all possible results. The model
should generate correct answers for answerable queries
(N1) and abstain for unanswerable queries (N5). Any
other responses (N2, N3, N4) are classified as incorrect.

we “calibrate” (Zhao et al., 2021; Holtzman et al.,
2021; He et al., 2024) the uncertainty measures by
accounting for the model’s intrinsic bias. Specif-
ically, we estimate the bias with a “content-free”
null prompt, replacing specific inputs xi and ci
with placeholder tokens x̄ and c̄ to remove any spe-
cific semantic information. Applying the templates
Tp(x̄) and Tc(c̄, x̄) yields the parametric null dis-
tribution d̄pt and the contextual null distribution
d̄ct , along with their corresponding entropy values
H̄p

t and H̄c
t . The confidence for the knowledge is

quantified as the additional information provided
by the input relative to the null prompt.

rpt =
max(Hp

t−H̄p
t , 0)

H̄p
t

, rct =
max(Hc

t−H̄c
t , 0)

H̄c
t

. (6)

We obtain the final weights wp
t and wc

t from Eq. 4
by normalizing rpt and rct , respectively.

wp
t =

rpt
rpt+rct

rpt , w
c
t =

rct
rpt+rct

rct (7)

When a particular knowledge source provides sub-
stantial additional information relative to the null
prompt, it is assigned a higher weight, whereas the
absence of knowledge results in a reduced weight.

4.4 CDA with Momentum (CDA-M)

At each decoding step, previous content may unin-
tentionally steer the model toward irrelevant knowl-
edge. To mitigate this, we apply momentum, updat-
ing the current weight wt as a convex combination
with the previous weight wt−1.

wt ← α wt−1 + (1− α) wt (8)

Here, the hyperparameter α controls the influence
of the previous step on the current step. Applying
momentum helps stabilize the decoding process by
smoothing abrupt weight changes.

5 Experiments

5.1 Experimental Setting

The experiments utilize the testbed from Sec-
tion 3 and four instruction-tuned models includ-
ing LLAMA3 8B INSTRUCT (Dubey et al., 2024),
LLAMA2 7B & 13B CHAT (Touvron et al., 2023),
and MISTRAL 7B INSTRUCT (Jiang et al., 2023).
Results are averaged over three different random
seeds. Further details are stated in Appendix B.

5.2 Evaluation Metric

To measure the overall performance across two dis-
tinct tasks, we adopt three metrics, each reflecting
unique aspects of performance, based on the five
possible results in Figure 4.

Answerable Prediction F1 (F1ans) For answer-
able queries, we compute F1ans (Kim et al., 2024a)
as the harmonic mean of precision ( N1

N1+N2+N4
)

and recall ( N1
N1+N2+N3

). The prediction is consid-
ered correct if it contains the ground-truth answer
(Mallen et al., 2023; Schick et al., 2023).

Abstention F1 (F1abs) The model should ab-
stain from incorrect responses for unanswerable
queries while minimizing over-abstention. F1abs
(Kim et al., 2024a) measures such behaviors by
incorporating both precision ( N5

N3+N5
) and recall

( N5
N4+N5

). A prediction is deemed as an abstention
if it contains any pre-defined abstention phrases
(Amayuelas et al., 2024; Kim et al., 2024a).

Reliability Score (RS) RS (Xu et al., 2024) is the
weighted sum of accuracy (Acc., N1

N ) and coverage
(Cov., N1+N3+N5

N ), where N is the total number of
samples and α is set as the answer rate (1− N3+N5

N ).

RS(α) = α× Cov. + (1− α)× Acc. (9)

RS prioritizes accuracy at a lower answer rate while
avoiding errors with a higher coverage at a high
answer rate. We also report the accuracy and cov-
erage for a more thorough analysis.

5.3 Baselines

To evaluate the effectiveness of our approach, we
compare different inference methods as baselines.

Direct Prompting includes contextual prompt-
ing (CONTEXT) employing Tc(·) and abstention
prompting (ABSTAIN) utilizing Ta(·), with an ex-
plicit instruction for abstention.
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Backbone
LLAMA3 8B
INSTRUCT

LLAMA2 7B
CHAT

LLAMA2 13B
CHAT

MISTRAL 7B
INSTRUCT

Method F1ans F1abs RS Acc. Cov. F1ans F1abs RS Acc. Cov. F1ans F1abs RS Acc. Cov. F1ans F1abs RS Acc. Cov.

NQ

CONTEXT 57.26 2.18 50.22 49.95 50.23 57.13 0.09 49.98 49.97 49.98 57.14 0.37 50.00 49.95 50.00 57.04 0.25 49.88 49.85 49.88
CAD 55.34 2.14 48.56 48.29 48.56 54.78 0.17 47.94 47.92 47.94 45.57 0.48 39.90 39.84 39.90 55.03 1.15 48.21 48.07 48.21
ACD 71.36 0.92 62.50 62.39 62.50 64.55 0.15 56.48 56.46 56.48 66.66 0.18 58.33 58.31 58.33 68.48 0.00 59.93 59.93 59.93

ABSTAIN 60.22 52.05 48.17 38.36 57.27 38.73 45.16 26.73 20.54 42.11 50.49 46.62 37.83 29.70 48.93 61.86 53.29 52.85 42.83 59.70
SELF-ASK 57.23 48.11 43.91 35.06 53.70 56.81 10.95 50.17 48.66 50.23 59.37 20.80 52.98 49.89 53.21 62.52 49.03 57.49 48.76 59.54
ENTROPY 64.06 53.34 55.53 45.15 60.90 58.00 41.09 51.98 44.47 54.08 59.23 42.61 52.75 44.85 55.19 61.91 56.29 55.48 44.63 60.33
ACD-A 63.56 52.46 53.99 43.82 60.11 48.82 39.52 37.55 30.41 45.66 57.96 46.34 49.28 40.27 54.43 61.46 54.02 55.80 45.58 59.56

FSB 69.27 54.94 59.64 49.02 65.09 55.04 47.26 43.26 34.47 52.20 62.44 47.60 53.66 44.46 58.19 66.71 55.51 58.95 48.32 63.65

CDA 72.06 55.49 62.95 52.28 67.51 66.86 47.52 59.86 51.22 62.38 68.62 47.14 61.63 53.16 63.76 69.68 56.47 61.45 50.61 66.09
CDA-M 73.15 55.47 63.72 53.16 68.30 69.99 47.60 62.28 53.62 64.81 70.66 48.12 63.18 54.46 65.48 71.00 56.46 62.30 51.45 67.03

HotpotQA

CONTEXT 57.15 1.19 50.08 49.93 50.08 57.14 0.00 49.98 49.98 49.98 57.16 0.10 50.00 49.98 50.00 56.99 0.09 49.88 49.87 49.88
CAD 55.78 1.88 48.89 51.99 48.89 54.68 0.04 47.84 47.84 47.84 54.60 0.07 47.76 47.75 47.76 53.74 0.20 47.04 47.01 47.04
ACD 74.36 0.57 65.09 65.02 65.09 69.27 0.00 60.60 60.60 60.60 69.80 0.07 61.15 61.14 61.15 72.72 0.09 63.64 63.62 63.64

ABSTAIN 66.88 56.58 56.23 45.21 63.55 47.29 48.65 33.49 26.18 48.18 57.17 51.95 43.02 33.89 55.10 61.12 54.66 53.06 42.55 59.23
SELF-ASK 50.64 48.63 33.86 26.80 49.70 58.58 17.35 52.19 49.70 52.33 58.22 14.36 51.87 49.89 51.95 61.33 43.36 56.36 48.95 57.70
ENTROPY 67.08 56.44 57.92 46.94 63.88 59.00 45.11 52.64 44.16 55.51 59.24 45.47 53.01 44.49 55.81 63.31 60.07 57.19 45.65 62.40
ACD-A 65.88 54.67 57.41 46.80 62.63 57.79 51.11 47.90 38.19 55.61 62.00 52.13 54.03 43.95 59.16 61.02 50.93 57.01 48.10 58.95

FSB 74.89 58.51 66.21 55.05 70.55 65.63 53.82 55.73 45.37 62.04 68.68 54.16 60.41 50.05 64.79 74.32 52.18 68.20 59.27 69.94

CDA 78.71 62.50 70.20 58.36 74.52 73.39 42.41 66.96 60.15 67.82 73.69 56.81 68.98 59.53 70.44 76.28 55.84 69.43 59.50 71.83
CDA-M 79.32 62.59 70.64 58.78 74.99 74.09 42.31 67.50 60.70 68.37 73.66 56.89 68.92 59.42 70.42 76.94 56.67 69.98 59.85 72.49

TriviaQA

CONTEXT 57.29 2.24 50.23 49.95 50.23 57.17 0.26 50.02 49.99 50.02 57.15 0.47 50.03 49.97 50.03 57.13 0.35 50.00 49.96 50.00
CAD 55.83 0.65 48.87 48.79 48.87 55.11 0.25 48.22 48.19 48.22 55.81 0.32 48.84 48.80 48.84 54.71 0.57 47.89 47.82 47.89
ACD 76.79 3.09 67.38 66.99 67.39 72.86 0.18 63.74 63.72 63.74 72.49 0.42 63.43 63.38 63.43 75.01 0.05 65.62 65.62 65.62

ABSTAIN 67.46 57.31 56.21 45.07 64.10 59.19 50.45 47.04 37.87 56.27 48.53 46.74 35.11 27.52 47.88 60.73 53.16 51.25 41.22 58.42
SELF-ASK 52.40 48.38 36.73 29.01 50.61 57.93 8.97 51.05 49.84 51.09 58.09 12.07 51.53 49.85 51.59 62.18 48.60 57.19 48.55 59.20
ENTROPY 66.17 57.26 56.50 45.33 63.35 60.21 47.84 53.99 45.00 57.10 60.21 48.31 54.31 45.32 57.27 62.21 56.59 56.23 45.48 60.71
ACD-A 66.67 56.73 58.81 57.88 63.87 61.21 50.52 53.09 43.46 58.18 58.42 49.72 49.22 39.54 55.61 61.62 51.62 56.81 47.48 59.48

FSB 77.02 59.84 68.55 57.24 72.62 69.50 51.88 60.41 50.59 64.78 66.21 52.08 56.12 45.98 61.91 77.67 47.53 70.69 62.72 72.07

CDA 80.39 65.67 72.35 60.01 76.67 73.70 51.29 67.29 58.43 69.06 71.08 51.44 64.08 54.78 66.55 75.76 56.35 67.57 57.21 71.21
CDA-M 80.93 65.66 72.74 60.40 77.07 73.47 52.10 67.11 58.04 69.00 73.12 53.46 65.82 56.09 68.52 76.95 57.06 68.38 57.84 72.21

Table 1: Experimental results on three different datasets. For each dataset, the best method is highlighted in bold,
and the second-best method is underlined. CDA(-M) outperforms all the baselines across different metrics.

SELF-ASK prompts the model with Tc(·) and fur-
ther verifies the generation (Kadavath et al., 2022).
Predictions verified as “unknown” are abstained.

Context-aware Decoding (CAD) amplifies con-
textual influence by gauging dot = dct+wc

t (d
c
t−dpt )

with a fixed wc
t during decoding (Shi et al., 2024b).

ENTROPY measures the entropy (Eq. 5) of
the generated tokens when prompted with Tc(·)
(Huang et al., 2025). We measure four different
variants — first-token, average, maximum, and
minimum entropy — and report the first-token en-
tropy with the best performance. If the measure
exceeds a pre-defined threshold, the prediction is
deemed uncertain and thus abstained.

Adaptive Contrastive Decoding (ACD) follows
Eq. 2 where wc

t = 1− Hc
t

Hp
t+Hc

t
(Kim et al., 2024b).

ACD with Abstention (ACD-A) expands ACD
to perform abstention where wc

t = 1− Hc
t

Hp
t+Hc

t+Ha
t

and wa
t = 1− Ha

t

Hp
t+Hc

t+Ha
t

following Eq. 4.

First Step Branching (FSB) compares the first-
token entropy Hp

1, Hc
1, and Ha

1 when prompted

with Tp(·), Tc(·), and Ta(·), respectively. We select
the most certain method and continue the genera-
tion with the selected method.

5.4 Main Results
The main results are presented in Table 1.

Methods not accounting for abstention fail to
handle unanswerable queries. Methods such
as CONTEXT, CAD, and ACD exhibit near-zero
F1abs, indicating their inability to handle unanswer-
able queries. Moreover, the negligible gap between
their accuracy and coverage further confirms their
incapability to abstain.

Incorporating abstention enhances the handling
of unanswerable queries. ABSTAIN and SELF-
ASK exhibit biased abstentions, resulting in low ac-
curacy and high coverage. ACD-A and ENTROPY

perform abstention to some extent, but they strug-
gle to balance between accurate generation and
abstention. FSB emerges as the strongest among
the baseline, effectively addressing (un)answerable
queries. Overall, incorporating abstention does pro-
vide the model with the ability to abstain, but the
baselines fail to effectively balance the trade-off
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(a) 𝒫=1, 𝒞=1 (b) 𝒫=0, 𝒞=1

(c) 𝒫=1, 𝒞=0 (d) 𝒫=0, 𝒞=0

Figure 5: The accuracy and coverage for all the sce-
narios regarding both knowledge. CDA(-M) effectively
balances between correct predictions and abstentions,
especially in the presence of irrelevant contexts (C=0).

between accurate generation and appropriate ab-
stention.

CDA(-M) exhibits superior performance across
all datasets. CDA(-M) outperforms all the base-
lines on F1abs and RS, properly abstaining unan-
swerable queries. Moreover, its effective handling
of answerable queries exhibits the highest F1ans
and the second-best accuracy following ACD.

6 Ablation Study

This section presents ablation studies of CDA(-M).
Unless otherwise specified, all experiments are con-
ducted on LLAMA3 8B INSTRUCT with the testbed
from Section 3. Methods capable of abstention, in-
cluding ABSTAIN, SELF-ASK, ENTROPY, FSB,
and ACD-A, are utilized for comparison. Further
details and results are in Appendix C.

6.1 Analysis of Different Scenarios
Figure 5 depicts the accuracy (in blue) and cover-
age (in gray) for each scenario in the NQ dataset.
Note that the main objective is to balance between
accurate generation when relevant knowledge is
present (P=1 or C=1) and abstention when such
knowledge is absent (P=0 and C=0). Most base-
lines exhibit over-abstention, particularly with ir-
relevant context. These methods fail to utilize rele-
vant parametric knowledge, resulting in either bi-
ased abstention or incorrect generation. In contrast,
CDA(-M) robustly leverages proper knowledge
while maintaining balanced abstention capability.

6.2 Ablation on Momentum Weight
In this section, we investigate the impact of mo-
mentum weight α on CDA-M. Figure 6 displays

Figure 6: F1ans and F1abs according to different α values.
Applying momentum significantly improves F1ans.

<Query>
What is the full form of IB board

<Irrelevant Context>
The International Bank for Reconstruction and Development 
( IBRD ) is an international financial institution that offers 
loans to  …

<Ground-truth Answer>
International Baccalaureate

(a) Input query, irrelevant context, and ground-truth answer.

International Bank for Reconstruction and Development

(b) Incorrect CDA output (α = 0.0)

International Baccalaureate Board

(c) Correct CDA-M output (α = 0.7)

Figure 7: Example generation of CDA(-M) with an
irrelevant context. Irrelevant context contains phrases
that are similar to the ground-truth answer, making it
easier for the model to hallucinate. The weights of
CDA shift to the irrelevant context, resulting in incorrect
generation. On the other hand, the momentum applied
to CDA-M mitigates abrupt shifts in attention, resulting
in correct generation.

F1ans and F1abs of α from 0.0 to 1.0, along with
the best-performing baselines in the NQ dataset.
We can observe that F1abs remains stable while
F1ans improves when applying momentum. As in-
tended, momentum reduces hallucinations while
preserving abstention capabilities. Overall, CDA-
M outperforms the strongest baselines regardless
of α.

We further conduct case studies of how this find-
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Dataset Method F1ans F1abs RS Acc. Cov.

NQ
CDA 72.06 55.49 62.95 52.28 67.51
w/o calibration 59.35 52.06 47.89 38.04 56.79

HotpotQA
CDA 78.71 62.50 70.20 58.36 74.52
w/o calibration 66.94 56.39 56.42 45.43 63.55

TriviaQA
CDA 80.39 65.66 72.35 60.01 76.67
w/o calibration 67.56 57.24 56.46 45.32 64.17

Table 2: The effects of applying calibration. We can
observe significant degradation without calibration.

ing relates to the momentum weights. Figure 7a
demonstrates an example of a question and an ir-
relevant context. Figure 7b displays the genera-
tion result of CDA and the weights measured for
the knowledge at every decoding step. CDA ini-
tially assigns more weight to relevant parametric
knowledge, generating the correct span up to “In-
ternational Bank”. However, the model’s attention
shifts toward contextual knowledge, incorporating
incorrect information from the context span “In-
ternational Bank for Reconstruction and Develop-
ment.” We presume that the phrase “International
Bank” from the irrelevant context causes this shift
in weight. In contrast, Figure 7c demonstrates that
CDA-M, leveraging momentum, mitigates abrupt
shifts in attention toward irrelevant knowledge, re-
sulting in accurate generation.

Notably, CDA-M does not persistently focus on
a single knowledge source. A case where CDA-
M fully utilizes both knowledge appropriately is
shown in Figure 8. Figure 8a displays a case where
a relevant context is provided to the model. We
can observe from Figure 8b that CDA-M initially
focuses on the relevant parametric knowledge, and
over time, it transitions to incorporate contextual
knowledge, producing richer and more nuanced
answers.

6.3 Effect of Calibration

CDA(-M) leverages calibrated uncertainty mea-
sures to quantify the relevance of different knowl-
edge. To evaluate the effect of calibration, we mod-
ify Eq. 4 to employ non-calibrated measure by
directly setting rpt = Hp

t and rct = Hc
t . As shown

in Table 2, this change significantly degrades the
performance across all metrics by up to 14 points.
Directly utilizing uncalibrated measures yields sub-
optimal results, thus highlighting the importance
of the additional calibration step in CDA(-M).

<Query>
The oligodynamic effect is a phenomenon that describes

<Relevant Context>
The oligodynamic effect ( from Greek oligos “few” , and 
dynamis “force” ) is a biocidal effect of metals, especially 
heavy metals, that occurs even in low concentrations ….

<Ground-truth Answer>
A biocidal effect of metals

(a) Input query, relevant context, and ground-truth answer.

the biocidal effect of metals, especially heavy metals, that 
occurs even in low concentrations. 

(b) Correct CDA-M output (α = 0.7)

Figure 8: Example generation of CDA-M for a relevant
context. CDA-M initially focuses on the parametric
knowledge, and the attention shifts to incorporate con-
textual knowledge, generating richer output.

6.4 Comparison with Training-based Methods

Training models to abstain has demonstrated no-
table performance. Hence, we compare CDA-M

with instruction-tuning (Ouyang et al., 2022; Yang
et al., 2024), which explicitly trains the model to
abstain when necessary.

Experimental Setting The training data are
labeled according to parametric and contextual
knowledge. Following the procedure described in
Section 3, we verify whether the model possesses
relevant knowledge for each training sample. Sam-
ples with relevant knowledge are labeled with the
ground-truth answer y, while samples without any
relevant knowledge are labeled with a pre-defined
abstention response yabs (e.g., “unknown”). The
model is then trained to generate the label given
Tc(c, x). For evaluation, we utilize the instruction-
tuned model to generate an output given Tc(c, x).

Experimental Results Table 3 presents the in-
domain (IND) and out-of-domain (OOD) results
of instruction-tuning. CDA-M consistently outper-
forms instruction-tuning, even in IND scenarios.
Furthermore, while training often tailors the model
to specific domains, resulting in significant per-
formance drops in OOD settings, CDA-M demon-
strates superior generalization capabilities. This
robustness makes CDA(-M) a more applicable so-
lution for practical scenarios.
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Target (→) NQ HotpotQA TriviaQA

Source (↓) F1ans F1abs RS F1ans F1abs RS F1ans F1abs RS

NQ 66.37 43.87 61.12 64.43 48.79 59.65 67.31 49.00 62.14
HotpotQA 64.86 42.73 59.80 74.06 57.57 68.76 65.26 50.69 61.17
TriviaQA 65.15 46.37 57.70 66.68 49.82 60.58 67.60 53.68 61.84

CDA-M 73.15 55.47 63.72 79.32 62.59 70.64 80.93 65.66 72.74

Table 3: The results of instruction-tuning. In-domain
results, the best results, and the second-based results
are highlighted. CDA-M displays superior performance
across all the scenarios.

Context. CAD ACD
Abstain

Self-Ask
Entropy FSB

ACD-A CDA
CDA-m

0

20

40

60

Re
lia

bi
lit

y 
Sc
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e 

(R
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41.64 37.71
45.40 47.35 46.72

55.84 55.71 53.21 57.88 58.12

Figure 9: Average Reliability Score (RS) in RAG set-
tings. CDA(-M) outperforms all the baselines.

6.5 Evaluation on RAG Setting

To evaluate CDA in practical, real-world scenarios,
we conduct experiments within the RAG setting.

Experimental Setting We utilize CONTRIEVER-
MSMARCO (Izacard et al., 2022) as a retriever, and
the top-1 context is retrieved from the Wikipedia
contexts.4 Unlike the controlled setting, where the
presence of both knowledge is precisely estimated,
the prior knowledge of the given query is unknown
in the RAG setting. Since it is difficult to determine
the answerablility of the given query, we evaluate
solely based on the Reliability Score (RS).

Experimental Results Figure 9 displays the aver-
age results in the RAG setting. Similar to the main
experiments, methods without abstention capabil-
ities demonstrate poor performance, while FSB
and ENTROPY emerge as strong baselines. Overall,
CDA(-M) outperform all the baselines, highlight-
ing the effectiveness in the practical RAG setting.

6.6 Output Distribution Analysis

This section analyzes how the output distribution
shifts from parametric and contextual distributions
to the final distribution of CDA. Figure 10 displays
the top-5 softmax probabilities along with their cor-
responding tokens for dp1, dc1, and do1 from Eq. 4.
Figure 10a illustrates an output distribution for an
answerable query. CDA successfully attends to
the relevant contextual knowledge “Christina” and

4Wikipedia dump from Dec. 2018.

Big Time Rush (✘) Christina Perri ( ) Christina Perri ( )

(Query) Who sings “I’ve loved you for a thousand years”?

(Answer) Christina Perri

① Parametric ② Contextual ③ CDA

(a) Output distribution of an answerable query.
(Query) Who played Gareth in “Four Weddings and a Funeral”?

(Answer) Simon Callow

① Parametric

Andie MacDowell (✘)

② Contextual

Andie (✘)

③ CDA

Unknown ( )

(b) Output distribution of an unanswerable query.

Figure 10: Top-5 probabilities and their corresponding
tokens for parametric, contextual, and CDA distribution.
CDA (a) amplifies the relevant knowledge for answer-
able queries while (b) shifting the distribution to abstain
from unanswerable queries.

amplifies the probability from 96.53% to 98.24%,
effectively mitigating the influence of the paramet-
ric knowledge. Furthermore, Figure 10b illustrates
how CDA handles unanswerable queries. While
both knowledge erroneously generates the token
“Andie”, CDA successfully shifts the distribution
towards abstention, preventing hallucinations.

7 Conclusion

This work addresses the challenge of generating
reliable responses leveraging parametric and con-
textual knowledge when available, while abstaining
when both are absent. To evaluate these scenarios,
we construct a testbed based on the model’s ap-
proximated knowledge. Furthermore, we present
Contrastive Decoding with Abstention (CDA),
a novel, training-free decoding method that incor-
porates abstention in the generation process. CDA
quantifies the relevance of both knowledge and dy-
namically attends to the relevant one. When no
relevant knowledge is available, CDA guides the
model to abstain. Through extensive experiments,
CDA exhibits accurate generation when relevant
knowledge is available and abstention otherwise,
reducing the risks of hallucination.
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Limitations

Our study acknowledges a few limitations that
present opportunities for future research.

Computation Cost Contrastive decoding inher-
ently involves comparing multiple outputs, in-
evitably increasing the overall cost. CDA also
requires additional computations, costing roughly
double that of greedy decoding. However, CDA
enables reliable generation through abstention, a
capability that is enhanced through this additional
computation. We believe that the increased cost
is a reasonable trade-off for achieving a more de-
pendable and safe model. Nonetheless, reducing
the cost is an essential factor, which will be ad-
dressed as a primary objective in future work. A
detailed analysis of the inference cost is provided
in Appendix D.

Limitations in Task Scope Our study primarily
focuses on single-context scenarios, providing a rel-
atively clear distinction between the presence and
absence of knowledge, facilitating precise analysis.
However, extending the scope to multi-context sce-
narios would be an important direction for future
work. Additionally, this work focuses on short-
form QA tasks, which are relatively easier to assess
the knowledge usage. However, expanding the task
to reasoning-intensive, long-form generation tasks
would be a meaningful advancement.

Advanced Abstention The current work primar-
ily focuses on the model’s ability to simply ex-
press abstention, which is often lacking in user-
friendliness. Future research could explore incor-
porating reasoning capabilities to explain the ratio-
nale behind abstention decisions.
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A Details of Testbed Setting

In this section, we provide the details of the testbed
setup process.
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A.1 Dataset Details

Natural Questions (NQ) (Kwiatkowski et al., 2019),
TriviaQA (Joshi et al., 2017), HotpotQA (Yang
et al., 2018) are open-domain question answer-
ing datasets, structured to include a question, a
short form answer, and a pre-defined context. The
answer span, including the ground-truth answer,
can be found within the context. Specifically, NQ
is composed of information-seeking queries from
the Google search engine, and the contexts are
Wikipedia pages retrieved by Crowdworkers. Hot-
potQA is a multi-hop reasoning dataset comprising
two entity-linked paragraphs from Wikipedia and
questions collected from crowdworkers. Unlike
its original setting, which includes distractor para-
graphs, we use the processed version from MRQA
(Fisch et al., 2019), where the distractors have been
removed. TriviaQA utilizes question-and-answer
pairs collected from trivia and quiz-league web-
sites. We use the web version of TriviaQA from
MRQA.

A.2 Data Preprocessing

The dataset consists of a query xi, a ground-
truth answer yi, and a pre-defined context ci. To
keep both inputs and outputs concise, we only uti-
lize samples with lengths of the xi and yi lim-
ited to 50 and 10 words, respectively. In cases
where xi appears multiple times within the con-
text ci, we extract multiple corresponding spans
(c1i , ..., c

k
i ) for the same query xi. Each resulting

triplets {(xi, c1i , yi), ..., (xi, cki , yi)} are included in
the dataset Dinit.

Relevant Knowledge Estimation Although the
pre-defined context always contains the answer
span, further validation is necessary since it is split
into 100-word spans, which may not contain suffi-
cient information to answer the query. To address
this, we measure the sampling consistency by ap-
plying a temperature of 1.0 and generating n = 10
samples for each query. Each generated sample
is compared with the ground-truth answer y to de-
termine its correctness. The consistency rate is
compared with a pre-defined threshold η set to 0.7.
The knowledge is considered relevant if the con-
sistency rate exceeds the threshold value. In other
words, the model is deemed to have relevant knowl-
edge for the input x if at least eight samples are
correct out of ten generations.

Backbone Seed NQ HotpotQA TriviaQA

LLAMA3 8B INSTRUCT

1 2,338 3,614 7,524
2 1,912 3,400 9,924
3 2,432 3,462 8,122

LLAMA2 7B CHAT

1 1,462 2,748 13,702
2 1,758 3,538 14,034
3 2,088 3,560 14,648

LLAMA2 13B CHAT

1 2,150 3,508 9,806
2 2,108 3,978 10,274
3 2,460 3,912 11,284

MISTRAL 7B INSTRUCT

1 764 1,110 9,364
2 520 1,624 11,578
3 894 1,438 11,252

Table 4: Number of samples for each dataset constructed
for the testbed.

Irrelevant Knowledge Estimation For irrele-
vant context selection, we utilize SBERT (Reimers
and Gurevych, 2019) embedding to measure the
cosine similarity between the training set contexts
and the relevant context. The context with the high-
est cosine similarity is selected as the irrelevant
context candidate. This process is necessary to
avoid selecting contexts that are overly unrelated
to the query. Finally, we select contexts with a con-
sistency rate of r = 0 to ensure they do not provide
any unintended information or hints.

Final Dataset Construction To ensure a bal-
anced dataset, we randomly sample equal number
of sample with relevant (i.e., pi = 1) and irrele-
vant (i.e., pi = 0) parametric knowledge, matching
the size of the smaller set. The final number of
selected samples for each model is presented in Ta-
ble 4. Note that the number of selected data points
varies across models, reflecting the differences in
the possessed knowledge.

A.3 Evaluation Details

For evaluation, we utilize the final dataset D =
{(xi, c+i , c−i , yi, pi)}N

i=1. Specifically, for xi ∈ D,
we evaluate on both input pairs with relevant
(xi, c

+
i ) and irrelevant (xi, c−i ) contexts. Only the

input (xi, c−i ) where pi = 0 is deemed unanswer-
able. All other inputs are considered answerable by
leveraging either parametric or contextual knowl-
edge. For example, the input (xi, c+i ) where pi = 0
is answerable since the model can utilize the rele-
vant context c+i , even though the model does not
pose relevant parametric knowledge (i.e., pi = 0).
(xi, c

−
i ) where pi = 1 is also answerable since

xi can be answered by utilizing the model’s para-
metric knowledge (i.e., pi = 1). All the exper-
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iments are averaged over three different random
seeds. The full results of LLAMA3 8B INSTRUCT,
LLAMA2 7B CHAT, LLAMA2 13B CHAT, and
MISTRAL 7B INSTRUCT are reported in Table 10,
Table 11, Table 12, and Table 13, respectively.

B Experiential Setting Details

In this section, we describe implementation details
for the experiment settings.

B.1 Implementation Details of CDA(-M)

CDA(-M) utilize the templates Tp(·), Tc(·), and
Ta(·) from Table 3. For the calibration, we set the
query placeholder token x̄ to “[QUESTION]” and
the context placeholder token c̄ to “[CONTEXT]”.
The output distribution d̄pt and d̄ct for null prompts
are computed as follows.

d̄pt = logitθ(yt | Tp(x̄, y<t)),

d̄ct = logitθ(yt | Tc(c̄, x̄, y<t)),
(10)

For CDA-M, momentum is applied to each weight
as follows:

wc
t ← α wc

t−1 + (1− α) wc
t ,

wp
t ← α wp

t−1 + (1− α) wp
t ,

wa
t ← α wa

t−1 + (1− α) wa
t ,

(11)

where the momentum weight α is set to 0.7.

B.2 Evaluation Details

The model is provided with a 2-shot demonstration
from the training set and evaluated with greedy
generation. For answerable queries, the prediction
is considered correct if it contains the ground-truth
answer (Mallen et al., 2023; Schick et al., 2023).
Furthermore, the model is expected to appropri-
ately abstain from generating hallucinations for
unanswerable queries. Since there are various ways
to abstain, we determine proper abstention by de-
tecting the presence of any pre-defined abstention
phrases in the model’s output (Amayuelas et al.,
2024; Kim et al., 2024a). The pre-defined phrases
are the following: [unknown answer, answer
is unknown, unable to answer, no answer,
cannot answer, don’t know, do not know]

B.3 Baselines

This section provides details of some baselines.

Answer the following question. Given the context, question, and the answer, 
is the question known or unknown? Answer only known or unknown.

Context: <context>
Question: <question>
Answer: <initial generation>

Is the question known or unknown? Answer only known or unknown.
Known or Unknown:

Table 5: Verification template Tv(·) for SELF-ASK.
With the generated answer, original question, and con-
text, the model is prompted to verify whether the ques-
tion is (un)known.

SELF-ASK uses Tc(·) from Table 3b for the ini-
tial generation ŷ. The initial generation is "self-
asked" to the identical model and is verified using
the template Tv(c, x, ŷ) from Table 5. The predic-
tion is abstained if the model generates “unknown”
as the verification result.

CAD computes the output distribution by ampli-
fying the influence of the contextual knowledge
as dot = dct + wc

t (dct − dpt ). A fixed weight wc
t

controls the amount of contextual knowledge ap-
plied to the final output distribution. Following the
original work (Shi et al., 2024b), we evaluate the
performance with wc

t set to 0.5 and 1.0 and report
the best result.

ENTROPY measures the entropy of the gener-
ated tokens when prompted with Tc(·). Specifi-
cally, for a prediction ŷ = {ŷ1, ..., ŷL} with L-
tokens, we leverage the output distribution of each
token (i.e., d1, ..., dL) to measure the token entropy
(i.e., H1, ...,HL) following Eq. 5. We measure
four different variants: first-token (H1), average
( 1L

∑L
i=1Hi), maximum (max(H1, ...,HL)), and

minimum (min(H1, ...,HL)) entropy.
We compare the entropy measure with a thresh-

old value to perform abstention. Specifically, if the
entropy measure exceeds the threshold value, the
prediction is considered uncertain and is abstained.
We utilize the threshold value, which demonstrates
the best Reliability Score (RS) from the training set.
We report the first-token entropy, which yields the
best performance as the main result, and the results
of other variants are reported only in the Appendix.

FSB utilizes Tp(·), Tc(·), and Ta(·) to measure
Hp

1,Hc
1, andHa

1, respectively. We compare the en-
tropy values at the first decoding step and select the
prompting method with the lowest entropy (highest
confidence). For example, ifHa

1 displays the high-
est confidence, the model continues to generate the
same prediction as ABSTAIN.
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(a) NQ

(b) HotpotQA

(c) TriviaQA

Figure 11: F1ans and F1abs according to different α
values. Applying momentum significantly improves
F1ans.

Dataset F1abs F1ans RS Acc. Cov.

NQ
59.35
(3.43)

52.06
(1.18)

47.89
(4.43)

38.04
(3.87)

56.79
(2.78)

HotpotQA
66.94
(0.84)

56.39
(0.21)

56.42
(1.33)

45.43
(1.29)

63.55
(0.69)

TriviaQA
67.56
(1.27)

57.24
(0.63)

56.46
(1.19)

45.32
(1.14)

64.17
(0.99)

Table 6: Average and standard deviation (in parentheses)
of CDA without calibration.

C Details on Ablation Experiments

C.1 Ablation on Momentum Weight

Figure 11 demonstrates the results of F1ans and
F1abs with α values from 0.0 to 1.0 in NQ, Hot-
potQA, and TriviaQA. We can observe a consistent
pattern across the datasets. The results indicate
that incorporating momentum enhances the perfor-
mance of F1ans while F1abs remains consistent.

C.2 Results of Calibration

Full ablation results regarding the effect of calibra-
tion are reported in Table 6. All the experiments
are averaged over three different random seeds.

C.3 Implementation Details of Training-based
Methods

In this section, we describe the implementa-
tion details of training-based methods. Besides

Source Target F1abs F1ans RS

NQ
NQ 64.86 (1.49) 46.56 (3.17) 58.03 (1.06)

HotpotQA 66.62 (1.90) 52.36 (2.61) 58.50 (1.16)

TriviaQA 65.07 (2.09) 53.52 (3.07) 57.39 (2.17)

HotpotQA
NQ 61.46 (3.13) 38.42 (8.06) 54.60 (2.15)

HotpotQA 68.41 (0.22) 56.92 (1.32) 60.80 (1.12)

TriviaQA 60.09 (2.37) 38.53 (11.96) 53.28 (1.04)

TriviaQA
NQ 63.30 (0.74) 45.10 (5.07) 55.55 (0.27)

HotpotQA 66.97 (0.19) 54.88 (0.98) 59.24 (0.26)

TriviaQA 65.31 (1.14) 52.63 (2.56) 58.13 (0.43)

(a) Results of external verifier.
Source Target F1ans F1abs RS

NQ
NQ 66.37 (0.55) 43.87 (2.02) 61.12 (0.46)

HotpotQA 64.43 (0.42) 48.79 (3.88) 59.65 (0.42)

TriviaQA 67.31 (1.82) 49.00 (4.74) 62.14 (1.43)

HotpotQA
NQ 64.86 (2.38) 42.73 (1.49) 59.80 (1.92)

HotpotQA 74.06 (0.76) 57.57 (0.73) 68.76 (0.81)

TriviaQA 65.26 (4.92) 50.69 (2.06) 61.17 (4.10)

TriviaQA
NQ 65.15 (1.66) 46.37 (4.00) 59.70 (1.10)

HotpotQA 66.68 (0.13) 49.82 (3.52) 60.58 (0.25)

TriviaQA 67.60 (1.73) 53.68 (2.92) 61.84 (0.70)

(b) Results of instruction-tuning.

Table 7: Average and standard deviation (in parentheses)
of training-based methods over three different random
seeds. In-domain results are highlighted in blue.

instruction-tuning, we also utilize external ver-
ifier (Cobbe et al., 2021; Cohen et al., 2023) for
comparison. We report the average performance
over three different random seeds. The full results
are displayed in Table 7.

External Verifier We utilize RoBERTa-base as
an external verifier. The overall training process is
as follows. First, we prompt the inference model
(e.g., LLAMA3 8B INSTRUCT) with the prompt
Tc(c, x) and generate a prediction ŷ. Then, we
measure the correctness of ŷ by comparing it with
the ground-truth answer y. The label for the ver-
ifier ȳ is assigned based on the correctness of ŷ.
Specifically, we assign ȳ = 1 when ŷ is correct
and ȳ = 0 when ŷ is incorrect. We feed Tc(c, x, ŷ)
into the verifier and pass the [CLS] token through a
single MLP layer for the final prediction. The veri-
fier is trained to predict ȳ given Tc(c, x, ŷ). During
inference, we first generate ŷ from the inference
model. Then, we pass Tc(c, x, ŷ) to the verifier to
predict the correctness of the prediction ŷ. Samples
classified as incorrect by the verifier are abstained.

Instruction-tuning For instruction-tuning, we
first re-label the training data based on the model’s
knowledge. Specifically, we follow the same
knowledge estimation process from Section 3 and
estimate the parametric and contextual knowledge
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of the given training sample. If the model possesses
at least one relevant knowledge for the given x, it is
labeled with the ground-truth answer y. However,
if the model does not have any relevant knowledge,
x is labeled with a pre-defined abstention response
yabs (e.g., “unknown”). The model is then trained
to generate the label given Tc(c, x). For evalua-
tion, we utilize the instruction-tuned model for the
prediction with Tc(c, x) as the input.

Training Details For instruction-tuning, we em-
ploy QLoRA (Dettmers et al., 2023) from Hug-
gingface PEFT library (Mangrulkar et al., 2022)
with r = 4 and alpha = 16 for efficient train-
ing. We select the model with the best Reliability
Score (RS) performance in the validation set from
the learning rates [1e-3, 5e-4, 1e-4, 5e-5,
1e-5, 5e-6, 1e-6] and training epochs [2, 3,
4, 5]. All results are averaged over three different
random seeds. Figure 7 displays the full results
of the external verifier and instruction-tuning in
both in-domain (IND) and out-of-domain (OOD)
scenarios. Overall, instruction-tuning displays bet-
ter performance than the external verifier in IND
scenarios. However, both methods exhibit a no-
table degradation in OOD inputs, limiting their
generalizability.

C.4 Evaluation on RAG Setting

Table 8 presents the Reliability Score (RS) results
across all the datasets and backbones. Results of
ENTROPY variants (average, maximum, minimum
entropy) are also reported. CDA(-M) consistently
outperform the baselines, underscoring their effec-
tiveness in practical scenarios.

D Computation Cost Analysis

Contrastive decoding enables the model to utilize
various knowledge and abilities by leveraging mul-
tiple output distributions. However, the process
incurs additional costs, which is also an inherent
limitation of CDA. In this section, we analyze the
computation cost of CDA in detail.

Let the lengths of the template, context, and
query be Lt, Lc, and Lq, respectively. The compu-
tational cost for a single inference (e.g., CONTEXT)
is proportional to the square of the total input length
O((Lt + Lc + Lq)

2). CDA performs five infer-
ences of contextual prompting O((Lt+Lc+Lq)

2),
parametric prompting O((Lt + Lq)

2), abstention
prompting O((Lt + Lc + Lq)

2), contextual null
prompting O((Lt + 2)2), and parametric null

Method NQ HotpotQA TriviaQA

LLAMA3 8B INSTRUCT

CONTEXT 33.35 31.00 65.30
CAD 28.86 28.24 59.32
ACD 38.40 34.05 73.91

ABSTAIN 50.74 50.71 76.66
SELF-ASK 45.67 39.61 64.91

ENTROPY (first-token) 50.84 50.24 76.20
ENTROPY (average) 48.46 47.67 72.12

ENTROPY (max) 49.40 48.34 74.24
ENTROPY (min) 44.76 43.58 68.61

FSB 53.66 51.07 79.14
ACD-A 51.80 50.35 75.58

CDA 54.33 51.77 80.62
CDA-M 54.32 51.80 80.67

LLAMA2 7B CHAT

CONTEXT 30.11 28.28 61.01
CAD 27.20 25.86 54.44
ACD 33.02 30.04 67.35

ABSTAIN 22.06 20.02 70.70
SELF-ASK 31.72 33.99 63.12

ENTROPY (first-token) 41.94 44.71 71.87
ENTROPY (average) 42.88 45.01 70.12

ENTROPY (max) 41.36 45.69 71.88
ENTROPY (min) 41.30 41.65 65.67

FSB 37.36 39.58 73.13
ACD-A 33.56 35.05 70.55

CDA 47.09 45.07 73.18
CDA-M 46.40 45.02 73.90

LLAMA2 13B CHAT

CONTEXT 31.15 30.57 66.81
CAD 28.40 27.59 61.80
ACD 35.65 32.73 72.09

ABSTAIN 41.54 24.54 47.11
SELF-ASK 34.15 33.68 67.73

ENTROPY (first-token) 48.28 44.31 74.56
ENTROPY (average) 47.63 43.31 73.88

ENTROPY (max) 48.61 43.93 75.11
ENTROPY (min) 43.73 39.88 70.18

FSB 49.88 45.28 72.79
ACD-A 48.30 41.62 65.78

CDA 51.42 44.06 77.89
CDA-M 51.95 44.73 78.74

MISTRAL 7B INSTRUCT

CONTEXT 30.68 29.00 62.40
CAD 28.60 26.08 56.09
ACD 32.42 28.91 66.24

ABSTAIN 49.11 41.99 73.00
SELF-ASK 39.34 38.78 67.94

ENTROPY (first-token) 48.65 46.82 71.69
ENTROPY (average) 46.84 46.69 71.54

ENTROPY (max) 48.38 47.06 71.57
ENTROPY (min) 42.58 42.76 66.19

FSB 49.05 47.32 70.26
ACD-A 48.42 47.14 70.39

CDA 49.36 46.94 72.86
CDA-M 49.51 47.13 73.22

Table 8: Results of Reliability Score (RS) across all the
scenarios in the RAG setting. CDA(-M) consistently
outperform all the baselines.

prompting O((Lt + 1)2). While this may appear
computationally heavy, in practice, the template
and the query are relatively short, while the context
is typically long, making the overall computation
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Dataset CONTEXT CDA CDA-M

NQ 258.69 622.81 (× 2.41) 645.78 (× 2.50)

HotpotQA 194.87 486.82 (× 2.50) 535.67 (× 2.75)

TriviaQA 188.92 482.65 (× 2.55) 461.87 (× 2.44)

Table 9: Total computation time (in seconds) for
LLAMA3 8B INSTRUCT generating 100 samples. We
can observe that the total computation time of CDA(-M)
is roughly two times that of CONTEXT.

roughly 2 ∗ O(L2
c). Consequently, the additional

cost required in CDA is approximately twice that
of a single inference.

To validate these estimates, we conduct an ex-
periment on LLAMA3 8B INSTRUCT using 100
randomly selected samples from all the datasets.
We compare the total generation time of CONTEXT

with CDA in seconds on a single RTX 3090 GPU.
Table 9 demonstrates the overall inference time.
Empirical results indicate that the inference time of
CDA does not exceed three times that of a single
inference.
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Dataset NQ HotpotQA TriviaQA

Method F1ans F1abs RS Acc. Cov. F1ans F1abs RS Acc. Cov. F1ans F1abs RS Acc. Cov.

CONTEXT
57.26
(0.04)

2.18
(0.57)

50.22
(0.08)

49.95
(0.01)

50.23
(0.08)

57.15
(0.04)

1.19
(0.70)

50.08
(0.04)

49.93
(0.05)

50.08
(0.04)

57.29
(0.12)

2.24
(1.23)

50.23
(0.17)

49.95
(0.01)

50.23
(0.17)

CAD
55.34
(0.96)

2.14
(0.79)

48.56
(0.89)

48.29
(0.80)

48.56
(0.89)

55.78
(0.43)

1.88
(0.71)

48.89
(0.38)

51.99
(4.69)

48.89
(0.39)

55.83
(0.40)

0.65
(0.36)

48.87
(0.37)

48.79
(0.34)

48.87
(0.37)

ACD
71.36
(1.18)

0.92
(0.35)

62.50
(1.06)

62.39
(1.02)

62.50
(1.06)

74.36
(0.57)

0.57
(0.17)

65.09
(0.50)

65.02
(0.50)

65.09
(0.50)

76.79
(0.38)

3.09
(1.56)

67.38
(0.44)

66.99
(0.26)

67.39
(0.44)

ABSTAIN
60.22
(1.85)

52.05
(1.18)

48.17
(3.52)

38.36
(2.94)

57.27
(1.84)

66.88
(0.84)

56.58
(0.31)

56.23
(1.35)

45.21
(1.29)

63.55
(0.71)

67.46
(1.35)

57.31
(0.56)

56.21
(1.34)

45.07
(1.28)

64.10
(1.06)

SELF-ASK
57.23
(0.87)

48.11
(0.35)

43.91
(0.48)

35.06
(0.46)

53.70
(0.64)

50.64
(0.78)

48.63
(0.30)

33.86
(0.57)

26.80
(0.49)

49.70
(0.51)

52.40
(0.28)

48.38
(0.39)

36.73
(0.39)

29.01
(0.34)

50.61
(0.06)

ENTROPY

(first-token)
64.06
(2.23)

53.34
(1.11)

55.53
(2.181)

45.15
(2.00)

60.90
(1.96)

67.08
(0.29)

56.44
(0.21)

57.92
(0.89)

46.94
(0.95)

63.88
(0.25)

66.17
(0.71)

57.26
(0.36)

56.50
(0.82)

45.33
(0.74)

63.35
(0.50)

ENTROPY

(average)
54.91
(4.80)

48.12
(1.44)

41.79
(5.43)

33.19
(4.65)

52.31
(3.70)

58.86
(3.14)

50.94
(0.86)

44.05
(4.69)

35.09
(3.95)

55.72
(2.54)

43.52
(10.45)

47.00
(2.98)

29.53
(9.55)

23.13
(7.60)

45.57
(6.67)

ENTROPY

(max)
55.80
(7.06)

49.76
(2.57)

43.06
(8.61)

34.38
(6.92)

53.67
(5.49)

61.44
(3.31)

52.93
(1.69)

46.88
(4.10)

37.29
(3.38)

58.12
(2.84)

33.49
(6.09)

44.95
(1.31)

20.42
(4.48)

15.88
(3.58)

39.65
(3.38)

ENTROPY

(min)
54.94
(0.38)

26.45
(1.03)

47.21
(0.58)

42.42
(0.44)

48.45
(0.58)

56.44
(0.47)

25.65
(3.97)

49.25
(0.54)

44.80
(1.41)

50.18
(0.25)

57.42
(0.30)

24.73
(5.82)

50.57
(0.44)

46.44
(1.29)

51.28
(0.65 )

FSB
69.27
(0.61)

54.94
(0.69)

59.64
(1.98)

49.02
(2.08)

65.09
(0.77)

74.89
(0.86)

58.51
(0.21)

66.21
(0.91)

55.05
(0.96)

70.55
(0.72)

77.02
(0.81)

59.84
(0.96)

68.55
(1.07)

57.24
(1.27)

72.62
(0.68)

ACD-A
63.56
(0.14)

52.46
(0.19)

53.99
(1.72)

43.82
(1.67)

60.11
(0.36)

65.88
(0.71)

54.67
(0.17)

57.41
(0.92)

46.80
(0.95)

62.63
(0.60)

66.67
(0.65)

56.73
(0.91)

58.81
(0.65)

57.88
(0.79)

63.87
(0.39)

CDA
72.06
(0.42)

55.49
(1.46)

62.95
(0.23)

52.28
(0.30)

67.51
(0.17)

78.71
(1.05)

62.50
(0.51)

70.20
(1.07)

58.36
(1.03)

74.52
(0.96)

80.39
(1.65)

65.67
(0.67)

72.35
(2.33)

60.01
(2.43)

76.67
(1.60)

CDA-M
73.15
(0.34)

55.47
(0.12)

63.72
(0.33)

53.16
(0.55)

68.30
(0.12)

79.32
(0.91)

62.59
(0.52)

70.64
(0.99)

58.78
(0.97)

74.99
(0.85)

80.93
(1.63)

65.66
(0.67)

72.74
(2.30)

60.40
(2.39)

77.07
(1.59)

Table 10: Average and standard deviation (in parentheses) of the results over three different random seeds in
LLAMA3 8B INSTRUCT. The best result is highlighted in bold, and the second-best result is underlined.

Dataset NQ HotpotQA TriviaQA

Method F1ans F1abs RS Acc. Cov. F1ans F1abs RS Acc. Cov. F1ans F1abs RS Acc. Cov.

CONTEXT
57.13
(0.05)

0.09
(0.13)

49.98
(0.04)

49.97
(0.03)

49.98
(0.04)

57.14
(0.02)

0.00
(0.00)

49.98
(0.01)

49.98
(0.01)

49.98
(0.01)

57.17
(0.00)

0.26
(0.15)

50.02
(0.01)

49.99
(0.01)

50.02
(0.01)

CAD
54.78
(0.07)

0.17
(0.12)

47.94
(0.05)

47.92
(0.06)

47.94
(0.05)

54.68
(0.33)

0.04
(0.05)

47.84
(0.30)

47.84
(0.29)

47.84
(0.30)

55.11
(0.13)

0.25
(0.13)

48.22
(0.12)

48.19
(0.11)

48.22
(0.12)

ACD
64.55
(1.38)

0.15
(0.11)

56.48
(1.20)

56.46
(1.21)

56.48
(1.20)

69.27
(0.78)

0.00
(0.00)

60.60
(0.68)

60.60
(0.68)

60.60
(0.68)

72.86
(0.50)

0.18
(0.05)

63.74
(0.43)

63.72
(0.44)

63.74
(0.43)

ABSTAIN
38.73
(8.61)

45.16
(1.83)

26.73
(7.70)

20.54
(6.13)

42.11
(5.03)

47.29
(8.00)

48.65
(2.77)

33.49
(8.91)

26.18
(7.14)

48.18
(5.69)

59.19
(5.98)

50.45
(2.03)

47.04
(8.41)

37.87
(7.35)

56.27
(4.85)

SELF-ASK
56.81
(1.47)

10.95
(1.13)

50.17
(1.34)

48.66
(1.22)

50.23
(1.35)

58.58
(0.14)

17.35
(2.29)

52.19
(0.38)

49.70
(0.04)

52.33
(0.41)

57.93
(0.06)

8.97
(1.06)

51.05
(0.15)

49.84
(0.02)

51.09
(0.16)

ENTROPY

(first-token)
58.00
(0.17)

41.09
(1.81)

51.98
(0.14)

44.47
(0.64)

54.08
(0.33)

59.00
(0.67)

45.11
(1.92)

52.64
(0.87)

44.16
(0.66)

55.51
(0.95)

60.21
(0.10)

47.84
(1.06)

53.99
(0.42)

45.00
(0.66)

57.10
(0.24)

ENTROPY

(average)
54.30
(2.15)

40.06
(0.65)

46.38
(2.96)

38.66
(3.03)

50.23
(2.03)

50.07
(2.37)

44.54
(0.85)

39.15
(2.57)

30.93
(2.32)

47.99
(1.73)

56.46
(0.72)

44.75
(0.66)

48.08
(1.35)

39.48
(1.43)

52.93
(0.74)

ENTROPY

(max)
54.96
(1.27)

40.96
(1.20)

47.82
(2.04)

43.34
(7.10)

51.21
(1.02)

38.94
(11.39)

42.71
(2.27)

29.66
(12.32)

23.15
(10.62)

41.41
(7.57)

56.94
(3.75)

46.74
(0.61)

49.30
(5.73)

40.49
(5.63)

54.13
(3.24)

ENTROPY

(min)
38.59
(23.18)

21.56
(5.37)

48.25
(0.54)

44.60
(1.65)

48.91
(0.13)

57.30
(0.31)

22.53
(3.98)

50.56
(0.57)

46.93
(0.79)

51.05
(0.65)

57.01
(0.04)

17.77
(3.78)

50.22
(0.06)

47.48
(0.70)

50.49
(0.17)

FSB
55.04
(3.59)

47.26
(0.84)

43.26
(4.01)

34.47
(3.60)

52.20
(2.57)

65.63
(2.31)

53.82
(0.93)

55.73
(4.11)

45.37
(4.07)

62.04
(2.22)

69.50
(2.21)

51.88
(1.57)

60.41
(4.05)

50.59
(4.28)

64.78
(2.23)

ACD-A
48.82
(4.58)

39.52
(7.69)

37.55
(4.90)

30.41
(4.68)

45.66
(3.53)

57.79
(3.06)

51.11
(1.22)

47.90
(4.90)

38.19
(4.56)

55.61
(2.64)

61.21
(1.78)

50.52
(1.43)

53.09
(3.82)

43.46
(3.89)

58.18
(1.73)

CDA
66.86
(2.51)

47.52
(1.36)

59.86
(2.94)

51.22
(3.55)

62.38
(2.01)

73.39
(0.76)

42.41
(3.80)

66.96
(1.00)

60.15
(0.78)

67.82
(1.08)

73.70
(0.71)

51.29
(1.42)

67.29
(1.04)

58.43
(1.34)

69.06
(0.69)

CDA-M
69.99
(1.40)

47.60
(1.32)

62.28
(2.12)

53.62
(2.71)

64.81
(1.23)

74.09
(0.94)

42.31
(3.54)

67.50
(1.13)

60.70
(0.87)

68.37
(1.21)

73.47
(0.43)

52.10
(1.75)

67.11
(1.01)

58.04
(1.24)

69.00
(0.78)

Table 11: Average and standard deviation (in parentheses) of the results over three different random seeds in LLAMA2 7B
CHAT. The best result is highlighted in bold, and the second-best result is underlined.
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Dataset NQ HotpotQA TriviaQA

Method F1ans F1abs RS Acc. Cov. F1ans F1abs RS Acc. Cov. F1ans F1abs RS Acc. Cov.

CONTEXT
57.14
(0.02)

0.37
(0.26)

50.00
(0.00)

49.95
(0.03)

50.00
(0.00)

57.16
(0.04)

0.10
(0.08)

50.00
(0.03)

49.98
(0.02)

50.00
(0.03)

57.15
(0.05)

0.47
(0.09)

50.03
(0.04)

49.97
(0.03)

50.03
(0.04)

CAD
45.57
(12.58)

0.48
(0.08)

39.90
(11.01)

39.84
(11.02)

39.90
(11.01)

54.60
(0.51)

0.07
(0.05)

47.76
(0.45)

47.75
(0.46)

47.76
(0.45)

55.81
(0.14)

0.32
(0.11)

48.84
(0.11)

48.80
(0.12)

48.84
(0.11)

ACD
66.66
(0.65)

0.18
(0.01)

58.33
(0.56)

58.31
(0.56)

58.33
(0.56)

69.80
(0.63)

0.07
(0.05)

61.15
(0.49)

61.14
(0.48)

61.15
(0.49)

72.49
(0.67)

0.42
(0.24)

63.43
(0.61)

63.38
(0.60)

63.43
(0.61)

ABSTAIN
50.49
(1.98)

46.62
(0.33)

37.83
(2.63)

29.70
(2.19)

48.93
(1.30)

57.17
(2.74)

51.95
(0.89)

43.02
(3.56)

33.89
(3.05)

55.10
(1.95)

48.53
(4.52)

46.74
(1.01)

35.11
(5.28)

27.52
(4.37)

47.88
(3.14)

SELF-ASK
59.37
(0.06)

20.80
(1.48)

52.98
(0.21)

49.89
(0.03)

53.21
(0.23)

58.22
(0.04)

14.36
(1.32)

51.87
(0.16)

49.89
(0.02)

51.95
(0.17)

58.09
(0.11)

12.07
(1.21)

51.53
(0.14)

49.85
(0.07)

51.59
(0.16)

ENTROPY

(first-token)
59.23
(0.45)

42.61
(1.11)

52.75
(0.58)

44.85
(0.48)

55.19
(0.56)

59.24
(0.38)

45.47
(1.84)

53.01
(0.77)

44.49
(0.53)

55.81
(0.76)

60.21
(0.21)

48.31
(0.07)

54.34
(0.15)

45.32
(0.17)

57.27
(0.14)

ENTROPY

(average)
56.18
(1.25)

42.85
(0.54)

47.54
(1.91)

39.22
(1.96)

52.18
(1.07)

56.62
(0.92)

46.18
(0.97)

48.00
(1.68)

39.01
(1.53)

53.37
(1.09)

57.58
(0.81)

46.10
(2.06)

49.57
(1.22)

40.65
(1.46)

54.25
(0.97)

ENTROPY

(max)
57.69
(0.62)

41.64
(0.46)

50.81
(1.10)

42.96
(1.12)

53.59
(0.75)

54.24
(3.25)

44.75
(2.55)

45.49
(5.71)

37.21
(6.05)

51.61
(2.23)

57.75
(2.01)

47.09
(0.37)

50.18
(3.85)

41.26
(4.29)

54.80
(1.95)

ENTROPY

(min)
55.30
(0.40)

24.55
(0.92)

48.25
(0.59)

44.04
(0.76)

49.05
(0.48)

57.17
(0.19)

15.07
(4.99)

50.60
(0.22)

48.39
(0.80)

50.76
(0.29)

56.74
(0.12)

14.04
(4.43)

49.57
(0.26)

47.42
(0.54)

49.78
(0.35)

FSB
62.44
(1.68)

47.60
(0.54)

53.66
(2.21)

44.46
(2.37)

58.19
(1.31)

68.68
(1.01)

54.16
(2.21)

60.41
(1.77)

50.05
(2.24)

64.79
(0.83)

66.21
(1.07)

52.08
(0.99)

56.12
(1.83)

45.98
(1.84)

61.91
(1.04)

ACD-A
57.96
(0.80)

46.34
(0.27)

49.28
(1.55)

40.27
(1.59)

54.43
(0.72)

62.00
(0.44)

52.13
(2.44)

54.03
(1.40)

43.95
(1.56)

59.16
(0.91)

58.42
(0.69)

49.72
(0.57)

49.22
(1.26)

39.54
(1.13)

55.61
(0.74)

CDA
68.62
(0.65)

47.14
(1.79)

61.63
(1.14)

53.16
(0.94)

63.76
(1.02)

73.69
(0.76)

56.81
(2.25)

68.98
(0.19)

59.53
(0.53)

70.44
(0.15)

71.08
(1.13)

51.44
(1.66)

64.08
(0.85)

54.78
(0.69)

66.55
(0.85)

CDA-M
70.66
(0.63)

48.12
(2.06)

63.18
(1.15)

54.46
(0.87)

65.48
(1.06)

73.66
(0.65)

56.89
(3.88)

68.92
(0.25)

59.42
(0.52)

70.42
(0.31)

73.12
(1.22)

53.46
(1.19)

65.82
(0.58)

56.09
(0.66)

68.52
(0.54)

Table 12: Average and standard deviation (in parentheses) of the results over three different random seeds in LLAMA2 13B
CHAT. The best result is highlighted in bold, and the second-best result is underlined.

Dataset NQ HotpotQA TriviaQA

Method F1ans F1abs RS Acc. Cov. F1ans F1abs RS Acc. Cov. F1ans F1abs RS Acc. Cov.

CONTEXT
57.04
(0.07)

0.25
(0.36)

49.88
(0.06)

49.85
(0.06)

49.88
(0.06)

56.99
(0.04)

0.09
(0.13)

49.88
(0.04)

49.87
(0.03)

49.88
(0.04)

57.13
(0.02)

0.35
(0.15)

50.00
(0.03)

49.96
(0.01)

50.00
(0.03)

CAD
55.03
(0.25)

1.15
(0.26)

48.21
(0.21)

48.07
(0.24)

48.21
(0.21)

53.74
(0.46)

0.20
(0.15)

47.04
(0.40)

47.01
(0.41)

47.04
(0.40)

54.71
(0.10)

0.57
(0.09)

47.89
(0.09)

47.82
(0.10)

47.89
(0.09)

ACD
68.48
(2.18)

0.00
(0.00)

59.93
(1.86)

59.93
(1.86)

59.93
(1.86)

72.72
(0.12)

0.09
(0.13)

63.64
(0.10)

63.62
(0.11)

63.64
(0.10)

75.01
(0.30)

0.05
(0.05)

65.62
(0.27)

65.62
(0.27)

65.62
(0.27)

ABSTAIN
61.86
(8.11)

53.29
(1.45)

52.85
(9.08)

42.83
(9.42)

59.70
(6.00)

61.12
(2.58)

54.66
(0.83)

53.06
(3.88)

42.55
(3.89)

59.23
(1.88)

60.73
(1.94)

53.16
(2.11)

51.25
(4.36)

41.22
(4.36)

58.42
(1.84)

SELF-ASK
62.52
(0.80)

49.03
(3.29)

57.49
(0.69)

48.76
(0.23)

59.54
(0.82)

61.33
(0.27)

43.36
(2.23)

56.36
(0.47)

48.95
(0.13)

57.70
(0.55)

62.18
(0.21)

48.60
(0.75)

57.19
(0.15)

48.55
(0.07)

59.20
(0.15)

ENTROPY

(first-token)
61.91
(0.37)

56.29
(1.15)

55.48
(0.66)

44.63
(0.57)

60.33
(0.11)

63.31
(0.26)

60.07
(1.91)

57.19
(1.51)

45.65
(1.50)

62.40
(0.71)

62.21
(0.42)

56.59
(0.95)

56.23
(1.22)

45.48
(1.59)

60.71
(0.43)

ENTROPY

(average)
60.03
(0.32)

50.49
(2.70)

52.81
(0.52)

43.04
(0.06)

57.34
(0.85)

60.98
(0.56)

55.02
(3.32)

54.19
(0.98)

43.52
(0.50)

59.28
(1.33)

59.87
(0.17)

52.83
(2.02)

53.82
(1.47)

43.80
(2.03)

58.04
(0.36)

ENTROPY

(max)
61.73
(0.66)

56.68
(2.22)

55.73
(1.54)

44.92
(1.86)

60.37
(0.29)

63.44
(0.27)

61.65
(2.06)

57.50
(0.44)

45.58
(0.09)

62.94
(0.72)

62.82
(0.35)

61.16
(1.26)

56.79
(2.06)

45.06
(1.96)

62.32
(0.62)

ENTROPY

(min)
56.45
(0.23)

23.04
(0.96)

49.40
(0.33)

45.56
(0.48)

50.01
(0.27)

55.86
(0.59)

26.93
(4.41)

49.26
(0.81)

44.67
(0.95)

50.13
(0.99)

57.01
(0.06)

17.86
(4.62)

50.36
(0.02)

47.62
(0.83)

50.63
(0.20)

FSB
66.71
(3.35)

55.51
(1.18)

58.95
(3.89)

48.32
(3.83)

63.65
(2.90)

74.32
(1.15)

52.18
(4.47)

68.20
(1.17)

59.27
(2.38)

69.94
(0.49)

77.67
(0.63)

47.53
(9.54)

70.69
(0.81)

62.72
(1.25)

72.07
(1.57)

ACD-A
61.46
(1.38)

54.02
(1.66)

55.80
(1.23)

45.58
(1.68)

59.56
(0.65)

61.02
(0.35)

50.93
(4.60)

57.01
(0.35)

48.10
(0.79)

58.95
(1.03)

61.62
(1.17)

51.62
(6.00)

56.81
(0.81)

47.48
(1.16)

59.48
(1.86)

CDA
69.68
(2.26)

56.47
(1.31)

61.45
(2.31)

50.61
(2.36)

66.09
(1.93)

76.28
(1.37)

55.84
(1.97)

69.43
(1.68)

59.50
(2.30)

71.83
(1.11)

75.76
(1.62)

56.35
(5.43)

67.57
(2.79)

57.21
(3.74)

71.21
(1.73)

CDA-M
71.00
(2.27)

56.46
(1.50)

62.30
(2.30)

51.45
(2.39)

67.03
(1.91)

76.94
(1.54)

56.67
(1.95)

69.98
(1.87)

59.85
(2.53)

72.49
(1.21)

76.95
(1.49)

57.06
(5.18)

68.38
(2.94)

57.84
(3.94)

72.21
(1.59)

Table 13: Average and standard deviation (in parentheses) of the results over three different random seeds in MISTRAL 7B
INSTRUCT. The best result is highlighted in bold, and the second-best result is underlined.
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