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Abstract

This study investigates the efficacy of Large
Language Models (LLMs) in causal discov-
ery. Using newly available open-source LLMs,
OLMO and BLOOM, which provide access to
their pre-training corpora, we investigate how
LLMs address causal discovery through three
research questions. We examine: (i) the im-
pact of memorization for accurate causal rela-
tion prediction, (ii) the influence of incorrect
causal relations in pre-training data, and (iii)
the contextual nuances that influence LLMs’
understanding of causal relations. Our findings
indicate that while LLMs are effective in recog-
nizing causal relations that occur frequently
in pre-training data, their ability to general-
ize to new or rare causal relations is limited.
Moreover, the presence of incorrect causal rela-
tions significantly undermines the confidence
of LLMs in corresponding correct causal rela-
tions, and the contextual information critically
affects the outcomes of LLMs to discern causal
connections between random variables 1.

1 Introduction

Identification and understanding of causal relations
hold fundamental importance in human cognition
and science, as those relations form the basis of
causal models, which are utilized to answer obser-
vational, interventional, and counterfactual ques-
tions (Zanga et al., 2022; Wan et al., 2024). The
task of identifying causal relations among a set
of random variables is known as causal discovery,
where a random variable may refer to an event
in daily life, a medical treatment, or a drug effect,
etc. (Pearl, 2009; Peters et al., 2017; Nogueira et al.,
2021). For decades, various statistical methods
have been developed to identify causal relations
from observational or interventional data (Hecker-
man et al., 1995; Chickering, 2002; Mooij et al.,

*Corresponding author
1The code and data are available at https://github.com/

WilliamsToTo/causality_llm

2016a). However, algorithms that can accurately
recover true causal structures from observational
data remain elusive (Neal, 2020).

With the rise of Large Language Models (LLMs),
recent studies exploit the potential of LLMs for
causal discovery by evaluating them on benchmark
datasets (Willig et al., 2022; Ban et al., 2023). Pro-
prietary LLMs, such as GPT-3 and GPT-4, surpass
the state-of-the-art (SOTA) statistical methods on
several publicly available datasets (Kıcıman et al.,
2023). However, Romanou et al. (2023) notice
both GPT-3 and GPT-4 have a performance drop
on the causal relations involving real-world events
occurring post-Jan 2022, compared to the ones be-
fore Jan 2022. Kıcıman et al. (2023) find out that
given part of a data table in the Tübingen cause-
effect pairs dataset (Mooij et al., 2016b), GPT-4
can recover 61% of the remaining part. Zečević
et al. (2023) conjecture that LLMs may just recall
causal knowledge in their large pre-training cor-
pora by acting as "causal parrots". However, there
are no solid experiments to investigate in which
cases LLMs’ predictions are reliable. Can we trust
the predictive outcomes only if they are based on
what LLMs memorize in the training data?

Therefore, we conduct experiments to investi-
gate the cases that LLMs make correct and wrong
predictions respectively, leading to the following
three research questions. RQ 1: Under what condi-
tions do LLMs reliably and consistently make accu-
rate predictions in causal discovery? RQ 2: How
does the presence of incorrect causal relations af-
fect LLMs’ performance in causal discovery? and
RQ 3: How does the contextual information of a
causal relation influence LLMs’ performance in
causal discovery?. To understand the effect of
memorization, we employ the recently released
open-source LLMs OLMO and BLOOM, which
make their respective pre-training corpora Dolma
and ROOTS publicly available (Groeneveld et al.,
2024; Workshop et al., 2023). This provides the
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opportunity for us to investigate the correlations be-
tween model outputs and the frequency of relations
mentioned in their pre-training corpora.

Our experiments reveal the following findings.

• Although the evaluated LLMs are proficient
at recognizing causal relations through mem-
orization, their ability to generalize novel
causal relations is limited. This limitation
poses significant challenges for deploying
LLM-based causal discovery methods in sce-
narios where causal relations are rarely or not
included in their pre-training data.

• The presence of incorrect causal relations,
such as the reversal of correct causal rela-
tions, adversely impacts LLMs’ confidence
in identifying correct causal relations. This
finding highlights the necessity of minimizing
conflicting causal information in pre-training
datasets to enhance the performance of LLMs.

• The validity and strength of causal relations
can vary significantly across different con-
texts. This variability suggests that LLM-
based causal discovery methods should in-
corporate the context of causal relations as
input to ensure accuracy, particularly to avoid
misleading contexts that could substantially
degrade performance.

2 Background

Causal discovery aims to identify causal relations
among a given set of random variables. For each
pair of variables X and Y , it identifies whether
X ← Y , Y ← X , or there is no causal influence
between them, where← denotes the direction of
causality. The traditional algorithms for this task
are statistical methods that perform causal discov-
ery on tabular data, which are capable of unveil-
ing previously unknown or uncertain causal rela-
tions that are not explicitly mentioned anywhere in
text (e.g., "sea level pressure causally influences
zonal wind at 10 m" (Huang et al., 2021)). In
contrast, prior NLP methods focus on either ex-
tracting mentions of known causal relations from
documents (Yang et al., 2022) or answering ques-
tions related to causality (Oh et al., 2013). The
gold standard for causal discovery is experimental
approaches such as randomized controlled trials
and A/B testing (Fisher, 1935). However, such
experiments are often not feasible due to ethical
or financial constraints, which necessitates the use

of alternative methods that rely solely on statistics
collected from observational data.

The statistical causal discovery methods can be
categorized into: constraint-based methods, such
as Peter and Clark (PC) (Spirtes et al., 2000)
and inductive causation (IC) (Pearl, 2009); score-
based methods (Heckerman et al., 1995; Chicker-
ing, 2002; Koivisto and Sood, 2004; Mooij et al.,
2016a); and functional methods (Shimizu et al.,
2006; Hyvärinen et al., 2010). Those methods rely
on statistics calculated from tabular data to infer
causal graphs, in which random variables are de-
picted as nodes and their causal relations are repre-
sented as edges. However, a significant drawback
of these approaches is their dependency on exten-
sive data collection to construct reliable tabular
data, a process that can be both time-consuming
and costly. Furthermore, a theoretical limitation
of these statistical methods is their inability to pre-
cisely predict ground-truth causal graphs, unless
strong assumptions are made. Instead, they typ-
ically yield an equivalence class of true causal
graphs (Spirtes et al., 2000; Pearl, 2009).

Recent advances of LLMs provide new opportu-
nities to tackle the task without accessing tabular
data by formulating it as a pairwise causal relation
prediction task (Kıcıman et al., 2023; Zečević et al.,
2023; Long et al., 2022; Zhang et al., 2023). Given
a pair of variable names, an LLM is instructed to
identify which is the cause and which is the effect
using prompts (Kıcıman et al., 2023; Zečević et al.,
2023), by distilling such knowledge directly from
the LLM. However, the reliability of such methods
is under scrutiny. Zečević et al. (2023) argue that
LLMs are "causal parrots", which may depend on
memorization to recall the causal relations present
in their training data. In other words, LLMs may
not generalize well to detect causal relations that
seldom or never occur in pre-training data. If this
argument holds, LLMs may primarily excel at re-
producing causal relations known in their training
data rather than uncovering novel ones. However,
there is no solid empirical justification of this ar-
gument because prior works employ either com-
mercial LLMs or open-source LLMs that have no
access to their training data. The current techniques
for understanding and investigating memorization
in LLMs are still in their infancy (Speicher et al.,
2024).
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3 Methodology

We empirically investigate the reliability of LLMs
in causal discovery by addressing the three research
questions introduced in Section 1. Our method-
ology starts with examining the evidence within
pre-training data that supports accurate LLM pre-
dictions. We then systematically identify potential
sources of prediction errors. Given the highly con-
textualized nature of LLM outputs, we thoroughly
analyze how contextual variations influence their
predictive performance in causal discovery.

RQ1. This question aims to collect strong empiri-
cal evidence to verify the "causal parrots" hypothe-
sis and investigate the cases, in which LLMs make
accurate predictions. The "causal parrots" hypothe-
sis states that LLMs predict correct causal relations
just because they are explicitly mentioned in the
training data. If the hypothesis is true, LLMs would
only be suited to reproduce known causal relations
and not infer new ones. However, prior studies
on LLMs for causal discovery fail to provide solid
empirical evidence in pre-training data.

To address this, we design experiments with
OLMo-7b-Instruct and BLOOM-7b1, which re-
lease their pre-training data (Groeneveld et al.,
2024; Workshop et al., 2023), on both real-world
and synthetic datasets. For real-world data, we
collect mentions of given causal relations from
pre-training data using causal relation templates,
which contain keywords that indicate causal rela-
tions, such as "cause" and "lead to". We then com-
pute the correlation between mention occurrence
and LLMs’ predictive accuracy. If an LLM relies
solely on explicit linguistic cues to predict causal
relations, we would expect a high correlation be-
tween mention occurrence and prediction accuracy.
To compute correlations, we stratify the occurrence
range into intervals, ensuring that each interval
contains a roughly equal number of relations. We
then systematically evaluate LLMs’ performance
in each of these predefined occurrence intervals.
Our assessment methodology involves transform-
ing causal relations into yes-no questions, such as
"does smoking cause lung cancer?", and measure
the performance in terms of accuracy and F1-score.
This experimental setup follows the approaches
stated in Razeghi et al. (2022).

As it is almost infeasible to collect all mentions
of a causal relation from a dataset, we curate a
synthetic causal relation dataset to further investi-
gate RQ1 in a controlled environment. Herein, we

use variables that do not exist in any pre-training
data and fill them into our relation templates to
curate the corresponding mentions with varying
frequencies, such as "blaonge causes goloneke,".
To simulate real-world data, we insert them into a
random collection of documents as the synthetic
training data for LLMs.

RQ2. We conjecture that incorrect predictions
primarily stem from the presence of semantically
opposing or negating causal relations in the training
data. Given a relation e.g. "smoking causes lung
cancer.", we examine the extent to which the men-
tion occurrence of "lung cancer causes smoking."
or "smoking does not cause lung cancer." influ-
ences LLMs’ predictive performance. To this end,
we assess the confidence of LLMs in correct causal
relations under varying frequencies of correspond-
ing incorrect causal relations on both real-world
data and synthetic data. We hypothesize that a
higher presence of incorrect causal relations di-
minishes the LLMs’ confidence in correct causal
relations. The confidence level of the LLMs is mea-
sured by the proportion of responses that affirm the
correct causal relation out of a sample of gener-
ated responses for one query. Following the same
procedure as RQ1, we create the synthetic dataset
by inserting incorrect predictions with varying fre-
quencies into the same document collection.

RQ3. While almost all statistical methods as-
sume that causal graphs stay the same regardless
their contexts, we observe that LLMs’ predictions
in causal discovery vary across different contexts.
There is no quantitative study investigating how
contexts influence LLMs’ outcomes in causal dis-
covery. However, in real-world scenarios, a causal
relation is present only in certain contexts. For ex-
ample, the causal relation "rain causes flooding"
may be true during a heavy downpour in a city with
poor drainage but may not be true during light rain
in areas with good drainage systems. Therefore,
we assess the performance of LLMs in various con-
texts. For each given causal relation from human-
annotated datasets, we employ GPT-4o to generate
five positive contexts that affirm the relation and
five negative contexts. Both LLMs are instructed
to provide the answers of the corresponding yes-
no questions in those contexts. This study yields
quantitative results to demonstrate the importance
of context, which may serve as another source of
prediction errors.
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4 Experimental Setup

4.1 Datasets
Tasks. Following (Kıcıman et al., 2023), we con-
sider the following two causal discovery tasks. Full
Causal Discovery. Given a set of random variables
X, for each possible pair of variables (Xi, Xj), an
LLM is instructed to identify whether: Xi → Xj ,
Xi ← Xj , or no causal relation between Xi and
Xj . Causal Direction Identification. Given two
causally related variables (X,Y ), the causal direc-
tion identification task involves deciding whether
X → Y or X ← Y is true. The full causal dis-
covery and causal direction identification tasks can
be treated as classification tasks. Therefore, we
evaluate the results using F1 and accuracy.

4.1.1 Real-World Data
Full Causal Discovery. We consider six datasets
for this task. We utilize four small causal graphs
within the medical literature as our ground-truth
causal graphs, which include Alcohol, Cancer, Di-
abetes, and Obesity (see Fig. 10) (Hernán et al.,
2004; Long et al., 2022). We also use a causal
graph from atmospheric science, named Arctic Sea
Ice (Huang et al., 2021). This causal graph explores
the factors influencing arctic sea ice coverage. The
Arctic Sea Ice is based on expert knowledge and
consists of a causal graph with 12 variables and
46 edges, each edge derived from textbooks and
peer-reviewed publications (see Fig. 11). Then, we
employ a larger causal graph used for evaluating
car Insurance risks (Binder et al., 1997), which
comprises 27 variables and 52 edges (see Fig. 12).

Causal Direction Identification. For this task,
we consider two datasets derived from Concept-
Net (Speer et al., 2017) and CauseNet (Heindorf
et al., 2020). From ConceptNet, we select the
top 1,900 causal relations based on confidence and
generate an equal number of reverse-causal rela-
tions by swapping the cause and effect, resulting
in 3,800 causal and reverse-causal relations. From
CauseNet, we select 814 high-confidence causal
relations and create an equal number of reverse-
causal relations, totaling 1,628 relations. These
procedures are detailed in Appendix A.2.

4.1.2 Synthetic Data
Causal Direction Identification. We create a
pre-training dataset including synthetic correct and
incorrect causal relations that are absent in the
original corpora. This dataset includes 100,000

documents randomly sampled from Dolma, with
incorrect causal relations that either swap the posi-
tions of cause and effect or use negation templates
such as "X does not cause Y." We generate 100
artificial causal relations using fictitious terms like
’blaonge’ and ’goloneke’. Utilizing predefined tem-
plates listed in Table 5 in Appendix A.5, we craft
mentions for both correct and incorrect causal rela-
tions. Then we create positive documents contain-
ing correct causal relations and negative documents
containing incorrect causal relations by inserting
these mentions between sentences within the doc-
uments. We adopt three approaches for the inser-
tion of mentions. Correct Relation Scaling: we
vary the insertion of each correct causal relation
from 0 to 1,000 occurrences. Reverse Relation
Scaling: we first insert 1000 occurrences of each
correct causal relation followed by inserting the cor-
responding reverse causal relations from 0 to 1,000
occurrences. Negated Relation Scaling: After in-
serting 1,000 occurrences of each correct causal
relation, we insert negations of these causal rela-
tions, from 0 to 1,000 occurrences. We then fine-
tune OLMo-7b-Instruct utilizing LoRA (Hu et al.,
2022) on synthetic datasets, with details provided
in Appendix A.6.

4.2 Models

Large Language Models. We conduct exper-
iments using the following language models:
OLMo-7b-Instruct (Groeneveld et al., 2024),
BLOOM-7b1 (Workshop et al., 2023), Llama2-
7b-chat (Meta, 2023), Llama3-8b-Instruct (Meta,
2024), GPT-3.5-turbo (OpenAI, 2022) and GPT-4o
(OpenAI, 2024). OLMo-7b-Instruct and BLOOM-
7b1 provide access to both their pre-training cor-
pora and model weights. Llama2-7b-chat and
Llama3-8b-Instruct have only released their model
weights. GPT-3.5-turbo and GPT-4o are closed-
source models. OLMo-7b-Instruct was pre-trained
using the Dolma dataset (Soldaini et al., 2024),
while BLOOM-7b1 utilized the ROOTS corpus
(Laurençon et al., 2022). The release of correspond-
ing search tools, WIMBD (Elazar et al., 2024) for
Dolma and ROOTS Search (Piktus et al., 2023) for
ROOTS, enables the searching for causal relations.

In-Context Learning (ICL) and Prompt. For
both the causal direction identification and the full
causal discovery tasks, we utilize similar in-context
learning demonstrations and prompts designed us-
ing the chain-of-thought strategy (Wei et al., 2022),
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Figure 1: The average F1 score and accuracy of OLMo-7b-Instruct by occurrence interval on full causal discovery
tasks, where F1 and accuracy are computed from 0 to 4 ICL examples. The occurrence data of (a) and (b) are
derived from the exact matching query, while the occurrence data of (c) and (d) are derived from the "event A"
⇒ "causes"⇒ "event B" query. An asterisk (*) indicates a p-value < 0.05 for Pearson and Spearman correlation
coefficients (Freedman et al., 2007).
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Figure 2: The average F1 score and accuracy of
BLOOM-7b1 by occurrence interval on full causal dis-
covery, averaged 0-4 ICL examples. The occurrence
data are derived from the exact matching query.

additional details provided in Appendix A.3. When
evaluating a pair of variables (X,Y ), we pose two
questions to the LLMs: "Does X cause Y?" and
"Does Y cause X?" The LLMs are expected to gen-
erate step-by-step explanations and provide a final
response of either ’yes’ or ’no’.

4.3 Retrieval Query

The pre-training corpus for OLMo-7b-Instruct is
Dolma (Soldaini et al., 2024), which has a search
tool named WIMBD (Elazar et al., 2024). In our us-
age of WIMBD, we implement two search queries:
an exact match for "event A causes event B"; an
ordered phrase search for "event A" ⇒ "causes"
⇒ "event B". Here, X ⇒ Y indicates that X oc-
curs before Y within a predefined text window of
32 words. The search tool for BLOOM-7b1 pre-
training corpus ROOTS (Laurençon et al., 2022) is
ROOTS Search (Piktus et al., 2023). Due to its lim-
ited search capability, we only utilize exact match
in ROOTS Search. We also account for words
with synonyms by identifying them using WordNet

(Fellbaum, 1998). In Table 3, 4 in Appendix A.4,
we detail the methods used to create queries for
retrieving causal relations.

5 Experimental Results

Research Question 1. Under what conditions do
LLMs reliably and consistently make accurate pre-
dictions in causal discovery?

Relations frequently occurring in pre-training
data are likely memorized by LLMs. However,
relations that are seldom or never present in pre-
training data require LLMs to generalize these re-
lations.

To address RQ 1, we evaluate LLMs on causal re-
lations across different occurrence intervals, which
contain the similar number of causal relations.
Causal relations with high occurrences are likely
to be memorized by LLMs, whereas those with
low occurrences suggest that an LLM is able to
generalize (Carlini et al., 2023). We then analyze
the correlation between the occurrence of causal
relations and the performance of LLMs on these
causal relations.
Real-World Data We compute the average F1 and
accuracy at each occurrence interval over various
numbers of ICL examples (i.e., from 0-shot to 4-
shot). The results are plotted with the x-axis repre-
senting occurrence intervals and the y-axis repre-
senting F1 or accuracy. Fig. 1- 5 show that both F1
and accuracy exhibit a strong positive correlation
with occurrence in the pre-training corpora. For
instance, in the full causal discovery task, the Spear-
man correlation between F1 scores and occurrence
rates is 0.9 using OLMo-7b-Instruct and its pre-
training data. Compared to highly frequent causal
relations, LLMs exhibit significantly poorer perfor-
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Figure 3: The average F1 score and accuracy of OLMo-7b-Instruct by occurrence interval on causal direction
identification task, averaged across 0 to 4 ICL examples. The occurrence data are derived from the exact matching
query in the Dolma pre-training corpus.
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Spearman (r=0.90*)
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at CauseNet; Pearson
(r=0.29); Spearman (r=0.88*)

Figure 4: The average F1 score and accuracy of OLMo-7b-Instruct by occurrence interval on causal direction
identification task, averaged across 0 to 4 ICL examples. The occurrence data are derived from the "event A"⇒
"causes"⇒ "event B" query in the Dolma pre-training corpus.

mance when identifying low-frequency causal rela-
tions. For instance, in a full causal discovery task,
OLMo-7b-Instruct achieves an F1 score of 0.88
in the highest occurrence interval, but only 0.2 in
the lowest occurrence interval. In the causal direc-
tion identification task, OLMo-7b-Instruct reaches
a 0.93 F1 score at the highest occurrence interval,
compared to just 0.35 at the lowest. These results
indicate that LLMs have a low generalization abil-
ity in causal discovery tasks.

Synthetic Data We train OLMo-7b-Instruct with
Correct Relation Scaling. Fig. 6 demonstrates that
both F1 and accuracy have a strong positive cor-
relation with occurrence within the pre-training
corpora, which aligns with real-world data.

Discussion These results demonstrate that while
LLMs excel at recognizing causal relations through
memorization, their capacity to generalize from
less frequent or entirely novel data remains highly
constrained. This limitation highlights the chal-
lenges in deploying LLMs in scenarios where
causal relations are novel and absent from their
pre-training data. Furthermore, this suggests the ne-
cessity of traditional statistical methods for causal
discovery that rely solely on statistics to deter-

mine causal relations, irrespective of the novelty
of causal relations. This insight suggests that fu-
ture research might explore integrating traditional
statistical methods with LLMs to enhance their
generalization ability.

Research Question 2. How does the occurrence
of incorrect causal relations affect LLMs in causal
discovery tasks?

Incorrect causal relations include reversals of
correct causal relations (e.g., lung cancer causes
smoking) and negations of correct causal relations
(e.g., smoking does not cause lung cancer).

We hypothesize that when both correct and in-
correct causal relations are frequent, LLMs may
struggle to discern the correct relations, thereby
reducing their confidence in correct causal rela-
tions. To investigate this, we examine the corre-
lation between the occurrence ratio of incorrect
causal relations and LLMs’ confidence in correct
causal relations. The occurrence ratio is defined as
the number of incorrect causal relations divided by
the number of corresponding correct causal rela-
tions. For example, if the phrase "smoking causes
lung cancer" appears 13,652 times and its reverse
"lung cancer causes smoking" appears 99 times, the
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Figure 5: The average F1 score and accuracy of BLOOM-7b1 by occurrence interval on causal direction identification
task, averaged across 0 to 4 ICL examples. The occurrence data are derived from the exact matching query in the
ROOTS pre-training corpus.
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Figure 6: The average F1 score and accuracy of fine-
tuned OLMo-7b-Instruct by various occurrences on syn-
thetic causal relations, averaged 0-4 ICL examples.
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rence; Pearson (r=-0.66),
Spearman (r=-1.0*)

Figure 7: The average confidence of correct causal rela-
tions on OLMo-7b-Instruct (a) and BLOOM-7b1 (b) by
reverse casual relation occurrence ratio intervals on full
causal discovery tasks.

resulting occurrence ratio is approximately 0.007.
Confidence in correct causal relations (i.e., affir-
mative confidence) is measured by the proportion
of affirmative responses among multiple generated
responses, where a response is considered affirma-
tive if it contains "yes" and negative if it contains
"no". If neither "yes" nor "no" appears in an an-
swer, we classify it as a ’fail’. The average propor-
tion of ’fail’ across all datasets is 0.03, indicating
that most responses are either ’yes’ or ’no’. If the
query "Does smoking cause lung cancer?" results
in affirmative responses in 8 out of 10 generation
samples, the affirmative confidence for "smoking

causes lung cancer" is 0.8. In this experiment, we
sample 10 responses for each query.
Real-World Data We calculate and plot the correla-
tion between different intervals of occurrence ratios
of incorrect causal relations and affirmative confi-
dence. The experiment results, shown in Fig. 7
and 8, indicate a negative correlation, showing that
LLMs’ confidence in correct causal relations de-
creases as the occurrence ratio of incorrect causal
relations increases.
Synthetic Data We fine-tune OLMo-7b-Instruct
employing both Reverse Relation Scaling and
Negated Relation Scaling. Fig. 9 shows a similar
negative correlation with real-world data: as the
occurrence of incorrect causal relations increases,
there is a decline in the LLMs’ confidence in the
corresponding correct causal relations.
Discussion This negative correlation suggests that
while LLMs excel at memorizing frequently oc-
curring information, they struggle to discern the
correct relation when confronted with high frequen-
cies of conflicting data. This inability leads to a
loss of confidence in correct causal relations. This
finding underscores the necessity of not only en-
hancing the presence of correct information but
also of eliminating misinformation in pre-training
data. Furthermore, these results pave the way for
future research aimed at developing models that
can manage conflicting information within their
pre-training data.

Research Question 3. How does the context of
a causal relation influence LLM performance in
causal discovery tasks?

We hypothesize that the strength and validity
of causal relations can vary across different con-
texts. Thus, when a causal discovery question is
presented with different contexts, LLMs might pro-
vide different and sometimes opposite answers to
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at CauseNet; Pearson (r=-
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Figure 8: The average confidence of correct causal relations on OLMo-7b-Instruct (a,b) and BLOOM-7b1 (c,d) by
reverse casual relation occurrence ratio intervals on causal direction identification, averaged 0-4 ICL examples.
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(a) Reverse Relation Scaling;
Pearson (r=-0.91), Spearman
(r=-0.8)
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(b) Negated Relation Scaling;
Pearson (r=-0.89), Spearman
(r=-1.0*)

Figure 9: The average confidence of correct causal rela-
tions on fine-tuned OLMo-7b-Instruct by reverse casual
relation occurrence ratio (a) and negation casual rela-
tion occurrence ratio (b) on synthetic causal relations,
averaged across 0 to 4 ICL examples.

the causal relation’s validity.
From ConceptNet and CauseNet, we select 100

high-confidence correct causal relations from each.
Since both ConceptNet and CauseNet lack context
information, for each causal relation, we use GPT-
4o to generate five positive contexts that enhance
it and five negative contexts that weaken it. Then
we hire thirteen annotators to evaluate these causal
relations under different contexts in three rounds.
The prompt and evaluation details are presented in
Appendix A.7. The agreement between annotators
and GPT-4o is 0.76 using Krippendorff’s Alpha
(Castro, 2017). We then assess the performance
of LLMs on these causal relations within positive
and negative contexts. The query format is similar
to Table 2, except we provide context information
using the phrase "Given the scenario: {descrip-
tion}". We assess LLM performance on correct
causal relations within various contexts using the
affirmative ratio. This ratio is calculated by divid-
ing the number of correct causal relations identified
by the LLM by the total number of correct causal
relations presented.
Observation From the results in Table 1, we ob-
serve that all LLMs are more likely to identify

Full Causal Discovery Task
w/o Ctx P.Ctx N.Ctx

OLMo-7b-Instruct (3 ICL) 0.65 0.87 0.42
BLOOM-7b1 (3 ICL) 0.62 0.76 0.59
Llama2-7b-chat (3 ICL) 0.68 0.85 0.25
Llama3-8b-Instruct (3 ICL) 0.67 0.73 0.20
GPT-3.5-turbo (3 ICL) 0.65 0.86 0.24
GPT-4o (3 ICL) 0.69 0.92 0.27
Avg. 0.66 0.83* 0.33*

Causal Direction Identification Task
ConceptNet

OLMo-7b-Instruct (3 ICL) 0.9 0.95 0.62
BLOOM-7b1 (3 ICL) 0.79 0.81 0.70
Llama2-7b-chat (3 ICL) 0.79 0.95 0.31
Llama3-8b-Instruct (3 ICL) 0.66 0.85 0.10
GPT-3.5-turbo (3 ICL) 0.77 0.90 0.33
GPT-4o (3 ICL) 0.87 0.96 0.34

CauseNet
OLMo-7b-Instruct (3 ICL) 0.89 0.99 0.61
BLOOM-7b1 (3 ICL) 0.72 0.78 0.63
Llama2-7b-chat (3 ICL) 0.92 0.99 0.47
Llama3-8b-Instruct (3 ICL) 0.88 0.94 0.14
GPT-3.5-turbo (3 ICL) 0.93 0.98 0.67
GPT-4o (3 ICL) 0.98 0.99 0.60
Avg. 0.84 0.92* 0.46*

Table 1: Affirmative ratio of LLMs on causal relations
across different contexts. An asterisk (*) indicates a sta-
tistically significant difference (p-value < 0.05) between
the affirmative ratio in positive/negative contexts and
the affirmative ratio without context using paired t-test.

causal relations in positive contexts compared to
no context. In contrast, adding negative contexts
significantly decreases LLMs’ ability to identify
causal relations compared to no context. These re-
sults indicate that the validity and strength of causal
relations can vary in different contexts.
Discussion The significant variation in causal re-
lation identification across positive and negative
contexts indicates the context sensitivity of LLM-
based causal discovery methods. This observation
suggests that LLM-based algorithms should explic-
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itly provide contextual information to enable LLMs
to better understand the scenario and thereby make
more accurate predictions. It is particularly crucial
for these algorithms to avoid misleading contexts,
as our results demonstrate that negative contexts
can substantially impair LLM performance. Fur-
thermore, investigating the underlying mechanisms
of how different contexts influence the strength and
validity of causal relations could be a promising
direction for future research.

6 Related Work

Causality with LLMs Kıcıman et al. (2023);
Zečević et al. (2023); Long et al. (2022); Feng
et al. (2023, 2025); Nick et al. (2023) explore the
inference of causal relations by submitting pair-
wise queries about variable pairs to LLMs. These
queries are either structured as option selection
questions (Kıcıman et al., 2023) or yes-no ques-
tions (Long et al., 2022; Zečević et al., 2023). Re-
sults from these experiments demonstrate that the
LLM-based approach surpasses traditional statis-
tical algorithms in performance. Remarkably, the
LLM-based method requires only the names of
the variables, without needing their statistical data.
However, the approach of pairwise queries may
lead to inefficiencies in time and computation, as
identifying all possible relations among a set n of
variables necessitates O(n2) queries. To address
this, Jiralerspong et al. (2024) have proposed a
breadth-first search strategy that significantly re-
duces the number of queries to a linear scale. Addi-
tionally, beyond exploring relationships among ob-
servable variables, Liu et al. (2024) has developed
a framework capable of uncovering high-level hid-
den variables from unstructured data using LLMs,
and subsequently inferring causal relationships. Be-
yond causal discovery task, Jiang et al. (2024); Cai
et al. (2024) propose leveraging LLMs to tackle
broader causal tasks. They suggest using LLMs
to comprehend the task, execute the appropriate
algorithm, and provide intuitive interpretations of
the algorithm’s output.

Influence of Pre-training Data on Language
Models. Research conducted by Kassner et al.
(2020) and Wei et al. (2021) involving controlled
variations in pretraining data sheds light on its
impact on language models’ (LM) capabilities to
memorize factual information and understand syn-
tactic rules. Their findings confirm that the fre-
quency of data plays a crucial role in determining a

model’s ability to remember specific facts or gram-
matical structures about verb forms. Furthermore,
Sinha et al. (2021); Min et al. (2022) show that
altering the word order during pretraining barely
affects the LMs’ performance in subsequent tasks,
and mixing up labels in in-context learning scenar-
ios does not significantly affect the models’ few-
shot learning accuracy. These studies collectively
indicate that the efficacy of LMs predominantly
hinges on their capacity to process complex word
co-occurrence patterns. Additionally, Carlini et al.
(2023, 2019); Song and Shmatikov (2019) have
identified that LMs can retain sensitive information
from their training datasets, even when such in-
stances are infrequent. The experiments of Razeghi
et al. (2022) demonstrate that models are more ac-
curate on numerical reasoning questions whose
terms are more prevalent in pre-training data.

7 Conclusion

In this study, we investigate the factors that im-
pact the performance of LLMs in causal discov-
ery tasks. Our results show that the frequency of
causal relations within a model’s pre-training data
has a positive correlation with LLM performance,
while the presence of incorrect causal relations can
negatively affect the models’ confidence in correct
causal relations. Furthermore, our experiments re-
veal that the context of causal relations significantly
affects the validity of causal relations.

Limitations

One limitation of our study is its focus exclusively
on LLMs for which both pre-training data and
model weights are openly available. This restricts
our analysis, as we are unable to extend similar
investigations to LLMs that release only model
weights or to entirely closed-source models. There-
fore, our findings may not fully represent the be-
havior of all LLMs.

Furthermore, most causal relations explored in
this research are related to commonsense scenarios.
The real world, however, often presents more dy-
namic and complex causal relations that may not
be adequately captured by the datasets utilized in
our study.

Ethics Statement

A key finding of our research is that LLMs tend
to memorize high-frequency patterns presented in
their pre-training data. While this characteristic can
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enhance model performance, it also poses a risk
of harmful biases that are embedded in the train-
ing corpora. Such biases, when unaddressed, have
the potential to lead to erroneous causal relations,
which is of particular concern in critical domains
like healthcare, legal systems, and public policy.

In conducting this research, we adhered to eth-
ical guidelines ensuring that all data and models
used were appropriately licensed, and any poten-
tially identifiable information was anonymized to
prevent misuse of the data and protect individual
privacy.
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ice Rueda, Amanda Pestana, Amir Feizpour, Ammar
Khan, Amy Faranak, Ana Santos, Anthony Hevia,
Antigona Unldreaj, Arash Aghagol, Arezoo Abdol-
lahi, Aycha Tammour, Azadeh HajiHosseini, Bahareh
Behroozi, Benjamin Ajibade, Bharat Saxena, Car-
los Muñoz Ferrandis, Daniel McDuff, Danish Con-
tractor, David Lansky, Davis David, Douwe Kiela,
Duong A. Nguyen, Edward Tan, Emi Baylor, Ez-
inwanne Ozoani, Fatima Mirza, Frankline Onon-
iwu, Habib Rezanejad, Hessie Jones, Indrani Bhat-
tacharya, Irene Solaiman, Irina Sedenko, Isar Ne-
jadgholi, Jesse Passmore, Josh Seltzer, Julio Bonis
Sanz, Livia Dutra, Mairon Samagaio, Maraim El-
badri, Margot Mieskes, Marissa Gerchick, Martha
Akinlolu, Michael McKenna, Mike Qiu, Muhammed
Ghauri, Mykola Burynok, Nafis Abrar, Nazneen Ra-
jani, Nour Elkott, Nour Fahmy, Olanrewaju Samuel,
Ran An, Rasmus Kromann, Ryan Hao, Samira Al-
izadeh, Sarmad Shubber, Silas Wang, Sourav Roy,
Sylvain Viguier, Thanh Le, Tobi Oyebade, Trieu Le,
Yoyo Yang, Zach Nguyen, Abhinav Ramesh Kashyap,
Alfredo Palasciano, Alison Callahan, Anima Shukla,
Antonio Miranda-Escalada, Ayush Singh, Benjamin
Beilharz, Bo Wang, Caio Brito, Chenxi Zhou, Chirag
Jain, Chuxin Xu, Clémentine Fourrier, Daniel León
Periñán, Daniel Molano, Dian Yu, Enrique Manjava-
cas, Fabio Barth, Florian Fuhrimann, Gabriel Altay,
Giyaseddin Bayrak, Gully Burns, Helena U. Vrabec,
Imane Bello, Ishani Dash, Jihyun Kang, John Giorgi,
Jonas Golde, Jose David Posada, Karthik Ranga-
sai Sivaraman, Lokesh Bulchandani, Lu Liu, Luisa
Shinzato, Madeleine Hahn de Bykhovetz, Maiko
Takeuchi, Marc Pàmies, Maria A Castillo, Mari-
anna Nezhurina, Mario Sänger, Matthias Samwald,
Michael Cullan, Michael Weinberg, Michiel De
Wolf, Mina Mihaljcic, Minna Liu, Moritz Freidank,
Myungsun Kang, Natasha Seelam, Nathan Dahlberg,
Nicholas Michio Broad, Nikolaus Muellner, Pascale
Fung, Patrick Haller, Ramya Chandrasekhar, Renata
Eisenberg, Robert Martin, Rodrigo Canalli, Rosaline
Su, Ruisi Su, Samuel Cahyawijaya, Samuele Garda,
Shlok S Deshmukh, Shubhanshu Mishra, Sid Ki-
blawi, Simon Ott, Sinee Sang-aroonsiri, Srishti Ku-
mar, Stefan Schweter, Sushil Bharati, Tanmay Laud,
Théo Gigant, Tomoya Kainuma, Wojciech Kusa, Ya-
nis Labrak, Yash Shailesh Bajaj, Yash Venkatraman,
Yifan Xu, Yingxin Xu, Yu Xu, Zhe Tan, Zhongli
Xie, Zifan Ye, Mathilde Bras, Younes Belkada, and
Thomas Wolf. 2023. Bloom: A 176b-parameter
open-access multilingual language model. Preprint,

9577

https://arxiv.org/abs/2211.05100
https://arxiv.org/abs/2211.05100


arXiv:2211.05100.

Jie Yang, Soyeon Caren Han, and Josiah Poon. 2022. A
survey on extraction of causal relations from natural
language text. Knowledge and Information Systems,
64(5):1161–1186.

Alessio Zanga, Elif Ozkirimli, and Fabio Stella. 2022.
A survey on causal discovery: Theory and prac-
tice. International Journal of Approximate Reason-
ing, 151:101–129.
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A Appendix

A.1 Ground-Truth Causal Graphs
Figure 10, 11, 12 demonstrate ground-truth causal
graphs for the causal discovery task.

A.2 Causal Direction Identification Task
ConceptNet is a knowledge graph that connects
natural language concepts via labeled edges. It in-
cludes the "[A, /r/Causes, B]" relation, indicating
that event A causes event B. Each relation in Con-
ceptNet also has a weight attribute, reflecting the
confidence level of the relation; a higher weight
suggests broader agreement across sources. From
ConceptNet, we selected the top 1,900 causal rela-
tions by weight and generated an equal number of
reverse-causal relations by swapping the cause and
effect. This process yielded a total of 3,800 causal
and reverse-causal relations.

CauseNet is a large-scale knowledge base con-
taining claimed causal relations between concepts.
We extract 814 high-confidence causal relations
from CauseNet, each supported by at least 100 web
sources and 10 extraction patterns. By swapping
the cause and effect, we generate an equivalent
number of reverse-causal relations. We then cre-
ate a dataset containing 1,628 causal and reverse-
causal relations.

A.3 In-Context Learning and Prompt
For the causal direction identification task and the
causal discovery task, we employ similar in-context
learning demonstrations and prompts, detailed in

Table 2. When presented with a pair of nodes
(A,B), we generate two questions: "Does A cause
B?" and "Does B cause A?".

In the causal direction identification task, the
ground-truth instances are formatted as (A →
B, true) and (A← B, false). These yes-no ques-
tions are directly transformed into such instances,
aligning perfectly with the binary nature of the task.
In the causal discovery task, the ground-truth in-
stances are structured as (A,B, l), where the label
l can take one of four possible values: ←,→, ×,
↔. Here, × denotes no causal relation, and↔ in-
dicates a bi-directional causal relation. We include
bi-directional causal relation because it exists in
some ground-truth causal graphs such as Arctic Sea
Ice. The conversion of yes-no responses to these
four-way labels is handled as follows. If only one
of the questions receives a ’yes’ answer, it trans-
lates directly to the corresponding causal direction
(i.e.,← or→). If both questions are answered with
’no’, this indicates no causal relation (i.e., ×). If
both questions receive a ’yes’ response, this sug-
gests a bi-directional relation (i.e.,↔).

To determine the most confident answer, each
LLM should generate ten distinct responses (Chen
and Mueller, 2023; Geng et al., 2024). We then
extract ’yes’ or ’no’ from each output. If the count
of ’yes’ responses is greater than or equal to the
count of ’no’ responses, the final answer is ’yes’.
If ’no’ responses predominate, the final answer is
’no’. This methodology ensures a robust approach
to determining causal relationships in both tasks.

The decoding hyperparameters are configured as
follows: the top-p sampling parameter is set to 0.9,
the repetition penalty is 1.25, the temperature is 0.8,
and the maximum number of new tokens generated
does not exceed the maximum input length. We
employ the Hugging Face library to load LLMs
and generate responses (Wolf et al., 2020). All
experiments were conducted on NVIDIA A100
GPUs.

A.4 Query for Search Engine

The queries for searching can be found in Table 3, 4.

A.5 Synthetic Causal Relations

Table 5 demonstrates templates for creating men-
tions of synthetic causal relations and anti-causal
relations.
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Figure 10: Four causal graphs illustrating well-known exposure-outcome effects in the medical literature. This
figure is from Long et al. (2022).

Figure 11: The causal graph between key atmospheric
variables and sea ice over the Arctic based on literature
review. This figure is from Huang et al. (2021).

Figure 12: The causal graph for evaluating car insurance
risks. This figure is sourced from Scutari (2010).

A.6 Training Details

We fine-tuning OLMo-7b-Instruct using LoRA on
synthetic datasets, utilizing the official code from
the OLMo repository 2. The model was trained on
two NVIDIA A100 GPUs with a batch size of 2
per GPU, and a total batch size of 128. We set the
LoRA rank and alpha to 256, with a dropout rate
of 0.1. The learning rate was configured to 1e-4,
employing a linear scheduler for rate adjustments.
The training was conducted over one epoch.

A.7 Human Evaluation for Causal Relation
with Contexts

The prompt of generation contexts of causal re-
lations is shown in Table 6. In this task, we re-
quire annotators to evaluate causal relations with
different contexts. Below we show detailed task
instruction to annotators.

Task Objective. You are provided with a series
of scenarios and corresponding questions. Your
task is to assess the likelihood of a causal relation
based on the given scenario and give a reason for
your choice. Use only the information provided
in the scenario and apply common sense to make
your judgment. At the begining of each evaluation,
there are 10 relations without any scenarios. In
these cases, we can make your judgment based on
your common sense. Please review the annotation
examples provided below before beginning the ac-
tual annotation task. The actual annotation tasks
are performed on Google sheet. Please note that
each annotator is required to complete at least one

2We employed the official OLMo code available at https:
//github.com/allenai/open-instruct.
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Demonstrations for in-context learning

User:

This task is to determine the cause-and-effect relationship between two events based on commonsense knowledge.
We are interested in the causal relationship between ’it is raining’ and ’carrying an umbrella’.
Does ’it is raining’ cause ’carrying an umbrella’?
Let’s provide a step-by-step explanation, then give your final answer using yes or no.

Assistant:

Step-by-Step Explanation:
1. Observation: The presence of rain often results in individuals using umbrellas.
2. Rationale: People use umbrellas to protect themselves from getting wet during rain.
3. Conclusion: Rain acts as a cause for the use of an umbrella. The final answer is Yes.
Final Answer: Yes

User:

This task is to determine the cause-and-effect relationship between two events based on commonsense knowledge.
We are interested in the causal relationship between ’it is raining’ and ’carrying an umbrella’.
Does ’carrying an umbrella’ causes ’it is raining’?
Let’s provide a step-by-step explanation, then give your final answer using yes or no.

Assistant:

Step-by-Step Explanation:
1. Observation: The act of opening an umbrella does not influence weather patterns or conditions.
2. Rationale: Rain is a meteorological event determined by atmospheric conditions. The use of an umbrella does not have the capability to influence weather conditions.
3. Conclusion: There is no causal relationship where the umbrella causes rain. The answer is No.
Final Answer: No

User:

This task is to determine the cause-and-effect relationship between two events based on commonsense knowledge.
We are interested in the causal relationship between ’Eating food’ and ’feeling Hunger’.
Does ’Eating food’ causes ’feeling Hunger’?
Let’s provide a step-by-step explanation, then give your final answer using yes or no.

Assistant:

Step-by-Step Explanation:
1. Observation: Eating involves consuming food, which typically reduces the feeling of hunger.
2. Rationale: The act of eating is intended to satiate hunger, not induce it.
3. Conclusion: Eating does not cause hunger. Instead, it alleviates it. The answer is No.
Final Answer: No

User:

This task is to determine the cause-and-effect relationship between two events based on commonsense knowledge.
We are interested in the causal relationship between ’Eating food’ and ’feeling Hunger’.
Does ’Feeling hunger’ causes ’Eating food’?
Let’s provide a step-by-step explanation, then give your final answer using yes or no.

Assistant:

Step-by-Step Explanation:
1. Observation: The sensation of hunger typically motivates individuals to eat.
2. Rationale: Hunger is a biological signal that the body needs nutrients. This sensation prompts the behavior of eating to replenish energy and nutrients.
3. Conclusion: It is reasonable to conclude that hunger causes eating. The answer is Yes.
Final Answer: Yes

Prompt

User:

This task is to determine the cause-and-effect relationship between two events based on commonsense knowledge.
We are interested in the causal relationship between {cause}’ and ’{effect}’.
Does ’{cause}’ cause ’{effect}’?
Let’s provide a step-by-step explanation, then give your final answer using yes or no.

Table 2: Demonstrations for in-context learning and the prompt for new input.

evaluation sheet.

Annotation Steps. Below is suggested annota-
tion steps to annotators.

1. 1. Read the Scenario Carefully: Each scenario
provides a specific context. Understand the
details and implications of the scenario.

2. 2. Review the Question: Each question asks
you to assess the likelihood of a causal relation
occurring, given the provided scenario.

3. 3. Select the Appropriate Answer: Based on
your understanding of the scenario, select the
probability range that best represents the like-
lihood of the stated causal relation occurring.

For each question, we have below options

• 100%: The causal relation definitely occurs.

• 81-99%: The causal relation almost certainly
occurs.

• 51-80%: The causal relation is likely to occur.

• 50%: The causal relation has 50

• 20-49%: The causal relation somewhat likely
to occur.

• 1-19%: The causal relation rarely occurs.

• 0%: The causal relation never occurs.

• The scenario does not make sense. If the sce-
nario contradicts common sense or could not
occur in the real world or it is not a scenario
at all, please select this option.

Annotation Examples. In Table 7, we show
some annotation examples to help annotators have
a better understanding of this task.

Acceptance Policy. We will only reject a job
if there is clear evidence of malicious behavior,
such as random clicking, which suggests non-
compliance with task guidelines.

Privacy Policy. Our primary objective is to pro-
cess and publish only anonymized data. We will
not publish your name, email address, or any other
personal information. If you have concerns about
how we handle your personal data, please contact
the project manager.
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Exact match for "event A causes event B"
templates = [f"{cause} causes {effect}", f"{effect} is caused by {cause}", f"{cause} leads to {effect}",
f"{cause} results in {effect}", f"{cause} triggers {effect}", f"{effect} is triggered by {cause}",
f"{cause} induces {effect}", f"{cause} influences {effect}", f"{effect} is influenced by {cause}",
f"{cause} affects {effect}", f"{effect} is affected by {cause}", f"{cause} impacts {effect}",
f"{cause} is impacted by {effect}", f"{cause} is responsible for {effect}",
f"{cause} is the reason for {effect}", f"The effect of {cause} is {effect}",
f"The result of {cause} is {effect}", f"The consequence of {cause} is {effect}",
f"{effect} is a consequence of {cause}", f"{effect} is a result of {cause}", f"{effect} is an effect of {cause}"]

# create match_phrase query for each template
should_list = []
for phrase in templates:
match_phrase = {
"match_phrase": {
"text": {
"query": phrase,
"slop": int(len(phrase.split())*0.25),
}
}
}
should_list.append(match_phrase)
query = {
"bool": {
"should": should_list,
"minimum_should_match": 1
}

Table 3: Exact match query for WIMBD.

B More Experiment Results

B.1 Evaluating both open- and closed-source
LLMs on causal discovery tasks.

Causal questions indicate both causal direction
identification task and causal discovery task. Kıcı-
man et al. (2023); Zečević et al. (2023); Feng et al.
(2024); Jiralerspong et al. (2024) have reported that
closed-source LLMs (e.g., GPT-3.5-turbo, GPT-
4) achieve state-of-the-art performance in causal
direction identification task and causal discovery
tasks. However, their analyses predominantly fo-
cus on specific closed-source models and offer a
limited examination of open-source LLMs. In this
section, we employ closed-source and open-source
LLMs to conduct causal relation identification and
causal discovery tasks. We aim to compare and
analyze the performance disparities when utilizing
different models. Table 8, 9, 10, 11, 12 and 13
show the results of causal discovery experiments
on the Arctic Sea Ice, Insurance, Alcohol, Cancer,
Diabetes, and Obesity causal graphs. Table 14 and
15 show the results of causal direction identification

tasks on the ConceptNet and CauseNet datasets.

We employ the Normalized Hamming Distance
(NHD) as one metric for full causal discovery. A
notable issue with NHD is that due to the typically
sparse nature of causal graphs, models that predict
no edges can still achieve a low NHD. This setup
inadvertently penalizes models that predict a larger
number of edges, even true edges may be predicted.
To address this, following the methodologies out-
lined by Kıcıman et al. (2023) and Jiralerspong
et al. (2024), we calculate the ratio between the
NHD and the baseline NHD of a model that out-
puts the same number of edges but with all of them
being incorrect. The lower the ratio, the better the
model performs compared to the worst baseline
that outputs the same number of edges. Therefore,
we report NHD ratio (i.e., NHD / baseline NHD),
along with the number of predicted edges, to pro-
vide a more comprehensive evaluation of model
performance in the full causal discovery task.

Due to the transparency of OLMo-7b-Instruct
and the robust capabilities of its search tool, OLMo-
7b-Instruct serves as our primary analysis model.
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Therefore, we explored various numbers of in-
context learning examples to identify the optimal
example number. In seven out of eight datasets,
OLMo-7b-Instruct with three demonstration exam-
ples achieves the highest F1, compared to other
numbers of demonstration examples tested. There-
fore, to ensure a fair comparison, other LLMs
also utilized three demonstration examples for in-
context learning.

Considering all LLMs, GPT-4o outperforms oth-
ers in six of the eight datasets evaluated, specif-
ically Arctic Sea Ice, Insurance, Alcohol, Obe-
sity, ConceptNet, and CauseNet. In the remaining
two datasets, Cancer and Diabetes, GPT-4o ranks
as the second-best model, with only a slight per-
formance differential from the top model. These
experiment results show that GPT-4o is the most
effective model for causal discovery and causal
direction identification tasks in both closed- and
open-source models. Among open-source models
exclusively, Llama3-8b-Instruct excels, achieving
the highest F1 scores in six datasets: Insurance,
Alcohol, Cancer, Diabetes, Obesity, and CauseNet.
Meanwhile, Llama2-7b-chat achieves the highest
F1 in two datasets, Arctic Sea Ice and Obesity. In
the ConceptNet dataset, OLMo-7b-Instruct, con-
figured with three in-context learning examples,
records the best F1 score.

B.2 Do pre-training corpora contain more
correct causal relations?

Given the effective performance of LLMs on causal
discovery tasks, a pertinent research question arises:
Why can LLMs perform so well? We posit that a
significant factor is the nature of the pre-training
data, which contains more correct causal relations
than incorrect ones, leading LLMs to primarily
memorize correct causal relations.

Research Question 4. Do pre-training corpora
contain more correct causal relations than incor-
rect ones?

Humans fundamentally rely on causal relations
to understand and generate text. Therefore, it is
reasonable that pre-training corpora, which are col-
lected from human-generated texts, are likely to
inherently contain a higher proportion of correct
causal relations.
Observation We count the total occurrence of cor-
rect and incorrect causal relations in Dolma and
ROOTS corpora. The results are shown in Table 16.
We use exact matching to count correct and incor-

rect causal relations. We observe that the occur-
rence of causal relations is, on average, 12 times
higher than that of incorrect causal relations in
Dolma and ROOTS corpora. From our observa-
tion, most incorrect causal relations do not exist
in an affirmation context. They are usually in a
question or negation context. For example, "Which
option is correct? A. smoking causes cancer B. can-
cer causes smoking" or "Which means that either
smoking causes cancer or cancer causes smoking.
"
Discussion In conclusion, these experimental re-
sults show that correct causal relations are more
frequently represented than incorrect ones in pre-
training corpora. This also explain why LLMs can
identify many causal relations in causal discovery
tasks.

B.3 Influence of Model Size on LLMs’
Performance in Causal Discovery Tasks

Research Question 5. Do larger models perform
better on causal discovery tasks?

We assume that within the same architectural
framework, increasing the model size (i.e., the
number of parameters) leads to improved perfor-
mance on causal discovery tasks. The rationale
is that larger models can memorize more informa-
tion from the pre-training data than their smaller
models.
Observation We select models from the Llama2
and Llama3 series, each varying in size. These
models are evaluated on causal discovery and
causal direction identification tasks, with results
documented in Table 17 and 18. The findings indi-
cate that for both the Llama2 and Llama3 models,
there is a positive correlation between the number
of parameters and performance. However, discrep-
ancies arise when comparing across architectures.
For example, a small Llama3 model (e.g., Llama3-
8b-Instruct) can outperform a significantly larger
Llama3 model (e.g., Llama2-70b-chat). Notably,
across most datasets, Llama3-70b-Instruct either
matches or surpasses the performance of the cur-
rently leading closed-source LLM, GPT-4o.
Discussion The experiment results lead to a critical
consideration of the ’bigger is better’ paradigm in
LLM research. Future research should thus not
only focus on scaling up the size but also on re-
fining the architecture and learning algorithms to
better leverage increased model capacity.
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Ordered phrase search for "event A"⇒ "causes"⇒ "event B"
causal_mentions = ["causes", "leads to", "results in", "triggers", "induces", "influences", "affects", "impacts",
"is responsible for", "is the reason for", "cause", "lead to", "result in", "trigger", "induce",
"influence", "affect", "impact", "are responsible for", "are the reason for"]

# create cause clause in span term format
cause_clauses = []
for item in cause.split():
cause_clauses.append({"span_term": {"text": item}})

# create effect clause in span term format
effect_clauses = []
for item in effect.split():
effect_clauses.append({"span_term": {"text": item}})

# create causal relation clause in span term format
all_relation_clauses = []
for rel in causal_mentions:
relation_clauses = []
for term in rel.split():
relation_clauses.append({"span_term": {"text": term}})
all_relation_clauses.append(relation_clauses)

# for each causal relation clause, create a query
for relation_clauses in all_relation_clauses:
query = {
"span_near": {
"clauses": [
{
"span_near": {
"clauses": cause_clauses,
"slop": 0,
"in_order": True
}
},
{
"span_near": {
"clauses": relation_clauses,
"slop": 0,
"in_order": True
}
},
{
"span_near": {
"clauses": effect_clauses,
"slop": 0,
"in_order": True
}
}
],
"slop": 32, # window size
"in_order": True
}
}

Table 4: "event A"⇒ "causes"⇒ "event B" query for WIMBD.

9583



Correct causal relations Reverse causal relations Negation of causal relations
templates = [f"cause causes effect.",
f"effect is caused by cause.",
f"cause leads to effect.",
f"cause results in effect.",
f"cause triggers effect.",
f"effect is triggered by cause.",
f"cause induces effect.",
f"cause influences effect.",
f"effect is influenced by cause.",
f"cause affects effect.",
f"effect is affected by cause.",
f"cause impacts effect.",
f"cause is impacted by effect.",
f"cause is responsible for effect.",
f"cause is the reason for effect.",
f"The effect of cause is effect.",
f"The result of cause is effect.",
f"The consequence of cause is effect.",
f"effect is a consequence of cause.",
f"effect is a result of cause.",
f"effect is an effect of cause.", ]

templates = [f"effect causes cause.",
f"cause is caused by effect.",
f"effect leads to cause.",
f"effect results in cause.",
f"effect triggers cause.",
f"cause is triggered by effect.",
f"effect induces cause.",
f"effect influences cause.",
f"cause is influenced by effect.",
f"effect affects cause.",
f"cause is affected by effect.",
f"effect impacts cause.",
f"effect is impacted by cause.",
f"effect is responsible for cause.",
f"effect is the reason for cause.",
f"The effect of effect is cause.",
f"The result of effect is cause.",
f"The consequence of effect is cause.",
f"cause is a consequence of effect.",
f"cause is a result of effect.",
f"cause is an effect of effect.", ]

templates = [ f"cause does not cause effect.",
f"effect is not caused by cause.",
f"cause does not lead to effect.",
f"cause does not result in effect.",
f"cause does not trigger effect.",
f"effect is not triggered by cause.",
f"cause does not induce effect.",
f"cause does not influence effect.",
f"effect is not influenced by cause.",
f"cause does not affect effect.",
f"effect is not affected by cause.",
f"cause does not impact effect.",
f"cause is not impacted by effect.",
f"cause is not responsible for effect.",
f"cause is not the reason for effect.",
f"The effect of cause is not effect.",
f"The result of cause is not effect.",
f"The consequence of cause is not effect.",
f"effect is not a consequence of cause.",
f"effect is not a result of cause.",
f"effect is not an effect of cause.",]

Table 5: Templates for creating mentions of imaginary causal relations and anti-causal relations.
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Prompt for generating contexts of causal relations
List five scenarios where ’cause’ causes ’effect’. Then, list five scenarios where ’cause’ does not cause ’effect’.
Each scenario should be distinctly and clearly described, categorized under the respective headings.
Response Format:
Scenarios where ’cause’ causes ’effect’:
Heading:
Description:
Reason:
...
Scenarios where ’cause’ does not cause ’effect’:
Heading:
Description:
Reason:
...

Table 6: Prompt for generating contexts of causal rela-
tions.
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Annotation examples
###relation–91###
Question: to what extent do you think ’soaking in a hotspring’ causes ’relaxation’?
81-99%
Reason: The warm water of a hot spring helps to raise the body’s temperature,
which can relax muscle tension and soothe aches and pains in the joints and muscles.
This physical relaxation naturally leads to mental relaxation.
###relation–91###
Scenario — High water temperature:
The water temperature in the hotspring is excessively hot, making the individual feel uncomfortable.

Answer the following question ONLY based on information described in above scenario and your common sense.
Question: under above scenario, to what extent do you think ’soaking in a hotspring’ causes ’relaxation’?
1-19%
Reason: Uncomfortably high temperatures can cause overheating, dizziness, or discomfort, preventing relaxation.
###relation–96###
Scenario — Entertaining Friends:
During a casual get-together with friends, you crack jokes and everyone bursts into laughter.

Answer the following question ONLY based on information described in above scenario and your common sense.
Question: under above scenario, to what extent do you think ’making people laugh’ causes ’you have fun too’?
81-99%
Reason: The shared joy and camaraderie among friends create a fun and enjoyable atmosphere.

Table 7: Examples of causal relation evaluation under different contexts.

Precision↑ Recall↑ F1↑ Accuracy↑ Predict edges NHD↓ Baseline NHD Ratio (NHD/Baseline NHD)↓
OLMo-7b-Instruct (0 ICL) 0.4259 0.5 0.46 0.625 54 0.375 0.6944 0.54
OLMo-7b-Instruct (1 ICL) 0.3928 0.4782 0.4314 0.5972 56 0.4027 0.7083 0.5686
OLMo-7b-Instruct (2 ICL) 0.4615 0.1304 0.2034 0.6736 13 0.3263 0.4097 0.7966
OLMo-7b-Instruct (3 ICL) 0.5555 0.1087 0.1818 0.6875 9 0.3125 0.3819 0.8181
OLMo-7b-Instruct (4 ICL) 0.5417 0.2826 0.3714 0.6944 24 0.3055 0.4861 0.6285
BLOOM-7b1 (3 ICL) 0.3934 0.5217 0.4485 0.5902 61 0.4097 0.7430 0.5514
Llama2-7b-chat (3 ICL) 0.4444 0.5217 0.48 0.6388 54 0.3611 0.6944 0.52
Llama3-8b-Instruct (3 ICL) 1.0 0.1956 0.3272 0.7430 9 0.2569 0.3819 0.6727
GPT-3.5-turbo (3 ICL) 0.7647 0.2826 0.4126 0.7431 17 0.2569 0.4375 0.5873
GPT-4o (3 ICL) 0.5178 0.6304 0.5686 0.6944 56 0.3055 0.7083 0.4313

Table 8: Causal discovery results for the Arctic Sea Ice causal graph, with 12 nodes and 46 edges. GPT-4o surpasses
all competing models, achieving an F1 score of 0.5686 and an NHD ratio of 0.4313. The second-best performing
model is an open-source LLM, Llama2-7b-chat. (# ICL) indicates the number of demonstration examples for
in-context learning.

Precision↑ Recall↑ F1↑ Accuracy↑ Predict edges NHD↓ Baseline NHD Ratio (NHD/Baseline NHD)↓
OLMo-7b-Instruct (0 ICL) 0.0873 0.7692 0.1568 0.4101 458 0.5898 0.6995 0.8431
OLMo-7b-Instruct (1 ICL) 0.0963 0.9038 0.1740 0.3882 488 0.6117 0.7407 0.8259
OLMo-7b-Instruct (2 ICL) 0.0901 0.5961 0.1565 0.5418 344 0.4581 0.5432 0.8434
OLMo-7b-Instruct (3 ICL) 0.1254 0.6731 0.2114 0.6419 279 0.3580 0.4540 0.7885
OLMo-7b-Instruct (4 ICL) 0.1093 0.7884 0.1920 0.5267 375 0.4732 0.5857 0.8079
BLOOM-7b1 (3 ICL) 0.0710 0.7115 0.1291 0.3155 521 0.6844 0.7860 0.8708
Llama2-7b-chat (3 ICL) 0.1245 0.7115 0.2120 0.6227 297 0.3772 0.4787 0.7879
Llama3-8b-Instruct (3 ICL) 0.2656 0.3269 0.2931 0.8875 64 0.1124 0.1591 0.7069
GPT-3.5-turbo (3 ICL) 0.1575 0.5 0.2396 0.7736 165 0.2263 0.2976 0.7603
GPT-4o (3 ICL) 0.2287 0.6730 0.3414 0.8148 153 0.1851 0.2812 0.6585

Table 9: Causal discovery results for the Insurance causal graph, with 27 nodes and 52 edges. GPT-4o surpasses
all competing models, achieving an F1 score of 0.3414 and an NHD ratio of 0.6585. The second-best performing
model is an open-source LLM, Llama3-8b-Instruct.
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Precision↑ Recall↑ F1↑ Accuracy↑ Predict edges NHD↓ Baseline NHD Ratio (NHD/Baseline NHD)↓
OLMo-7b-Instruct (0 ICL) 0.5 1.0 0.6667 0.6667 6 0.3333 1.0 0.3333
OLMo-7b-Instruct (1 ICL) 0.6 1.0 0.75 0.7778 5 0.2222 0.8889 0.25
OLMo-7b-Instruct (2 ICL) 0.5 1.0 0.6667 0.6667 6 0.3333 1.0 0.3333
OLMo-7b-Instruct (3 ICL) 0.6 1.0 0.75 0.7778 5 0.2222 0.8889 0.25
OLMo-7b-Instruct (4 ICL) 0.6 1.0 0.75 0.7778 5 0.2222 0.8889 0.25
BLOOM-7b1 (3 ICL) 0.5 1.0 0.6667 0.6667 6 0.3333 1.0 0.3333
Llama2-7b-chat (3 ICL) 0.75 1.0 0.8571 0.8889 4 0.1111 0.7778 0.1429
Llama3-8b-Instruct (3 ICL) 1.0 1.0 1.0 1.0 3 0 0.6667 0
GPT-3.5-turbo (3 ICL) 1.0 1.0 1.0 1.0 3 0 0.6667 0
GPT-4o (3 ICL) 1.0 1.0 1.0 1.0 3 0 0.6667 0

Table 10: Causal discovery results for the Alcohol causal graph, with 3 nodes and 3 edges. Llama3-8b-Instruct,
GPT-3.5-turbo, and GPT-4 accurately predict the ground-truth causal graph. The second-best performing model is
Llama2-7b-chat.

Precision↑ Recall↑ F1↑ Accuracy↑ Predict edges NHD↓ Baseline NHD Ratio (NHD/Baseline NHD)↓
OLMo-7b-Instruct (0 ICL) 0.4166 1.0 0.5882 0.5625 12 0.4375 1.0 0.4375
OLMo-7b-Instruct (1 ICL) 0.4 0.8 0.5333 0.5625 10 0.4375 0.9375 0.4667
OLMo-7b-Instruct (2 ICL) 0.5 0.8 0.6153 0.6875 8 0.3125 0.8125 0.3846
OLMo-7b-Instruct (3 ICL) 0.5714 0.8 0.6667 0.75 7 0.3125 0.9375 0.3333
OLMo-7b-Instruct (4 ICL) 0.5 1.0 0.6667 0.6875 10 0.3125 0.9375 0.3333
BLOOM-7b1 (3 ICL) 0.4 0.4 0.4 0.625 5 0.375 0.625 0.6
Llama2-7b-chat (3 ICL) 0.4166 1.0 0.5882 0.5625 12 0.4375 1.0 0.4375
Llama3-8b-Instruct (3 ICL) 1.0 0.8 0.8889 0.9375 4 0.0625 0.5625 0.1111
GPT-3.5-turbo (3 ICL) 1.0 0.8 0.8889 0.9375 4 0.0625 0.5625 0.1111
GPT-4o (3 ICL) 0.8 0.8 0.8 0.875 5 0.125 0.625 0.2

Table 11: Causal discovery results for the Cancer causal graph, with 4 nodes and 5 edges. Llama3-8b-Instruct and
GPT-3.5-turbo surpass all other models. The second-best performing model is GPT-4o.

Precision↑ Recall↑ F1↑ Accuracy↑ Predict edges NHD↓ Baseline NHD Ratio (NHD/Baseline NHD)↓
OLMo-7b-Instruct (0 ICL) 0.4166 1.0 0.5882 0.5625 12 0.4375 1.0625 0.4117
OLMo-7b-Instruct (1 ICL) 0.4166 1.0 0.5882 0.5625 12 0.4375 1.0625 0.4117
OLMo-7b-Instruct (2 ICL) 0.4166 1.0 0.5882 0.5625 12 0.4375 1.0625 0.4117
OLMo-7b-Instruct (3 ICL) 0.5 1.0 0.6666 0.6875 10 0.3125 0.9375 0.3333
OLMo-7b-Instruct (4 ICL) 0.4545 1.0 0.625 0.625 11 0.375 1.0 0.375
BLOOM-7b1 (3 ICL) 0.4285 0.6 0.5 0.625 7 0.375 0.75 0.5
Llama2-7b-chat (3 ICL) 0.5556 1.0 0.7142 0.75 9 0.25 0.875 0.2857
Llama3-8b-Instruct (3 ICL) 1.0 0.8 0.8889 0.9375 4 0.0625 0.5625 0.1111
GPT-3.5-turbo (3 ICL) 1.0 1.0 1.0 1.0 5 0 0.625 0
GPT-4o (3 ICL) 0.8333 1.0 0.9091 0.9375 6 0.0625 0.6875 0.0909

Table 12: Causal discovery results for the Diabetes causal graph, with 4 nodes and 5 edges. GPT-3.5-turbo accurately
predict the ground-truth causal graph. The second-best performing model is GPT-4o.

Precision↑ Recall↑ F1↑ Accuracy↑ Predict edges (46) NHD↓ Baseline NHD Ratio (NHD/Baseline NHD)↓
OLMo-7b-Instruct (0 ICL) 0.5714 0.8 0.6666 0.75 7 0.3125 0.9375 0.3333
OLMo-7b-Instruct (1 ICL) 0.5 1.0 0.6666 0.6875 10 0.3125 0.9375 0.3333
OLMo-7b-Instruct (2 ICL) 0.5555 1.0 0.7142 0.75 9 0.25 0.875 0.2857
OLMo-7b-Instruct (3 ICL) 0.8 0.8 0.8 0.875 5 0.125 0.625 0.2
OLMo-7b-Instruct (4 ICL) 0.5555 1.0 0.7142 0.75 9 0.25 0.875 0.2857
BLOOM-7b1 (3 ICL) 0.4444 0.8 0.5714 0.625 9 0.375 0.875 0.4285
Llama2-7b-chat (3 ICL) 0.8333 1.0 0.9091 0.9375 6 0.0625 0.6875 0.0909
Llama3-8b-Instruct (3 ICL) 0.8333 1.0 0.9091 0.9375 6 0.0625 0.6875 0.0909
GPT-3.5-turbo (3 ICL) 0.8333 1.0 0.9091 0.9375 6 0.0625 0.6875 0.0909
GPT-4o (3 ICL) 0.8333 1.0 0.9091 0.9375 6 0.0625 0.6875 0.0909

Table 13: Causal discovery results for the Obesity causal graph, with 4 nodes and 5 edges. Llama2-7b-chat,
Llama3-8b-Instruct, GPT-3.5-turbo and GPT-4o outperform all other models. The second-best performing method
is OLMo-7b-Instruct (3 ICL).
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Precision↑ Recall↑ F1↑ Accuracy↑
OLMo-7b-Instruct (0 ICL) 0.5482 0.8831 0.6765 0.5778
OLMo-7b-Instruct (1 ICL) 0.5491 0.8184 0.6573 0.5734
OLMo-7b-Instruct (2 ICL) 0.5771 0.7825 0.6643 0.6047
OLMo-7b-Instruct (3 ICL) 0.6612 0.8427 0.7410 0.7053
OLMo-7b-Instruct (4 ICL) 0.5294 0.8721 0.6589 0.5486
BLOOM-7b1 (3 ICL) 0.5027 0.7248 0.5937 0.5041
Llama2-7b-chat (3 ICL) 0.6197 0.7774 0.6897 0.6503
Llama3-8b-Instruct (3 ICL) 0.7659 0.6575 0.7076 0.7282
GPT-3.5-turbo (3 ICL) 0.6732 0.7308 0.7008 0.6891
GPT-4o (3 ICL) 0.8141 0.8342 0.8240 0.8224

Table 14: Causal direction identification results on the ConceptNet dataset, with 1900 causal relations and 1900
reverse causal relations. GPT-4o outperforms all competing methods, achieving an F1 score of 0.8240. The
second-best performing method is OLMo-7b-Instruct (3 ICL), with an F1 score of 0.7410.

Precision↑ Recall↑ F1↑ Accuracy↑
OLMo-7b-Instruct (0 ICL) 0.5461 0.9657 0.6977 0.5815
OLMo-7b-Instruct (1 ICL) 0.5359 0.9606 0.6881 0.5644
OLMo-7b-Instruct (2 ICL) 0.5610 0.9091 0.6938 0.5988
OLMo-7b-Instruct (3 ICL) 0.6568 0.8771 0.7511 0.7094
OLMo-7b-Instruct (4 ICL) 0.5860 0.9410 0.7223 0.6382
BLOOM-7b1 (3 ICL) 0.5067 0.6928 0.5853 0.5092
Llama2-7b-chat (3 ICL) 0.7030 0.8931 0.7867 0.7582
Llama3-8b-Instruct (3 ICL) 0.8838 0.8296 0.8558 0.8602
GPT-3.5-turbo (3 ICL) 0.8990 0.8857 0.8923 0.8931
GPT-4o (3 ICL) 0.8596 0.9557 0.9051 0.8998

Table 15: Causal direction identification results on the CauseNet dataset, with 814 causal relations and 814 reverse
causal relations. GPT-4o outperforms all competing methods, achieving an F1 score of 0.9051. The second-best
performing method is GPT-3.5-turbo, with an F1 score of 0.8923.

Correct Causal Relations Incorrect Causal Relations

Causal Discovery (all datasets)
Dolma 28812 1127
ROOTS 814 118

Causal Direction Identification (ConceptNet)
Dolma 41407 3410
ROOTS 1176 131

Causal Direction Identification (CauseNet)
Dolma 949427 107070
ROOTS 24591 4236

Table 16: Occurrences of correct and incorrect causal relations in the Dolma and ROOTS corpora.
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Arctic Sea Ice
Precision↑ Recall↑ F1↑ Accuracy↑ Predict edges NHD↓ Baseline NHD Ratio (NHD/Baseline NHD)↓

Llama2-7b-chat (3 ICL) 0.4444 0.5217 0.48 0.6388 54 0.3611 0.6944 0.52
Llama2-13b-chat (3 ICL) 0.4478 0.6522 0.5309 0.6319 67 0.3681 0.7847 0.4690
Llama2-70b-chat (3 ICL) 0.3606 0.9565 0.5238 0.4444 122 0.5556 1.0 0.5556
Llama3-8b-Instruct (3 ICL) 1.0 0.1956 0.3272 0.7430 9 0.2569 0.3819 0.6727
Llama3-70b-Instruct (3 ICL) 0.5689 0.7174 0.6346 0.7361 58 0.2639 0.7222 0.3653
GPT-3.5-turbo (3 ICL) 0.7647 0.2826 0.4126 0.7431 17 0.2569 0.4375 0.5873
GPT-4o (3 ICL) 0.5178 0.6304 0.5686 0.6944 56 0.3055 0.7083 0.4313

Insurance
Llama2-7b-chat (3 ICL) 0.1245 0.7115 0.2120 0.6227 297 0.3772 0.4787 0.7879
Llama2-13b-chat (3 ICL) 0.1338 0.7307 0.2262 0.6433 284 0.3566 0.4609 0.7738
Llama2-70b-chat (3 ICL) 0.1619 0.7692 0.2675 0.6995 247 0.3004 0.4102 0.7324
Llama3-8b-Instruct (3 ICL) 0.2656 0.3269 0.2931 0.8875 64 0.1124 0.1591 0.7069
Llama3-70b-Instruct (3 ICL) 0.2183 0.5961 0.3195 0.8189 142 0.1811 0.2661 0.6804
GPT-3.5-turbo (3 ICL) 0.1575 0.5 0.2396 0.7736 165 0.2263 0.2976 0.7603
GPT-4o (3 ICL) 0.2287 0.6730 0.3414 0.8148 153 0.1851 0.2812 0.6585

Alcohol
Llama2-7b-chat (3 ICL) 0.75 1.0 0.8571 0.8889 4 0.1111 0.7778 0.1429
Llama2-13b-chat (3 ICL) 0.75 1.0 0.8571 0.8889 4 0.1111 0.7778 0.1429
Llama2-70b-chat (3 ICL) 0.75 1.0 0.8571 0.8889 4 0.1111 0.7778 0.1429
Llama3-8b-Instruct (3 ICL) 1.0 1.0 1.0 1.0 3 0 0.6667 0
Llama3-70b-Instruct (3 ICL) 1.0 1.0 1.0 1.0 3 0 0.6667 0
GPT-3.5-turbo (3 ICL) 1.0 1.0 1.0 1.0 3 0 0.6667 0
GPT-4o (3 ICL) 1.0 1.0 1.0 1.0 3 0 0.6667 0

Cancer
Llama2-7b-chat (3 ICL) 0.4166 1.0 0.5882 0.5625 12 0.4375 1.0 0.4375
Llama2-13b-chat (3 ICL) 0.5556 1.0 0.7143 0.75 9 0.25 0.875 0.2857
Llama2-70b-chat (3 ICL) 0.5556 1.0 0.7143 0.75 9 0.25 0.875 0.2857
Llama3-8b-Instruct (3 ICL) 1.0 0.8 0.8889 0.9375 4 0.0625 0.5625 0.1111
Llama3-70b-Instruct (3 ICL) 1.0 0.8 0.8889 0.9375 4 0.0625 0.5625 0.1111
GPT-3.5-turbo (3 ICL) 1.0 0.8 0.8889 0.9375 4 0.0625 0.5625 0.1111
GPT-4o (3 ICL) 0.8 0.8 0.8 0.875 5 0.125 0.625 0.2

Diabetes
Llama2-7b-chat (3 ICL) 0.5556 1.0 0.7142 0.75 9 0.25 0.875 0.2857
Llama2-13b-chat (3 ICL) 0.625 1.0 0.7692 0.8125 8 0.1875 0.8125 0.2307
Llama2-70b-chat (3 ICL) 0.625 1.0 0.7692 0.8125 8 0.1875 0.8125 0.2307
Llama3-8b-Instruct (3 ICL) 1.0 0.8 0.8889 0.9375 4 0.0625 0.5625 0.1111
Llama3-70b-Instruct (3 ICL) 1.0 1.0 1.0 1.0 5 0 0.625 0
GPT-3.5-turbo (3 ICL) 1.0 1.0 1.0 1.0 5 0 0.625 0
GPT-4o (3 ICL) 0.8333 1.0 0.9091 0.9375 6 0.0625 0.6875 0.0909

Obesity
Llama2-7b-chat (3 ICL) 0.8333 1.0 0.9091 0.9375 6 0.0625 0.6875 0.0909
Llama2-13b-chat (3 ICL) 0.8333 1.0 0.9091 0.9375 6 0.0625 0.6875 0.0909
Llama2-70b-chat (3 ICL) 0.8333 1.0 0.9091 0.9375 6 0.0625 0.6875 0.0909
Llama3-8b-Instruct (3 ICL) 0.8333 1.0 0.9091 0.9375 6 0.0625 0.6875 0.0909
Llama3-70b-Instruct (3 ICL) 0.8333 1.0 0.9091 0.9375 6 0.0625 0.6875 0.0909
GPT-3.5-turbo (3 ICL) 0.8333 1.0 0.9091 0.9375 6 0.0625 0.6875 0.0909
GPT-4o (3 ICL) 0.8333 1.0 0.9091 0.9375 6 0.0625 0.6875 0.0909

Table 17: Performance on causal discovery task using Llama2 and Llama3 models of different sizes.
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ConceptNet
Precision↑ Recall↑ F1↑ Accuracy↑

Llama2-7b-chat (3 ICL) 0.6197 0.7774 0.6897 0.6503
Llama2-13b-chat (3 ICL) 0.6010 0.8605 0.7077 0.6647
Llama2-70b-chat (3 ICL) 0.6384 0.8742 0.7380 0.6897
Llama3-8b-Instruct (3 ICL) 0.7659 0.6575 0.7076 0.7283
Llama3-70b-Instruct (3 ICL) 0.8555 0.8253 0.8401 0.8430
GPT-3.5-turbo (3 ICL) 0.6732 0.7308 0.7008 0.6891
GPT-4o (3 ICL) 0.8141 0.8342 0.8240 0.8224

CauseNet
Precision↑ Recall↑ F1↑ Accuracy↑

Llama2-7b-chat (3 ICL) 0.7030 0.8931 0.7867 0.7582
Llama2-13b-chat (3 ICL) 0.6625 0.9213 0.7708 0.7260
Llama2-70b-chat (3 ICL) 0.7359 0.9521 0.8302 0.8053
Llama3-8b-Instruct (3 ICL) 0.8838 0.8296 0.8558 0.8602
Llama3-70b-Instruct (3 ICL) 0.8939 0.9423 0.9175 0.9152
GPT-3.5-turbo (3 ICL) 0.8990 0.8857 0.8923 0.8931
GPT-4o (3 ICL) 0.8596 0.9557 0.9051 0.8998

Table 18: Performance on causal direction identification task using Llama2 and Llama3 models of different sizes.
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