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Abstract

Parameter-efficient fine-tuning (PEFT) ad-
dresses the memory footprint issue of full fine-
tuning by modifying only a subset of model
parameters. However, on datasets exhibiting
spurious correlations, we observed that PEFT
slows down the model’s convergence on unbi-
ased examples, while the convergence on bi-
ased examples remains fast. This leads to the
model’s overfitting on biased examples, caus-
ing significant performance degradation in out-
of-distribution (OOD) scenarios. Traditional
debiasing methods mitigate this issue by em-
phasizing unbiased examples during training
but often come at the cost of in-distribution (ID)
performance drops. To address this trade-off is-
sue, we propose a CURRICULUM DEBIASING
framework that presents examples in a biased-
to-unbiased order. Our framework initially lim-
its the model’s exposure to unbiased examples,
which are more difficult to learn, allowing it to
first establish a foundation on easy-to-converge
biased examples. As training progresses, we
gradually increase the proportion of unbiased
examples in the training set, guiding the model
away from reliance on spurious correlations.
Compared to the original PEFT methods, our
method accelerates convergence on unbiased
examples by approximately twofold and im-
proves ID and OOD performance by 1.2% and
8.0%, respectively.1

1 Introduction

Natural language processing (NLP) has achieved
remarkable success across a wide range of down-
stream applications, largely due to the advent of
large-scale pre-trained language models (PLMs)
(Devlin et al., 2019; Brown et al., 2020; He et al.,
2023). They typically pre-train transformer archi-
tecture (Vaswani et al., 2017) on large corpora,
followed by fine-tuning the entire pre-trained pa-

1Our code is available at https://github.com/KoreaMG
LEE/curriculum_sampling/

Figure 1: In most settings, the Adapter performs simi-
larly to random guessing. We train models on the MNLI
training set (Williams et al., 2018) and measure their
OOD performance on HANS (McCoy et al., 2019). As
a backbone, we leverage BERTBase (Devlin et al., 2019).

rameters to adapt the models to specific down-
stream tasks. Despite its advantages, fine-tuning
comes with a significant downside; each appli-
cation requires storing parameters equivalent to
the original model. This issue has become in-
creasingly challenging for deploying models in
resource-constrained real-world scenarios, espe-
cially as larger models are released at an ever-
increasing pace (Treviso et al., 2023).

To address this challenge, parameter-efficient
fine-tuning (PEFT) has been proposed, which ad-
justs only a part of the model’s parameters (Za-
ken et al., 2022) or introduces external modules
(Houlsby et al., 2019; Lester et al., 2021; Mahabadi
et al., 2021) for downstream tasks. With these ap-
proaches, we only need to store and load a small
number of parameters during deployment, signifi-
cantly reducing memory footprint.

However, we find that PEFT methods signifi-
cantly impair model generalization in training envi-
ronments dominated by spurious correlations. As
shown in Figure 1, an Adapter trained on a biased
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dataset fails to generalize, exhibiting performance
close to random predictions across most parameter
settings in the out-of-distribution (OOD) evalua-
tion. This suggests that applying PEFT to adjust
models on biased datasets may hinder their learning
of the intended task features2, which are critical for
generalization. This issue is particularly concern-
ing in real-world scenarios, where biased training
datasets are more prevalent than unbiased ones.
Despite its significance, the behavior of PEFT in bi-
ased training environments and its impact on model
generalization remains underexplored in previous
studies (Hu et al., 2022; Dettmers et al., 2023; Fu
et al., 2023; Xie and Lukasiewicz, 2023; Zhang
et al., 2024).

Our pilot study in Section 2 reveals that the de-
terioration in generalization capability stems from
the strong regularization imposed by PEFT. While
PEFT does not hinder convergence on biased data,
it significantly slows down learning on unbiased
data. Consequently, the model overfits to biased
data during training and relies on spurious correla-
tions when performing the task.

To address the issue, we introduce a new training
framework, dubbed CURRICULUM DEBIASING, to
improve the PEFT’s generalization capability in
biased training environments. Inspired by curricu-
lum learning (Bengio et al., 2009), our framework
improves the generalization of PEFT by presenting
examples in a biased-to-unbiased order. It delays
exposure to unbiased examples, which are known
to be difficult to learn from (Utama et al., 2020;
Sanh et al., 2021), allowing the model to first build
a foundation more easily before gradually learning
more challenging ones. Subsequently, our frame-
work reduces training on biased examples in later
stages, encouraging the model to rely more on in-
tended task features. Experimental results show
that our method improves the ID and OOD perfor-
mance of the Adapter by 1.2% and 8.0%, respec-
tively.

Our contributions are summarized as follows:

• We demonstrate that PEFT hinders the
model’s learning of unbiased examples and
significantly worsens OOD performance.

• We propose a CURRICULUM DEBIASING

framework that presents training examples
in a biased-to-unbiased order to enhance the
model’s generalization.

2The intended task features refer to the essential attributes
or patterns a model should learn to perform a given task.

(a) Adapter

(b) LoRA

Figure 2: The impact of the number of parameters of
PEFT methods on ID and OOD performance. The solid
line represents ID performance and the dashed line rep-
resents OOD performance.

• We validate the general applicability of our
proposed framework across different architec-
tures, model scales, and diverse tasks, demon-
strating its practical utility in a wide range of
applications.

2 PEFT in Biased Scenarios

In this section, we study two research questions re-
garding the application of PEFT in biased training
environments: (1) Does PEFT degrade the model’s
generalization performance? and (2) Why does
this degradation occur? This pilot study provides
insights for designing and understanding our frame-
work.

2.1 Overall Setup

We investigate the behavior of Adapter (Houlsby
et al., 2019) and LoRA (Hu et al., 2022), which are
representative PEFT methods with sequential and
parallel insertion forms, respectively. We leverage
BERTBase (Devlin et al., 2019) as the base PLM.
Following previous works (Utama et al., 2020;
Sanh et al., 2021; Jeon et al., 2023), we consider
MNLI and FEVER as biased training datasets.
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(a) Adapter

(b) LoRA

Figure 3: Training curves for Adapter and LoRA. Here, ρ indicates trainable parameters per task. Adapter and
LoRA easily converge on biased data regardless of ρ, whereas they show slower convergence on unbiased data as ρ
decreases. In other words, the stronger the regularization effect, the more difficult it becomes for the PEFT methods
to converge on unbiased data.

2.2 Does PEFT Degrade the Model’s
Generalization Performance?

Recent studies (Ding et al., 2022; Fu et al., 2023)
have shown that PEFT enhances the generalization
of models by regulating the number of updated
parameters. Therefore, we observe ID and OOD
performance by varying the number of parame-
ters in PEFT methods. The OOD performance for
MNLI and FEVER is evaluated on HANS (McCoy
et al., 2019), and FEVER-Symmetric (Schuster
et al., 2019), respectively. We use accuracy as the
performance metric.

First, as shown in Figure 2, we observe that the
ID performance of the model is maintained to some
extent even as the number of trainable parameters
decreases. On the other hand, the OOD perfor-
mance drops to nearly random prediction levels
as the number of parameters decreases. These ex-
perimental results suggest that, in biased training
environments, PEFT may severely impairs the gen-
eralization of the model.

2.3 Why Does This Degradation Occur?
According to previous works (Utama et al., 2020;
Sanh et al., 2021; Jeon et al., 2023), in the biased
training environment, the generalization ability of

the model depends on how well they learn unbi-
ased data. Therefore, we analyze PEFT’s training
curve on unbiased data. To do this, we use datasets
whose bias features are already known. For MNLI,
we identified bias and unbiased examples using
lexical-overlap, a well-known bias feature of the
entailment class (McCoy et al., 2019). For FEVER,
we leverage LMI-ranked bigrams, the bias feature
of the refuge class, to identify biased and unbiased
examples (Schuster et al., 2019). More details are
provided in Appendix B.

Based on previous study (Du et al., 2023) and
our observation (See Appendix D), fine-tuning con-
verges first to the biased examples and then quickly
converges to the unbiased examples. However, in
the case of PEFT methods, we find that the model
initially converges on biased examples similar to
fine-tuning, but struggles to converge on unbiased
examples (See Figure 3). As a result, full fine-
tuning shows improvement in generalization per-
formance after converging on biased examples (See
Figure 7), whereas, in PEFT, generalization perfor-
mance exhibits negligible improvement even after
converging on biased data (See Figure 8). These
findings suggest that the nature of low-rank adap-
tation in PEFT constrains the effective learning of

9526



Train
dataset

Auxiliary
model

𝑑1 𝑑2

𝑑3

𝑑4
𝑑5

𝑑6 𝑑𝑚

biased unbiased

Scheduler

𝑑1 𝑑2 𝑑𝑚

…

epoch 1

𝑑1 𝑑2 𝑑𝑚

…

epoch N

…

Sampling probability
epoch 1 epoch N

Main
Model

Main
Model

…

…

Sampling

Figure 4: An overview of our proposed framework is provided. The framework comprises two main components:
bias score evaluation and curriculum sampling. First, an auxiliary model assesses the bias scores of training
examples, which are then utilized to compute sampling probabilities. Based on these probabilities, the training set
for the main model is dynamically restructured by sampling examples at each stage.

unbiased examples, thereby slowing their conver-
gence and ultimately limiting generalization. Ac-
cordingly, in this work, we aim to facilitate PEFT’s
learning on unbiased examples to accelerate con-
vergence and improve generalization.

3 Methodology

To enhance the generalization capability of PEFT,
we propose a novel curriculum learning framework,
termed CURRICULUM DEBIASING (see Figure 4).
Our proposed framework organizes training exam-
ples in a biased-to-unbiased order. Specifically, it
estimates the bias score of each example using an
auxiliary model’s predictions (Section 3.1). Subse-
quently, based on these estimated scores, the train-
ing set is reconstructed at each training stage (Sec-
tion 3.2).

3.1 Bias Score Evaluation
Curriculum learning improves generalization by
presenting training examples in an easy-to-difficult
order (Bengio et al., 2009). Inspired by this, we
propose a novel curriculum that shifts training from
biased to unbiased examples. Since unbiased ex-
amples are typically more difficult to learn (Utama
et al., 2020; Sanh et al., 2021), we first train the
model on biased data to facilitate early learning.
Prior work suggests that when learning from biased
examples, models do not solely capture spurious
correlations but also learn intended task features
(Kirichenko et al., 2023). Therefore, by later transi-
tioning to unbiased ones, the model can reduce its
reliance on spurious correlations while leveraging
intended task features from biased ones, ultimately
leading to better generalization.

To implement this, we first need to distinguish
between biased and unbiased examples. However,
due to the vast scope of NLP tasks, manually iden-
tifying bias in each example is impractical. Instead,
we train an auxiliary model fa to exploit dataset
biases, following previous works (Sanh et al., 2021;
Kim et al., 2022; Jeon et al., 2023), with details
provided in the Appendix J. Then, we utilize fa’s
predictions to estimate the bias score for each ex-
ample. Specifically, for a given training example
(xi, yi) ∈ D, fa produces a probability distribution
pia. We use pi,ca , which is the probability assigned
to the correct label yi, as a proxy for the bias score.
Since fa primarily exploits dataset biases, a high
confidence score pia indicates a biased example that
is likely predicted based on spurious correlations.

3.2 Curriculum Sampling

To present examples in meaningful order, most cur-
riculum learning approaches adopt the so-called
baby step strategy (Spitkovsky et al., 2010). It
splits the entire training set D into multiple buckets
and starts training from the easiest bucket, gradu-
ally adding more challenging buckets (Cirik et al.,
2016; Zhou et al., 2020; Lee et al., 2022). While
this helps organize examples by difficulty, it can
also cause overfitting or decrease training efficiency
by repeatedly exposing the model to overly easy
examples (Xu et al., 2020).

As an alternative, we propose a new training
strategy called curriculum sampling. Instead of
incrementally merging buckets, curriculum sam-
pling reconstructs the training set at each stage by
sampling examples based on their bias scores pi,ca .
Formally, the sampling probability Pi of the exam-
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Model % FT Params
MNLI FEVER QQP

ID OOD ID OOD ID OOD

BERTBase (Devlin et al., 2019) 100.00% 84.6 62.5 85.6 63.2 91.0 33.4
Adapter (Houlsby et al., 2019) 0.81% 82.6 52.5 86.5 56.8 89.4 34.5
Prompt-tuning (Lester et al., 2021) 0.09% 78.6 51.4 79.0 50.7 86.6 26.7
Prefix-tuning (Li and Liang, 2021) 1.06% 80.6 50.6 85.2 55.0 87.7 25.7
BitFit (Zaken et al., 2022) 0.09% 79.4 50.2 81.9 51.1 86.4 30.6
LoRA (Hu et al., 2022) 0.53% 83.6 51.0 85.8 56.4 90.0 34.1
AdaLoRA (Zhang et al., 2023) 0.40% 83.6 53.2 84.3 55.3 88.0 34.3
CURRICULUM DEBIASINGAdapter 0.81% 84.1 64.1 87.2 63.8 90.5 39.7
CURRICULUM DEBIASINGLoRA 0.53% 84.3 58.2 88.6 63.7 91.1 41.5

Table 1: Performance results of the BERTBase model on MNLI, FEVER, and QQP, along with their corresponding
challenge test sets for out-of-distribution (OOD) evaluation. The best results are highlighted in bold, with the
second-best results underlined.

Model % FT Params
MNLI FEVER QQP

ID OOD ID OOD ID OOD

Llama-3.2-1B (MetaAI, 2024) 100.00% 87.8 67.8 88.1 64.5 89.3 37.0
Adapter (Houlsby et al., 2019) 0.09% 86.2 60.1 88.4 62.7 89.0 43.8
LoRA (Hu et al., 2022) 0.03% 86.0 61.3 89.9 65.2 89.1 44.6
AdaLoRA (Zhang et al., 2023) 0.10% 86.1 60.7 89.8 63.2 89.5 44.8
CURRICULUM DEBIASINGAdapter 0.09% 86.1 64.3 89.2 66.1 89.2 49.0
CURRICULUM DEBIASINGLoRA 0.03% 86.3 65.1 89.9 67.3 89.5 49.9

Table 2: Performance results of the Llama-3.2-1B model. The best results are highlighted in bold.

ple (xi, yi) is calculated as:

Pi = α× (pi,ca )S (1)

where α is a hyperparameter that determines the
granularity of the curriculum and S is a scheduler
that changes over training stages to gradually in-
crease the proportion of less biased examples in the
training set. To this end, we let S decrease linearly
over the course of training. At training stage (or
epoch) t, S is calculated as:

S = β − 2t

T
(2)

where T is the total number of training stages, and
β is a hyperparameter specifying the initial sam-
pling distribution. When S is large, biased exam-
ples (large pi,ca ) have a higher probability of being
sampled. As S decreases, less biased examples
(small pi,ca ) are sampled more frequently, thereby
shifting the training focus to unbiased data.

By probabilistically reconstructing the training
set at each epoch based on pi,ca and dynamically ad-
justing S over time, curriculum sampling mitigates
overfitting to easy examples while still leveraging

the benefits of curriculum learning. In summary,
curriculum sampling enables a smooth transition
from “biased” to “unbiased” examples, helping the
model converge faster and generalize better.

4 Experiment

4.1 Evaluation Datasets

Following prior works (Utama et al., 2020; Sanh
et al., 2021; Jeon et al., 2023), we evaluate our
models on three tasks: natural language inference
(MNLI), fact verification (FEVER), and paraphrase
identification (QQP). Further details are provided
in the Appendix M.

4.2 Baselines

We consider 6 PEFT methods that are widely
adopted in NLP applications as baselines. Adapter
(Houlsby et al., 2019) represents a method that adds
small bottleneck layers to the network. Prompt-
tuning (Lester et al., 2021) optimizes task-specific
prompts that are inserted into the input embeddings
to guide the model. Prefix-tuning (Li and Liang,
2021) is a method that prepends learnable vectors
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Method
MNLI FEVER QQP

ID OOD ID OOD ID OOD

CURRICULUM DEBIASINGAdapter 84.1 64.1 87.2 63.8 90.5 39.7

w/o Curriculum Scheduler 83.4 58.0 86.7 62.4 87.9 35.6
w/o Difficulty-based Sampling 82.7 50.7 84.2 59.1 89.2 30.3
w/o Curriculum Scheduler & Difficulty-based Sampling 79.8 50.1 83.2 59.8 88.9 30.1

Table 3: Ablation study of CURRICULUM DEBIASING. w/o Difficulty-based Sampling and w/o Scheduler indicate
the model without the corresponding component.

to the input to guide the model’s attention. BitFit
(Zaken et al., 2022) adjusts only the bias terms of
the model parameters. LoRA (Hu et al., 2022) is
a technique that decomposes weight updates into
low-rank matrices. AdaLoRA (Zhang et al., 2023)
dynamically adjusts the rank of the low-rank matri-
ces during training.

To demonstrate the effectiveness of CURRICU-
LUM DEBIASING, we applied it to both Adapter
and LoRA, which are the most representative modu-
lar insertion approaches in PEFT. Additional exper-
imental results with another representative method,
prompt-tuning, are provided in Appendix G.

4.3 Setup

We use BERTBase (Devlin et al., 2019) with 110M
parameters and Llama-3.2 with 1B parameters for
the base PLM. We use BERTTiny (Turc et al., 2019)
with 4M parameters for the auxiliary model in the
experiments. Additional implementation and hy-
perparameter details are provided in Appendix K.

4.4 Results

In Table 1, PEFT models, regardless of their type,
show significant performance degradation com-
pared to full fine-tuning on OOD evaluation sets,
with most performing similarly to random guess-
ing. On the other hand, our models show signifi-
cant performance improvements compared to these
baselines across all evaluation sets. Specifically,
the Adapter tuned with CURRICULUM DEBIAS-
ING achieves a better average OOD performance
of 55.9, compared to 47.9 achieved by the vanilla
model. Additionally, regarding average ID perfor-
mance, using CURRICULUM DEBIASING results
in a 1.2-point improvement. These results demon-
strate the effectiveness of the proposed method.
These results illustrate that our method can boost
OOD performance in PEFT without sacrificing ID
performance.

Furthermore, as shown in Table 2, with Llama-
3.2 models, CURRICULUM DEBIASING also
shows significant OOD performance improvements.
Specifically, it achieves 3.7 points higher OOD per-
formance and 0.2 points higher ID performance
than baseline models. These results indicate that
the proposed method is also effective for decoder-
based models.

5 Analysis

5.1 Ablation Study

We experimented with various ablation settings in
CURRICULUM DEBIASING to investigate the effect
of each component. (1) w/o Curriculum Scheduler
adopts a curriculum that divides the training dataset
into five buckets according to difficulty levels, fol-
lowing (Zhang et al., 2018), and (2) w/o Difficulty-
based Sampling accumulates difficult examples to
the initial training set as the curriculum progresses
rather than re-construct training set by sampling.

Table 3 indicates that all the components are
important in the model’s generalization improve-
ment. With the coarse-grained curriculum (w/o
Curriculum Scheduler), the model shows a signifi-
cant performance drop in OOD evaluation sets. It
indicates that frequently changing the curriculum
stage helps to improve the model’s generalization.
In addition, re-constructing the training set at each
stage (w/o Difficulty-based Sampling) significantly
influences both ID and OOD performances. These
results indicate that example sampling is the key
to our method and over-iterating easy examples
substantially harms the model’s generalization abil-
ity. As a supplementary analysis, the results of
the reverse curriculum setting are provided in the
Appendix H.

5.2 Convergence Speed

We introduce CURRICULUM DEBIASING to ac-
celerate the convergence speed of the model on
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(a) Adapter

(b) LoRA

Figure 5: Training curves for the CURRICULUM DEBIASING and vanilla PEFT methods on MNLI. Here, the biased
and unbiased examples were the examples used in the pilot study in Section 2.

unbiased data. To verify the effectiveness of our
framework in terms of convergence, we monitor
the model’s convergence during training.

In Figure 5, we observe that CURRICULUM DE-
BIASING consistently accelerates the convergence
speed of PEFT. In particular, it significantly im-
proves the convergence speed of LoRA on un-
biased data, which has the slowest convergence
speed. These results show the effectiveness of our
framework in improving the convergence speed of
PEFT on unbiased data. Additionally, unlike the
vanilla Adapter, which shows increased losses on
development data after 100k steps, the losses with
CURRICULUM DEBIASING consistently decrease.
This suggests that the vanilla Adapter overfits the
training data, while CURRICULUM DEBIASING

mitigates overfitting by restructuring the training
dataset.

5.3 Comparison with Debiasing Methods

In Table 4, existing debiasing methods show a
slight performance improvement on the OOD eval-
uation set with the expense of a significant perfor-
mance drop on the ID evaluation set. These results
suggest that the existing methods tend to overfit the
model to unbiased examples rather than improving
the model’s generalization capability. On the other
hand, our model shows significant performance im-
provement on both ID and OOD evaluation sets.
This suggests that gradually introducing unbiased
examples after initially learning the task’s represen-

tative features through biased examples, rather than
emphasizing unbiased ones from the start, helps
improve the model’s generalization. Settings for
this experiment are described in Appendix N.

6 Related Work

6.1 Parameter-efficient Fine-tuning
Parameter-efficient fine-tuning (PEFT) is a tech-
nique to adapt pre-trained neural models to new
tasks with minimal trainable parameters. For in-
stance, the Adapter (Houlsby et al., 2019) and its
variants (Pfeiffer et al., 2021; Zhang et al., 2024)
introduce small, task-specific modules into the
model. Prompt-tuning (Lester et al., 2021) and
Prefix-tuning (Li and Liang, 2021) adjust the input
prompts or prefixes fed into the model, enabling
task-specific adjustments without altering the main
model parameters. BitFit (Zaken et al., 2022) up-
dates only the bias terms of a pre-trained model,
and LoRA (Hu et al., 2022) and its variants (Zhang
et al., 2023; Dettmers et al., 2023) decompose
weight into low-rank matrices and fine-tune only
these low-rank components. Recent studies (Hu
et al., 2022; Fu et al., 2023; Xie and Lukasiewicz,
2023) have shown that these methods not only im-
prove computational efficiency but also enhance
models’ generalization capability by providing a
regularization effect to training. However, in biased
datasets, we have found that the regularization ef-
fect impedes the model’s convergence on unbiased
data, thus significantly impairing its generalization
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Method % FT Params
MNLI FEVER QQP

ID OOD ID OOD ID OOD

Full Fine-tuning 100.00% 84.6 62.5 85.6 63.2 91.0 33.4
Adapter (Houlsby et al., 2019) 0.81% 82.6 52.5 86.5 56.8 89.4 34.5

Focal Loss (Lin et al., 2017) 0.81% 80.3 55.0 82.1 55.0 81.4 36.2
Reweighting (Schuster et al., 2019) 0.81% 77.5 60.0 78.7 61.0 81.8 50.9
PoE (Clark et al., 2019) 0.81% 79.8 62.7 73.6 56.2 82.6 44.1
Reweighting+Anneal. (Utama et al., 2020) 0.81% 78.3 56.5 80.2 58.1 79.5 49.8
PoE+CE (Sanh et al., 2021) 0.81% 80.0 54.8 78.3 56.5 86.3 39.8
PoE+CE+Bias Experts (Jeon et al., 2023) 0.81% 80.7 58.5 81.4 59.8 85.1 45.4
CURRICULUM DEBIASINGAdapter 0.81% 84.1 64.1 87.2 63.8 90.5 39.7

Table 4: Comparison of debiasing methods. Sanh et al. (2021) utilizes a multi-loss objective to mitigate the decline
in ID performance, while Utama et al. (2020) employs an annealing mechanism. For a fair comparison, we used our
auxiliary model for all debiasing baselines. The best results are highlighted in bold.

ability. This is a critical issue to real-world ap-
plicability, considering that NLP training data are
often inherently biased (Sun et al., 2019; Patel et al.,
2021; Branco et al., 2021).

6.2 Debiasing NLU Models

Several studies have shown that NLU models of-
ten exploit biases in datasets for inference. For
instance, in the natural language inference (NLI)
task, models can predict correct answers with only
partial inputs (Gururangan et al., 2018; Poliak et al.,
2018) or by exploiting lexical overlap biases (Mc-
Coy et al., 2019; Dasgupta et al., 2018). Similar
phenomena are also observed in other NLP tasks
(Schuster et al., 2019; Zhang et al., 2019; Yang
et al., 2018; Welbl et al., 2018). Such bias exploita-
tion hinders the model from learning underlying
tasks, leading to incorrect predictions on out-of-
distribution (OOD) or adversarial data.

To address the issue, several debiasing methods
have been proposed, which can be grouped into
two categories: unbiased dataset construction and
adversarial training. Methods for constructing un-
biased datasets involve designing elaborate proto-
cols to avoid acquiring biased data (Reddy et al.,
2019; Choi et al., 2018), eliminating biased data
using adversarial filtering (Zellers et al., 2018; Sak-
aguchi et al., 2021; Bras et al., 2020), or augment-
ing datasets with adversarial data (Jia and Liang,
2017; Zmigrod et al., 2019). On the other hand,
adversarial training algorithms aim to make mod-
els more robust to dataset biases. They typically
emphasize losses of unbiased examples in the main
model’s training objective. To identify unbiased
examples from datasets, initial attempts utilize a

biased auxiliary model heuristically designed to
exploit biases in the datasets (Schuster et al., 2019;
Clark et al., 2019; Mahabadi et al., 2020). However,
acquiring human prior knowledge about the biases
for numerous datasets requires huge costs. Thus,
recent studies have attempted to train the biased
auxiliary model without human supervision (Bras
et al., 2020; Ghaddar et al., 2021; Liu et al., 2021;
Kim et al., 2022; Jeon et al., 2023). Despite their
promising results, we observe that existing debias-
ing methods hinder the convergence of PEFT by
emphasizing unbiased examples from the begin-
ning, ultimately harming the ID performance.

7 Conclusion

We have demonstrated that, in biased training envi-
ronments, PEFT slows down convergence on unbi-
ased examples, which in turn increases the model’s
reliance on spurious correlations in biased datasets.
To mitigate this issue, we introduced CURRICU-
LUM DEBIASING, a simple yet effective strategy
that accelerates PEFT convergence on unbiased
data, leading to better generalization. Our experi-
ments, conducted across multiple NLP benchmarks,
confirm the effectiveness of our approach, show-
ing that the proposed framework significantly im-
proves OOD performance without sacrificing ID
accuracy—a limitation of many existing debiasing
methods. These findings underscore the potential
of CURRICULUM DEBIASING as a promising so-
lution for enhancing the robustness and generaliza-
tion of PEFT methods in real-world applications.
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Limitations

Although CURRICULUM DEBIASING has signif-
icantly improved the generalizability of PEFT in
biased training scenarios, several limitations re-
main, presenting valuable opportunities for future
research.

First, our work has focused mainly on addressing
biases in NLU tasks, aligning with previous studies
(Sanh et al., 2021; Jeon et al., 2023). However,
the investigation of bias in natural language gen-
eration (NLG) remains an open challenge. Given
the potentially far-reaching impact of biased text
generation, exploring bias mitigation in NLG tasks
is a promising avenue for future research.

Second, we introduce hyperparameters in our
approach, which can be a potential limitation in
debiasing scenarios due to the lack of validation
sets in most out-of-distribution situations (Utama
et al., 2020). However, as shown in Tables 9 and
10, our method demonstrates greater robustness to
hyperparameter variations compared to previous
studies (Utama et al., 2020; Sanh et al., 2021; Kim
et al., 2022; Jeon et al., 2023), mitigating many of
the sensitivity issues commonly observed in debias-
ing methods. Nevertheless, exploring strategies for
ensuring continued robustness to hyperparameter
choices remains a key goal for future work.
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Appendix

A Details Setups for Figure 1

The models in the experiment in Figure 1 were
trained for 250k steps. In this experiment, we save
a checkpoint every 5k steps and report results based
on the model checkpoint corresponding to the high-
est ID performance. Other settings are the same as
in the main experiment.

B Details of Pilot Study

Here, we present additional details of the pilot
study discussed in Section 2.

MNLI. We first select examples that all words in
the hypothesis occur in the premise. Then, among
the selected cases, we classify those where the cor-
rect answer is entailment as biased, and the others
as unbiased. Consequently, the number of biased
and unbiased examples is 1,807 and 295, respec-
tively.

FEVER. We select examples where the claim
includes more than one of the top 10 LMI-ranked
bigrams for REFUTES class listed by (Schuster
et al., 2019). Then, we classify those where the
correct answer is REFUTES as biased, and the oth-
ers as unbiased. In this process, we exclude cases
from the unbiased examples where any of the top
10 LMI-ranked bigrams from the SUPPORT or
NOT ENOUGH INFO class appear in the claim.
Consequently, the number of biased and unbiased
examples is 3,959 and 1,476, respectively.

C Trade-off

In this work, we save a checkpoint at every epoch
and report the OOD performance for the model
checkpoint corresponding to the highest ID perfor-
mance. However, according to previous studies
(Utama et al., 2020; Sanh et al., 2021; Jeon et al.,
2023), there is a trade-off between ID and OOD
performance in biased training environments. This
indicates that the OOD performance of our model
and the Vanilla PEFT methods may have been un-
derestimated. Therefore, we measured and reported
the ID and OOD performance every 3k steps.

As shown in Figure 6, the OOD performance of
the Vanilla Adapter gradually improves after 100k
steps, where it achieves the highest performance
on the ID evaluation set. In other words, there is a
trade-off between ID and OOD performance, and

achieving better OOD performance requires sacri-
ficing ID performance. Additionally, the Vanilla
Adapter exhibits a high variance in OOD perfor-
mance across steps, making model selection diffi-
cult. In contrast, with CURRICULUM DEBIASING,
both ID and OOD performance improve simultane-
ously as training progresses. This indicates that the
model effectively learns the underlying task before
overfitting to the training data. Furthermore, our
model exhibits less variance in OOD performance,
making it practical for deployment in various ap-
plications.

Figure 6: Trade-off curve between ID and OOD perfor-
mance on MNLI dataset.

D Training Curves for Full Fine-tuning

(a) MNLI

(b) FEVER

Figure 7: The training curves for full fine-tuning. We
trained BERTBase for 10 epochs on both datasets.

As shown in Figure 7, the model first converges
on the biased data and then on the unbiased data.
However, after a certain number of steps, the accu-
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racy on the OOD evaluation sets does not increase,
unlike the training curve for PEFT in Figure 6. In
some cases, it even decreases. These results indi-
cate that overfitting occurs as the model memorizes
the training data during over-iterations. Therefore,
we need to prevent the model from memorizing
the training data while learning the underlying task.
CURRICULUM DEBIASING, which reconstructs the
training dataset at each epoch, aligns well with this
objective.

E Additional Training Curves

As shown in Figure 8, our model shows better con-
vergence on training data than the Vanilla Adapter
with only half of the training steps. Consequently,
our model performs better than the baseline on
both ID and OOD evaluation sets, indicating that
our method not only improves the generalization of
the model but also improves the training efficiency
of PEFT.

Figure 8: The training curves for our Adapter, trained
for 30 epochs on MNLI.

F GLUE Results

We evaluated our model on the GLUE benchmark,
excluding the regression task STS-B due to its dis-
tinct evaluation metric. The results, summarized
in Table 5, show that our proposed method consis-
tently outperforms the Adapter baseline across all
tasks in the GLUE benchmark. These results high-
light the effectiveness of our method in improving
generalization across diverse NLP tasks.

Task Metric Adapter Ours ∆

MNLI Accuracy 82.6 84.2 +1.6
RTE Accuracy 70.7 72.2 +1.5
QQP Accuracy 89.4 90.8 +1.4
CoLA MCC 59.0 59.7 +0.7
SST Accuracy 92.5 93.0 +0.5
MRPC Accuracy 84.8 85.2 +0.4
QNLI Accuracy 90.9 91.0 +0.1

Table 5: Evaluation results on the development sets of
GLUE.

G Results on Prompt-tuning

We apply CURRICULUM DEBIASING to prompt-
tuning and evaluate its impact on performance. As
shown in Table 6, incorporating CURRICULUM DE-
BIASING improves both ID and OOD performance
compared to standard prompt-tuning. These results
demonstrate that our proposed method generalizes
well to prompt-based tuning approaches, further
validating its effectiveness.

Nonetheless, we observe that in BERT, apply-
ing curriculum debiasing to prompt-tuning does
not lead to significant performance improvements.
Since smaller models are known to require a higher
intrinsic dimension (Aghajanyan et al., 2021), we
suspect that models like BERT may need more ex-
pressive PEFT methods such as Adapter and LoRA
to effectively capture the complexity of unbiased
examples.

Method
MNLI FEVER

ID OOD ID OOD

Prompt-tuning 84.9 52.3 87.1 53.9
CURRICULUM DEBIASING 85.2 58.61 89.9 57.0

Table 6: Comparison with original prompt-tuning. This
experiment was conducted on LLaMA-3.2-1B.

H Effect of Curriculum Design

To examine the impact of the order of present-
ing examples in curriculum design, we compare
two training strategies: Biased-to-Unbiased (ours)
and Unbiased-to-Biased (reverse curriculum). As
shown in Table 7, the model trained with Biased-to-
Unbiased achieves an average OOD performance of
66.2, compared to 59.6 achieved by the Unbiased-
to-Biased strategy. Similarly, in terms of ID perfor-
mance, the Biased-to-Unbiased model outperforms
the Unbiased-to-Biased model by 0.6 points on av-
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erage. These results highlight that starting with
biased data and gradually introducing unbiased ex-
amples is essential for effective generalization.

Method
MNLI FEVER

ID OOD ID OOD

Unbiased-to-Biased 85.7 59.8 83.1 59.4
No Curriculum 86.0 61.3 89.9 65.2
Biased-to-Unbiased 86.3 65.1 89.9 67.3

Table 7: Comparison of different curriculum designs.
The experiment was conducted using LoRA on LLaMA-
3.2-1B.

I Effectiveness on Larger Models

Method
MNLI FEVER

ID OOD ID OOD

Random Sampling 86.2 63.5 87.5 63.8
CURRICULUM DEBIASING 87.1 69.2 89.2 66.5

Table 8: Performance comparison of CURRICULUM
DEBIASING and random sampling using BERTLarge.

To validate the scalability of our proposed
method, we conducted additional experiments us-
ing BERTLarge. As shown in Table 8, CURRICU-
LUM DEBIASING consistently outperforms random
sampling on both ID and OOD evaluation sets for
MNLI and FEVER. Specifically, on MNLI, CUR-
RICULUM DEBIASING achieved a 5.7 points im-
provement in OOD performance while also im-
proving ID performance by 0.9 points. A similar
trend is observed on FEVER, where CURRICULUM

DEBIASING improves OOD performance by 2.7
points and ID performance by 1.7 points. These re-
sults demonstrate both the scalability and effective-
ness of CURRICULUM DEBIASING when applied
to larger models.

J Details of the Auxiliary Model

Deep neural networks often exploit spurious corre-
lations in datasets, leading to high in-distribution
(ID) performance but poor generalization to out-
of-distribution (OOD) data. To mitigate this issue,
previous debiasing methods employ an auxiliary
model that identifies biased examples, allowing
the main model to down-weight them during train-
ing (Kim et al., 2019; Schuster et al., 2019; Clark
et al., 2019; Mahabadi et al., 2020). Traditional
approaches train the auxiliary model using explicit

bias labels, but acquiring such annotations is costly
and impractical for large-scale datasets.

Recent studies have introduced bias-inducing
strategies to train the auxiliary model without ex-
plicit bias labels. These methods constrain the train-
ing environment, such as limiting model capacity
(Sanh et al., 2021; Jeon et al., 2023), training with
fewer epochs (Liu et al., 2021), or restricting ac-
cessible data (Utama et al., 2020; Kim et al., 2022).
Such constraints encourage the model to rely on
superficial correlations when making predictions.
Consequently, we classify examples where the aux-
iliary model confidently predicts the correct an-
swer as biased examples. In this work, we follow
the strategy of reducing model capacity, adopting
BERTTiny as the backbone for the auxiliary model.

K Additional Experimental Setups

For BERTBase, we set the bottleneck dimension of
the Adapter to 48, the prompt length for prompt-
tuning to 64, the prefix length for prefix-tuning to
64, and the rank of LoRA to 16. For Llama-3.2,
we set the bottleneck dimension of the Adapter to
8 and the rank of LoRA to 4. We use AdamW
(Loshchilov and Hutter, 2019) as the optimizer,
with the learning rate searched within the range of
2× 10−5 to 5× 10−4. The batch size is set to 32
for BERT and 8 for Llama-3.2. All baselines using
BERT are trained for 20 epochs, while those using
Llama-3.2 are trained for 5 epochs.

Notably, CURRICULUM DEBIASING utilizes
only a subset of the training set in each epoch,
resulting in fewer total training steps than the base-
lines. To ensure a fair comparison by maintaining
a similar number of training steps, we train our
Adapter for 30 epochs on MNLI and 45 epochs on
FEVER and QQP; LoRA is trained for 45 epochs
across all three datasets. For Llama-3.2, we train
our Adapter for 5 epochs on all three tasks.

We save a checkpoint at every epoch and report
results based on the model checkpoint that achieves
the highest in-distribution (ID) performance. We
report the median scores from three independent
random runs. All experiments are conducted on
RTX 3090 and RTX 2080 GPUs. We implement
our models and baselines using PyTorch (Paszke
et al., 2019) and the Hugging Face libraries3.

3https://github.com/huggingface/
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α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ID 81.2 83.4 83.8 83.7 84.1 84.0 84.3 83.8 83.4 83.4
OOD 69.4 66.0 67.6 65.8 64.1 63.2 62.3 56.2 51.6 51.2

Table 9: Analysis results of the hyperparameter α. Here, we set β to 1.0.

β 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

ID 83.8 84.1 84.1 84.1 83.7 83.7 83.4 83.9 83.7 83.9 83.7
OOD 63.4 64.3 64.3 64.8 64.2 65.8 65.2 63.1 57.2 50.1 52.9

Table 10: Analysis results of the hyperparameter β. Here, we set α to 0.4.

L Hyperparameter Analysis

We empirically chose our hyperparameters for
CURRICULUM DEBIASING. We analyzed differ-
ent values while keeping them constant, and vice
versa. The results are summarized in Tables 9 and
10. Firstly, we observed that smaller α values
yield better OOD performance. However, when
α becomes extremely small, ID performance drops
significantly. This is likely because overly fine-
grained curriculum steps result in insufficient learn-
ing of easy examples during the final training stage.
Meanwhile, β shows the highest ID and OOD per-
formance around 1, suggesting that learning with
a subset composed mainly of easy examples for
about half of the total training period is effective in
improving generalization performance.

M Evaluation Datasets

We use accuracy as the performance metric for each
task.

Natural Language Inference. MNLI (or
MultiNLI) (Williams et al., 2018) is a task that
determines the relationship between a pair of
sentences (premise and hypothesis) as either
contradiction, entailment, or neutral. We train
models using the MNLI training set. Subsequently,
we evaluate the ID performance on the MNLI
development set, and the OOD performance on
HANS (McCoy et al., 2019), a challenging test
dataset specifically designed to evaluate whether
models exploit bias features, such as lexical
overlap, for inference.

Fact Verification. The goal of FEVER (Thorne
et al., 2018) is to determine if the evidence sup-
ports, refutes, or lacks sufficient information to
evaluate a claim. We train the models using the
FEVER training set. Then, we evaluate the models’
ID performance on the FEVER development set

and their OOD performance on FEVER Symmetric
(Schuster et al., 2019), a challenging test dataset
designed to check whether models depend on bias
features in claims.

Paraphrase Identification. The objective of
QQP4 is to determine whether a pair of ques-
tions has the same meaning. Following previous
works (Udomcharoenchaikit et al., 2022; Jeon et al.,
2023), we divide this dataset into train and develop-
ment sets so that the development set contains 5k
examples. We then train the models on the training
set and evaluate their ID performance on the QQP
development set and OOD performance on PAWS
(Zhang et al., 2019) to test whether the models
exploit bias features, such as lexical overlap bias.
Statistics of datasets are provided in Table 11.

Task #train data
#evaluation data

#classes
ID OOD

MNLI 392,702 9,815 30,000 3
FEVER 242,911 16,664 717 3
QQP 394,287 5,000 677 2

Table 11: Detailed statistics of datasets.

N Debiasing Baselines

We compare CURRICULUM DEBIASING with exist-
ing debiasing methods. Specifically, we compare
our proposed method to the following debiasing
methods: Focal Loss (Lin et al., 2017), example
reweighting (Reweighting) (Schuster et al., 2019),
product-of-experts (PoE) (Clark et al., 2019; Ma-
habadi et al., 2020), and bias experts (Jeon et al.,
2023). They identify biased examples in the dataset
and place greater emphasis on unbiased ones, in

4https://quoradata.quora.com/
First-Quora-Dataset-Release-Question-Pairs
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other words, the model is guided to focus on dif-
ficult examples from the start. Thus, a substantial
decline in ID performance often occurs. To alle-
viate performance degradation, recent works have
further adopted a multi-loss objective (Sanh et al.,
2021; Jeon et al., 2023) or annealing mechanism
(Utama et al., 2020). Thus, we also compare our
model with these variants for a faithful comparison.

O Comparison of Scheduling Strategies

In addition to the linear schedule used in our
main experiments, we evaluate two alternative
scheduling strategies—exponential and cosine. As
shown in Table 12, linear scheduling achieves the
best overall performance, while cosine scheduling
slightly outperforms exponential scheduling across
most metrics. However, both alternatives are im-
plemented as simple baselines, and given the vast
space of possible variants, a thorough investiga-
tion of scheduling strategies remains an important
direction for future work.

Method
MNLI QQP

ID OOD ID OOD

Exponential 83.4 55.2 90.2 38.7
Cosine 83.3 57.2 90.7 40.8
Linear (ours) 84.3 58.2 91.1 41.5

Table 12: Performance comparison across different
scheduling strategies.

P Robustness to Auxiliary Model Variants

We conducted additional experiments using the
auxiliary model with different capacity and archi-
tecture — specifically, BERTsmall—to assess the
robustness of our method to the choice of auxiliary
model. The results are included in the table below
and show that our method performs consistently
across different auxiliary models, indicating that it
does not overly rely on any specific architecture.

Method
MNLI QQP

ID OOD ID OOD

None 83.6 53.2 88.0 34.3
BERTsmall 83.6 60.6 88.2 39.1
BERTtiny (ours) 84.3 58.2 91.1 41.5

Table 13: Performance comparison with different auxil-
iary model capacities.
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