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Abstract

In this paper, we aim to improve the reasoning
ability of large language models (LLMs) over
knowledge graphs (KGs) to answer complex
questions. Inspired by existing methods that de-
sign the interaction strategy between LLMs and
KG, we propose an autonomous LLM-based
agent framework, called KG-Agent, which en-
ables a small LLM to actively make decisions
until finishing the reasoning process over KGs.
In KG-Agent, we integrate the LLM, multi-
functional toolbox, KG-based executor, and
knowledge memory, and develop an iteration
mechanism that autonomously selects the tool
and then updates the memory for reasoning
over KG. To guarantee the effectiveness, we
leverage program language to formulate the
multi-hop reasoning process over the KG and
synthesize a code-based instruction dataset to
fine-tune the base LLM. Extensive experiments
demonstrate that only using 10K samples for
tuning LLaMA2-7B can outperform competi-
tive methods using larger LLLMs or more data,
on both in-domain and out-domain datasets.
Our code and data will be publicly released.

1 Introduction

Despite the remarkable performance on various
NLP tasks (Brown et al., 2020; Zhao et al., 2023),
large language models (LLMs) still have limited ca-
pacities in solving complex tasks (Hu et al., 2023b)
solely based on their parametric knowledge, e.g.,
multi-hop and knowledge-intensive reasoning (Lan
et al., 2023). Knowledge graph (KG), which stores
massive knowledge triples in a graph-structured for-
mat, has been broadly used to complement LLMs
with external knowledge (Pan et al., 2023; Gu et al.,
2021; Fang et al., 2024).

Due to the large volume and structured format of
KG data, it is not easy for LLMs to effectively uti-
lize the information from KG. Recent work mainly
adopts retrieval-augmented (Ye et al., 2022) or
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synergy-augmented (Jiang et al., 2023b) methods to
enhance LLMs with KG data. The former approach
retrieves and serializes the task-related triples as
part of the prompt for LLMs, while the latter ap-
proach designs an information interaction mech-
anism between KG and LLMs to iteratively find
the solution to the question. In particular, synergy-
augmented methods can benefit from the structured
search on KG (e.g., SPARQL) and the language
understanding capacity of LLMs, achieving com-
parable or even better performance compared with
previous state-of-the-art methods (Gu et al., 2023).

However, there are still two major limitations
on existing synergy-augmented methods. First,
the information interaction mechanism between
LLM and KG is often pre-defined (e.g., follow-
ing a human-crafted multi-round plan), which can-
not flexibly adapt to various complex tasks (Luo
et al., 2023; Jiang et al., 2023b). For instance, it
would become ineffective to handle the unintended
requirements in the reasoning process, e.g., var-
ied difficulties or constraints. Second, these meth-
ods (Wang et al., 2023a) mostly rely on stronger
closed-source LLM APIs (e.g., ChatGPT and GPT-
4) to solve complex tasks. However, the distilled
plans or procedures, also limited to special task
settings or capacity levels, may not be best suited
for instructing these weaker models.

To address these issues, in this paper, we pro-
pose the KG-Agent, an autonomous LLM-based
agent framework for complex reasoning tasks over
KG. The motivations are twofold: (1) designing
autonomous reasoning approaches that can actively
make decisions during reasoning, without human
assistance; (2) enabling relatively small models
(e.g., 7B LLM) to effectively perform complex rea-
soning, without reliance on close-sourced LLM
APIs. To achieve this, our approach makes three
major technical contributions. First, we extend the
LLM’s capacity to manipulate structured data by
curating a multifunctional toolbox, enabling LLM

9505

Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 9505-9523

July 27 - August 1, 2025 ©2025 Association for Computational Linguistics



to perform discrete or advanced operations (e.g.,
filtering, counting, and retrieval) on KG data and
intermediate results. Second, we leverage existing
KG reasoning datasets for synthesizing code-based
instruction data to fine-tune the LLM, where we
first generate the program according to the reason-
ing chain on KG and then synthesize the instruction
data. Third, we propose an autonomous iteration
mechanism based on tool selection and memory
updation that integrates the tuned LLM, multifunc-
tional toolbox, KG-based executor, and knowledge
memory, for autonomously reasoning over KG.

Our extensive evaluation results on both in-
domain and out-of-domain tasks (i.e., KG-based
question answering (KGQA) and open domain
question answering (ODQA) affirms the effective-
ness of our KG-Agent. We consolidate our contri-
butions and results as follows:

e Autonomous and General KG Agent. To
the best of our knowledge, KG-Agent is the first
method to develop an autonomous agent using a
relatively small LLM (7B).

e Efficient Training and Inference. KG-
Agent is trained on only 10K data (e.g., 22.6%
of GrailQA), and inference faster (e.g., nearly 3x
inference speed compared to StructGPT).

o Strong Performance. KG-Agent performs the
best across competitive methods on both in-domain
and out-of-domain datasets, achieving a 7.5% rel-
ative improvement in F1 on CWQ compared to
ReasoninglLM, and an 8.5% relative improvement
in accuracy on TQ-Wiki compared to BART-Large.

2 Preliminary

Knowledge Graph (KG). A knowledge graph typ-
ically consists of a large number of fact triples,
expressed as G = {(e,r,€')|e,e’ € E,r € R},
where £ and R denote the entity set and relation
set, respectively. A triple (e, r, ¢’) describes a fac-
tual knowledge that a relation r exists between the
head entity e and tail entity ¢/. Each entity e is
assigned a unique entity ID (or string value), and
belongs to one entity type ¢ such as Country and
Person. Furthermore, we introduce neighboring
relations to denote both the incoming and outgo-
ing relations for a set of entities {e}, denoted as

Riey = {rl(e, ¢y € GU{r|{¢/,r,e) € G}.

Problem Formulation. In this work, we assume
that a KG is available and contains the answer en-
tities for the given natural language question. Our

objective is to develop a LLM-based agent that
can autonomously infer the answer to the question
based on the given KG. As it has been shown that
domain-specific interface is helpful for LLMs to
manipulate the structured data (Jiang et al., 2023b),
we further assume that a toolbox can be provided
to facilitate the access to the information of KG.
Formally, given a natural language question ¢, and
a toolbox 7 and a KG G, we aim to develop a ca-
pable agent to deduce the final answers A, = {e}
for the question ¢ by leveraging the tools in 7 and
the knowledge information in G.

3 Approach

In this part, we present the proposed KG-Agent
for autonomously solving complex reasoning tasks
over KG. The core of our KG-Agent framework is
a well-instructed LLM, which can autonomously
make decisions when reasoning over KG. We first
extend the LLM’s capacities by designing a toolbox
with supporting tools to manipulate the KG data or
intermediate results (Section 3.1). To enhance the
step-by-step reasoning capacity, we leverage exist-
ing knowlege graph question answering (KGQA)
datasets to synthesize KG reasoning programs and
convert them into formatted instruction tuning data
(Section 3.2). Finally, we design an effective agent
framework based on the knowledge memory to sup-
port autonomous reasoning over KG (Section 3.3).
Next, we give the technical details of KG-Agent.

3.1 Toolbox for Knowledge Graph

Since LLMs struggle to accurately manipulate the
structured data (Jiang et al., 2023b), we construct a
supporting toolbox for easing the utilization of the
KG information. According to existing work (Gu
et al., 2021; Cao et al., 2022), reasoning over KG
(e.g., Freebase or Wikidata) typically requires three
fundamental operations, namely extracting infor-
mation from KG, filtering irrelevant information
based on the semantics of the question, and op-
erating on the extracted information. Therefore,
we design three types of tools for LLMs reasoning
over KG, i.e., extraction, semantic, and logic tools.

¢ Extraction tools aim to facilitate the access to
information from KG. Considering the basic data
types in KG, we design five tools to support the ac-
cess to the relations (get_relation), the head/tail en-
tities (get_head_entity/get_tail_entity), and entities
with specific type or constraint (get_entity_by_typel
get_entity_by_constraint), w.r.t. some entity set or
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Figure 1: The overview of our proposed KG-Agent. The top half is the workflow of our agent, and the bottom
half is an example of instruction fine-tuning data synthesis and the prompt template for the input-output pairs. For

brevity, we simplify the relation surface form.

other input information (e.g., relation or type).

e Logic tools aim to support basic manipulation
operations on the extracted KG information, includ-
ing entity counting (count), entity set intersection
(intersect) and union (union), condition verification
(judge), and ending the reasoning process with the
current entity set as the final answer(s) (end).

e Semantic tools are developed by utilizing pre-
trained models to implement specific functions, in-
cluding relation retrieval (retrieve_relation) and en-
tity disambiguation (disambiguate_entity). These
tools extend the basic operations on KGs and can
support advanced functionalities for KG reasoning.

We summarize the detailed definition and usage
of the tools in Table 9 at the Appendix C. Note that
since the format and usage for each tool have been
defined in a unified way, the toolbox for KG can be
flexibly extended according to the real needs.

3.2 KG-Agent Instruction Tuning

To enable the autonomous reasoning process, we
construct a high-quality instruction dataset for fine-
tuning a small LLM (i.e., LLaMA2-7B). For this
purpose, we first leverage existing KG based ques-
tion answering (KGQA) datasets to generate the
KG reasoning program, and then decompose it into
multiple steps. Finally, each step is formulated as
the instruction data with input and output.

3.2.1 KG Reasoning Program Generation

Instead of distilling from close-sourced LLMs (e.g.,
GPT-4), we propose to leverage existing KGQA
datasets to synthesize the KG reasoning program.
These KGQA datasets contain the annotated SQL
queries that can be executed to directly extract the
answer entities for each question. In particular, the
SQL query generally includes the relation chain,
conditions, or constraints, which are beneficial for
reasoning program synthesis. Concretely, we first
ground the SQL query on the KG to obtain a query
graph, then extract the reasoning chain and con-
straint conditions from the query graph, and finally
decompose the chain into multiple code snippets
as the reasoning program.

Reasoning Chain Extraction. Since the whole
KG is extremely large and contains irrelevant data,
the first step is to acquire a small KG subgraph
related to the question, referred to as query graph.
Following previous work (Yin et al., 2020), we ob-
tain the query graph from the KG via rule match.
As shown in Figure 1 (b), the query graph has a tree-
like structure that can be directly mapped to a logi-
cal form (Yin et al., 2020), and it can clearly depict
the execution flow of the SQL query to obtain the
answer. Second, starting from the mentioned entity
in the question (i.e., Cristiano Ronaldo), we adopt
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breadth-first search (BFS) to visit all the nodes on
the query graph. This strategy would finally pro-
duce a reasoning chain (e.g., teams—roster_team)
linking the start entity to the answer entity, and the
relevant constraint conditions (e.g., roster_from =
“2011”) or numerical operation (e.g., founded must
be last) can be naturally involved in this process.

Reasoning Program Generation. After extract-
ing the reasoning chain, we next convert it into
multiple interrelated triples, where each triple gen-
erally corresponds to an intermediate reasoning
step. Finally, we reformulate the triples into sev-
eral function calls with the code format, which
represents the tool invocation and can be executed
to obtain the corresponding triples based on the
KG. Given a triple (e, r, e’), we craft a rule-based
method to synthesize the function calls that repre-
sent the information flow from e to €’. Specifically,
we start from the get_relation(e) function call to
obtain the current candidate relations {r} associ-
ated with e on the KG. Then, we select one relation
r and pass it to other required function calls (e.g.,
get_tail_entity or get_entity_by_constraint), and
finally obtain new entities. Following the order of
the reasoning chain, we generate all the function
calls to compose the final KG reasoning program
for producing the instruction dataset. We show one
example in Figure 1 (b) to intuitively illustrate the
conversion process from the annotated SQL query
to our required KG reasoning program.

3.2.2 KG Reasoning Instruction Synthesis

After obtaining the reasoning program on KG, we
further utilize it for synthesizing instruction data
for supervised fine-tuning (SFT). As discussed in
Section 3.2.1, our instruction data is highly based
on the reasoning program, which is aligned with
the intermediate reasoning steps for KGQA.

Input-Output Pair Construction. The synthetic
KG reasoning program consists of multiple func-
tion calls in a sequence. For each function call, we
aim to construct an input-output pair as the instruc-
tion. Specifically, the input contains the question,
toolbox definition, current KG information (i.e., the
next candidate relations of the current entity set),
and history reasoning program before the current
step; and the output is the function call at the cur-
rent step. Next, after executing the function call
at the current reasoning step, the history reason-
ing program and current KG information in the
input will be accordingly updated, and the output

Work Base Multi
Method Flow Model Tool Memory Task
Pangu pd T5-3B X X X
StructGPT pd ChatGPT v/ X X
RoG pd | LLaMA-7B X X X
ChatDB auto | ChatGPT X v X
KB-BINDER | pd CodeX X X X
KG-Agent | auto |LLaMA2-7B v v v

Table 1: Comparison of different methods. Work Flow
describes that the interaction way between the LLM and
KG is pre-defined (“pd”) or autonomous (“auto”). Multi
Task means whether to support generalization across
different KGs via multi-task learning.

will be updated as the function call at the next
step. By iterating the above process, for each sam-
ple in the KGQA datasets, we can obtain multiple
input-output pairs derived from the corresponding
reasoning program, which depict the complete rea-
soning trajectory on the KG. To help LLMs better
understand, we further utilize a unified prompt, as
shown in Figure 1 (c), to format each input-output
pair and obtain the final instruction tuning data.

Agent Instruction Tuning. Based on the above
formatted instruction tuning data, we perform su-
pervised fine-tuning on a small LLM (i.e., LLaMA-
7B), which is much smaller than the backbone mod-
els in previous work (Jiang et al., 2023b). Formally,
for each sample, we formulate all input-output
pairs of the complete trajectory in the format of
{x1,91), s (T, Yt), oy (T, yn) }, Where (24, y4)
represent the input and ground-truth response in
the ¢-th step and n represents the total steps. For
simplicity, we denote each input and output as z
and y below. During the instruction tuning process,
we feed the input x and output y into the decoder-
only LLM and minimize the cross-entropy loss on
the ground-truth response y as:

L == logPr(ys|z,y<s), (1)
k=1

where m denotes the number of tokens in ¥, y; and
Y« are the k-th and previous tokens in the output.

3.3 Autonomous Reasoning over KG

After instruction tuning, we further design an effec-
tive agent framework that enables KG-Agent to au-
tonomously perform multi-step reasoning over KG
for answer finding. The overall illustration of KG-
Agent is shown in Figure 1 (a). It mainly contains
four components, i.e., the core instruction-tuned
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LLM (Section 3.2), referred to as the LLM-based
planner, the multifunctional toolbox (Section 3.1),
the KG-based executor for executing the tool in-
vocation, and the knowledge memory to record
the context and currently useful information in the
whole process. Next, we introduce how KG-Agent
performs autonomous reasoning over KG.

Knolwedge Memory Initialization. The knowl-
edge memory preserves the currently useful infor-
mation to support the LLM-based planner for mak-
ing decisions. It mainly contains four parts of in-
formation, i.e., natural language question, toolbox
definition, current KG information, and history rea-
soning program. The former two parts are initial-
ized with the given question and toolbox definition,
which remain unchanged during the reasoning pro-
cess. The later two parts are initialized as an empty
list, which will be constantly updated at each step
after LLM generating the function call and executor
invoking the corresponding tool.

Planner for Tool Selection. Based on the current
knowledge memory, the LLLM-based planner se-
lects a tool to interact with KG at each step. Specif-
ically, all the parts in the current knowledge mem-
ory will be formatted with corresponding prompt
template to compose the input (used in Agent In-
struction Tuning in Section 3.2.2), and then the
LLM will generate one function call by selecting
a tool and its arguments from the input. Gener-
ally, the planner needs to invoke tools from the
pre-defined toolbox to address four types of task
requirements, i.e., linking the mentioned entity
to KG (e.g., “get_candidate_entity” and “disam-
biguate_entity”), accessing the KG information
(e.g., “get_relation” and “get_head_entity”), pro-
cessing the intermediate results (e.g., “count” and
“intersect”), or returning the final answer to end the
reasoning process (e.g., “end”).

Executor for Memory Updating. After the plan-
ner generates the function call, the KG-based ex-
ecutor will execute it using a program compiler.
It can cache or operate the intermediate variables,
and extract new entities or relations from the KG.
After execution, the knowledge memory will be ac-
cordingly updated. First, the current function call
will be added into the history reasoning program.
Second, if the invoked tool is to obtain the new
information from the KG (e.g., “get_relation”), the
executor will add it into the KG information for
updating the knowledge memory.

Iterative Autonomous KG-Agent. The KG-Agent
framework autonomously iterates the above tool
selection and memory updation process to perform
step-by-step reasoning, where the knowledge mem-
ory is used to maintain the accessed information
from KG. In this way, the multi-turn decision-
making process of the agent is like walking on the
KG along relations. Once reaching the answer enti-
ties, the agent will automatically stop the iterative
process. Note that the whole process is agnostic to
the task types (e.g., question answering) and some
specific KGs. Therefore, our approach is a gen-
eral framework that can be applied to a variety of
complex tasks that require reasoning over any KGs.

3.4 Comparison to Previous Work

We give a comparison in Table 1. Existing meth-
ods of reasoning over KG can be categorized into
two classes based on their workflow. The first
line of research, such as KB-BINDER (Li et al.,
2023), Pangu (Gu et al., 2023), StructGPT (Jiang
et al., 2023b), and RoG (Luo et al., 2023), crafted
a pre-defined interaction way between LLM and
KG, which cannot flexibly adapt to various com-
plex tasks. Another line of research, such as
ChatBD (Hu et al., 2023a), conducted autonomous
reasoning with chain-of-thought and memory aug-
mented. However, it relies on the strong closed-
source LLM APIs (e.g., ChatGPT) and cannot
use tools to implement some specialized opera-
tions (e.g., count). Our KG-Agent is the first au-
tonomous agent framework to support the com-
plex interaction between LLM and KG with tool
and memory augmented. Furthermore, we imple-
ment this autonomous agent by instruction tuning
a smaller 7B open-source LLM compared to the
backbone LLLM in KB-BINDER, StructGPT, and
ChatDB. At the same time, the agent instruction
tuning data is constructed from various KGs (e.g.,
Wikidata and Freebase), which helps our KG-
Agent to learn the general autonomous decision
making capabilities over various KGs.

4 Experiment

4.1 Experimental Setup

We select four commonly-used KGQA datasets
as in-domain datasets, i.e., WebQSP, CWQ, and
GrailQA, which are based on Freebase, and KQA
Pro, which is based on Wikidata. And we select
three ODQA datasets as out-of-domain datasets,
i.e., WO, NQ, and TQ. Further, we consider three
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Model WebQSP CWQ GrailQA (F1)
ode

Hits@1 F1 Hits@1 F1 Overall LLD Compositional Zero-shot
GraftNet 66.4 60.4 36.8 32.7 - - - -
NSM 68.7 62.8 47.6 424 - - - -
SubgraphRetrieval ~ 69.5 64.1 49.3 46.3 - - - -
UniKGQA 75.1 70.2 50.7 48.0 - - - -
ReasoningLM 78.5 71.0 69.0 64.9 - - - -
RNG-KBQA - 75.6 - - 76.8 89.0 68.9 74.7
Uni-Parser - 75.8 - - 76.5 88.3 71.4 73.4
ArcaneQA - 75.6 - - 76.9 89.2 73.9 72.8
PanGu w/ T5-3B - 79.6 - - 834 - - -
TIARA 75.2 78.9 - - 81.9 91.2 74.8 80.7
FC-KBQA - 76.9 - 56.4 83.8 91.5 77.3 83.1
ROG 85.7 70.8 62.6 56.2 - - - -
ChatGPT 67.4 59.3 47.5 43.2 25.3 19.6 17.0 31.2
Davinci-003 70.8 63.9 51.4 47.6 30.1 23.5 22.0 36.4
GPT-4 73.2 62.3 55.6 49.9 31.7 25.0 20.6 39.2
StructGPT 72.6 63.7 54.3 49.6 54.6 70.4 443 50.5
Ours 83.3 81.0 72.2 69.8 86.1 92.0 80.0 86.3

Table 2: The results on the test set of WebQSP and CWQ, and dev set of GrailQA, which are based on Freebase
KG. We copy part of the results from Jiang et al. (2023b); Gu et al. (2023); Luo et al. (2023) and evaluate
ChatGPT,Davinci-003, GPT-4, and StructGPT with OpenAl API. Bold font denotes the best performance.

types of baseline methods, i.e., subgraph-based
reasoning, LM-based seq2seq generation, and
LLM-based methods for comparison on in-domain
datasets, and Fine-tune based and LLM-based
methods for out-of-domain datasets. We show the
details of the above datasets, baselines, evaluation
protocol, and implementation in Appendix B.

4.2 Main Results

Results on In-domain Datasets. Table 2 and Ta-
ble 3 show the results on in-domain datasets based
on Freebase and Wikidata, respectively. First, LM-
based seq2seq generation methods can achieve bet-
ter F1 score compared to the subgraph-based rea-
soning methods on the WebQSP and KQA Pro.
It indicates that the SPARQL query generated by
the LM can obtain a more complete answer set,
and the structured query can better support some
complex operations (e.g., maximum, count) than
the traditional subgraph-based reasoning methods.
Second, although LLMs are powerful, directly us-
ing Davinci-003, ChatGPT, and even GPT-4 still
has a large performance gap compared with the
best fine-tuned methods in WebQSP, GrailQA, and
KQA Pro, indicating the difficulty of answering
complex questions solely by LLMs.

Finally, our KG-Agent is substantially better
than all other competitive baselines in all datasets
after instructing tuning on the mixed data. With the
mutual augmentation between different datasets,

our approach achieves 1.7%, 7.5%, and 2.7% im-
provements of F1 on WebQSP, CWQ, and Grailqa,
respectively. Benefiting from the autonomous rea-
soning mechnism, our approach can perform rea-
soning on the two KGs and obtain consistent im-
provement on all datasets.

Results on Out-of-domain Datasets. After in-
struction tuning, we directly evaluate the zero-
shot performance of our KG-Agent on the out-of-
domain datasets. As shown in Table 4, although
fine-tuned with full data, the small pre-trained lan-
guage models (e.g., T5 and BART) can not effec-
tively answer these factual questions. Owing to
the large-scale parameters, Davinci-003 and Chat-
GPT performs well on NQ and TQ, which are con-
structed based on Wikipedia, the corpus that they
may have been pre-trained on. However, they per-
form not well on WQ, which is constructed based
on Freebase KG. In contrast, our KG-Agent only
needs to learn how to interact with KG instead of
memorizing the specific knowledge. Thus, it can
utilize the external KG in zero-shot setting, and
achieve consistent improvement compared to fine-
tuned pre-trained language models.

4.3 Further Analysis

Transfer to Domain-specific KG. To evaluate
the transferability of our approach on other KGs,
we test our KG-Agent on the MetaQA dataset
which is based on a movie domain KG. Follow-
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Model Overall Multi-hop Qualifier Comparison Logical Count Verify Zero-shot
KVMemNet 16.61 16.50 18.47 1.17 14.99 27.31 54.70 0.06
EmbedKGQA 28.36 26.41 25.20 11.93 23.95 32.88 61.05 0.06
RGCN 35.07 34.00 27.61 30.03 35.85 4191 65.88 0.00
RNN SPARQL  41.98 36.01 19.04 66.98 37.74 50.26 58.84 26.08
BART SPARQL 89.68 88.49 83.09 96.12 88.67 85.78 92.33 87.88
ChatGPT 24.96 24.22 26.37 39.15 25.51 10.76 54.70 15.67
Davinci-003 31.02 29.58 31.58 49.8 29.62 16.70 65.54 21.83
GPT-4 37.43 34.82 37.15 55.75 36.81 15.27 72.93 27.28
Ours 92.15 91.03 87.90 96.32 91.28 88.21 92.86 91.40

Table 3: The accuracy on the test set of KQA Pro, which is based on Wikidata KG. The results of Davinci-002,GPT-4,
and ChatGPT are evaluated by us and the results of other baselines are copied from Cao et al. (2022).

Models NQ-Wiki TQ-Wiki WQ-Freebase Proportion | WebQSP  CWQ  GrailQA | Average
T5-Base 30.94 27.63 24.06 1:10:5 80.0 69.8 86.1 78.6
T5-Large 31.21 29.40 24.70 2:10:5 81.2 68.7 83.3 77.8
BART-Base 29.47 25.43 21.95 1:20:5 78.9. 73.6 78.8 77.1
BART-Large 32.60 33.05 26.33 1:10:10 80.8 66.9 84.3 77.3
Davinci-003 51.94 88.57 23.81 ] )

ChatGPT 57.49 88.68 23.23 Table 6: The F1 scores on three in-domain datasets after
Ours 33.00 35.89 28.90 instruction tuning under different sampling proportions.

Table 4: The results on the subsets of the dev sets from
the out-of-domain ODQA datasets.

Models MQA-1hop MOQA-2hop MQA-3hop
GraftNet 82.5 - -
EmbedKGQA 92.0 40.7 34.6
NSM 94.8 97.0 91.0
TransferNet 96.5 97.5 90.1
ChatGPT 61.9 31.0 432
StructGPT 94.2 93.9 80.2
Ours 97.1 98.0 92.1

Table 5: The results on the three subsets of MetaQA. We
copy the results of baselines from Jiang et al. (2023b).

ing existing work (He et al., 2021; Jiang et al.,
2023b), we show the one-shot results on the test
set in Table 5. ChatGPT performs not well when
directly answering these domain-specific questions,
where the performance drops 45% absolutely on
the MQA-3hop subset compared to the supervised
fine-tuned TransferNet model. After equipping the
LLM with the KG, StructGPT can greatlt outper-
form ChatGPT with about 37% improvement. In
contrast, our KG-Agent can obtain consistent per-
formance improvement compared to the competi-
tive supervised fine-tuning baselines on all subsets.
It indicates that the agent indeed learns the gen-
eral ability about reasoning on KG, which can be
efficiently transferred to other KGs.

We highlight the changed proportion with an underline.

Effect of Instruction Amount. We explore how
the amount of instructions affects the performance
of KG-Agent and show the results in Figure 2. With
a constant sampling proportion, we scale the total
amount from 2k to 64k in an exponential way and
evaluate the F1 and Hist@1 scores on WebQSP and
CWQ datasets. As we can see, the performance
increases with more instruction tuning data, and
eventually reaches a stable state, which indicates
the importance of data amount. At the same time,
with the data amount increasing from 16k to 64k,
the KG-Agent doesn’t obtain a remarkable perfor-
mance improvement. We think this is relevant to
the variety of our instruction tuning data, which
is illustrated in existing work (Chung et al., 2022;
Aribandi et al., 2022). Therefore, we will construct
more various samples in the future, and could fur-
ther boost the performance.

Effect of Tuning Data Proportion. Our experi-
ment finds that only sampling 10K samples from
existing datasets is enough for backbone LLM to
learn the autonomous decision making capability.
Here, we conduct a further ablation study to explore
the impact of sampling proportion on the agent’s
performance when keeping the total amount of in-
struction tuning data constant. Specifically, we
evaluate the agent performance of WebQSP, CWQ,
and GrailQA when doubling the proportion of one
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Base LLM \WebQSP CWQ Average

ROG w ChatGPT | 708 56.2 63.5
Ours w LLaMA2-7B 81.0 69.8 75.4
w Phi2-3B 76.9 65.5 71.2
w Mistral-7B 80.3 68.5 74.4
w CodeLLaMA-7B 82.0 69.9 76.0
w LLaMA3-7B 83.5 72.1 77.8

Table 7: The F1 results on the WebQSP and CWQ with
different base LLMs.

dataset while maintaining the other two dataset
proportions. We show the results in Table 6. We
can see that as the sampling proportion of a cer-
tain dataset increases, the agent performance on it
consistently improves. However, for the average
performance on all three datasets, all variants are
lower than our selected proportion, indicating that
the proportion we chose is suitable for the LLM
to balance and master more comprehensive and
general abilities.

Effect of Different Base LLMs. We further in-
vestigate the generalizability of our approach by
utilizing other different mainstream open-source
LLMs as the base model for KG-Agent, such
as Phi2-3B, Mistral-7B, CodelLLaMA-7B, and
LLaMA3-7B. The results are presented in Ta-
ble 7, which indicates that both of these LLMs can
achieve superior performance compared to closed-
source LLMs. Models with the same parameter
scale exhibit similarly strong performance. Addi-
tionally, larger LLMs tend to perform better when
comparing these 7B LLMs with Phi2-3B model.
These results demonstrate that our method is adapt-
able to various LLMs.

Scalability and Efficiency. In the above, our KG-
Agent can achieve superior performance compared
to closed-source LLMs relying on the only 7B
open-source LLM. We further investigate whether
the performance of KG-Agent aligns with the pa-
rameter size of base LLMs. Additionally, we exam-
ine the inference latency to compare KG-Agent’s
efficiency with other state-of-the-art approaches.
We show the detailed results in Appendix D. In
general, the results demonstrate that our method
can obtain better results by increasing model pa-
rameters. Besides, our method demonstrates a time
advantage over API-based LLMs and is compara-
ble in speed to existing methods.

Case Study. We present an example to show the
details of the workflow along with the input and out-

90 90
c/'/. ’/4-—,"/.
80, — 80
I g
S =
“:70./ @70-/
& Z
jan}
60 60
—— WebQSP cWQ —e— WebQSP CcWQ
S0k 4k sk 16k 33k 6a 0% 4k sk 16k 33k 64

Amount of Training Data Amount of Training Data

Figure 2: The F1 (Left) and Hits@1 (Right) scores of
KG-Agent on the test set of WebQSP and CWQ with a
various amount of instruction tuning data.

put of our KG-Agent, as shown in Appendix D.1.

5 Related Work

Recent research has LLMs for reasoning over
KGs, primarily through retrieval-augmented and
synergy-augmented methods. Retrieval-augmented
approaches retrieve triples from KGs but often
lose structured information and introduce redun-
dancy. In contrast, synergy-augmented meth-
ods enable multiple interactions between LLMs
and KGs, allowing for more flexible reasoning,
though they still follow fixed protocols. Addi-
tionally, LLM-based agents like ReAct and Au-
toGPT have emerged for autonomous task-solving,
relying heavily on powerful closed-source LL.Ms.
The proposed KG-Agent distinguishes itself as the
first framework for complex KG reasoning using a
smaller 7B LLM, facilitating autonomous decision-
making without human intervention. We give a
more detailed description in Appendix A.

6 Conclusion

In this work, we proposed an autonomous agent
framework to synergize LLMs and KGs to perform
complex reasoning over KG, namely KG-Agent.
We first curated a toolbox for KG, consisting of
three types of tools to support the typical opera-
tions when reasoning on KG. Then, we developed
an autonomous iteration mechanism based on tool
selection-then-memory updation that integrates the
LLM, multifunctional toolbox, KG-based executor,
and knowledge memory, for reasoning over KG. Fi-
nally, with only 10K synthesized code-based tuning
samples, our autonomous agent with 7B LLaMA2
model, which mostly outperforms strong baselines
with full-data tuning or larger LLMs.
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Limitations

Although KG-Agent demonstrates remarkable per-
formance across various complex factual question
answering tasks, there are some limitations of our
method. First, we only use the LLaMA2-7B as the
backbone LLM, which has a strong capability after
instruction tuning. Hence, more experiments are
required to evaluate other LLMs with comparable
parameter sizes, such as Mistral-7B (Jiang et al.,
2023a) or CodeLLaMA-7b (Roziere et al., 2023).
Second, we focus on reasoning over the KG to
answer the factual questions. We should consider
extending our framework to deal with more types of
knowledge sources, e.g., databases or tables. Third,
we only evaluate factual question answering tasks
based on KG. Future work should include wider
evaluation scenarios to evaluate the universality of
our method, e.g., data-to-text and formal-language-
to-text (Xie et al., 2022). Finally, we have tried our
best to tune the LLM only to answer the questions
based on the KG information, and avoid generating
discriminatory and risky responses for user ques-
tions. However, we should add more rule-based
methods to post-process the predictions and filter
the illegal responses.
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A Related Work

LLM-based KG Reasoning. Benefitting from
the powerful zero-shot and few-shot capability, re-
cent studies have leveraged LLMs to perform rea-
soning over KG. Recent work can be roughly di-
vided into retrieval-augmented (Shu et al., 2022)
and synergy-augmented (Gu et al., 2023) two types.
The retrieval-augmented method is to retrieve and
serialize the triples from the KG, and then feed it
to the LLM to help generate the final results (e.g.,
answers or SPARQL query) (Ye et al., 2022). Such
a way loses the structured information in the orig-
inal KG and may retrieve redundant knowledge,
limiting LLMs’ understanding. To relieve these
problems, the synergy-augmented methods design
an information interaction mechanism between
LLMs and KGs to enable LLMs to query KGs
multiple times to answer the question (Jiang et al.,
2023b). Specifically, they either first generate the
full plan (Li et al., 2023) and then ground it on KG,
or make a plan step-by-step based on the KG (Luo
et al., 2023). Although obtaining better perfor-
mance, the information interaction mechanism in
existing methods often follows a pre-defined way,
which cannot flexibly adapt to various complex
tasks. In contrast, our proposed KG-Agent can au-
tonomously make decisions during reasoning over
KG, without human assistance.

LLM-based Agents. Recently, LLMs have
shown surprising long-horizon planning and rea-
soning capabilities (Shinn et al., 2023; Zhong et al.,
2023), and LL.M-based agents have gradually be-
come a hot topic for autonomously solving com-
plex interactive tasks (Wang et al., 2023b). A large
number of agents focus on general-purpose task
solving. As the representative projects, ReAct (Yao
et al., 2023) proposes a prompting method to con-
vert LLMs (e.g., ChatGPT) as language agents, to
interact with the external environment, receive the
feedback, and then generate the action for next
step reasoning. Then, AutoGPT! further empow-
ers LLMs (i.e., GPT4) with long/short-term mem-
ory management and external tools like search en-
gines to autonomously address a user request. In
addition, several other agents also focus on spe-
cific domains, such as WebGPT (Nakano et al.,
2021) for the web-browsing environment, MM-
REACT (Yang et al., 2023) for the multi-modal
scenario, and ProgPrompt (Singh et al., 2023) for

"https://github.com/Significant-Gravitas/AutoGPT

the real-life environment. However, recent works
involving language agents mostly rely on stronger
closed-source LLM APIs (e.g., ChatGPT and GPT-
4) to understand or learn to solve complex tasks.
Our KG-Agent is the first autonomous agent frame-
work to support complex reasoning over KG only
relying on a relatively smaller 7B LLM.

B Experiment Setup

B.1 Datasets

We select four popular complex KGQA datasets
as in-domain datasets, i.e., WebQuestionsSP (We-
bQOSP) (Yih et al., 2016), Complex WebQues-
tions 1.1 (CWQ) (Talmor and Berant, 2018), and
GrailQA (Gu et al., 2021), which are based on
Freebase, and KQA Pro (Cao et al., 2022), which
is based on Wikidata. And we select three repre-
sentative ODQA datasets as out-domain datasets,
which are WebQuestions (WQ) (Berant et al., 2013),
Natural Questions (NQ) (Chen et al., 2017), and
TriviaQA (TQ) (Joshi et al., 2017). Since we only
rely on the KG to answer questions, we filter the
questions in ODQA datasets that can not be linked
to any entity in KG, denoted as WQ-Freebase, NQ-
Wiki, and TQ-Wiki, respectively. Besides, we fur-
ther select the MetaQA (Zhang et al., 2018), which
is based on a domain-specific movie KG, to eval-
uate the generalibility of our method. The detail
description of these selected datasets is as follows:

e WebQSP consists of 4,737 questions. The
answer entities are within a maximum of 2 hops
from the topic entity on the Freebase KG. We adopt
the train/valid/test splits from GraftNet (Sun et al.,
2018) for consistency.

e CWQ is constructed based on WebQSP, which
is more challenging. It complicates WebQSP by ex-
tending the question entities or adding constraints
to restrict the answers. The answer entities are
within a maximum of 4 hops from the topic entity
on the Freebase KG.

e GrailQA consists of 64,331 questions. Com-
pared to WebQSP and CWQ, it focuses on a more
comprehensive generalization capability evaluation
from three levels (i.e., i.i.d, compositional, and
zero-shot).

e KQA Pro consists of 117,970 questions. The
above three datasets are based on Freebase, and it
is based on Wikidata, and require multiple reason-
ing capabilities including compositional reasoning,
multi-hop reasoning, quantitative comparison, set
operations, and etc.
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e MetaQA comprises over 400,000 questions
based on a movie domain KG, with answer enti-
ties located up to three hops away from the topic
entities. Based on the number of hops, the dataset
is divided into three sub-datasets: MetaQA-1hop,
MetaQA-2hop, and MetaQA-3hop. Following ex-
isting work (He et al., 2021), we randomly sample
just one training case for each question template
from the original training set, to form a one-shot
training dataset.

o WQ consists of 6,642 questions. The questions
are mostly centered around a single named entity
and are supposed to be answerable by Freebase KG.
We extract 2034 questions from the original test set
to compose the WQ-freebase subset.

o NQ consists of 323,045 questions. Each exam-
ple contains a question from the Google search
and the corresponding answers, which are text
spans on the Wikipedia page. Following existing
work (Roberts et al., 2020), we use the open version
of this dataset which discards answers with more
than 5 tokens. We extract 543 questions from the
original test set to compose the NQ-Wiki subset.

e TQ consists of 110K questions. Each example
contains a question authored by trivia enthusiasts,
and the answers are text spans from the Web or
Wikipedia. Following existing work (Roberts et al.,
2020), we use its unfiltered version for evaluation.
We extract 1864 questions from the original test set
to compose the TQ-Wiki subset.

B.2 Evaluation Protocol

For KGQA, following existing work (Sun et al.,
2018), we use Hits@1 and F1 metrics for WebQSP
and CWQ datasets, F1 metric for GrailQA dataset,
and Hits@1 for MetaQA. The Hits@1 evaluates
the correctness of the top-ranked answer while F1
considers coverage of all the predicted answers. It’s
worth noting that some baselines and our approach
would return all the unordered answers at the end,
which is not suitable for the Hist@ 1 metric. For
a comprehensive comparison, we randomly select
one answer per question as the top-ranked answer
and then calculate the average Hits@]1 result by
repeating this process 100 times following existing
work (Shu et al., 2022). For ODQA, following
existing work (Roberts et al., 2020), we report the
EM metric, which evaluates whether the predicted
answer is the same as the gold one after performing
normalization.

B.3 Baselines for Comparison

For KGQA, we consider the following three types
of baseline methods for performance comparison:

¢ subgraph-based reasoning methods which
perform answer reasoning in a retrieval subgraph
form KG, including GrafeNet (Sun et al., 2018),
NSM (He et al., 2021), SubgraphRetrieval (Zhang
et al., 2022), UniKGQA (Jiang et al., 2023d), and
ReasoninglLM (Jiang et al., 2023c) for datasets
on Freebase, and KVMemNet (Miller et al.,
2016), EmbedKGQA (Saxena et al., 2020), and
RGCN (Schlichtkrull et al., 2018) for datasets on
Wikidata;

e LM-based seq2seq generation methods
which generate the final SPARQL query by fine-
tuning a sequence-to-sequence language model,
including RNG-KBQA (Ye et al., 2022), Uni-
Parser (Liu et al.,, 2022), ArcaneQA (Gu and
Su, 2022), PanGu w/ T5-3B (Gu et al., 2023),
TIARA (Shu et al., 2022), and FC-KBQA (Zhang
et al., 2023) for datasets on Freebase, and RNN
SPARQL and BART SPARQL (Cao et al., 2022)
for datasets on Wikidata;

e LL.M-based methods which utilize the power-
ful zero-shot or few-shot capabilities of LLMs to
answer the question without fine-tuning, including
ROG (Luo et al., 2023), StructGPT (Jiang et al.,
2023b), gpt-3.5-turbo-instruct (Davinvi-003) 2, gpt-
3.5-turbo (ChatGPT) 3, and gpt-4 (GPT-4) * for
both in-domain datasets.

For ODQA, we focus on the closed-book setting
where no documents are provided and consider the
following two types of baseline methods:

¢ Fine-tune based methods which learn to pre-
dict the answers, including T5-Base, T5-Large,
BART-base, and BART-Large from (Roberts et al.,
2020);

e LLM-based methods which directly an-
swer the questions in zero-shot setting, including
gpt-3.5-turbo-instruct (Davinvi-003) and gpt-3.5-
turbo (ChatGPT).

B.4 Implementation Details

For instruction tuning data construction, we ran-
domly sample a total of 10,000 training data from
in-domain datasets in a ratio of 1:5:5:10 for We-
bQSP, KQA Pro, GrailQA, and CWQ according
to some prior empirical studies. Since we focus

Zhttps://platform.openai.com/docs
3https://platform.openai.com/docs
*https://platform.openai.com/docs
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on the reasoning process over KG, we suppose the
entities have been given for each question follow-
ing existing work (Sun et al., 2018; He et al., 2021;
Jiang et al., 2023b). For instruction tuning, we use
the LLaMA2-7B (Touvron et al., 2023) as our back-
bone LLM. We use a cosine learning rate schedule
with an initial learning rate of 2e-5, a weight decay
of 0.1, a batch size of 256, a maximum length of
1500, and finally fine-tune the model for 3 epochs.
For the relation retrieval model and entity disam-
biguation model in the semantic tool, we build
them following the existing work (Zhang et al.,
2022; Shu et al., 2022).

We use the entire Freebase KG (which includes
about 1.9 billion triples) and partial Wikidata KG
(containing around 3 billion triples) to conduct the
experiment. Both are typical large KGs, indicating
the scalability of our framework. During the reason-
ing process, starting from the mentioned entities,
we do not need to import all the KG information
into our agent memory. Instead, the agent only
needs to process the current hop of KG informa-
tion, and keeps only the useful part. Concretely,
the whole KG (100G) is stored in the disk, and
no more than 1G of information is required to be
loaded into the memory. Such a special design en-
ables our approach to accept very large-scale KGs.

After instruction tuning, for in-domain datasets,
we evaluate the performance of our KG-Agent
on the test set of CWQ, WebQSP, KQA Pro, and
the dev set of GrailQA. For out-domain datasets,
we evaluate the zero-shot performance of our
KG-Agent on the NQ-Wiki, TQ-Wiki, and WQ-
Freebase. For the domain specific dataset, i.e.,
MetaQA, we follow existing work (He et al., 2021;
Jiang et al., 2023b) to extract the one-shot tuning
subset from the original training set and fine-tune
our KG-Agent with it. When evaluating the per-
formance of Davinci-003, ChatGPT, and GPT4,
we use the latest February version of APIs from
OpenAl. And for in-domain datasets, we provide
six demonstrations for each test question and parse
the prediction results following existing work (Sun
et al., 2023; Jiang et al., 2023b), we show the
prompt with demonstration for each dataset in Ta-
ble 8. For the selection of demonstrations, we
randomly sample from the corresponding training
set for each dataset. For out-domain datasets, since
they are open-domain question answering tasks,
we directly input the question to LLMs with proper
prompt, as shown in Table 8, and then evaluate the
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Figure 3: The F1 (Left) and Hits@1 (Right) scores of
KG-Agent on the test set of WebQSP and CWQ with a
various amount of instruction tuning data.

output.

We trained our model using eight A800 GPUs,
each with 80 GB of memory, and a CPU with 128
cores. For testing, we utilized a single AS00 GPU
with 80 GB of memory and the same CPU config-
uration. We employ FlashAttention (Dao et al.,
2022) to implement memory-efficient attention,
and DeepSpeed (Rasley et al., 2020) to facilitate
the training of large language models.

C Summary of Toolbox

We summarize the tool name, tool description, and
the input argument and output of tools in Table 9.

D Scalability and Efficiency

Here, we further investigate whether the perfor-
mance of KG-Agent aligns with the parameter size
of base LLMs. We try our best to conduct a con-
trolled experiment using a series of LLaMA?2 mod-
els, including 7B, 13B, 34B, and 70B. Since the
original LLaMA?2-34B base model has not been re-
leased, we adopt the corresponding CodeLLaMA-
34B to approximation. We evaluate the results
on WebQSP and CWQ and show the results in
Figure 3. Additionally, we examine the inference
latency (the time taken to answer a question) to
compare KG-Agent’s efficiency with other state-
of-the-art approaches. We select three strong base-
lines: RoG (LLaMA-7B+KG), StructGPT (Chat-
GPT+KG), and GPT-4. Although we made every
effort to maintain a consistent testing environment
and average the results across five inference trials,
the measured time would be only used to approx-
imate comparison, considering the potential envi-
ronmental variables such as hardware differences
and network latency. The results are presented in
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Table 10. Our method demonstrates a time advan-
tage over API-based LLMs and is comparable in
speed to existing methods.

D.1 Case Study

As shown in Figure 1, the core process of KG-
Agent is an autonomously iterative tool selection
and memory update. Concretely, at each iteration,
the LLLM-based planner first selects a tool to in-
teract with KG based on the current knowledge
memory, which mainly contains four parts of in-
formation, i.e., natural language question, toolbox
definition, current KG information, and history rea-
soning program. After the planner generates the
function call, the KG-based executor will execute
it on KG using a program compiler. After execu-
tion, the knowledge memory will be accordingly
updated for the next iteration. The KG-Agent will
autonomously iterates the above process. Once
reaching the answer entities, the agent will auto-
matically stop the iterative process. Here, we fur-
ther present an example to show the details of the
aforementioned process along with the input and
output of our KG-Agent, as shown in Table 11.
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Dataset | Prompt

Question: where is the syracuse university?

Answer: [New York | Syracuse | United States of America].
Question: where is the mtv headquarters?

Answer: [New York City].

Question: what are the 3 official languages of spain?
Answer: [Spanish Language].

Question: what timezone is new england usa in?
Answer: [Eastern Time Zone].

Question: who started southwest airlines?

Answer: [Herb Kelleher | Rollin King].

Question: what was irving langmuir famous for?
Answer: [Scientist].

Question: {test question}

Answer:

WebQSP

Question: Who is the president in the place where the government of Peru is located?

Answer: [Ollanta Humala].

Question: Where did Martin Luther King attend university, that has less than 2,586 undergraduates?
Answer: [Morehouse College].

Question: What movie produced by the company New Line Cinema was Taylor Lautner in?
Answer: [Valentine’s Day].

Question: Which year did the team that plays at Turner Field win the World Series?

Answer: [1995 World Series].

Question: Which airports are in the circulation area of Il Manifesto?

Answer: [Leonardo da Vinci—-Fiumicino Airport | Ciampino—G. B. Pastine International Airport].
Question: What were the professions held by the publisher of "The Awakening?"?

Answer: [Businessperson | Novelist | Writer | Author].

Question: {test question}

Answer:

CWQ

Question: what does the thiokol rocket do?
Answer: [Launch vehicle].
Question: what is the club interest of inverness yacht club?
Answer: [Sailing].
Question: who is the tour operator of kiribati?
Answer: [Fly Water Adventures | Kiribati Holidays | Otintaai Tours | Molloy’s Tours].
Question: 1998 marsala vergine terre arse contains what type of grapes?
Answer: [Catarratto | Grillo | Ansonica].
. . how many ice hockey coaches have coached the team
Question: that is currently coached by the eisbaren berlin?
Answer: [1].
Question: court of appeal of sri lanka has what inferior court?
Answer: [Supreme Court of Sri Lanka].
Question: {test question}
Answer:

GrailQA

Question: Which website officially represents Morgan Creek Productions?

Answer: [http://www.morgancreek.com/].

Which is shorter: The Killers, with a story set in Los Angeles,

or Sherlock Holmes, produced by 20th Century Fox?

Answer: [Sherlock Holmes].

Question: What is the street address for the University of San Diego?

Answer: [5998 Alcala Park, San Diego, CA, 92110-2492].

Question: How is the Francis Bacon who died in New Haven related to the Yale School of Medicine?
Answer: [educated at].

Question: For the film titled Aladdin, where is it published on its publication date of 2019-05-24?
Answer: [United States of America].

Question: Who wrote The Postman which was published in 1985?

Answer: [David Brin].

Question: {test question}

Answer:

Question:

KQA Pro

NQ-Wiki
TQ-Wiki Answer the following question with one or few words. Question: {test question}
WQ-Freebase

Table 8: The prompts used for each dataset when evaluating the ChatGPT, Davinci-003, and GPT-4 models. When
performing evaluation, just replace the “{test question}” with the test question.
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Type

Tool

Description

get_relation

Input: entity set {e} — Output: one-hop relations Ry}
Return the incoming and outgoing relations of the given entity set {e} on KG.

get_head_entity

Input: entity set {e}, relation » — Output: entity set {e}
Return the head entity set of the given tail entity set {e} along the relation r.

get_tail_entity

Input: entity set {e}, relation » — Output: entity set {e}
Return the tail entity set of the given head entity set {e} along the relation r.

Input: string type ¢ — Output: entity set {e}

xa{;a)gtllon get_entity_by_type Return the entity set belonging to the given type t.
Input: entity set {e}, relation r, operator o, string value v — Output: entity set {e}
Return the new entity set whose tail entity along r satisfies the constraint condition.
ot entity by constraint If v is not empty, the o should be one of {“=",>"“>="“<",“<="}, which means
el YOy the comparison between the tail entity and string value should satisfy the operator.
Else, the o should be one of {“argmax”,“argmin”}, which means the tail entity
should be the maximum or minimum value.

. . Input: string entity mention m — Output: entity set {e}
get_candidate_entity Return the candidate linked entity set on the KG for the given entity mention m.
count Input: entity set {e} — Output: integer

Return the number of entities in the given entity set {e}.
intersect Input: entity set list [{e}] — Output: entity set {e}
Return the intersection of the given list of entity sets.
g eyt )] vttty [
Tool g y sets.
udee Input: entity set {e}, relation r, operator o, string value v — Output: boolean
Jude Return a boolean value indicating whether the comparison between the tail entity of
the given entity set {e} along relation r and the given value v satisfies the operator o.
end Input: entity set {e} — Output: entity set {e}
Return the entity set as the final answer and end the reasoning process.
Input: relation set {r} — Output: relation set {r}
retrieve_relation Retrieve relations from the given relation set {r} that are
. semantically relevant to the question through neural network.
Semantic
Tool . . . Input: entity set {e} — Output: entity e
disambiguate_entity Disambiguate the candidate linked entity {e} based on the question semantics
and entity information on KG (e.g., one-hop relations) through neural network.
Table 9: The detailed definition and usage of all the tools.
Method | Work Flow | Base Model Tool Memory Multi Task | Inference Latency
Pangu pd T5-3B X X X 0.78s
StructGPT pd ChatGPT v X X 2.63s
RoG pd LLaMA-7B X X X 0.85s
ChatDB auto ChatGPT X v X -
KB-BINDER pd CodeX X X X -
KG-Agent | auto | LLaMA2-7B v v | 0.89s

Table 10: Comparison of different methods. Work Flow describes that the interaction way between the LLM and KG
is pre-defined (“pd”) or autonomous (“auto”). Multi Task means whether to support generalization across different
KGs via multi-task learning. Inference Latency refers to the rough average time, measured in seconds, required to
answer a WebQSP question.
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>>> Step 1 Input:
Generate the programs to solve the question: what is the name of justin bieber brother?

Here are some available functions:
def obtain_kg_information(entity):
Return the in-degree and out-degree relations of the given entity from kg.

Please select a function and provide the corresponding arguments to generate the next line of solution program. The question is:
what is the name of justin bieber brother?

>>> Step 1 - Output: obtain_kg_information(linked_entity_1)

>>> Step 1 - Execute: obtain the current KG information and update the memory.

>>> Step 2 Input:
Here are some available functions:
def obtain_kg_information(entity):
Return the in-degree and out-degree relations of the given entity from kg.

Please select a function and provide the corresponding arguments to generate the next line of solution program. The question is:
what is the name of justin bieber brother?

>>> Step 2 - Output: var_0 = get_tail_entity(linked_entity_1, "people.person.sibling_s")

>>> Step 2 - Execute: obtain the current KG information and update the memory.

... (We omit the intermedia steps and directly show the final step for convenience.)

>>> Step 7 Input:
Here are some available functions:
def obtain_kg_information(entity):
Return the in-degree and out-degree relations of the given entity from kg.

Please select a function and provide the corresponding arguments to generate the next line of solution program. The question is:
what is the name of justin bieber brother?

>>> Step 7 - Output: ans = end(var_3)

>>> Step 7 - Execute: obtain the final answers and stop reasoning.

Table 11: A case study of our KG-Agent. The green text denotes the input question, the pink text denotes the
toolbox definition, the - text denotes the current KG information, the orange text denotes the task description,
and the - text denotes the history programs.
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