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Abstract

Causal discovery is fundamental to scientific re-
search, yet traditional statistical algorithms face
significant challenges, including expensive data
collection, redundant computation for known
relations, and unrealistic assumptions. While
recent LLM-based methods excel at identify-
ing commonly known causal relations, they fail
to uncover novel relations. We introduce IRIS
(Iterative Retrieval and Integrated System for
Real-Time Causal Discovery), a novel frame-
work that addresses these limitations. Start-
ing with a set of initial variables, IRIS auto-
matically collects relevant documents, extracts
variables, and uncovers causal relations. Our
hybrid causal discovery method combines sta-
tistical algorithms and LLM-based methods to
discover known and novel causal relations. In
addition to causal discovery on initial variables,
the missing variable proposal component of
IRIS identifies and incorporates missing vari-
ables to expand the causal graphs. Our ap-
proach enables real-time causal discovery from
only a set of initial variables without requiring
pre-existing datasets.1

1 Introduction

A fundamental task in various disciplines of sci-
ence, including biology, economics and healthcare,
is to identify and utilize underlying causal rela-
tions (Kuhn, 1962). Although interventional exper-
iments are ideal for discovering causal relations,
they are often impractical due to ethical, financial,
or logistical constraints. Therefore, researchers de-
velop statistical methods to infer causal relations
from purely observational tabular data (Pearl, 2009;
Spirtes et al., 2000), though such data is often not
available for a wide range of NLP applications.

Statistical and large language model (LLM)-
based causal discovery algorithms face distinct

*Corresponding author
1Our code and data are available at https://github.

com/WilliamsToTo/iris

challenges that limit their applicability in real-
world scenarios. First, traditional statistical algo-
rithms predominantly require high-quality struc-
tured tabular data, which is notoriously difficult to
obtain. In contrast, LLM-based methods can con-
sistently estimate causal relations explicitly present
in their training data without relying on tabular data.
However, these models encounter significant limi-
tations when attempting to uncover causal relation-
ships that were not previously documented (Feng
et al., 2024b; Zečević et al., 2023). Second, statisti-
cal causal discovery algorithms require predefined
sets of random variables as input, a constraint that
significantly limits their flexibility. LLMs, how-
ever, demonstrate the capability to reliably extract
and identify concepts and entities as variables di-
rectly from texts (Zhang et al., 2011; Glymour et al.,
2019). Third, most statistical algorithms are theo-
retically grounded and mathematically verifiable,
but operate under assumptions that rarely hold in
real-world scenarios, such as the causal sufficiency
assumption (i.e., the absence of unobservable vari-
ables in the causal graph) and acyclicity assump-
tion (i.e., the absence of cycles in the causal graph)
(Pearl, 2009; Neal, 2020). In contrast, the verifi-
cation of LLMs’ predictions in causal discovery
remains an open challenge.

To address these limitations, we propose IRIS,
Iterative Retrieval and Integrated System for verifi-
able causal discovery, in the absence of tabular data
for statistical methods. To leverage the strengths of
both statistical methods and LLMs, our framework
takes a hybrid causal discovery approach, combin-
ing statistical methods with LLM-based causal rela-
tion extraction and verification techniques. This hy-
brid strategy allows us to leverage known causal re-
lations and uncovering novel causal relations. IRIS
begins with a set of initial random variables, which
are sent as queries to retrieve a collection of rele-
vant documents. Consequently, LLMs are applied
to map the unstructured texts into structured tabular
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Figure 1: Illustration of IRIS. Given initial variables, we use the Google Search API and LLMs to collect relevant
documents and extract variable values, then form structured data. For hybrid causal discovery, the statistical branch
uses the structured data, while the causal relation extraction branch uses the retrieved documents. Their results are
merged into the final causal graph. The missing variable proposal component identifies new variables, which are
iteratively fed into our framework to expand the causal graphs.

data, which is utilized by an appropriate statistical
method to perform causal discovery. Its results
are further merged with the causal relations pre-
dicted and verified by LLMs. This hybrid approach
allows cycles in causal graphs, thereby relaxing
the acyclicity assumption. Additionally, we intro-
duce a variable proposal component to identify new
variables that have causal relations with the initial
variables. This component allows us to relax the
causal sufficiency assumption. We then iteratively
use the expanded variables as input to our frame-
work, further expanding the causal graphs.

Our experimental results demonstrate that IRIS
significantly surpasses strong baselines across all
datasets and scales effectively from small (4 initial
variables) to large causal graphs (27 initial vari-
ables), as detailed in Section 4.1. Evaluations of
individual components reveal that each component
outperforms its corresponding baselines. Specifi-
cally, the evaluation of value extraction component
shows that IRIS with GPT-4o exceeds the strong
baselines, which also utilizes GPT-4o (Section 4.2).
Our hybrid causal discovery method consistently
outperforms both statistical algorithms and LLM-
based approaches (Section 4.3). Lastly, our vari-
able proposal component is more effective com-
pared to prompt-based baselines (Section 4.4).

Primary contributions of IRIS are as follows: 1)

We introduce an automatic sample collection and
value extraction component that significantly re-
duces the manual labor for data collection in causal
discovery tasks. 2) We propose a hybrid causal
discovery method that leverages existing causal re-
lations and uncovers novel causal relations. Our
method permits cycles in causal graphs, thus re-
laxing the acyclicity assumption. 3) We develop a
missing variable proposal component that identifies
new variables that may have causal relations with
the initial variables, relaxing the causal sufficiency
assumption. 4) Experimental results demonstrate
that IRIS consistently outperforms its baselines,
with each component of IRIS also surpassing cor-
responding baselines.

2 Background

Causal discovery focuses on uncovering causal rela-
tions within a set of variables. Given a pair of vari-
ables (X,Y ), the objective is to determine whether
X ← Y , Y ← X , or no causal influence between
them, where ← denotes causal direction. A key
distinction between causal discovery and relation
extraction in NLP is that causal discovery can re-
veal unknown causal relations, whereas relation
extraction focuses on transforming relations in free
text into structured relational tuples.

Although randomized controlled trials and A/B
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testing are the gold standard for causal discovery
(Fisher, 1935), these experimental approaches are
often impractical due to ethical or financial limita-
tions. Thus, researchers turn to rely on statistical
analysis of observational data to infer causal rela-
tions.

Statistical approaches to causal discovery can be
broadly classified into: constraint-based methods,
such as Peter and Clark (PC) (Spirtes et al., 2000)
and inductive causation (IC) (Pearl, 2009); score-
based methods (Heckerman et al., 1995; Chicker-
ing, 2002; Koivisto and Sood, 2004; Mooij et al.,
2016); and functional methods (Shimizu et al.,
2006; Hyvärinen et al., 2010). These methods em-
ploy statistical measures from observational data
to construct causal graphs but have notable limi-
tations. First, they require resource-intensive and
extensive data collection. Second, theoretically,
they cannot precisely identify ground-truth causal
graphs but instead yield an equivalence class of true
causal graphs (Spirtes et al., 2000; Pearl, 2009).

Furthermore, many statistical approaches, such
as PC and Greedy Equivalence Search (GES), op-
erate under assumptions. Causal sufficiency as-
sumption posits that all variables are observed and
included, neglecting the potential unobserved vari-
ables (Neal, 2020). Some algorithms, such as
Tetrad condition-based (Silva et al., 2006; Kummer-
feld and Ramsey, 2016) and high-order moments-
based approaches (Adams et al., 2021; Chen et al.,
2022) focus on only uncover specific types of un-
observed variables, such as latent confounders (i.e.,
common causes). However, our work aims to iden-
tify more general unobserved variables, includ-
ing confounders, mediators, causes, or effects of
observed variables. Acyclicity assumption states
that causal graphs contain no cycles, which allows
causal discovery to align with Bayesian network
and simplifies mathematical challenges. However,
this assumption often contradicts real-world phe-
nomena. Many causal graphs are known to con-
tain feedback loops, such as the poverty cycle:
poverty → limited access to education → low-
paying jobs→ poverty, (Banerjee and Duflo, 2012;
De Weiss and Sirkin, 2010) and the predator-prey
cycle: increase in predator population→ decrease
in prey population→ decrease in predator popula-
tion (Schmitz, 2017; Abrams, 2001). In contrast
to prior work, our causal discovery framework al-
lows for the inclusion of unobserved variables and
permits cycles within causal graphs to align with
real-world scenarios.

The advent of LLMs provides new opportunities
to address causal discovery (Kıcıman et al., 2023;
Zečević et al., 2023; Long et al., 2022). These
approaches require LLMs to determine the causal
relation between a given pair of variable names.
However, the reliability of such methods is under
scrutiny. Zečević et al. (2023) argue that LLMs
may function as "causal parrots", which depend on
memorization to recall the causal relations present
in their training data rather than infer causal rela-
tions. This raises concerns about LLMs’ gener-
alization to identify causal relations that are rare
or absent in pre-training data. Feng et al. (2024b)
presents empirical evidence that suggests while
LLMs excel at reproducing frequent causal rela-
tions in pre-training data, they struggle to uncover
novel causal relations.

In contrast to approaches that directly employ
LLMs for causal discovery, Liu et al. (2024) utilize
LLMs to extract variables and their values from
collected documents, then apply statistical meth-
ods to uncover causal relations among these vari-
ables. Our work diverges from this approach by
only taking a set of initial variables as input and
employing an automated process to collect relevant
documents. After variable value extraction, we im-
plement a hybrid causal discovery approach, which
integrate both statistical and LLM-based methods.
Furthermore, our framework is capable of identi-
fying new variables that exhibit causal relations
with the initial set, thereby enabling an iterative
process of data collection and causal discovery on
an expanded variables set. This iterative method al-
lows for a comprehensive exploration of the causal
relations surrounding the initial variables.

3 Methodology

We introduce a real-time causal discovery frame-
work, IRIS. Our method differs from prior causal
discovery algorithms in three key aspects. First,
IRIS does not rely on pre-existing observational
data; instead, it automatically collects and extracts
observational data related to the initial variables.
Second, our hybrid causal discovery component
can utilize known causal relations and uncover
novel causal relations. Third, our approach relaxes
the acyclicity and causal sufficiency assumptions.

3.1 Problem Definition

Given a set of initial variables, Z =
{z1, z2, ..., zN}, where each zi represents one
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variable, the goal of real-time causal discovery is to
automatically collect relevant unstructured data D
and extract variable values to form structured data
X, which enables the discovery of causal relations
through unstructured and structured data. After
identifying causal relations among initial variables,
the process involves identifying new variables
causally related to the initial variables, resulting
in an expanded set of variables Zm. The final
output is an expanded causal graph G = (Zm,R),
where R = {r1, ..., rl} represents the set of causal
relations.

3.2 Data Collection and Value Extraction

The first step of IRIS comprises two main steps:
collection of relevant documents and extraction of
variable values. The detailed procedure is outlined
in Algorithm 1 in Appendix A.3.
Retrieval of Relevant Documents We retrieve rel-
evant documents using the Google API 2. To max-
imize the relevance to initial variables, we create
search queries using a stepwise removal approach:
1) Begin with queries containing all variable names
(e.g., "smoking" AND "cancer" AND "pollution").
2) Progressively remove one variable (e.g., "smok-
ing" AND "cancer"). 3) Stop with single-variable
queries (e.g., "smoking"). We also use synonyms
of variables to enhance coverage. We select the top-
k retrieved documents for each query. To ensure
relevance to most variables, k is higher for queries
containing more variables. The retrieval process
continues until the total number of collected docu-
ments reaches a predefined threshold. The resulting
document set is denoted as D = {d1, .., dT }, where
di represents one document.
Extraction of Variable Values We use LLMs to
extract variable values from collected documents D.
Given an LLM M , we design a prompt l including
a document di and a description of one variable zj .
The variable description includes its name and the
meaning of its values. We guide the LLM to gen-
erate responses following multiple thinking steps,
simulating human expert reasoning, and provide
the final answer in a specific format (Lin et al.,
2024). This generation process can be denoted as
oij = M(l(di, zj)), where oij is LLM’s response
regarding the value of variable zj in document di.
We then extract the value vij from response oij .
By iterating through all variables and documents,

2https://developers.google.com/custom-search/
docs/overview

we construct a structured data X where each col-
umn represents a variable and each row represents
a document.

3.3 Hybrid Causal Discovery

We employ a hybrid causal discovery approach,
leveraging both statistical methods and LLM-based
relation extraction techniques. The detailed process
of our hybrid causal discovery method is outlined
in Algorithm 2 in Appendix A.3.
Statistical Causal Discovery For structured data
X, we employ statistical causal discovery algo-
rithms including PC (Spirtes et al., 2000), GES
(Chickering, 2003), and NOTEARS (Zheng et al.,
2018). For instance, the PC algorithm performs
conditional independence tests between variable
pairs, progressively expanding the conditioning
sets to determine the presence of causal relations.
These algorithms process structured data X to pro-
duce a causal graph Ĝs as the output.
LLM-based Causal Relation Extraction We in-
troduce a novel causal relation extraction method
inspired by causal relation verification (Si et al.,
2024; Wadden et al., 2022). We treat each potential
causal relation as a claim (e.g., "smoking causes
lung cancer") and find documents containing both
the cause and effect terms (e.g., "smoking" AND
"lung cancer"). To ensure the trustworthiness of re-
trieved documents, we restrict the search domain to
reputable academic repositories 3. We then employ
LLMs to assess whether each document supports or
refutes or not relates with the causal relation using
a carefully designed prompt. If a majority of docu-
ments support the causal relation, we incorporate it
into a causal graph Ĝv. Otherwise, it is excluded.
Graph Merging The two branches of our hybrid
method produce two causal graphs: Ĝs from statisti-
cal methods and Ĝv from the LLM-based approach.
To merge them into the final causal graph Ĝ, we
post-process the causal graph Ĝs by adding high-
confidence causal relations from Ĝv and removing
those strongly refuted by the verification process.
This merging strategy is employed for two reasons:
(1) the structured data X from the value extraction
phase might contain noise; (2) causal relations that
are widely supported or refuted by trustworthy doc-
uments can be treated as known knowledge.

3Our search is limited to the following academic website
domains: jstor.org, springer.com, ieee.org, ncbi.nlm.nih.gov,
sciencedirect.com, scholar.google.com, arxiv.org.
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3.4 Missing Variable Proposal
This step aims to identify missing variables not
included in the initial set but potentially causally
related to them, and append these to Zm, as out-
lined in Algorithm 3 in Appendix A.3.
Variable Abstraction We first use LLMs to ab-
stract missing variables from the retrieved docu-
ments D. For each document, LLMs are instructed
to analyze the content of each document, identify
variables that could influence or be influenced by
the initial variables, and then provide the most pos-
sible variable in a specified format.
Variable Selection To select the most promising
variables from all abstracted variables, we employ
a dual approach combining causal relation verifi-
cation and statistical measures. Causal Relation
Verification: Using the method described in Sec-
tion 3.3, we verify whether each new variable has a
confirmed causal relation with any initial variable.
Variables supported by the majority of documents
are added to Zm. Statistical Measure: We compute
the Pointwise Mutual Information (PMI) between
each new variable and the initial variables to quan-
tify their dependence, with higher PMI scores in-
dicating stronger potential causal association. The
PMI between two variables (zi, zj) is defined as:

PMI(zi, zj) = log
p(zi, zj)
p(zi)p(zj)

= log

o(zi,zj)
C

o(zi)
C

o(zj)
C

= log
o(zi, zj)
o(zi)o(zj)

+���logC

(1)

where o(zi, zj) is the count of documents where
(zi, zj) co-occur, o(zi) is the count where zi ap-
pears, and C is the total number of retrievable docu-
ments. Since C is constant, logC is ignored. These
counts are obtained by the Google Search API. We
compute the PMI score of each abstracted variable
with the initial variables and append the top k vari-
ables with the highest aggregate PMI scores to Zm.

With the expanded variables Zm, we can iterate
the data collection, value extraction, and causal
discovery processes to generate an expanded causal
graph G = (Zm,R) that incorporates these missing
variables and new causal relations.

4 Experiments

4.1 Evaluation of the IRIS Framework
Datasets. The initial variables are from: Cancer
(Korb and Nicholson, 2010), Respiratory Disease,

Diabetes, Obesity (Long et al., 2022), Alzheimer’s
Disease Neuroimaging Initiative (ADNI) (Shen
et al., 2020), and Insurance (Binder et al., 1997).
For more details, see Appendix A.7.
Our Method and Baselines. We employ GPT-4o
due to its superior performance across all com-
ponents of IRIS (see Sections 4.2, 4.3, and 4.4).
All prompts in IRIS are designed using the Chain-
of-Thought (CoT) (Wei et al., 2022) strategy and
incorporate retrieved documents. Detailed prompt
engineering for IRIS and baselines is provided in
Appendix A.4. For the statistical causal discov-
ery algorithms, we utilize the Greedy Equivalence
Search (GES) algorithm because it achieves the
highest average F1 score and Normalized Ham-
ming Distance (NHD) ratio across all datasets, as
demonstrated in Section 4.3.

We consider the following baselines: 0-shot re-
lies solely on a zero-shot prompt. CoT enhances
prompts through a step-by-step reasoning process,
mimicking human thought patterns. Retrieval-
Augmented Generation (RAG) (Lewis et al., 2020)
incorporates retrieved documents into CoT prompt.
Both baselines and human annotation determine
causal relations among expanded variables from
our missing variable proposal component.
Evaluation. We hire three domain experts to inde-
pendently annotate ground-truth expanded causal
graphs. Edges are included if at least two anno-
tators agree. Inter-annotator agreement is high,
with a Krippendorff’s alpha of 0.88 (Krippendorff,
2011). The detailed annotation instruction is in Ta-
ble 7 in Appendix A.5. The expanded causal graphs
are illustrated in Figures 3 - 7 in Appendix A.6. Fol-
lowing Kıcıman et al. (2023); Feng et al. (2024b),
we evaluate the results of causal discovery using
precision, recall, F1 score, and the Ratio of Nor-
malized Hamming Distance (NHD) to baseline
NHD. The ratio is defined as ratio = NHD

baseline NHD ,
where the baseline NHD is derived from the worst-
performing causal graph that has the same number
of edges as the predicted graph. A lower ratio sig-
nifies a more accurate predicted causal graph. All
results are averaged over three independent runs
per causal graph.
Experimental Results and Analysis. Table 1
demonstrates that IRIS consistently outperforms all
baselines across all datasets, achieving the highest
F1 scores and lowest NHD ratios. A paired t-test
(Ross and Willson, 2017) confirms that the perfor-
mance differences between IRIS and the baselines
(in both F1 and NHD ratio) are statistically signifi-
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Method P R F1↑ Predict Edge NHD Ratio↓
Cancer

0-shot 0.64 0.32 0.43 14 0.57
CoT 0.67 0.38 0.48 18 0.54
RAG 0.70 0.44 0.54 17 0.49
IRIS 0.89 0.57 0.70 18 0.30

Respiratory Disease
0-shot 0.67 0.36 0.47 12 0.53
CoT 0.64 0.4 0.49 12 0.51
RAG 0.64 0.45 0.53 16 0.47
IRIS 0.67 0.55 0.60 18 0.40

Diabetes
0-shot 0.70 0.46 0.56 17 0.45
CoT 0.66 0.48 0.55 16 0.46
RAG 0.73 0.47 0.57 16 0.43
IRIS 0.76 0.50 0.60 17 0.39

Obesity
0-shot 0.57 0.33 0.42 14 0.58
CoT 0.59 0.38 0.46 25 0.54
RAG 0.62 0.45 0.52 19 0.49
IRIS 0.67 0.58 0.62 21 0.38

ADNI
0-shot 0.47 0.29 0.36 17 0.64
CoT 0.46 0.31 0.37 21 0.62
RAG 0.50 0.34 0.40 19 0.60
IRIS 0.50 0.36 0.42 20 0.58

Insurance
0-shot 0.35 0.38 0.36 69 0.65
CoT 0.41 0.38 0.39 65 0.61
RAG 0.44 0.40 0.42 67 0.57
IRIS 0.61 0.46 0.53 49 0.47

Table 1: Evaluation results of the complete framework.

cant (p-value ≤ 0.05). For both the baselines and
IRIS, the variance across all metrics is below 0.05,
likely due to the consistency of the retrieved docu-
ments and the stability of GPT-4o’s responses. In
terms of precision and recall, while some baselines
(e.g., RAG in ADNI) achieve comparable preci-
sion to IRIS, none match its recall. This highlights
IRIS’s ability to uncover a greater number of true
causal relations through its hybrid causal discovery
approach. Among the datasets, ADNI exhibits the
lowest overall performance for both methods, likely
due to the inherent complexity of Alzheimer’s dis-
ease causal relations. Meanwhile, the Insurance
dataset, which contains the most complex causal
graph (expanding from 27 initial variables to 35
variables and 67 edges), showcases the scalabil-
ity of IRIS. Among the baselines, RAG performs
better than others, underscoring the effectiveness
of integrating retrieved documents with reasoning
steps for causal discovery.

4.2 Evaluation of Value Extraction

Datasets. We evaluate the value extraction compo-
nent of our method using two table-to-text datasets:

Method P R F1
AppleGastronome

COAT (GPT-4o) 0.74 0.76 0.75
IRIS (Llama) 0.71 0.72 0.71
IRIS (GPT-3.5) 0.75 0.77 0.76
IRIS (GPT-4o) 0.79 0.82 0.79

Neuropathic
COAT (GPT-4o) 0.72 0.80 0.79
IRIS (Llama) 0.76 0.82 0.79
IRIS (GPT-3.5) 0.71 0.89 0.79
IRIS (GPT-4o) 0.73 1.0 0.84

Table 2: Evaluation results of value extraction. Llama
represents Llama-3.1-8b-instruct.

AppleGastronome and Neuropathic (Liu et al.,
2024). These datasets are particularly suitable
for our task as they provide tabular data where
columns represent variables and rows represent
samples. Each row is associated with a correspond-
ing textual description. The datasets are structured
as follows: AppleGastronome contains 7 variables
and 100 samples. Variable values are -1, 0, or 1.
Neuropathic contains 7 variables and 100 samples.
Variable values are 0 or 1.
Our Method and Baselines. We utilize state-
of-the-art LLMs for our method: Llama-3.1-8b-
Instruct (Meta, 2024), GPT-3.5-turbo (OpenAI,
2022), GPT-4o (OpenAI, 2024). Additionally, we
compare our method with COAT, which also uti-
lizes an LLM to extract values of variables from
documents (Liu et al., 2024). To ensure a fair com-
parison, we use GPT-4o in both our method and
the COAT implementation.
Metrics. Given that variable values are categorical,
we frame the value extraction task as a classifica-
tion problem, predicting the value of a variable in
a given document. Therefore, we employ standard
classification metrics: precision, recall, and F1.
Experimental Results and Analysis. Table 2
presents the evaluation results of the value extrac-
tion component on the AppleGastronome and Neu-
ropathic datasets. Our method’s superior perfor-
mance with GPT-4o, compared to COAT using the
same LLM, indicates that our approach is more
effective than COAT under identical LLM. In both
datasets, we observe a consistent trend of improve-
ment from Llama-3.1-8b-Instruct to GPT-3.5, and
further to GPT-4o when using our method. This
progression aligns with the general understanding
that more advanced LLMs tend to perform better on
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complex tasks. Overall, the models perform better
on the Neuropathic dataset compared to AppleGas-
tronome. This could be attributed to the simpler
binary values of the Neuropathic dataset (values 0
or 1) compared to the ternary values in AppleGas-
tronome (-1, 0, 1). The additional complexity in
AppleGastronome might introduce more opportu-
nities for misclassification. The high performance
of GPT-4o suggests that it could be highly effective
for value extraction in our framework.

4.3 Evaluation of Causal Discovery
Datasets. We evaluate our hybrid causal discov-
ery component on: Cancer (Korb and Nichol-
son, 2010), Respiratory Disease, Diabetes, Obe-
sity (Long et al., 2022), Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) (Shen et al., 2020),
and Insurance (Binder et al., 1997). These causal
graphs are annotated by domain experts. The
ground-truth causal graphs are presented in Fig-
ure 9 in Appendix A.7.
Our Method and Baselines. In our hybrid causal
discovery, for statistical algorithms, we utilize PC
(Spirtes et al., 2000), GES (Chickering, 2003), and
NOTEARS (Zheng et al., 2018). Among the three
statistical methods, we select the one that demon-
strates the best performance for hybrid causal dis-
covery. Based on the value extraction results (see
Table 2), we use GPT-4o, which demonstrated the
best performance, as the LLM for both our method
and the baseline approaches. To illustrate how dif-
ferent LLMs affect the performance of our method,
we employ the Llama-3.1-8b-instruct model as
a counterpart. We compare our method against
several baselines: 1) Pairwise-LLM (Feng et al.,
2024b) calls LLMs for each pair of variables to
determine causal relations. 2) BFS-LLM (Jiraler-
spong et al., 2024) employs a breadth-first search
with LLMs to determine causal relations. 3) COAT
extracts values using LLMs and discovers causal
relations with the PC algorithm (Liu et al., 2024).
Metrics. We evaluate predicted causal graphs us-
ing precision, recall, F1, and NHD ratio as detailed
in Section 4.1.
Experimental Results and Analysis. The eval-
uation results of the causal discovery component
across datasets are presented in Figure 2. More
detailed are presented in Table 10 - 15 in Ap-
pendix A.8. In these results, our hybrid method con-
sistently outperforms baselines across all datasets.
This highlights the effectiveness of combining sta-
tistical algorithms with LLM-based methods.

We observe that the performance of individual
statistical algorithms (GES, NOTEARS, PC) var-
ied across datasets. PC excels in Respiratory Dis-
ease and Obesity. GES demonstrates optimal per-
formance on Diabetes and Obesity. NOTEARS
performs best on Cancer and ADNI but struggles
significantly with Diabetes and Obesity, achieving
a 0 F1 score and a 1 NHD ratio. This variation
highlights the importance of selecting statistical
algorithms based on the characteristics of the ob-
servational data, which presents a compelling area
for further research. From our experiments, both
GES and PC exhibit strong performances; how-
ever, GES outperforms PC with a 0.09 higher aver-
age F1 score and a 0.09 lower average NHD ratio.
Given these results, GES is recommended as the
primary choice when the suitability of the algo-
rithm is uncertain. When comparing the perfor-
mance of Llama-3.1-8b-instruct and GPT-4o, GPT-
4o consistently outperforms Llama-3.1-8b-instruct
across all datasets, with a particularly significant
gap observed in the ADNI dataset. We believe this
discrepancy arises because ADNI involves special-
ized knowledge that is less commonly represented
in the pre-training data of Llama-3.1-8b-instruct.

Pairwise-LLM and BFS-LLM show competi-
tive performance on simpler datasets. They per-
form well on the Cancer and Respiratory Disease
datasets. However, their performance degrades on
more complex datasets like ADNI. This suggests
that while LLMs have potential in causal discov-
ery, they may struggle with more complex causal
relations, possibly due to the lower occurrence of
such domain-specific causal relations in their train-
ing data (Feng et al., 2024b). The COAT method
yields results similar to IRIS- PC because both
approaches extract values from documents and dis-
cover causal relations through the PC algorithm.

4.4 Evaluation of Missing Variable Proposal
Datasets. Evaluating the missing variable pro-
posal component presents a unique challenge: the
ground-truth missing variables are inherently un-
known in real-world scenarios. To address this, we
simulate missing variables and assess our method’s
ability to identify them. We start with complete,
ground-truth causal graphs and remove variables
to create incomplete graphs. We employ the initial
causal graphs from Cancer, Respiratory Disease,
Diabetes, Obesity, ADNI, and Insurance. For each
causal graph, we iteratively remove one variable at
a time, creating multiple test cases per graph. We
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Figure 2: Evaluation results of causal discovery component on five datasets. A higher F1 score indicates better
performance, while a lower NHD ratio reflects better performance. VCR refers to verified causal relations that are
extracted from relevant academic documents and validated by LLMs. "Llama" refers to the use of the Llama-3.1-8b-
instruct model as a substitute for GPT-4o in our method.

then apply our missing variable proposal compo-
nent to these incomplete graphs, aiming to identify
the removed variables.

Our Method and Baselines. For our method and
the baseline, we use GPT-4o as the primary LLM.
To assess the impact of different LLMs, we also
replace GPT-4o with Llama-3.1-8b-instruct in our
method. We compare with the following baselines:
0-shot, which generates new variables using a zero-
shot prompt; CoT, which enhances the prompt with
reasoning steps; and RAG, which proposes new
variables based on retrieved documents, similar
to our method but relying solely on prompting to
select the final variables. Prompts of baselines are
provided in Appendix A.4.

Metrics. We evaluate the performance using a suc-
cess rate metric, calculated as follows: 1) For each
incomplete causal graph, we check if our method
successfully proposes the removed variable in its
final set of proposed variables Zm. 2) We count
a "success" for each correctly proposed variable.
3) The success rate is computed as: Success Rate
= Number of Successes / Total Number of Incom-
plete Graphs. For instance, in a causal graph with
five variables, we create five different incomplete
graphs by removing each variable. If our method
correctly proposes the removed variable in three
of these five graphs, the success rate would be 0.6
(=3/5). For the statistical approach, we select the
top-5 variables based on their PMI scores.

Experimental Results and Analysis. The eval-
uation results of our Missing Variable Proposal
(MVP) component are presented in Table 3. The

Method Cancer
Resp.

Disease
Diabetes Obesity ADNI Insurance

0-shot 0.40 0.25 0.50 0.25 0.25 0.22
CoT 0.40 0.50 0.50 0.75 0.25 0.30
RAG 0.60 0.75 0.75 0.75 0.38 0.41
MVP 0.80 0.75 1.00 1.00 0.50 0.59

- VCR 0.60 0.75 0.50 0.75 0.25 0.48
- Stats 0.60 0.75 0.75 1.00 0.38 0.52
↔ Llama 0.40 0.50 0.25 0.50 0.13 0.45

Table 3: Success rate of the missing variable proposal
(MVP) component. -VCR omits verified causal relation
extraction; -Stats omits statistical approaches;↔ Llama
uses Llama-3.1-8b-instruct instead of GPT-4o.

MVP method consistently outperforms other base-
lines and ablation variants across all datasets. This
demonstrates the effectiveness of combining ver-
ified causal relation extraction (VCR) with statis-
tical approach (Stats) in identifying missing vari-
ables. Ablation studies indicate that both VCR and
statistical approaches play a crucial role in enhanc-
ing the success rate of the MVP. The performance
gap between MVP and MVP↔ Llama indicates
the superior capability of GPT-4o in understanding
and reasoning about causal relations. All baselines
consistently underperform compared to our MVP,
indicating that relying solely on the textual knowl-
edge from documents and LLMs is not enough for
proposing missing variables.

5 Conclusion

In this paper, we introduce IRIS, a novel framework
that addresses several longstanding challenges in
causal discovery. By integrating automated data
collection, hybrid causal discovery methods, and a
variable proposal components, IRIS significantly
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advances our ability to uncover causal relations
in real-world scenarios. Our approach not only
reduces the reliance on extensive manual data col-
lection but also leverages existing knowledge in
order to facilitate the discovery of novel causal
relations with novel variables. Our experimental
results show that IRIS consistently outperforms
competitive baselines. Future work could aim to
enhancing the scalability of IRIS for larger and
more complex causal graphs by integrating causal
relations extracted from texts with the ones identi-
fied through statistical algorithms.

Limitations

Our approach to uncovering causal relations using
retrieved documents and LLMs has certain limi-
tations. A primary challenge is the potential bias
inherent in both the data and the LLMs. Retrieved
documents may contain sampling biases, inaccu-
racies, or incomplete coverage of causal relations.
Likewise, LLMs may inherit biases from their pre-
training data or face limitations in generalization,
potentially affecting their interpretation of causal
relationships. To mitigate these issues, we retrieve
documents from reliable academic websites, and
leverage state-of-the-art LLMs like GPT-4o.

Another limitation is that the number of queries
to the LLM grows quadratically with the number
of variables. On average, our method takes approx-
imately 15 hours to run, which is about three times
slower than the zero-shot baseline. However, all
LLM-related processes can be parallelized. For
instance, in causal relation extraction, each causal
relation can be independently queried in parallel
to determine whether the relation holds. This par-
allel processing significantly mitigates the compu-
tational overhead and ensures that the framework
remains scalable even as the number of variables
increases.

Finally, the energy consumption of LLM infer-
ence presents an environmental challenge. While
optimizing efficiency in LLM inference is an im-
portant research direction, it is beyond the scope of
this work.

Ethics Statement

We acknowledge the importance of ACL Code of
Ethics and agree with it. We ensure that our study
is compatible with the provided code.

Our work involves uncovering causal relations
using retrieved documents and LLMs, and we ac-

knowledge the ethical considerations associated
with this approach. The potential biases inherent
in both the retrieved data and the LLMs pose a sig-
nificant challenge. To mitigate these risks, we pri-
oritize retrieving data from credible sources, such
as academic publications and verified websites, to
ensure the reliability of the input data. Addition-
ally, we employ state-of-the-art LLMs, like GPT-4,
which are designed to provide high-quality and
robust outputs. However, we recognize that no
system is entirely free from bias, and users of this
framework should exercise caution in interpreting
its results.

The evaluation of our method involves hiring hu-
man experts to annotate causal graphs. We have en-
sured that the annotation process adheres to ethical
guidelines, including providing fair compensation
for their contributions. Rigorous measures have
been taken to thoroughly anonymize the causal
graphs, which do not contain any personally iden-
tifiable information or sensitive data related to the
contributors. The causal graphs were compiled
with contributions from PhD students, which may
inherently introduce biases influenced by their de-
mographic backgrounds. We advise researchers
utilizing this dataset to carefully account for these
potential biases, particularly in studies related to
AI fairness, bias, and safety.
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A Appendix

A.1 Related Work

Causal Discovery Causal discovery aims to un-
cover causal structures among variables, distin-
guishing itself from relation extraction in NLP by
revealing novel causal relations rather than merely
extracting known relations. While experimental
approaches such as randomized controlled trials
are gold standard methods(Fisher, 1935), practi-
cal limitations often necessitate statistical methods
using observational data. These include constraint-
based and score-based approaches (Spirtes et al.,
2000; Pearl, 2009; Heckerman et al., 1995). How-
ever, statistical methods face challenges in data
collection and theoretical limitations. Recent ad-
vancements in LLMs have introduced new pos-
sibilities for causal discovery without direct data
access (Kıcıman et al., 2023; Zečević et al., 2023;
Long et al., 2022). However, concerns about LLMs
functioning as "causal parrots" and their ability
to generalize to novel relations have been raised
(Zečević et al., 2023; Feng et al., 2024b). Alterna-
tive approaches, such as using LLMs for variable
proposer and combining them with statistical meth-
ods (Feng et al., 2023, 2024a; Liu et al., 2024),
have emerged. Our work builds upon these ideas,
introducing an automated document collection pro-
cess, a hybrid causal discovery method integrating
statistical and relation extraction techniques, and a
hybrid approach for new variable proposal.

Relation Extraction Relation extraction aims to
transform unstructured textual relations into struc-
tured relation tuples of the form < e1, r, e2 >,
where e1 and e2 represent entities and r denotes the
relation between them (Yang et al., 2022; Dasgupta
et al., 2018). While relation extraction can identify
cause-effect relationships from documents, it fun-
damentally differs from causal discovery in that it
relies on explicitly stated relations in texts, whereas
causal discovery can uncover novel causal relation-
ships from observational data even in the absence
of explicit textual mentions. Nevertheless, relation
extraction can serve as a complementary method
for identifying commonly known causal relations
in textual data. Several studies have focused on
extracting causal relations from natural language
texts (Balashankar et al., 2019; Bui et al., 2010;
Chang and Choi, 2006; Feng et al., 2025). The
methods for causality extraction can be divided into
pattern-based and deep learning-based approaches.
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Pattern-based methods utilize predefined linguistic
patterns to extract relevant text segments, which are
then converted into tuples using hand-crafted algo-
rithms (Garcia, 1997; Khoo et al., 2000). However,
these methods often suffer from limited coverage of
causal relations and require significant effort in pat-
tern design. Deep learning-based methods employ
neural networks to learn high-level abstract fea-
tures and representations from sentences, framing
relation extraction as a sequence-to-sequence task
(Zhao et al., 2023, 2024). While these approaches
offer improved performance, they typically require
large fine-tuning datasets and may not consistently
produce structurally correct output tuples.

A notable limitation of many relation extraction
systems is the lack of verification for extracted
relations, potentially leading to the extraction of
false or unreliable relations from untrustworthy
sources (Si et al., 2024; Wadhwa et al., 2023). Our
work addresses this issue by adopting a novel ap-
proach: instead of directly extracting causal rela-
tions from documents, we pre-create textual men-
tions of causal relations (e.g., "smoking causes lung
cancer") and employ LLMs to verify the veracity
of these relations based on relevant documents. We
consider a causal relation to hold if the majority of
documents support its veracity, thereby enhancing
the reliability of our extracted causal relations.

Claim Verification Claim verification aims to
assess the veracity of claims based on relevant doc-
uments (Bekoulis et al., 2021). This process typi-
cally encompasses several key components: claim
detection, document retrieval, veracity prediction,
and explanation generation. Research in this field
often focuses on specific aspects of the verifica-
tion pipeline. For instance, Panchendrarajan and
Zubiaga (2024) and Li et al. (2024) concentrate
on identifying check-worthy statements from large
text corpora. Others, such as Wadden et al. (2022)
and Mohr et al. (2022), prioritize veracity predic-
tion, while Wang and Shu (2023) emphasize the
importance of generating explanations for verifica-
tion outcomes. The emergence of LLMs has sig-
nificantly influenced the field, with numerous stud-
ies leveraging LLMs for claim verification through
carefully crafted prompts (Kim et al., 2024; Bazaga
et al., 2024; Asai et al., 2024). Building on these
advancements, one branch of our hybrid causal dis-
covery approach reframes causal discovery as a
causal relation verification task. We employ LLMs
to assess the veracity of causal relations based on

retrieved documents, subsequently incorporating
verified relations into a causal graph. This method-
ology bridges the gap between traditional claim
verification techniques and causal discovery, offer-
ing a novel approach to uncovering and validating
causal relations.

A.2 Reproducibility Statement

We release our code and scripts at https://
github.com/WilliamsToTo/iris. Detailed de-
scriptions of the algorithms used in each com-
ponent of our framework can be found in Ap-
pendix A.3. We provide all prompts utilized
throughout our framework in Appendix A.4. The
ground-truth causal graphs employed in our eval-
uation experiments are outlined in Appendix A.7.
Additionally, Appendix A.5 presents human anno-
tation instruction and interface for the human anno-
tation tasks involved in evaluating the expanded
causal graphs. The annotated expanded causal
graphs, alongside the predicted causal graphs, are
documented in Appendix A.6.

A.3 Algorithms

In this section, we provide detailed descriptions of
the algorithms for each component of our method.
The data collection and value extraction process is
outlined in Algorithm 1. The hybrid causal discov-
ery algorithm can be found in Algorithm 2. Finally,
the algorithm for proposing missing variables is
detailed in Algorithm 3.

A.4 Prompt Engineering Details

Prompts were designed using different strategies
and ultimately adopted the chain-of-thought (CoT)
(Wei et al., 2022) prompting approach, as shown
in Table 4. These prompts contain retrieved docu-
ment, task descriptions and stepwise instructions to
complete tasks. Then we require LLMs to output
final answer with specific format to easily extract
answers. We also tried zero-shot prompts, but it
demonstrated poor performance for value extrac-
tion, causal relation extraction, and missing vari-
able abstraction. Few-shot prompts often exceeded
the maximum input length for LLMs, as they re-
quired incorporating multiple long documents into
the prompt. In contrast, CoT prompting provided
better performance in all components.

To demonstrate that IRIS is LLM-agnostic, we
use the same prompt across all LLMs during the
evaluation. In our study, we use a separate valida-
tion set (not overlapping with test data) to compare

9412

https://github.com/WilliamsToTo/iris
https://github.com/WilliamsToTo/iris


prompts. This validation set is built using high-
confident causal relations from CauseNet (Hein-
dorf et al., 2020) with randomly paired non-causal
relations. For prompt selection, we first manually
write a pool of manually written prompts from dif-
ferent researchers, then use GPT-4 to refine these
prompts. We evaluate all human and LLM-refined
prompts on the validation set and select the prompt
that has the best performance (highest F1).

For the evaluation of the whole framework, the
prompt used in the 0-shot, CoT, and RAG baselines
is shown in Table 5. For the evaluation of the
missing variable proposal, the prompt used the 0-
shot, CoT, and RAG baselines is shown in Table 6.

A.5 Causal Relation Annotation Task for
Expanded Variables

The detailed instructions for the causal relation an-
notation task for expanded variables are presented
in Table 7. This table provides comprehensive guid-
ance to annotators on how to identify and annotate
causal relations among the given variables.

A.6 Human-annotated Causal Graphs for
Expanded Variables

The human-annotated causal graphs for expanded
variables are demonstrated in Figure 3, 4, 5, 6, 7, 8.
The statistics of human-annotated causal graphs is
presented in Table 8.

A.7 Ground-Truth Causal Graphs of Initial
Variables

The ground-truth causal graphs of initial variables
for evaluating the causal discovery component can
be found in Figure 9. Table 9 demonstrates the
statistics of initial ground-truth causal graphs with
initial variables.

A.8 Evaluation of Causal Discovery
Component

The detailed evaluation results of the causal discov-
ery component are presented in Table 10, 11, 12,
13, 14, and 15.

Algorithm 1 Document Collection and Value Ex-
traction
Require: Initial Variables Z, LLM M , threshold
T , prompt l
Document Collection
D← ∅ ▷ Initialize an empty set for collected
documents
while |D| < T do

queries ←
[(z1, z2, . . . , zn), (z1, z2, . . . , zn−1), . . . , (zi)]

▷ queries considering all variables and their
synonyms

for each q in queries do
n← 20× len(q) ▷ Determine the

number of URLs to collect
urls← google_search(q, n) ▷ Search

with query q and retrieve top-n URLs
for each url in urls do

D ← extract text from url
D← D ∪ {D} ▷ Add extracted text

to the document set
end for

end for
end while

Value Extraction
V ← Matrix of dimensions T ×N ▷ Initialize
a matrix with T rows and N columns
for each di in D do

for each zj in Z do
oij ←M(l(di, zj)) ▷ Determine value

of zj in di by LLM
vij ← extract(oij) ▷ Extract value from

LLM output
V [i][j]← vij ▷ Store the value vij in

matrix V at position (i, j)
end for

end for
Output: D,V
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Value Extraction
Given a document: {doc}

Please complete the below task.
We have a variable named ’{var}’. The value of variable ’{var}’ is True or False.
True indicates that the existence of ’{var}’ can be inferred from the document, whereas False suggests that the existence of ’{var}’ cannot be inferred from this document.
Based on the document provided, what is the most appropriate value for ’{var}’ that can be inferred?
Please form the answer using the following format.
First, provide an introductory sentence that explains what information will be discussed.
Next, list generated answer in detail, ensuring clarity and precision.
Finally, conclude the final answer of the inferred value for ’{var}’ using the following template:
The value of ’{var}’ is ____.

Causal Relation Verification
Given a document: {doc}

Please complete the below task.
We have a claim: ’{claim}’. We need to check the veracity of this claim. The value of veracity is True or False or Unknown.
True indicates that the given document supports this claim,
False indicates that the given document refutes the claim.
Unknown indicates that the given document has no relation to the claim.
Please form the answer with a logical reasoning chain according to the following format.
First, provide an introductory sentence that explains what information will be discussed.
Next, list the logical reasoning chain in detail, ensuring clarity and precision.
Finally, conclude the veracity of claim ’{claim}’ using the following template:
The veracity of claim ’{claim}’ is ___.

Missing Variable Abstraction
Given a document: {doc}

Please complete the below task.
We have some given variables: ’{initial_variables}’.
What are the high-level variables in the provided document that have causal relations to variables in the given variable set?
Please form the answer using the following format.
First, propose as many variables as possible that have causal relationships with the given variables, based on your understanding of the document.
Please ensure these proposed variables are different from the ones already provided.
Next, refine your list of candidate variables by reducing semantic overlap among them and shortening their names for clarity.
Finally, determine the most reliable variable candidate as the final answer using the template provided below:
The new abstracted variable is <var>____</var>.

Table 4: The prompts used in IRIS, where doc indicates the content of a document, claim refers to a causal relation
(e.g., smoking causes lung cancer).
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0-shot
The task is to determine the cause-effect relation between two variables.
The variables are: variable1 and variable2.
Your answer should be one of the following:
variable1 → variable2 (if variable1 causes variable2)
variable1 ← variable2 (if variable2 causes variable1)
No causal relation (if there is no clear cause-effect relationship)

Let’s provide a step-by-step process to analyze the relation between them,
then provide your final answer using the following format:
The final answer is: variable1 → variable2 or variable1 ← variable2 or No causal relation

CoT
The task is to determine the cause-effect relation between two variables.
The variables are: variable1 and variable2.
Your answer should be one of the following:
variable1 → variable2 (if variable1 causes variable2)
variable1 ← variable2 (if variable2 causes variable1)
No causal relation (if there is no clear cause-effect relationship)

Let’s analyze the relation through the following steps:
First, briefly describe each variable and its typical behavior.
Second, does one variable naturally precede the other in time or logic?
Third, are there common confounders or external factors that could explain the relationship?
Finally, provide your final answer in the following format:
The final answer is: variable1 → variable2 or variable1 ← variable2 or No causal relation

RAG
Analyze the relevant information from the retrieved document:
doc
The task is to determine the cause-effect relation between two variables.
The variables are: variable1 and variable2.
Your answer should be one of the following:
variable1 → variable2 (if variable1 causes variable2)
variable1 ← variable2 (if variable2 causes variable1)
No causal relation (if there is no clear cause-effect relationship)

Let’s analyze the relation through the following steps:
First, briefly describe each variable and its typical behavior.
Second, does one variable naturally precede the other in time or logic?
Third, does the retrieved document provide any information that explains the relationship?
Finally, provide your final answer in the following format:
The final answer is: variable1 → variable2 or variable1 ← variable2 or No causal relation

Table 5: The prompt used in the baselines for evaluation of expanded causal graphs.
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0-shot
The task is to identify new variables that are causally related to the given variables.
Given variables: variables
Follow a step-by-step approach to analyze the given variables and determine relevant causal relationships.
Then, present your final answer in the following format:
Proposed variables: [variable1, variable2, ...]

CoT
The task is to identify new variables that are causally related to the given variables.
Given variables: variables
Let’s break this down step by step to systematically analyze the given variables and determine relevant causal relationships:
First, understand the given variables.
Second, propose potential direct causes and effects associated with the given variables.
Third, verify that the proposed variables align with real-world causal structures.
Finally, present your final answer in the following format:
Proposed variables: [variable1, variable2, ...]

RAG
Given a document: doc
The task is to identify new variables that are causally related to the given variables.
Given variables: variables
Let’s break this down step by step to systematically analyze the given variables and determine relevant causal relationships:
First, understand the given variables.
Second, propose potential direct causes and effects associated with the given variables based on the information in the given document.
Third, verify that the proposed variables align with real-world causal structures.
Finally, present the most reliable variable candidates as the final proposed variables in the following format:
Proposed variables: [variable1, variable2, ...]

Table 6: The prompt used in the baselines to evaluate the missing variable proposal.
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Causal Relation Annotation Task

Task overview:
Your task is to identify and annotate causal relations among a set of variables. A causal relation exists when one variable directly influences another.

Instructions:
1. Consider each pair of variables and determine if there is a direct causal relationship between them.
2. If you believe variable A causes variable B, indicate this as: A → B
3. Be cautious of confusing correlation with causation. Only mark a relationship if you believe there is a direct causal link.
4. Consider the direction of causality carefully. For example, "Obesity → Heart Failure" suggests obesity causes heart failure, not the other way around.
5. It’s okay to have multiple causes for a single effect, or multiple effects from a single cause.
6. Not all variables will necessarily have causal relationships with others.
7. Use your best judgment based on available knowledge and logical reasoning.

Examples:
lifestyle -> obesity
heart defect -> cardiac output
genetic disorder -> heart defect

Submission:
Please submit your annotations as a list of causal relations in the format: Variable A -> Variable B
Thank you for your careful consideration of this task!

Task 1: Cancer

Variables:
pollution
smoker
cancer
x-ray
dyspnoea
air quality
education
health issues
toxicity
chronic illness
covid-19
inflammation
respiratory issues
immunity
carcinogens
early detection

Causal Relations:
...

Table 7: Instructions and interface of causal relation annotation task.
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(a) IRIS

(b) Human

Figure 3: Illustration of expanded causal graphs for Cancer. Squared nodes represent initial variables, while round
nodes denote new proposed variables.
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(a) IRIS

(b) Human

Figure 4: Illustration of expanded causal graphs for Respiratory Disease. Squared nodes represent initial variables,
while round nodes denote new proposed variables.
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(a) IRIS

(b) Human

Figure 5: Illustration of expanded causal graphs for Diabetes. Squared nodes represent initial variables, while round
nodes denote new proposed variables.
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(a) IRIS

(b) Human

Figure 6: Illustration of expanded causal graphs for Obesity. Squared nodes represent initial variables, while round
nodes denote new proposed variables.
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(a) IRIS

(b) Human

Figure 7: Illustration of expanded causal graphs for ADNI. Squared nodes represent initial variables, while round
nodes denote new proposed variables.
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(a) IRIS

(b) Human

Figure 8: Illustration of expanded causal graphs for Insurance.

9423



(a) Respiratory Disease (b) Diabetes (c) Obesity

(d) Cancer (e) Alzheimer’s Disease Neuroimaging Initiative (ADNI)

(f) Insurance

Figure 9: The ground-truth causal graphs from original sources (Hernán et al., 2004; Long et al., 2022; Shen et al.,
2020; Korb and Nicholson, 2010; Binder et al., 1997).
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Algorithm 2 Hybrid Causal Discovery

Require: Initial variables Z, LLM M , structured
data X, prompt l, hyperparameters α, β
Statistical Causal Discovery
Ĝs ← causal_discovery_alg(X) ▷ Apply causal
discovery algorithms (e.g., PC algorithm)

Causal Relation Verification
Ĝv ← causal graph with no edges
remove_edges← ∅
for each zi in Z do

for each zj in Z do
if zi ̸= zj then

r ← "zi causes zj"
veracityr ← ∅ ▷ Initialize the

veracity list for relation r
for each d in Dzi,zj do ▷ Dzi,zj

denotes documents containing both zi and zj
verd ←M(l(r, d)) ▷

Determine the veracity of r based on document
d

veracityr ← veracityr ∪
{verd}

end for
if veracityr.count(True) > α ×

len(veracityr) then
Ĝv ← Ĝv ∪ {r} ▷ Add relation r

to the causal graph Ĝv
else if veracityr.count(False) >

β × len(veracityr) then
remove_edges ←

remove_edges ∪ {r}
end if

end if
end for

end for

Merge Ĝs and Ĝv
for each edge r in Ĝv do
Ĝs ← Ĝs ∪ {r} ▷ Add relation r to Ĝs

end for
for each edge r in remove_edges do
Ĝs ← Ĝs \ {r} ▷ Remove relation r from Ĝs

if it exists
end for
Ĝ ← Ĝs ▷ The final merged causal graph
Output: Ĝ

Algorithm 3 Missing Variable Proposal

Require: Initial variables Z, LLM M , collected
documents D, prompt l, hyperparameter α
Step 1: Abstract Missing Variable Candidates
Zc ← ∅ ▷ Initialize the set of candidates
for each document d in D do

z←M(l(Z, d)) ▷ Abstract a candidate
variable from document d

Zc ← Zc ∪ {z}
end for

Step 2: Missing Variable Proposal Based on
Verified Causal Relations
Zm ← ∅ ▷ Initialize the set of missing variables
for each variable zi in Zc do

for each given variable zj in Z do
r1 ← "zi causes zj"
veracityr1 ← ∅ ▷ Initialize the veracity

list for relation r1
for each document d in Dzi,zj do ▷

Dzi,zj denotes documents containing both zi and
zj

verd ←M(l(r1, d)) ▷ Determine
the veracity of r1 based on document d

veracityr1 ← veracityr1 ∪ {verd}
end for
if veracityr1 .count(True) > α ×

veracityr1 .count(False) then
Zm ← Zm ∪ {zi} ▷ Add zi to the

set of proposed variables
end if
r2 ← "zj causes zi" ▷ Repeat the

process for the reverse causal relation
end for

end for

Step 3: Missing Variable Proposal Based on
Statistical Methods
S← ∅ ▷ Initialize a set for PMI scores
for each variable zi in Zc do

si ← ∅
for each given variable zj in Z do

sij ← PMI(zi, zj) ▷ Compute PMI of
(zi, zj) by Equation 1

si ← si ∪ {sij}
end for
S← S ∪ {∑(si)} ▷ Aggregate the PMI

scores for zi
end for
Zm ← Zm ∪ top-k(S,Zc) ▷ PMI scores
Output: Zm
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Causal Graph Node Edge
Cancer 16 28
Respiratory Disease 13 22
Diabetes 15 26
Obesity 14 25
ADNI 18 27
Insurance 35 67

Table 8: Statistics of human-annotated causal graph for
expanded variables.

Causal Graph Node Edge
Cancer 5 4
Respiratory Disease 4 5
Diabetes 4 5
Obesity 4 5
ADNI 8 7
Insurance 27 52

Table 9: Statistics of ground-truth causal graph for ini-
tial variables.
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Cancer (5 nodes, 4 edges)
Method Precision Recall F1↑ # of predicted edges NHD Ratio↓
Pairwise-LLM 0.75 0.75 0.75 4 0.25
BFS-LLM 0.6 0.75 0.67 5 0.33
COAT 0.13 0.25 0.17 8 0.83
IRIS- GES 0.25 0.5 0.33 8 0.67
IRIS- NOTEARS 1.0 0.25 0.4 1 0.6
IRIS- PC 0.14 0.25 0.18 7 0.82
IRIS- VCR 1.0 0.75 0.86 3 0.14
IRIS (Llama) - NOTEARS+VCR 0.375 0.75 0.5 8 0.5
IRIS- NOTEARS+VCR 1.0 0.75 0.86 3 0.14

Table 10: Evaluation results of causal discovery on cancer graph. VCR refers to verified causal relations that are
extracted from and validated by relevant academic documents. "Llama" refers to the use of the Llama-3.1-8b-instruct
model as a substitute for GPT-4o in our method.

Respiratory Disease (4 nodes, 5 edges)
Method Precision Recall F1↑ # of predicted edges NHD Ratio↓
Pairwise-LLM 1.0 0.6 0.75 3 0.25
BFS-LLM 0.67 0.4 0.5 3 0.5
COAT 1.0 0.8 0.89 4 0.11
IRIS- GES 1.0 0.8 0.89 4 0.11
IRIS- NOTEARS 1.0 0.2 0.33 1 0.67
IRIS- PC 0.83 1.0 0.91 6 0.09
IRIS- VCR 1.0 0.8 0.89 4 0.11
IRIS (Llama) - PC+VCR 1.0 0.8 0.89 4 0.11
IRIS- PC+VCR 0.83 1.0 0.91 6 0.09

Table 11: Evaluation results of causal discovery on respiratory disease graph.

Diabetes (4 nodes, 5 edges)
Method Precision Recall F1↑ # of predicted edges NHD Ratio↓
Pairwise-LLM 0.67 0.4 0.5 3 0.5
BFS-LLM 0.67 0.4 0.5 3 0.5
COAT 0.25 0.2 0.22 4 0.78
IRIS- GES 0.5 0.6 0.55 6 0.45
IRIS- NOTEARS 0 0 0 0 1.0
IRIS- PC 0.25 0.2 0.22 4 0.78
IRIS- VCR 1.0 0.2 0.33 1 0.67
IRIS (Llama) - GES+VCR 0.67 0.4 0.5 3 0.5
IRIS- GES+VCR 1.0 0.6 0.75 3 0.25

Table 12: Evaluation results of causal discovery on diabetes graph.
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Obesity (4 nodes, 5 edges)
Precision Recall F1↑ # of predicted edges NHD Ratio↓

Pairwise-LLM 0.83 1.0 0.91 6 0.09
BFS-LLM 0.6 0.6 0.6 5 0.4
COAT 0.25 0.2 0.22 4 0.78
IRIS-GES 0.25 0.2 0.22 4 0.78
IRIS- NOTEARS 0 0 0 2 1.0
IRIS- PC 0.25 0.2 0.22 4 0.78
IRIS- VCR 1.0 1.0 1.0 5 0
IRIS (Llama) - PC+VCR 0.83 1.0 0.91 6 0.09
IRIS- PC+VCR 1.0 1.0 1.0 5 0

Table 13: Evaluation results of causal discovery on obesity graph.

ADNI (8 nodes, 7 edges)
Method Precision Recall F1↑ # of predicted edges NHD Ratio↓
Pairwise-LLM 0.5 0.14 0.22 2 0.78
BFS-LLM 0.33 0.14 0.2 3 0.8
COAT 0.11 0.14 0.13 9 0.87
IRIS- GES 0.08 0.14 0.11 12 0.89
IRIS- NOTEARS 0.33 0.14 0.2 3 0.8
IRIS- PC 0.11 0.14 0.13 9 0.87
IRIS- VCR 0.4 0.29 0.33 5 0.67
IRIS (Llama) - NOTEARS+VCR 0.08 0.14 0.11 12 0.89
IRIS- NOTEARS+VCR 0.38 0.43 0.4 8 0.6

Table 14: Evaluation results of causal discovery on ADNI graph.

Insurance (27 nodes, 52 edges)
Method Precision Recall F1↑ # of predicted edges NHD Ratio↓
Pairwise-LLM 0.37 0.34 0.35 58 0.68
BFS-LLM 0.33 0.24 0.28 41 0.76
COAT 0.38 0.37 0.37 53 0.65
IRIS- GES 0.41 0.47 0.44 37 0.58
IRIS- NOTEARS 0.28 0.40 0.32 33 0.71
IRIS- PC 0.31 0.40 0.35 31 0.69
IRIS- VCR 0.4 0.29 0.33 35 0.67
IRIS (Llama) - GES+VCR 0.43 0.49 0.46 43 0.55
IRIS- GES+VCR 0.58 0.53 0.55 47 0.45

Table 15: Evaluation results of causal discovery on Insurance graph.
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