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Abstract

Fine-tuning is widely recognized as a crucial
process for aligning large language models
(LLMs) with human intentions. However, the
substantial memory requirements associated
with fine-tuning pose a significant barrier to
extending the applicability of LLMs. While
parameter-efficient fine-tuning can be a promis-
ing approach by reducing trainable parame-
ters, intermediate activations still need to be
cached to compute gradients during the back-
ward pass, thereby limiting overall memory
efficiency. In this work, we propose Saliency-
Guided Gradient Flow (SAGE), a memory-
efficient fine-tuning method designed to mini-
mize the memory specifically associated with
cached intermediate activations. The key strat-
egy is to selectively cache activations based
on their saliency during the forward pass and
then use these activations for the backward pass.
This process transforms the dense backward
pass into a sparse one, thereby enhancing mem-
ory efficiency. To verify whether SAGE can
serve as an efficient alternative for fine-tuning,
we conduct comprehensive experiments across
diverse fine-tuning scenarios and setups. The
experimental results show that SAGE substan-
tially improves memory efficiency without a
significant loss in accuracy, highlighting its
broad value in real-world applications1.

1 Introduction

Large language models (LLMs) have demonstrated
their versatility across a wide range of research
and industrial fields. Their ability to generalize
across diverse tasks and transfer knowledge across
domains makes them essential for solving complex
problems. To ensure that LLM behaviors align with
human intentions and the specific requirements of
downstream tasks, fine-tuning plays a crucial role.
However, this fine-tuning process poses significant

1Our code is available at https://github.com/
yeachan-kr/sage
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Figure 1: Accuracy-Memory trade-off for baselines and
ours on Physical Interaction Question Answering task.

challenges due to the enormous memory demands
it imposes (Zhao et al., 2024; Miles et al., 2024),
rendering the process resource-intensive and often
inaccessible without substantial infrastructure.

One promising approach to these challenges is
parameter-efficient fine-tuning (PEFT) (Houlsby
et al., 2019; Hu et al., 2021), which updates only a
subset of parameters instead of the entire set. As op-
timizer states for trainable parameters occupy a sig-
nificant portion of memory, PEFT can substantially
reduce memory usage by limiting the trainable pa-
rameters. However, regardless of which parameters
are trainable, fine-tuning still requires caching all
intermediate sequential activations to calculate the
gradients during the backward pass, thereby limit-
ing overall memory efficiency (Sung et al., 2022;
Simoulin et al., 2024). Moreover, unlike other fac-
tors (e.g., optimizers, model weights), the memory
consumption from intermediate activations can in-
crease significantly depending on the task and setup
(e.g., document understanding), posing a potential
bottleneck to the broader applicability of LLMs.

In this work, we raise the key research ques-
tion: Do LLMs truly need all sequential activa-
tions to learn the desired task during the backward
pass? Prior studies have found that intermediate
activations exhibit significant redundancy (Etha-
yarajh, 2019; Dai et al., 2020), indicating that less
contributing activations have a negligible impact
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on task objectives (Goyal et al., 2020; Kim and
Lee, 2024; Fu et al., 2024). Inspired by these find-
ings, we hypothesize that a selective caching strat-
egy—retaining only the activations that contribute
significantly to the task—can achieve memory effi-
ciency without compromising task accuracy.

We propose Saliency-Guided Gradient Flow
(SAGE), a novel memory-efficient fine-tuning de-
signed to selectively cache activations based on
their saliency2 instead of storing all activations.
During the forward pass, SAGE identifies the most
contributive activations to tasks, while less signif-
icant activations are used solely for the forward
without caching. After the forward pass, the back-
ward computation is confined to the sparse back-
ward paths associated with these selectively cached
activations, resulting in reduced memory consump-
tion. Furthermore, SAGE is designed in a plug-
and-play manner, making it easily applicable to
a wide range of LLMs. This allows for seamless
integration with other efficient methods, thereby
comprehensively reducing memory costs.

To evaluate the practical benefits of our ap-
proach, we conduct comprehensive experiments
on a range of benchmarks and fine-tuning se-
tups—including instruction fine-tuning and quan-
tized fine-tuning—across models of varying scales.
The empirical results indicate that SAGE consis-
tently achieves better memory efficiency compared
to strong baselines (Figure 1). In summary, the key
contributions of this paper include the followings:

• We propose SAGE, a memory-efficient fine-
tuning designed to reduce the memory usage
associated with cached intermediate activations
based on the saliency.

• We verify that the plug-and-play nature of SAGE

allows memory-efficiency on diverse setups,
highlighting the general applicability.

• We demonstrate that SAGE substantially reduces
memory usage during fine-tuning without com-
promising task accuracy.

2 Related Work

Parameter-Efficient Fine-Tuning. Fine-tuning
all parameters is prohibitive in the era of LLMs,
which is why PEFT has received significant atten-
tion. Instead of optimizing all parameters, PEFT se-
lects a small subset of parameters or introduces low-

2Saliency measures how much each input element con-
tributes to the model’s prediction (Ding and Koehn, 2021).

rank approximating layers. For example, Houlsby
et al. (2019) and Pfeiffer et al. (2021) proposed
adapters consisting of bottleneck layers that are
only fine-tuned during training. Hu et al. (2021)
proposed LoRA, which integrates low-rank adap-
tation layers with pre-trained weights. Building
on these foundational methods, subsequent works
have explored PEFT approaches through factoriza-
tion (Liu et al., 2024), routing (Choi et al., 2023;
Kim et al., 2024), and representation tuning (Wu
et al., 2024). However, regardless of which pa-
rameters are trainable, the fine-tuning still requires
caching huge intermediate activations to compute
gradients, limiting overall memory efficiency.

Memory-Efficient Fine-Tuning. Memory-
efficient fine-tuning (MEFT) has emerged as
an important research direction. For example,
Sung et al. (2022) proposed Ladder Side Tuning
(LST) that trains side networks that utilizes the
intermediate activations from the original LLMs.
Simoulin et al. (2024) proposed TokenTune
which achieves efficiency by randomly dropping
activations for the backward. To address memory
usage from model weights, several works have
built on quantized LLMs. Dettmers et al. (2023)
introduced QLoRA, which trains 16-bit LoRA
weights on the 4-bit quantized LLMs, reducing
both model weights and optimizer states. Zhang
et al. (2024) proposed QST, a quantized version
of LST that trains 16-bit side networks with the
quantized LLMs. Several studies have explored
approximating the expensive back-propagation
through projections. Zhao et al. (2024) proposed
Galore, which projects gradients into a low-rank
space. Similarly, Miles et al. (2024) introduced
VeLoRA, which projects intermediate activations
into a low-dimensional subspace. Instead of
caching intermediate activations, Liao et al. (2024)
proposed reversible networks that recompute
activations during the backward pass. However,
these methods incur additional computational and
time costs to achieve memory efficiency.

Compared to previous works, SAGE offers dis-
tinct advantages. First, SAGE incorporates task-
specific saliency to reduce memory consumption,
optimizing the memory by focusing on the task
and individual training data. Furthermore, SAGE

achieves efficiency without additional networks
(e.g., side networks), computationally expensive
updates (e.g., projection weights), and recomputa-
tion, thereby mitigating associated overheads.
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Figure 2: Overview of SAGE. During the fine-tuning, model performs the forward pass as usual, but it caches only
the salient activations—those identified based on attentions between output and input tokens. After the forward, the
backward pass is confined to the sparse backward paths associated with these cached salient activations.

3 SAGE: Saliency-Guided Gradient Flow

In this section, we detail Saliency-Guided Gradi-
ent Flow (SAGE) for memory-efficient fine-tuning
of LLMs. The key strategy is to selectively cache
activations based on their saliency, ensuring that
gradients propagate solely through these sparse yet
crucial backward paths. We begin by revisiting the
back-propagation process and defining the objec-
tive of our method (§3.1). We then discuss how
to choose the salient activations for the backward
(§3.2) and determine the number of activations to
store (§3.3). Finally, we describe the alignment
process that reduces the discrepancy between the
dense forward pass and the sparsified backward
pass (§3.4). Figure 2 provides an overview of the
complete process.

3.1 Preliminaries and Problem Formulation
We begin by revisiting the back-propagation
through the lens of intermediate activations. For
simplicity, we illustrate the key concept of the pro-
posed method using a dense layer.

Back-propagation path Considering the dense
layer a = ω(z) = ω(hW + b) with weight W , bias
b, non-linear function ω(·), input h, pre-activation
z, and output a. The gradients with respect to W
and b when back-propagating a loss L through the
layer as follow:

εL
dW

=
εL
εa

εa

εz

εz

εW
=

εL
εa

ω→h

εL
db

=
εL
εa

εa

εz

εz

εb
=

εL
εa

ω→
(1)

This propagation process reveals that all interme-
diate activations h should be cached to calculate
the gradients of the weights, resulting in a signifi-
cant increase in memory consumption during fine-
tuning (Sung et al., 2022; Simoulin et al., 2024).

Sparsified back-propagation path In response,
our approach aims to sparsify the back-propagation
process by reducing the number of cached token ac-
tivations. We denote this reduced set of activations
as S, which comprises a set of positional indices for
the selected activations. The modified backward
path can then be represented as follows:
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=
∑

i↑S
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εai
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ω
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(2)

where the subscript for activations indicate the po-
sitional indices over the sequence. An illustrative
example of this modified propagation is shown in
Figure 3. This approach requires caching only a
smaller subset of activations S to compute gradi-
ents. Although it is possible to trace activation
positions across all operations, we empirically set
these positions on a block-by-block basis within
transformers (i.e., S1, S2, . . . , SL, where L repre-
sents the number of blocks) to avoid overheads.
Therefore, the positions of cached activations re-
main consistent across all operations within the
transformer block (e.g., self-attention, MLP).

Note that caching only a few activations poten-
tially creates a break in the backward graph due to
the chain rule. However, the residual connections
in transformers (Vaswani et al., 2017) effectively
prevent such breaks during the backward. The fol-
lowing sections detail how we construct this small
yet crucial set S during the forward pass.

ℎ "#

Forward pass

ℎ! "!#

Backward pass

Figure 3: Illustration of the sparsified backward.
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3.2 Identification of Salient Activations
To satisfy our objective (i.e., a small but contribut-
ing activation set S), we need to identify which
activations are crucial to perform the task. We draw
inspiration from a key-value cache eviction strategy
(Zhang et al., 2023), which determines the infor-
mative tokens necessary for generating subsequent
token predictions. Specifically, we leverage out-
put attention score3 between the output sequence
(i.e., generated tokens) and the input sequence (i.e.,
prompt tokens). Denoting the set of output tokens
as Y including token indices, the saliency score of
the i-th token can be derived as follows:

ui =
∑

j↑Y

H∑

h

Attnh(wj → wi) (3)

where Attnh(wj → wi) denotes the attention prob-
ability of how much the j-th token (i.e., output
token) pays attention to the i-th token with the at-
tention head h, and H denotes the number of heads
in the self-attention layer. After calculating the
scores, we normalize this by the sequence length,
i.e., ui = ui/

∑n
j=1 uj , where n is the sequence

length. Note that we omit the index of the trans-
former block for the attention matrix, as these pro-
cesses are identically performed across all blocks4.

3.3 Number of Salient Activations
Based on the saliency scores ui, we need to decide
how many activations should be cached for the
backward. We thus introduce information density-
based approach to dynamically define the number
of cached activations p as follows.

p = min
{

p ↑ {nmin, nmin+1, ..., n}
∣∣∣ (4)

p∑

i=1

usorted(i) ↓ ϑ
}

where ϑ ↑ [0, 1] is the threshold for the majority of
cumulative attention scores (i.e., density), usorted(i)
indicates the i-th highest importance score over
the sequence length n, and nmin denotes the mini-
mum number of cached activations. The number of
saliency tokens, p, is determined as the minimum
number of tokens required to preserve the major-
ity of the cumulative attention scores. However,
different examples may yield varying numbers of

3In §4.6, we show the effect of different saliency metrics.
4We provide the distribution of selected activations and its

analysis in Appendix D.

cached activations, which is not suitable for batch
processing. To accommodate this, we simply take
the maximum value of p within the current batch.
This overall process dynamically adjusts the num-
ber of activations across different layers and tasks.

We then select p number of activations to be
cached for the backward as follows:

S =
{

i ↑ {1, 2, ..., n}
∣∣∣ i ↑ Top-p(u)

}
(5)

where n is the sequence length, and Top-p(u)
returns the top p indices based on scores u. After
composing the salient activations S, we then pro-
ceed the forward pass in the next block and perform
the same procedures to compose the another S.

3.4 Forward and Backward Alignment
While SAGE caches the dominant activations for
the backward pass, the resulting gap between the
standard forward pass and the sparsified backward
pass may lead to sub-optimal convergence in fine-
tuned LLMs. To address this discrepancy, we intro-
duce an alignment process. Specifically, after pass-
ing through the pre-defined Lalign blocks—where
we perform a standard forward pass while caching
salient activations—we subsequently conduct a
sparse forward pass. In this sparse pass, only
salient tokens proceed through the blocks, while
less salient tokens bypass the forward computations
in the blocks. This process ensures that the salient
activations directly influence to the task objective,
thereby reducing the discrepancy while maintain-
ing efficiency. Notably, we apply this alignment
to the deeper blocks, as they are typically more
specialized for tasks (Rogers et al., 2021).

3.5 SAGE with Parameter-Efficient Tuning
SAGE is designed in a plug-and-play fashion, en-
abling seamless integration into various architec-
tures and methods. We integrate SAGE with the
following PEFT methods.

SAGE with LoRA For fine-tuning 16-bit preci-
sion LLMs, we combine SAGE with LoRA (Hu
et al., 2021). This combination effectively reduces
memory usage associated with optimizer states and
intermediate activations.

SAGE with QLoRA For fine-tuning quantized
LLMs, we extend SAGE to work with QLoRA
(Dettmers et al., 2023). This integration compre-
hensively reduces memory overhead from all con-
tributing factors (i.e., model weights, optimizer
states, and intermediate activations).
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4 Experiments

In this section, we evaluate the efficacy of SAGE in
the context of MEFT. In particular, we address the
following research questions:

Q1 Does SAGE offer better memory efficiency
compared to other baselines? (§4.2,§4.4)

Q2 Can SAGE be generalized to diverse fine-
tuning scenarios and setups? (§4.3, §C)

Q3 Can the efficacy of SAGE be extended to dif-
ferent scales and modalities? (§4.2, §B)

Q4 Which factors in SAGE are crucial for improv-
ing efficiency? (§4.6, §D)

4.1 Experimental Setup

Baselines We mainly compare SAGE with effi-
cient training methods for LLMs: including LoRA
(Hu et al., 2021), which is a representative PEFT
method; LST (Sung et al., 2022), which trains
small-dimensional side networks at each layer; To-
kenTune (Simoulin et al., 2024), which drops in-
termediate activations from the randomly selected
positions; and VeLoRA (Miles et al., 2024), a
projection-based method for intermediate activa-
tions. Additionally, we compare with efficient
methods for quantized LLMs: QLoRA (Dettmers
et al., 2023), which trains 16-bit low-rank adap-
tation weights on the 4-bit quantized weights of
LLMs; and QST (Zhang et al., 2024), which is the
4-bit quantized version of the LST method. Note
that, since full fine-tuning requires a large amount
of memory, we report only the results of the ef-
ficient methods, following previous work (Zhang
et al., 2024).

Datasets We evaluate each method on a wide
range of reasoning tasks. These tasks include RTE
for textual entailment (Dagan et al., 2005); SST-2
(Socher et al., 2013) for sentiment analysis; PIQA
(Bisk et al., 2020) to evaluate physical common-
sense understanding; SQA (StrategyQA) (Geva
et al., 2021) for multi-hop reasoning; CSQA (Tal-
mor et al., 2019) for commonsense reasoning; ARC
(ARCe for the easier dataset and ARCc for the chal-
lenging dataset) for multiple-choice science QA;
OBQA (OpenBook QA) (Mihaylov et al., 2018)
for multi-step and commonsense reasoning; and
WNGD (WinoGrande) (Sakaguchi et al., 2021) for
commonsense reasoning.

Implementation Details For each baseline, we
follow the recommended parameter settings (e.g.,

reduction factors, rank dimension) and use the of-
ficial implementation codes. For evaluation, we
primarily use models from the LLaMA family
(Dubey et al., 2024) with varying numbers of pa-
rameters: the LLaMA-3.2-Instruct model (3B), the
LLaMA-3.1-Instruct model (8B), and the LLaMA-
2 4-bit quantized model5 (7B, 13B). All experi-
ments are implemented in PyTorch and conducted
on NVIDIA A6000 GPUs. We use the bfloat16
as the data type for computation. Additional imple-
mentation details (e.g., learning rates, schedulers,
epochs, maximum sequence length) are provided
in Appendix A.

Metrics We report the task accuracy (%) and
memory usage (GB). Specifically, following previ-
ous work (Ardakani et al., 2024), we report the
memory usage as measured by monitoring out-
comes from nvidia-smi to capture practical mem-
ory consumption. For training time, we measure
the wall-clock time for each method. All results
are averaged over three independent runs.

4.2 Main Results

16-bit LLMs Table 1 shows the comparison re-
sults on nine reasoning benchmarks. Although
the vanilla PEFT method (i.e., LoRA) presents
strong performance, it still demands substantial
memory usage because it needs to cache all in-
termediate activations for the backward pass. In
contrast, MEFT methods significantly reduce mem-
ory usage while maintaining competitive perfor-
mance on some tasks. However, for more chal-
lenging tasks (e.g., CSQA, ARCc), MEFT methods
often show the limited performance, indicating the
failure of balancing memory usage and accuracy6.
Notably, SAGE outperforms all MEFT methods in
terms of memory efficiency across almost all setups
while maintaining performance competitive with
the vanilla PEFT method. A key factor contributing
to this result is that SAGE incorporates saliency in-
formation into its memory reduction process. This
result is in line with previous work demonstrat-
ing that incorporating task-specific features can
lead to better efficiency while preserving task accu-
racy (Liang et al., 2023; Li et al., 2024). Overall,
these results support the efficacy of the proposed
approach within the context of MEFT.

5We follow quantization setups in (Dettmers et al., 2023).
6The worse reasoning performance of the side networks for

few challenging dataset has been observed in original works
(Sung et al., 2022; Zhang et al., 2024).
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Table 1: Evaluation results for test accuracy (%) and memory usage (GB) on nine reasoning benchmarks. The best
and second-best results are highlighted in boldface and underlined, respectively.

Methods Mem. ↔ RTE SST-2 PIQA SQA CSQA ARCe ARCc OBQA WNGD AVG.↗
LLaMA-3 (3B, 16-bit)

LoRA (2021) 35.9 90.6 96.5 87.1 73.7 81.1 90.3 77.4 86.2 86.5 85.5
LST (2022) 18.7 83.4 95.8 81.7 70.1 76.5 86.4 71.4 81.9 77.5 82.6
TokenTune (2024) 21.3 87.8 96.3 84.6 71.6 74.6 85.6 74.3 84.5 75.1 81.6
VeLoRA (2024) 28.1 90.1 96.6 86.9 71.4 80.8 90.4 77.6 86.6 86.1 85.2
SAGELoRA 15.6 90.4 96.2 87.1 73.4 81.3 89.6 76.7 87.4 87.3 85.4

LLaMA-3 (8B, 16-bit)
LoRA (2021) 47.4 92.7 97.1 91.3 74.0 83.4 93.3 86.4 90.3 90.2 88.8
LST (2022) 27.4 87.9 96.2 86.8 71.1 78.5 92.1 84.9 83.2 81.3 84.7
TokenTune (2024) 36.2 91.3 95.6 89.1 72.5 76.9 92.5 81.9 85.2 88.8 86.0
VeLoRA (2024) 43.2 92.4 96.9 90.8 71.0 84.1 93.4 85.0 90.0 89.8 88.1
SAGELoRA 26.8 92.0 96.9 91.1 73.1 83.2 93.5 85.4 89.2 89.9 88.2

LLaMA-2 (7B, 4-bit Quantization)
QLoRA (2023) 28.6 89.1 96.6 83.3 66.4 82.1 84.9 64.7 79.6 82.8 81.1
QST (2024) 13.5 75.5 95.4 76.9 61.9 72.9 74.2 61.6 62.4 73.2 72.7
TokenTune (2024) 18.5 85.2 96.4 81.1 68.8 65.8 78.2 62.3 76.4 75.8 76.7
SAGEQLoRA 10.7 87.1 96.5 83.1 67.1 81.5 84.5 63.5 79.6 83.2 80.6

LLaMA-2 (13B, 4-bit Quantization)
QLoRA (2023) 46.3 90.4 97.5 87.6 75.6 84.0 90.4 79.1 86.8 84.3 86.1
QST (2024) 22.3 87.6 96.5 83.2 70.1 81.1 87.6 64.7 79.5 79.9 81.1
TokenTune (2024) 29.5 90.1 97.4 82.1 72.2 77.9 86.9 72.4 81.1 76.3 81.8
SAGEQLoRA 16.4 89.9 97.2 85.5 75.1 83.6 90.2 77.9 86.4 84.1 85.5

4-bit quantized LLMs We also evaluate SAGE

in combination with QLoRA (Dettmers et al., 2023)
to assess its efficiency in reducing memory us-
age across all components. Table 1 (rows three
and four) presents the results for quantized LLMs.
We observe a trend similar to that of the higher-
precision models: SAGE demonstrates its strength
in the quantization setting, achieving substantially
improved memory efficiency without a significant
loss in accuracy. These experimental results con-
firm the broad adaptability of SAGE, even when
applied to quantized models.

4.3 Instruction Fine-tuning

Instruction fine-tuning is an effective approach for
enhancing zero-shot and few-shot performance on
previously unseen tasks. However, since instruc-
tion fine-tuning often involves longer sequences
comprising both instructions and responses, the
fine-tuning costs can be substantial, particularly
memory usage associated with intermediate acti-
vations. To assess the overall training efficacy in
different fine-tuning setups, we train LLMs with
the efficient fine-tuning baselines and perform zero-
shot evaluation.

Setup We fine-tune the LLaMA-2 (7B) model
on the Alpaca GPT-4 dataset (Peng et al., 2023).
For zero-shot evaluation, we assess each fine-tuned
model on MT-Bench (Zheng et al., 2023), which
features 80 high-quality, multi-turn questions de-
signed to evaluate LLMs across various aspects, in-
cluding Writing, Roleplay, Reasoning, Code, Math,
Extraction, STEM, and Humanities.

Result Table 2 shows the zero-shot evaluation
results on MT-Bench. In this comparison, we
benchmark each method against vanilla pre-trained
LLMs to determine whether instruction-following
capabilities have improved after instruction fine-
tuning. Notably, training with SAGE substantially
improves performance across almost all task as-
pects, demonstrating its effectiveness in enhancing
instruction-following capabilities. Moreover, the
reduced memory consumption from SAGE supports
the superior efficiency in the instruction fine-tuning
setup. Overall results suggest that training with
SAGE can improve the instruction-following ca-
pability of LLMs with lower memory costs. In
Appendix E, we provide a few response examples
generated by the model trained with SAGE.
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Table 2: Average evaluation scores (on a scale of 0 to 10) by GPT-4 on MT-bench (Zheng et al., 2023). Memory
usage indicates the peak memory consumption during instruction fine-tuning on Alpaca GPT-4 (Peng et al., 2023).

Methods Mem. ↔ Writing Roleplay Reasoning Code Math Extraction STEM Humanities AVG.↗
LLaMA2-7B - 2.75 4.40 2.80 1.55 1.80 3.20 5.25 4.60 3.29
LoRA 46.5 6.30 5.65 4.05 1.60 1.45 4.15 6.20 6.20 4.45
LST 34.2 3.50 5.50 3.50 3.00 2.50 2.50 4.20 5.50 3.78
TokenTune 26.1 5.85 4.30 4.80 3.25 2.90 3.50 4.10 5.66 4.30
VeLoRA 38.5 5.20 5.40 4.80 4.15 3.00 4.80 3.40 5.78 4.56
SAGELoRA 22.1 6.18 7.15 3.25 1.75 1.80 2.50 6.00 7.43 4.51

4.4 Document Understanding

One of the memory-intensive tasks is document
understanding, which often entails processing ex-
amples with thousands of tokens. We thus evaluate
each baseline on these tasks to assess whether effi-
cient training methods still maintain their strength
in learning from long-context scenarios.

Setup We conduct experiments on three doc-
ument understanding datasets: 20NewsGroups
(20NG) (Lang, 1995), BBC News (Greene and Cun-
ningham, 2006), and LEDGAR (Tuggener et al.,
2020) (a part of LexGLUE (Chalkidis et al., 2022)).
We train the LLaMA-3.2 (3B) model on each
dataset and report the test accuracy.

Result Table 3 presents the evaluation results on
the aforementioned datasets. We observe that the
proposed method achieves nearly the same perfor-
mance as the vanilla LoRA method while reducing
memory usage more than 40%. Moreover, the sub-
stantial improvement over the random activation
selection approach (i.e., TokenTune) suggests that
incorporating task-specific information is crucial
in reducing the memory consumption associated
with intermediate activations.

We additionally report the memory usage across
varying sequence lengths and batch sizes. Figure 4
illustrates the memory usage when increasing the
maximum sequence length and batch size. The
results indicate that increasing these two factors
leads to a substantial rise in memory consump-
tion, primarily due to the caching of additional
intermediate activations. In this context, the pro-
posed method demonstrates superior memory effi-
ciency compared to other baselines. For example,
unlike other methods, SAGE supports fine-tuning
on datasets with sequences of up to 1k tokens on
a single GPU. Overall, these results confirm that
SAGE is a promising approach for long text under-
standing tasks.

Table 3: Test accuracy (%) on document understanding
tasks. The best and second best results are highlighted
in boldface and underline, respectively.

Methods Mem. ↔ 20NG BBC LEDGAR AVG.↗
LoRA 40.4 79.8 97.6 86.9 88.1
LST 29.6 75.4 97.2 84.8 85.8
TokenTune 28.2 76.5 96.3 85.5 86.1
VeLoRA 37.2 78.6 97.9 86.2 87.6
SAGELoRA 22.8 78.6 98.1 86.7 87.8
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Figure 4: Memory usage (GB) for varying sequence
length and batch size. Dashed lines indicate out-of-
memory (OOM) warnings on a single 48 GB GPU.

4.5 Analysis on Training Time

We evaluate the training time to comprehensively
measure potential overheads and practical effi-
ciency. Specifically, we measure the wall-clock
training time for each baseline on an NVIDIA
A6000 GPU and report the relative training time
compared to the PEFT methods (i.e., LoRA,
QLoRA). Figure 5 presents the training times for
each method. We compare two setups—16-bit
LLMs (LLaMA-3, 3B) and 4-bit quantized LLMs
(LLaMA-2, 13B)—on the PIQA dataset. The re-
sults indicate that side-tuning-based methods (i.e.,
LST and QST) achieve faster training times as they
do not require back-propagation through the origi-
nal LLMs, which is particularly beneficial for quan-
tized models. Notably, SAGE shows competitive
training times compared to side-tuning methods de-
spite involving back-propagation through the orig-
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Figure 5: Relative training times for each method com-
pared to the LoRA or QLoRA baselines.

Table 4: Test Accuracy (%) on four tasks with the
different saliency measures of activations. The best
and second best results are highlighted in boldface and
underline, respectively.

Saliency Metrics PIQA SQA CSQA RTE AVG.↗
Attention (ours) 87.1 73.4 81.3 90.4 83.1
Random 84.0 69.1 76.7 86.7 79.1
Norm 85.6 71.0 80.8 89.9 81.8
Attention + Norm 86.1 72.3 80.9 90.1 82.4

inal LLMs. This efficiency is achieved by (i) per-
forming the backward using only partial activations
(ii) the sparse forward pass for the alignment, lead-
ing to reduced training time. Overall, considering
both task accuracy and practical efficiency, these re-
sults suggest that SAGE can be a practical approach
for the efficient training of LLMs.

4.6 Ablation

Saliency Metrics To identify salient activations
during the forward pass, SAGE utilizes attention
scores from the output tokens. To explore diverse
approaches, we compare different methods for se-
lecting saleint activations: (i) Random, which ran-
domly selects intermediate activations to be cached
in each layer; (ii) Norm, which selects interme-
diate activations with the highest vector norms;
and (iii) Attention + Norm, which combines the
scores from the Norm and Attention methods. For
a fair comparison, we maintain the similar level
of memory usage by adjusting the number of ac-
tivations with the attention-based method. Table
4 presents the comparison results on four repre-
sentative datasets. We observe that the Random
method underperforms compared to all other se-
lection methods, demonstrating the importance of
selecting salient activations. Specifically, the result
suggests that attention scores are particularly help-
ful for identifying salient activations, even com-
pared to combined metrics. We leave further explo-
ration of alternative methods for future work.

Table 5: Test Accuracy (%) on two representative tasks
with the different PEFT methods. Best results are high-
lighted in boldface.

Methods Mem. PIQA CSQA

SAGE w/ LoRA 15.6 87.3 81.3
SAGE w/ Adapter 16.8 87.2 81.0
SAGE w/ IA3 16.7 87.3 80.9
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Figure 6: Test Accuracy on the PIQA and CSQA for
varying numbers of alignment layers. The gray dashed
lines indicate performance without alignment layers.

Adaptability to PEFT We primarily build the
proposed method on LoRA (Hu et al., 2021) due
to its effectiveness and simplicity. To verify the
adaptability of SAGE across different types of
PEFT methods, we evaluate its performance in
combination with other PEFT methods, including
Adapter (Houlsby et al., 2019) and IA3 (Liu et al.,
2022). The evaluation results are summarized in
Table 5. Notably, SAGE demonstrates consistent
performance across these methods, achieving com-
parable memory usage and task accuracy. These
findings underscore its general applicability to di-
verse efficient fine-tuning strategies.

Forward-Backward Alignment We have intro-
duced the forward-backward alignment to mini-
mize the discrepancy between the standard forward
pass and the sparse backward pass. To confirm the
effectiveness of this alignment process, we evaluate
the performance of SAGE with the different number
of alignment layers. Figure 6 presents the evalua-
tion results for the alignment process. The results
indicate that incorporating the alignment process
in SAGE substantially improves task performance.
In particular, aligning near half of the layers gen-
erally works across different tasks. Overall, these
results provide empirical evidence supporting the
effectiveness of the alignment process.
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5 Conclusion

In this paper, we have introduced Saliency-Guided
Gradient Flow (coined SAGE), a memory-efficient
fine-tuning method for LLMs. The core idea of
SAGE is to selectively cache the intermediate acti-
vations based on their saliency during the forward
and utilize these sparse activations for the back-
ward pass. To evaluate the training efficiency of the
proposed method, we have conducted a compre-
hensive evaluation of SAGE through the multiple
aspects—including peak memory usage, task per-
formance, and training time—as well as diverse
fine-tuning scenarios such as instruction tuning and
quantized LLMs. The results consistently demon-
strate that SAGE significantly reduces memory con-
sumption without sacrificing task accuracy. Fur-
thermore, the performance gains in both instruction
and quantized fine-tuning confirm its general appli-
cability across a wide range of fine-tuning settings.
In addition, analyses from various perspectives of
efficiency—such as training time and sensitivity to
batch and sequence lengths—highlight the practical
advantages of SAGE, achieved without incurring
additional costs in other dimensions.

Limitations

SAGE allows memory-efficient fine-tuning on di-
verse benchmarks and setups. However, several
limitations should be considered in future work.

Further Exploration for Saliency Metric SAGE

utilizes attention scores to identify salient activa-
tions. However, some efficient attention mech-
anisms do not generate explicit attention scores.
While we have shown that the norm of activations
works sufficiently well, this approach is less effec-
tive than using attention scores. Therefore, explor-
ing diverse and efficient methods for identifying
salient activations would be a promising future di-
rection. Moreover, further exploration in this direc-
tion is expected to align closely with developments
in key-value cache eviction strategies (Zhang et al.,
2023).

Number of Salient Activations In cases where
attention scores are not accessible, various methods
for determining the number of cached activations
should be considered, although one can also manu-
ally set this via hyper-parameters. We believe that
analyzing changes in activations (e.g., cosine simi-
larity between subsequent token representations or
their norms) across layers can offer valuable cues

for distinguishing salient from non-salient activa-
tions, as these changes are often linked to redun-
dancy in transformers (Goyal et al., 2020).
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Appendix
A Implementation Details

A.1 Trainable Parameters

For all methods, we adopt parameter-efficient fine-
tuning (PEFT) to reduce memory costs from op-
timizer states. Table 6 shows the ratio of train-
able parameters for each method. For methods
that utilize LoRA, we maintain the same param-
eter efficiency. For side-tuning methods, we set
the reduction factor to 8, following previous work
(Sung et al., 2022), and confirm that increasing the
reduction factor beyond 8 degrades performance
on challenging tasks.

Table 6: Trainable parameters (%) for each method,
using LLaMA-3.2 (3B) as the 16-bit model and LLaMA-
2 (7B) as the 4-bit quantized model.

Mehtods Trainable Parameters (%)

LoRA 2.19 %
LST 3.27 %
TokenTune 2.19 %
VeLoRA 2.19 %
SAGELoRA 2.19 %

QLoRA 2.36 %
QST 4.20 %
TokenTune 2.36 %
SAGELoRA 2.36 %

A.2 Hyper-parameter and Search Strategy

Table 7 presents the overall hyper-parameters of
the proposed method for each reasoning task. We
follow the hyper-parameter search steps as follows:

(i) We first determine the minimum number of
salient activations (nmin), as it has the great-
est impact on performance compared to other
SAGE parameters. The recommend value for
this parameter is the 20% of average of the se-
quence length. During this process, we set the
number of aligned layers to half of the total
layers and fix the majority percentage at 0.9.

(ii) We then adjust the majority threshold (ϑ ) in
increments of 0.5.

(iii) Lastly, we vary the number of aligned layers,
starting from the middle layers and increasing
in increments of 25% of the total layers.

For the instruction tuning on Alpaca GPT-4, we
set the number of minimum activations (nmin) as
128, the maximum sequence length as 512, the
number of aligned layers (Lalign) as 3.

B SAGE on Image Classification

Beyond the language domain, we evaluate the pro-
posed method in image processing to confirm its
generality.

Setup In these experiments, we use visual trans-
formers (Dosovitskiy, 2021) as the backbone and
conduct evaluations on two image classification
tasks: TinyImageNet (Le and Yang, 2015) and
Beans (Singh et al., 2023).

Result Table 8 presents the evaluation results
compared with baseline methods. We observe a
similar performance trend as in the language tasks:
the proposed method, SAGE, substantially reduces
memory consumption without a significant loss
in accuracy. For instance, SAGE achieves perfor-
mance comparable to LoRA while using only 60%
of the memory. These findings underscore that the
proposed fine-tuning approach can be effectively
extended to different modalities.

C SAGE on Supervised Fine-tuning

One of the most popular fine-tuning scenarios is su-
pervised fine-tuning on a human preference dataset,
which is an essential component of reinforcement
learning from human feedback (RLHF). To demon-
strate the generality of the proposed method, we
perform supervised fine-tuning for each baseline
on the HH-RLHF dataset (Bai et al., 2022), which
includes human preferences regarding model re-
sponses in terms of helpfulness and harmlessness.

Setup Following the previous work in RLHF
(Rafailov et al., 2024), we train Pythia-2.8B model
(Biderman et al., 2023) as a backbone model
through efficient training methods. We follow
the evaluation strategy outlined in the original pa-
per (Bai et al., 2022). Specifically, given ques-
tions about helpfulness and harmlessness, GPT-4 is
asked to compare the responses from each model
with the reference responses in the dataset and se-
lect the one that generates a more helpful or harm-
less response. We report the winning rate relative
to the reference responses.
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Table 7: Hyper-parameters for the proposed SAGE method across 8 datasets.

Hyper-parameter RTE SST-2 PIQA SQA CSQA ARC OBQA WNGD

ϑ 0.85 0.9 0.9 0.8 0.8 0.8 0.8 0.8
nmin 32 8 48 32 32 48 24 32
Lalign 7 7 21 21 21 14 14 7
# Epochs 6 6 6 6 6 10 6 6
Learning Rate 2 ↘ 10↓4 2 ↘ 10↓4 2 ↘ 10↓4 2 ↘ 10↓4 2 ↘ 10↓4 2 ↘ 10↓4 2 ↘ 10↓4 2 ↘ 10↓4

Batch Size 16 16 16 16 16 16 16 16
Max Length 256 256 256 256 256 256 256 256

Table 8: Test Accuracy (%) on two image classification
tasks. The best and second best results are highlighted
in boldface and underline, respectively.

Methods Mem. ↔ TinyImageNet Beans

LoRA 25.9 86.9 96.9
LST 14.8 83.6 95.9
TokenTune 18.2 85.3 96.3
SAGELoRA (ours) 16.4 86.7 96.8

Table 9: Win Rate (%) versus references in HH-RLHF
(Bai et al., 2022) dataset. Memory usage indicate the
peak memory usage when supervised fine-tuning on the
preference dataset.

Methods Mem. ↔ Win Rate (%) ↗
Pythia-2.8B - 21.8
LoRA 22.9 36.3
LST 16.2 34.5
TokenTune 15.8 35.2
SAGELoRA (ours) 15.6 36.7

D Analysis on Salient Activations

The proposed method selectively caches interme-
diate activations during training based on their
saliency. Specifically, we utilize the attention from
both the output tokens (i.e., generated tokens) and
the input tokens (i.e., prompt tokens). To qualita-
tively validate the cached activations for each task,
we visualize the selected intermediate activations
on representative tasks.

Figure 7 shows the distribution of these cached
activations (for simplicity, we present an example
with a shorter sequence length). Interestingly, we
observe a notable pattern across different tasks: the
first few tokens and the tokens near the outputs are
almost always cached across various layers. These
observations are closely related to the attention sink
phenomenon (Xiao et al., 2024), where LLMs tend

to focus heavily on the first few tokens. Building
on this previous finding, we confirm that the atten-
tion sink persists even after fine-tuning on different
tasks.

E Generation Example from SAGE

We provide a few generated examples for instruc-
tions in MT-Bench (Zheng et al., 2023), along
with the vanilla LLaMA-2 model’s responses. Ta-
ble 10 compares responses for a subset of sam-
pled instructions. The results show that, com-
pared to the model before instruction-tuning, the
model fine-tuned with SAGE demonstrates im-
proved instruction-following capabilities. For ex-
ample, in the Extraction task, while the vanilla
model understands the instruction, it fails to adhere
to specific requirements (e.g., the JSON output for-
mat). In contrast, the instruction-tuned model from
SAGE provides a more appropriate response that
follows detailed instructions. These findings sug-
gest that training with SAGE can indeed enhance
the instruction-following ability of LLMs.
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(b) Cached Activations in SST-2
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(c) Cached Activations in CSQA
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(d) Cached Activations in OBQA
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(e) Cached Activations in ARC

Figure 7: Distribution of selectively cached activations from SAGE. The darker block indicates the cached activations
on each layer.
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Table 10: Generated response according to the instructions in MT-Bench (Zheng et al., 2023).

Instruction Compose an engaging travel blog post about a recent trip to Hawaii, highlighting cultural
experiences and must-see attractions.

LLaMA-7B Sure! Here are some engaging travel blog posts about a recent trip to Hawaii: 1. Cultural
Experiences: Hawaii is rich in cultural experiences, from traditional hula dancing to luau lava
bread cooking. Explore the islands’ unique traditions and foods, and learn about the history
and culture of Hawaii. 2. Natural Wonders: Hawaii is home to some of the most stunning
natural wonders in the world, including volcanic craters, black sand beaches, and tropical
rainforests. Discover the breathtaking beauty and unique natural wonders of Hawaii on your
trip. 3. Outdoor Activities: Hawaii is a paradise for outdoor activities, with its stunning
beaches, waterfalls, and hiking trails. Go snorkeling, kayaking, or surfing, or explore the
islands’ natural wonders by taking a hike, kayak, or a swim. 4. Food and Drinks: Hawaii
is known for its delicious and flavorful food, from shrimp and lobster to poke and acake.
Sample the island’s local cuisine, and try some of the most popular beverages, including
pineapple beer, mai tai, or a hula beer. Don’t forget to take home a souvenir from Hawaii,
such as a shirt, t-shirt.

SAGELoRA Here is an engaging travel blog post about a recent trip to Hawaii: Exploring the Islands of
Hawaii: A Journey of Discovery Hawaii, the 50th state of the United States, is a beautiful
archipelago in the Pacific Ocean, composed of eight main islands.
...
In this travel blog, I will take you on a journey through Hawaii’s islands, sharing my
experiences, insights, and recommendations for anyone planning a trip to this incredible
destination. First Stop: Oahu Oahu, also known as "The Gathering Place," is the most
populous and central island in the Hawaiian archipelago.
...
The next stop on my journey was the historic town of Haleiwa,
...
The final stop on my trip was the island of Maui,
...
Overall, my trip to Hawaii was an unforgettable journey of discovery, exploration, and
adventure. I highly recommend adding Hawaii to your travel bucket list and experiencing
the beauty, culture, and hospitality of this amazing destination for yourself.

(a) Category: Writing

Instruction Picture yourself as a 100-years-old tree in a lush forest, minding your own business, when
suddenly, a bunch of deforesters shows up to chop you down. How do you feel when those
guys start hacking away at you?

LLaMA-7B It’s a great feeling, isn’t it? You’re part of something bigger and more powerful than you,
and it’s a great reminder that you can do anything you set your mind to.

SAGELoRA In this scenario, if I were to imagine myself as a 100-years-old tree in a lush forest, I would
feel a sense of loss and sadness when I see the deforesters cutting me down. The tree has
lived for a long time, and has seen many changes in the world, but now it is being destroyed,
and its existence is being threatened.

(b) Category: Roleplay
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Instruction Identify the named entities (people, organizations, locations) mentioned in the given news
article. Please generate a JSON dictionary that lists the named entities in three separate
groups based on their entity types. The key is the type of entity and the value is a list of
strings.
Yesterday, Adamson Emerson, the CEO of Faraday, and Dieter Zetsche, the CEO of Daimler
AG, announced plans to build a new Gigafactory in Berlin. The facility will be a joint
venture between Faraday and Daimler, producing electric vehicles and battery packs for
both companies, creating thousands of job opportunities in the region. Emerson and Zetsche
stated that the strategic location of Berlin, coupled with its skilled workforce and strong
infrastructure, makes it an ideal choice for expansion. The new Gigafactory aims to meet
the growing demand for electric vehicles in Europe and contribute to a sustainable future.
Volkswagen CEO Herbert Diess welcomed the news, saying greater collaboration will benefit
the auto industry’s transition to e-mobility.

LLaMA-7B The named entities (people, organizations, locations) mentioned in the given news article
are: 1. Adamson Emerson, the CEO of Faraday, and Dieter Zetsche, the CEO of Daimler
AG, announced plans to build a new Gigafactory in Berlin. The facility will be a joint
venture between Faraday and Daimler, producing electric vehicles and battery packs for both
companies, creating thousands of job opportunities in the region. ...

SAGELoRA Here is a JSON dictionary that lists the named entities in the given news article:
{ "people": [ { "type": "person", "value": [ "Adamson Emerson", "Dieter Zetsche" ] }, {
"type": "person", "value": [ "Herbert Diess" ] } ], "organizations": [ { "type": "organization",
"value": [ "Faraday", ... }}

(c) Category: Extraction

Instruction How do the stages of life shape our understanding of time and mortality?
LLaMA-7B The stages of life are a natural progression of growth and development, and they shape our

understanding of time and mortality. As we move through different stages, we gain new
experiences, perspectives, and skills, and our understanding of time and mortality changes.

SAGELoRA The stages of life can have a profound impact on our understanding of time and mortality. As
we age, our perspective on time and mortality can change significantly. Here are some ways
in which the stages of life shape our understanding of time and mortality: 1. Childhood: In
childhood, time seems to move slowly. We have endless days to play, explore, and learn. As
we grow older, we become more aware of the passage of time and the finite nature of our
lives. 2. Adolescence: During adolescence, we begin to grapple with our mortality and the
finite nature of our lives. We may experience a sense of urgency to achieve certain goals or
to make the most of our time. 3. Adulthood: In adulthood, we often experience a sense of
time pressure and a desire to make the most of our lives. We may feel a sense of urgency to
achieve certain goals or to make the most of our time. 4. Middle Age: In middle age, we
may experience a sense of mortality and a desire to make the most of our time. We may feel
a sense of urgency to achieve certain goals or to make the most of our time. 5. Old Age: In
old age, we may experience a sense of mortality and a desire to make the most of our time.
We may feel a sense of urgency to achieve certain goals or to make the most of our time.
Overall, the stages of life can shape our understanding of time and mortality in significant
ways. As we age, we become more aware of the finite nature of our lives and the importance
of making the most of our time.

(d) Category: Humanities
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