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Abstract

Human processing of idioms heavily depends
on interpreting the surrounding context in
which they appear. While large language mod-
els (LLMs) have achieved impressive perfor-
mance on idiomaticity detection benchmarks,
this success may be driven by reasoning short-
cuts present in existing datasets. To address
this, we introduce a novel, controlled con-
trastive dataset (DICE) specifically designed
to assess whether LLMs can effectively lever-
age context to disambiguate idiomatic mean-
ings. Furthermore, we investigate the influence
of collocational frequency and sentence prob-
ability—proxies for human processing known
to affect idiom resolution—on model perfor-
mance. Our results show that LLMs frequently
fail to resolve idiomaticity when it depends
on contextual understanding, and they perform
better on sentences deemed more likely by the
model. Additionally, idiom frequency influ-
ences performance but does not guarantee ac-
curate interpretation. Our findings emphasize
the limitations of current models in grasping
contextual meaning and highlight the need for
more context-sensitive evaluation.

https://github.com/mi-m1/dice

1 Introduction

Idiomatic expressions (IEs) are strange birds whose
meaning may not be straightforwardly related to
the meaning of the component words in isolation.
For example, proficient English speakers under-
stand “kick the bucket” not as “striking a metal
container”, but as “to die”. Estimates suggest that
there are 25,000 fixed expressions in English alone
(Wèinreich, 1969), and a similar estimate is quoted
for French (Gross, 1982). Notably, this figure is
comparable to the order of magnitude of individual
words in the lexicon (Jackendoff, 1997). This sug-
gests that idioms are not mere linguistic curiosities
but fundamental components of language.

Additionally, some of these expressions are am-
biguous, “potentially idiomatic expressions" (PIEs)
that can be interpreted either non-compositionally
(figuratively or idiomatically) or compositionally
(literally), depending on the context in which they
appear. Accurately identifying the meaning of a
PIE often depends on its context and is essential
for numerous downstream applications, such as
machine translation (Dankers et al., 2022; Barreiro
et al., 2013; Salton et al., 2014; Fadaee et al., 2018),
sentiment analysis (Williams et al., 2015; Liu et al.,
2017), and automatic spelling correction (Horbach
et al., 2016). Beyond these applications, under-
standing idiomatic expressions in context is also
crucial to grasp the underlying meaning of the text.

Existing datasets that feature expressions with
both literal and idiomatic usages often fail to rigor-
ously examine the role of context in disambiguating
meaning. This shortcoming arises because the lit-
eral meanings in such datasets typically result from
syntactic modifications or semantic shifts, which in-
herently disrupt the idiomaticity of the expression.
In fact, these changes in form have been deliber-
ately used as signals to disentangle and differentiate
literal from figurative meaning (Fazly et al., 2009).
For example, passivisation (2) or modification to
the expression (3) often strip the expression of its
idiomatic meaning, as shown in comparison to the
idiomatic usage in (1) (Jackendoff, 1997; Gibbs and
Gonzales, 1985; Langlotz, 2006; Kyriacou et al.,
2020)1.

(1) He kicked the bucket.

(2) The bucket was kicked by him.

(3) He kicked the tin bucket angrily.

Consequently, this allows models to exploit
surface-level differences, such as changes in gram-

1“Kick the bucket” is a classic example of a rigid idiom,
but expressions vary in flexibility; some can better tolerate
changes without losing their idiomatic meaning than others.
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matical structure or insertions, as shortcuts for de-
termining literalness, rather than relying on their
understanding of idiomaticity in context as the task
intends. This undermines the evaluation’s effective-
ness by encouraging models to use superficial cues
instead of deeper contextual comprehension.

In this paper, we address this gap by introducing
DICE (Dataset for Idiomatic Contrastive Evalua-
tion), a benchmark designed to evaluate the abil-
ity of LLMs to interpret idiomatic expressions in
context. We focus on idioms, as these figurative ex-
pressions may serve as key indicators of a model’s
linguistic understanding. Given the possibility of a
predominant sense, DICE presents idiomatic ex-
pressions in both literal and figurative contexts
and challenges models to rely on context for the
correct interpretation. This contrastive evaluation
forces models to distinguish between meanings
based solely on context, preventing them from rely-
ing on memorized idioms. We hypothesize that if
models do not depend on memorization, they will
perform equally well in both senses of a PIE.

Moreover, in human language processing, fac-
tors such as frequency (Swinney and Cutler,
1979) and familiarity (Nippold and Rudzinski,
1993), alongside context (Estill and Kemper, 1982;
Gibbs Jr et al., 1989; Gibbs and Nayak, 1989), are
known to influence idiom comprehension and pro-
cessing speed (Tabossi et al., 2009). We investigate
whether similar effects hold for language models.
Specifically, beyond contextual understanding, we
examine the influence of a language-intrinsic fea-
ture (expression frequency) and a model-intrinsic
feature (sentence likelihood) on model perfor-
mance.

Contributions (1) We present DICE, a compre-
hensive and robust evaluation dataset, containing
PIEs that occur in the same grammatical form
across both figurative and literal contexts. (2)
Through fine-grained evaluations, we find that mod-
els struggle to use context for idiomaticity process-
ing. (3) Based on frequency estimates, we find
that frequency is not a “free lunch”: whilst highly
frequent idioms may be more likely to be disam-
biguated correctly, there is a trade-off in model
performance between literal and figurative settings.
(4) For models that demonstrate some capacity for
idiomatic understanding, we observe a strong rela-
tionship between the likelihood of the contextual
sentence and idiomaticity detection performance.

2 Related Works

Idiomaticity Detection. The task of idiomaticity
sense disambiguation (ISD), or idiomaticity detec-
tion, involves evaluating whether an expression
is used literally or figuratively in a sentence (Liu
and Hwa, 2018; Salehi et al., 2014; Senaldi et al.,
2016; Gharbieh et al., 2016). This task is typically
framed as binary classification. While large lan-
guage models have achieved strong performance
on existing ISD benchmarks (Phelps et al., 2024;
Zeng and Bhat, 2021), it remains unclear whether
this reflects true contextual understanding or re-
liance on memorized surface forms (Garcia et al.,
2021b). Given the crucial role of context in resolv-
ing idiomaticity, it is essential to evaluate whether
models are genuinely interpreting surrounding text
or simply exploiting distributional cues.

Existing Datasets. The biggest dataset for
idiomatic sense disambiguation is MAGPIE
(Haagsma et al., 2020). MAGPIE contains a to-
tal of 56,622 PIE instances, across 1,756 idioms.
However, a large amount of deviation of the form
of an expression was allowed when MAGPIE was
curated. As a result, most of the literal uses of PIEs
involve modifications to the form of the expres-
sion (similar to the example in § 1). Other large
datasets targeting various types of IEs have been
released: The VNC-Tokens dataset focusing on
verb-noun combinations (Cook et al., 2008), IDIX
on verb-noun phrase or verb-prepositional phrase
expressions (Sporleder et al., 2010). SemEval-2013
has unrestricted expressions (Korkontzelos et al.,
2013), AStitchInLanguageModels contains noun
compounds (Tayyar Madabushi et al., 2021) and
more recently, IdioTS contains a mixture of expres-
sions changed and unchanged to support the literal
meaning (De Luca Fornaciari et al., 2024).

To address these problems: (1) we propose a
novel evaluation set (DICE), which strictly con-
trols the form of idiomatic expressions. This design
eliminates the possibility that models rely on gram-
matical variations for idiomaticity disambiguation.
By maintaining consistent forms across literal and
figurative contexts, DICE ensures that the chal-
lenge lies in understanding contextual nuances,
thereby providing a more accurate assessment of
a model’s idiomatic comprehension. (2) Existing
datasets typically focus on a single type of expres-
sion. We address this limitation by including both
phrasal idioms and noun compounds to provide
broader coverage of idiomatic phenomena.
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Contrastive Evaluation. This evaluation
paradigm involves comparing model outputs
on carefully constructed input pairs that differ
in minimal, controlled ways, typically along
a dimension relevant to a specific linguistic
phenomenon (Prasad et al., 2019; Garcia et al.,
2021a). Such comparisons have been found to be
particularly effective at isolating specific linguistic
competencies or revealing systematic weaknesses
in generalization and robustness (Linzen et al.,
2016; Sennrich, 2017; Robertson, 2019). Our
work adopts this approach to assess contex-
tual comprehension in idiomaticity detection.
Specifically, DICE presents potentially idiomatic
expressions in both literal and figurative uses while
holding surface form constant. This setup requires
models to rely entirely on surrounding context to
disambiguate meaning, eliminating the possibility
of exploiting shallow lexical or syntactic cues.

Memorization and Context. Pretrained lan-
guage models tend to handle IEs mainly through
memorization of stored expressions and token dis-
tributions rather than reasoning about the mean-
ing in context. This reliance on memorization be-
comes evident when models face novel noun com-
pounds. For instance, Li et al. (2022) found that
while GPT-3’s interpretations of novel compounds
closely matched human responses, its performance
faltered when tasked with interpreting nonsensical
strings, which suggests limited contextual flexibil-
ity.

Similarly, Coil and Shwartz (2023) explored
noun compound interpretation using GPT-3 and
found that, although the model performs well with
common noun compounds, its performance drops
significantly with novel compounds. This suggests
that the model relies on pre-existing knowledge for
familiar compounds, but struggles when required to
reason about unseen combinations. Supporting this
view, Cheng and Bhat (2024) found that models
sometimes perform better on idiomatic reasoning
tasks when contextual information is removed, im-
plying that context may occasionally mislead rather
than assist the model. Sun et al. (2021) further
showed that LLMs tend to use context only when
the relevant information is explicitly present. These
findings collectively raise questions about whether
current models truly engage in contextual reason-
ing or primarily depend on surface-level cues.

Figure 1: Overview of the DICE curation process. A list
of idioms is extracted from existing datasets, and GPT-4
is prompted to generate sentences using each idiom in a
literal context. Experts annotate these to form the literal
subset. Figurative examples are drawn directly from
existing datasets.

3 DICE: Dataset for Idiomatic
Contrastive Evaluation

We now describe the construction of DICE. Fig-
ure 1 shows an overview of the curation process.

Expression Selection. To build our dataset, we
compiled a comprehensive list of idiomatic ex-
pressions, focusing on both phrasal idioms and
noun compound idioms. For phrasal idioms, we
identified overlapping expressions from two estab-
lished resources: MAGPIE (Haagsma et al., 2020)
and SLIDE (Jochim et al., 2018). For noun com-
pound idioms, we selected idiomatic expressions
that appeared in both the NCTTI dataset (Garcia
et al., 2021b) and AStitchInLanguageModels (Tay-
yar Madabushi et al., 2021). We specifically fo-
cused on idiomatic noun compounds, as the mean-
ing of these expressions cannot be directly derived
from the meanings of their individual words.

We excluded compositional and partially compo-
sitional compounds, as these tend to have dominant
literal meanings that are difficult to override in
context (e.g., “skin tone” or “noble gas”). Such ex-
pressions do not present the same interpretive chal-
lenge for models, as their meanings are more di-
rectly tied to their components. By focusing solely
on non-compositional idioms, we ensure that the
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Counts Examples and Remarks

Number of Sentences (Literal) 1033 Carpenters recommend not to sand against the grain as it can damage the wood.
Number of Sentences (Figurative) 1033 Out of duty she had caved in, but it still went against the grain. (MAGPIE)
Total no. of sentences 2066 -
Number of Unique Idioms 402 -
Total Number of Expressions 402 103 noun compounds + 299 phrasal expressions
Average length of sentences (literal) 15.4 words -
Average length of sentences (figurative) 28.1 words -

Table 1: Summary statistics of the DICE dataset.

dataset tests the model’s ability to interpret figura-
tive language based on context rather than relying
on straightforward lexical composition. This se-
lection process resulted in a total of 783 unique
idiomatic expressions, comprising 680 phrasal id-
ioms and 103 idiomatic noun compounds.

Sentence Generation. We used GPT-4 (OpenAI
et al., 2024) to generate sentences where a given
idiom appears in a literal context, intentionally sup-
pressing its figurative interpretation. The specific
prompting setup we used for sentence generation
is provided in Appendix C. To determine the best
model for sentence generation, we piloted the pro-
cess using three versions: GPT-4o, GPT-4, and
GPT-3.5. The models were prompted to produce
three different sentences, where the form of the
idiom must be kept the same. Overall, we found
GPT-4 to perform the best in generating sentences
where the figurative interpretation is suppressed.
Our preference for GPT-4 aligns with the findings
of Phelps et al. (2024), which demonstrate that off-
the-shelf GPT-4 possesses relatively stronger id-
iomaticity knowledge as it performed consistently
well across idiomaticity detection tasks compared
to other off-the-shelf LLMs. In total, we obtained
2,349 sentences from GPT-4.

Expert Annotations. We recruited four experts
with at least three years of university-level expe-
rience in Linguistics, compensated at a rate of
£15/hour. The annotators reviewed each sentence
and decided whether to accept it unconditionally,
skip it, or reject it if the idiom’s figurative meaning
could not be fully suppressed. In cases of rejec-
tion, annotators provided reasons such as ambigu-
ity, figurative interpretation, change of form, or
other issues. We provide information about this
subset in Appendix B along with the briefing given
to annotators in Appendix D. If an expression was
skipped, a second annotator reviewed it to confirm
if it should be discarded. Examples of sentences
for each category are presented in Table 3. The

inter-rater agreement was high, as indicated by a
Cohen’s kappa coefficient of 0.95.

The figurative counterparts of these sentences
were sourced from MAGPIE and AStitchInLan-
guageModels. We ensure that the same number
of variants is matched between the figurative and
literal settings. In other words, if we have three
sentences containing “all hell broke loose” in lit-
eral contexts, we would extract an equal number of
sentences containing the idiom from the figurative
datasets. This ensures that the dataset is balanced
with regards to the idiomatic and literal interpreta-
tion of each expression.

3.1 Dataset Statistics

In total, DICE consists of 2,066 sentences, featur-
ing 402 expressions. A summary of its statistics
is presented in Table 1. In this paper, we only use
the subset whose literal meaning was confirmed by
the annotators. However, we release the complete
dataset, along with an additional subset that can
serve as a resource for additional analyses or for
creating even more challenging evaluation settings
(see Appendix B).

4 How Well Do LLMs Use Context for
Idiomaticity?

Using DICE, we evaluated the ability of various
language models to differentiate between literal
and figurative uses of idioms. Replicating the Id-
iomaticity Sense Disambiguation (ISD) task, we
prompted each model with a sentence containing
an idiom and asked it to classify the idiom as ei-
ther “literal” or “figurative” based on its usage in
context.

4.1 Experimental Setup.

Models. We evalute 13 models on the task of
idiomatic sense disambiguation. These models
are: GPT-4o, GPT-3.5-Turbo (Brown et al., 2020),
FLAN-T5 models in the XXL (11B), XL (3B),
Large (780M), Small (80M) sizes (Chung et al.,
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2023), Llama 2 (7B, 13B, 70B) (Touvron et al.,
2023), and Llama 3 models (incl. Llama 3.1 (405B,
8B, 70B) (Dubey et al., 2024). Additionally, we
evaluated GPT-4 (OpenAI et al., 2024), which was
used to generate the sentences. The computational
resources used are reported in Appendix E.

Prompts. We used three prompt variations (Ta-
ble 5 in Appendix E.2) that are semantically equiv-
alent but differ in surface form. This allows us
to evaluate the robustness of model predictions to
prompt phrasing. We report the mean and stan-
dard deviation across these prompts to assess per-
formance stability under variation. We also run
experiments in a few-shot setting, where an anno-
tated example (shown in the middle part of Table 5)
is prepended to each prompt.

Evaluation. To thoroughly evaluate the models’
performance, we employed three distinct evalua-
tion settings.

Accuracy includes two sub evaluations:

• Figurative Accuracy: We compute the accu-
racy of each model in correctly identifying the
figurative uses of expressions within the figu-
rative subset. Let F be the set of all figurative
instances, yi and ŷi denote the true and pre-
dicted labels, respectively.

Accuracyfig =
1

|F |
∑

i∈F
1(ŷi = yi) (1)

where

1(condition) =

{
1 if condition is true
0 otherwise

• Literal Accuracy: We assessed the accuracy
of the models in correctly identifying the literal
uses of expressions within the literal subset.
These evaluations measure the models’ abil-
ity to recognize idiomatic and literal meanings
based on context. Let L be the set of all literal
instances.

Accuracylit =
1

|L|
∑

i∈L
1(ŷi = yi) (2)

Lenient Consistency: This metric rewards the
model for consistently classifying all instances
of an expression as either literal or figurative
within a specific type. For example, if the
model correctly classifies all literal variations

of a given expression as “literal”, it earns a
point for that expression. Similarly, the model
is rewarded if it correctly identifies all figura-
tive instances of an expression as “idiomatic”.
Let E be the set of all expressions. Let Le

and Fe be the literal and figurative instances of
expression e, respectively.

C lit
e =

{
1 if ∀i ∈ Le, ŷi = yi

0 otherwise
(3)

Cfig
e =

{
1 if ∀i ∈ Fe, ŷi = yi

0 otherwise
(4)

Lenient Consistency =
1

2|E|
∑

e∈E

(
C lit
e + Cfig

e

)

(5)

Strict Consistency: This is the most stringent
evaluation. The model had to correctly identify
all variations of an expression in both figurative
and literal contexts to be rewarded. This set-
ting assumes that a truly understanding model
should correctly classify an idiom regardless of
its context. Let Ve be the set of all variations of
expression e.

Se =

{
1 if ∀i ∈ Ve, ŷi = yi

0 otherwise
(6)

Strict Consistency =
1

|E|
∑

e∈E
Se (7)

By employing these evaluation settings, we
aim to provide a comprehensive assessment of
the models’ capabilities in understanding and
differentiating idiomatic expressions. This ap-
proach helps us determine whether the models
rely on contextual understanding or memorized
patterns to perform the task.

4.2 Results

Table 2 presents the results of model perfor-
mances on our evaluation set. It is important
to note that, GPT-4 was used to generate the
sentences for DICE, so we do not consider its
performance to be revealing.

Degradation across evaluation levels. As
expected, performance declines from Accuracy
to Lenient Consistency, and further to Strict
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Model Accuracy Lenient Consistency Strict Consistency

Figurative Literal Overall Figurative Literal Overall Both Settings

ZERO-SHOT

GPT-4o 87.05 ± 3.62 87.30 ± 2.98 84.33 ± 4.44 69.49 ± 11.71 71.06 ± 6.68 70.32 ± 7.11 48.59 ± 9.75
GPT-3.5 Turbo 79.05 ± 5.01 70.02 ± 12.72 75.54 ± 7.81 82.59 ± 9.17 44.36 ± 22.28 63.47 ± 7.61 32.84 ± 15.81
Flan-T5-XXL (11B) 77.18 ± 1.40 74.91 ± 8.35 76.40 ± 4.49 63.93 ± 13.71 58.79 ± 23.16 61.36 ± 4.73 32.92 ± 6.80
Flan-T5-XL (3B) 70.48 ± 3.56 33.94 ± 26.91 59.65 ± 8.19 91.13 ± 6.97 13.02 ± 11.24 52.07 ± 3.58 9.95 ± 8.88
Flan-T5-Large (780M) 66.63 ± 0.10 3.45 ± 4.72 50.42 ± 0.53 97.68 ± 3.40 0.58 ± 0.80 49.13 ± 1.30 0.58 ± 0.80
Flan-T5-Small (80M) 0.51 ± 0.59 66.72 ± 0.07 50.13 ± 0.15 0.00 ± 0.00 100.00 ± 0.00 50.00 ± 0.00 0.00 ± 0.00
Llama 3.1 (405B) 88.63 ± 2.36 88.25 ± 3.93 88.45 ± 3.10 78.52 ± 5.61 80.02 ± 12.43 79.27 ± 3.46 60.36 ± 6.61
Llama 3 (70B) 87.72 ± 4.63 86.13 ± 7.10 87.00 ± 5.73 81.84 ± 4.00 72.64 ± 16.12 77.24 ± 7.45 57.55 ± 12.41
Llama 3 (8B) 79.27 ± 1.97 74.01 ± 2.79 76.91 ± 2.25 77.86 ± 5.18 48.76 ± 3.37 63.31 ± 1.43 33.83 ± 2.60
Llama 2 (70B) 76.28 ± 4.39 56.64 ± 17.13 69.62 ± 7.82 93.20 ± 4.75 24.54 ± 16.89 59.12 ± 5.78 21.81 ± 13.51
Llama 2 (13B) 68.99 ± 1.39 36.09 ± 3.85 58.26 ± 1.96 85.41 ± 3.56 8.37 ± 3.34 46.93 ± 2.30 5.64 ± 2.00
Llama 2 (7B) 55.51 ± 19.54 31.97 ± 24.25 51.34 ± 1.55 59.87 ± 46.26 18.08 ± 29.16 38.97 ± 8.59 1.66 ± 1.37

GPT-4 88.56 ± 2.03 88.63 ± 2.08 88.48 ± 2.18 79.02 ± 3.11 78.03 ± 4.60 78.52 ± 2.95 59.62 ± 4.67

ONE-SHOT

GPT-4o 89.43 ± 1.23 90.15 ± 1.71 89.72 ± 1.45 74.63 ± 1.99 87.40 ± 5.81 81.01 ± 1.93 63.52 ± 3.15
GPT-3.5 Turbo 79.41 ± 4.19 72.69 ± 10.87 76.70 ± 6.54 78.44 ± 8.80 49.42 ± 18.96 63.93 ± 5.92 34.16 ± 12.19
Flan-T5-XXL (11B) 10.20 ± 15.69 67.90 ± 1.91 52.79 ± 4.34 1.58 ± 2.52 99.25 ± 1.29 50.41 ± 0.61 1.49 ± 2.37
Flan-T5-XL (3B) 0.64 ± 0.80 66.71 ± 0.11 50.13 ± 0.22 0.08 ± 0.14 99.83 ± 0.29 49.96 ± 0.19 0.08 ± 0.14
Flan-T5-Large (780M) 3.28 ± 3.64 66.27 ± 0.45 50.00 ± 0.00 0.66 ± 0.76 96.93 ± 3.73 48.80 ± 1.48 0.00 ± 0.00
Flan-T5-Small (80M) 45.23 ± 39.19 35.55 ± 33.55 53.03 ± 5.25 60.78 ± 53.37 37.31 ± 54.62 49.05 ± 1.65 2.40 ± 4.16
Llama 3.1 (405B) 89.57 ± 1.80 89.54 ± 2.54 89.53 ± 2.17 79.10 ± 3.26 82.01 ± 7.85 80.56 ± 2.56 63.27 ± 4.66
Llama 3 (70B) 87.75 ± 3.76 86.97 ± 5.64 87.27 ± 4.61 78.52 ± 3.59 75.62 ± 14.01 77.07 ± 6.00 57.55 ± 10.22
Llama 3 (8B) 80.32 ± 5.33 73.81 ± 11.40 77.59 ± 7.62 79.35 ± 1.08 48.01 ± 15.70 63.68 ± 7.34 34.91 ± 13.59
Llama 2 (70B) 70.40 ± 1.19 31.44 ± 6.18 58.65 ± 2.28 96.52 ± 0.66 7.55 ± 2.75 52.03 ± 1.50 6.72 ± 2.63
Llama 2 (13B) 70.64 ± 1.15 34.20 ± 6.92 59.36 ± 2.45 94.94 ± 0.52 9.54 ± 4.14 52.24 ± 1.83 8.29 ± 3.11
Llama 2 (7B) 70.26 ± 3.14 42.18 ± 26.31 61.21 ± 9.28 80.76 ± 15.43 20.73 ± 22.25 50.75 ± 3.46 11.69 ± 10.42

GPT-4 88.52 ± 1.49 88.95 ± 2.09 88.42 ± 1.73 78.44 ± 0.76 77.94 ± 5.84 78.19 ± 2.63 58.87 ± 4.86

Table 2: Results are reported as mean ± standard deviation over 3 different prompt variants, under zero-shot (top)
and one-shot (bottom) conditions. GPT-4 is shown separately, as it generated the evaluation sentences.

Consistency. The results from the strictest eval-
uation show that, only three models—Llama
3.1, Llama 3, and GPT4o—achieve an accu-
racy above 40%, with 60.36%, 57.55%, and
48.59% respectively. This pattern highlights
that, while the current LLMs can correctly clas-
sify individual instances, they often fail to do so
consistently for both literal and figurative uses
of the same idiomatic expression. Compound-
ing this, we observe substantial standard devi-
ations across prompts, particularly for smaller
models. If the models truly relied on contex-
tual understanding, we would expect them to
perform consistently across varying levels of
consistency and remain robust to prompt vari-
ations; however, the results suggest that the
performance is highly inconsistent, and thus,
models are not effectively leveraging context.

Preference towards figurative. The general
trend for based on lenient consistency aligns
with our observation on base accuracy: mod-
els show a preference for figurative interpreta-
tions when encountering an idiom, as there is
a higher proportion of idioms that the models
can consistently predict to be figurative across

all contextual sentences than in the literal set-
ting. We observe the largest aggregate drop for
GPT-4o which indicates that GPT-4o’s high per-
formance (evidenced by a overall accuracy of
84.33 ± 4.44 in zershot evaluations) stems from
its consistency across a broad range of idioms.
However, the model lacks a deep understand-
ing of these idioms, and it is susceptible to
variations. This is illustrated by an overall Le-
nient Consistency score of 70.32 ± 7.1, which
indicates that the model can only accurately
interpret a subset of idioms consistently across
different texts. Llama 3.1 is the model with the
least performance difference across the two sub-
sets, indicating a more balanced understanding
of both figurative and literal contexts.

Mixed impact of one-shot prompting. Intro-
ducing an example improves performance for
some models—most notably GPT-4o, which
shows gains across all metrics and achieves
the highest strict consistency (63.5%). How-
ever, this improvement is not consistent: for
many models, particularly the Flan-T5 variants,
one-shot prompting offers little benefit or even
degrades performance. This likely stems from
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a task-specific issue: instead of clarifying the
task requirements, showing examples where
idiomatic expressions appear literally clashes
with the model’s prior expectations. Conse-
quently, the one-shot example creates uncer-
tainty instead of enhancing contextual under-
standing.

Summary. While larger models like GPT-4o
and Llama 3.1 (405B) show stronger overall
performance, the results reveal that idiomaticity
disambiguation, especially under consistency-
based evaluation, remains a challenging task.
The substantial drop from accuracy to strict
consistency, coupled with high variation across
prompts, suggests that models still rely heavily
on shallow heuristics rather than robust contex-
tual understanding.

5 Impact of Frequency and Sentence
Likelihood on Model Performance

This section examines how idiom frequency
and sentence likelihood impact LLM perfor-
mance. In human processing, idiom frequency
and familiarity, alongside context, influence
comprehension (Cronk et al., 1993; Levorato
and Cacciari, 1992; Schweigert, 1986; Brys-
baert et al., 2018). Similarly, in LLMs, expres-
sion frequency and sentence probability may
shape idiom detection. Exploring these factors
helps clarify how language-intrinsic and model-
intrinsic features affect performance.

As shown in Figure 2, the frequency of idioms
in DICE varies, with the majority of expres-
sions occurring fewer than 200,000 times. The
highest concentration of idioms falls within the
0 to 100,000 range. To focus on the most rele-
vant portion of the dataset, we limit our analysis
to this range to avoid skewed results.

5.1 Frequency Estimation

We use the English Web Corpus (enTenTen)
(Jakubíček et al., 2013) to approximate the fre-
quency of idioms in our dataset. This was for
two key reasons: (1) it is parsed and tagged
which allows us to query all morphological
forms of the expressions using lemmas, en-
suring comprehensive frequency counts, and
(2) its large scale 52 billion words across di-
verse genres offers a robust generalization of
natural language usage. While enTenTen is not
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Figure 2: Frequency distribution of idioms in DICE
below 200,000 counts.

identical to the pretraining datasets of LLMs,
it provides a reasonable proxy for estimating
expression frequency, as high-frequency terms
in enTenTen are likely to appear frequently in
similar web-based pretraining corpora. This
analysis helps us understand whether model
performance is affected by how often they may
have encountered each expression during train-
ing. See Appendix F for further details on how
we obtain frequency counts.

5.2 Likelihood Scores

LLMs are trained to maximize the likelihood
of their training data, learning to assign higher
probabilities to sequences that resemble those
seen during training. At inference time, these
models can assign likelihood scores to input
sentences, reflecting how typical or expected
a sentence appears under the model’s inter-
nal distribution. Recent studies have shown
that models tend to perform better, or assign
higher evaluation scores, to sentences they
deem more likely, regardless of the specific
target task or evaluation criteria (Ohi et al.,
2024; McCoy et al., 2024). In our setting, we
use sentence-level likelihood as a proxy to test
whether model performance on idiomaticity dis-
ambiguation is influenced by how probable a
sentence appears to the model. Specifically, we
ask whether models are more accurate on DICE
when the input context has high likelihood, po-
tentially indicating a preference for familiar or
prototypical constructions over true contextual
reasoning.

To analyze the relationship between sentence
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Figure 3: Frequency results of GPT-3.5 Turbo, Llama 2 (70B), Flan-T5 XL (left to right).
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Figure 4: Likelihood results from Llama 3 (8B) and Flan-T5 XXL (left to right).

likelihood and model performance, we com-
pute the likelihood of each sentence in DICE
using the standard language modeling formu-
lation. For a sentence y = [y(1), . . . , y(T )], the
likelihood is given by:

P (y) =

T∏

t=1

P (y(t) | y(<t)),

where y(<t) denotes the preceding tokens. In
practice, we compute the log-likelihood (nega-
tive cross-entropy loss) for each sentence and
use it as a proxy for model-assigned likelihood
(Appendix G).

5.3 Results

To explore the impact of these two features on
model performance, we fit a linear regression
model, with idiom frequency/likelihood as the
independent variable and the model’s accuracy
as the dependent variable. This approach al-
lows us to estimate how these two variations
influence the ability of language models to dis-
tinguish between literal and idiomatic uses.

We present the frequency results for GPT-3.5

Turbo, Llama 2 (70B) and Flan-T5 XL in Fig-
ure 3. For the likelihood analysis, we present
the results for Llama 3 (8B) and Flan-T5 XXL
in Figure 4. Results for the other models can
be found in Appendix H. These models were
chosen as they are representative of the general
patterns observed across all the models evalu-
ated.

Frequency is not a free lunch. In general,
we do not observe a consistent pattern that ac-
curacy correlates with expression frequency,
suggesting that while models may have encoun-
tered certain expressions frequently during pre-
training, they may still struggle to properly in-
terpret their idiomaticity in new contexts. No-
tably, this trend was observed in 9 out of the 13
models we analyzed. Additionally, as the fre-
quency of an expression increases, the models
tend to perform better at identifying its literal
occurrences, but their accuracy in recognizing
idiomatic uses declines. One possible explana-
tion is that for high-frequency expressions, the
model may have seen both literal and idiomatic
usages during pretraining. However, due to
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limited contextual understanding, the model
may default to interpreting these expressions
literally more often, regardless of the actual
usage; however, this hypothesis requires fur-
ther investigation. The contrasting relationship
between the two settings explains why no over-
all correlation is observed between accuracy
and frequency. Therefore, frequency does not
guarantee performance.

Likelihood ̸= Understanding. Our analy-
sis of sentence likelihoods reveals contrasting
trends across model families. In the case of
the Llama models, performance correlates pos-
itively with sentence probability. In both set-
tings, the model perform better on sentences on
which it has a higher likelihood. This is particu-
larly the case on the literal subsets, as indicated
by Llama 2 (13B) and Llama 3 (8B). For the
Flan-T5 models, we see a negative or negligible
correlation between frequency/likelihood and
performance. As seen in § 4.2, Small and Large
do not appear to have effectively utilized the
context to learn meanings as successfully as the
other models. The counter-intuitive pattern ob-
served in XL and XXL models could be due to
models being over-confident in their wrong pre-
diction. This leads to situations where model
would assign high probabilities to idiomatic
sentences but performs poorly on the idiomatic-
ity detection task, where surface-level fluency
inflates likelihood scores without supporting
deeper semantic resolution. These results show
that high likelihood does not necessarily imply
correct contextual understanding, especially for
figurative language.

6 Conclusion

In this work, we contribute to idiomaticity de-
tection in NLP with several key findings. First,
we introduce DICE, a challenging dataset for
context-dependent idiom detection, where dis-
tinguishing figurative from literal meanings re-
lies heavily on understanding context. Second,
we propose an evaluation framework that mea-
sures both overall accuracy and strict consis-
tency, requiring models to correctly identify
all figurative and literal instances of an expres-
sion across different contexts. Third, we show
that current LLMs struggle to use context ef-
fectively, highlighting the need for models that

better capture contextual nuances.

We also investigate the effects of expression
frequency and sentence likelihood. While fre-
quency can correlate with performance in some
settings, it does not guarantee accurate inter-
pretation, highlighting that surface-level expo-
sure is not a substitute for contextual reasoning.
Similarly, while some models tend to perform
better on sentences with higher likelihood, this
correlation is inconsistent across models. Over-
all, our findings highlight the limitations of
existing models in comprehending idiomatic
language and highlight the need for evaluation
settings, and model architectures, that empha-
size deep contextual understanding over mem-
orization or distributional familiarity.

7 Limitations

One of the limitations of our work is that some
idiomatic expressions are noticeably more re-
liant on the context than others. This means that
there were cases, where we could not provide
a literal counterpart to the figurative interpre-
tation. For example, the expression “set eyes
on” has such a dominant meaning of “to see”,
that the annotators believed to be impossible
to override. In these cases, we would discard
the expression. As a result, our dataset only
contains a selected sample of idioms, and we
acknowledge that this idea of contrastive evalu-
ation cannot necessarily be applied to all idioms
in a language.

Another of the limitations of our work is that
we only consider English idioms. We would
like to have extended this work to other lan-
guages, however, this relies on the existence
of idiomaticity datasets in the target languages.
Moreover, the idea of making idioms literal
might not be translatable to other languages,
where the expression’s domainant, figurative
meaning cannot be overridden.
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A Examples of Expert Annotations

We provid an example of expert annotations in
Table 3.

B Additional Annotations of DICE

The analysis we focus on in this paper uses
the main subsets of DICE. There are additional
sentences we have collected that can be used for
further analysis in the domain of idiomaticity.
A summary is presented in Table 4. We make
all annotations collected publicly available.
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Idiom Definition of the Figurative Meaning Sentence Accept Reject Reason (if reject)

smoking gun "a piece of incontrovertible evidence" The detective found a smoking gun at the crime scene. N Y Ambiguous
guilt trip "to make someone feel guilty" After breaking her mother’s vase, Sarah’s sister put her on a guilt trip for weeks. N Y Doesn’t make sense
turn a blind eye "pretend not to notice" Despite the obvious safety hazards, the supervisor chose to turn a blind eye. N Y Figurative
down the wire "a situation whose outcome is not decided until the very last minute" The electrician was careful not to cut down to the wire while he was working. N Y Form changed
set eyes on "see" As soon as she set eyes on the beach, she was overwhelmed by its serene beauty. N Y Skip

blow off steam "get rid of pent-up energy or emotion" During the train ride, the kids were excited to see the old locomotive blow off steam. Y
get a grip "begin to deal with or understand" He struggled to get a grip on the slippery glass jar of pickles. Y

Table 3: Examples of expert annotations. Definitions are taken from Ayto (2020). "N" and "Y" stands for "No" and
"Yes", respectively.

Counts Examples and Remarks

All annotated sentences 2349 This includes the aforementioned 1033 literal sentences.
Unique expressions 783 -
Ambiguous sentences 165 The panda car is a popular item in the collectible toy market.
Figurative/Idiomatic sentences 465 It was a close call when the hiker almost slipped off the cliff.
Change in Form sentences 32 She reached into the bag to find her glasses. (The idiom is "in the bag".)
Doesn’t make sense sentences 162 When the children play at the park, their parents always remind them to play it safe.
Grammatical Error sentences 9 The old locomotive runs out of steam halfway up the mountain.
Can’t be literal sentences ("skips") 462 The nurse cared for the critical patients day in, day out without a moment’s rest.
Total sentences 1295 -

Table 4: Properties of the additional annotations that we have collected.

C Sentence Generation Prompt

The prompt we used for generating the sen-
tences is shown here. For other configurations
that are not mentioned, we used the default
setting.

Model: GPT-4
"role": "system", "content": "You are an expert
of English"
"role": "user", "content": "Generate three
sentences using the expression: ’idiom’,
where the expression has a literal meaning.
Each sentence must contain the expression
unchanged. Format these sentences as a
Python list. Don’t say anything that are not the
sentences."

The temperature used was 0.8.

D Participant Briefing

Upon signing up for participation, each anno-
tator received a 30mins training session where
they were shown examples, including Table 3.

E Evaluation Implementation Details

E.1 ChatGPT Versions

We evaluate the following GPT models: GPT-
4o (gpt-4o-2024-08-06) 2, GPT-3.5-Turbo (gpt-

2https://platform.openai.com/docs/models/
gpt-4o

Figure 5: Parts of the briefing annotators received.

3_5-turbo-0125)3 and GPT-4 (gpt-4-0613)4.

E.2 Prompting Paradigm

We ran the FLAN-T5 models on a NVIDIA
H100 GPU. We use OpenAI’s API for interac-
tions with the GPT models, HuggingFace for
Flan-T5 models and Replicate 5 for the Llama
models. Each model was evaluated with three
different prompts. All of the results we report

3https://platform.openai.com/docs/models/
gpt-3.5-turbo

4https://platform.openai.com/docs/models/
gpt-4

5https://replicate.com/
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are the average across the three prompt settings.

E.3 Hyper-parameters

The hyper-parameters we used for running the
evaluation are provided in Table 6.

GPT Models Flan-T5 Models Llama 2s Llama 3s Llama 3.1

Temperature 1 - 0.7 0.7 0.6
max_tokens Default 512 512 512 512
top_p 1 - 0.95 0.95 0.9

Table 6: Hyper-parameters used for model evaluation,
sorted by model family

F Frequency Counts

We access the enTenTen corpus using
SketchEngine and employ Corpus Query Lan-
guage (CQL) to find concordances that match
specific lexical patterns.

For each target expression, we determine its
frequency in the corpus by accounting for
all lemma-based forms of the expression.
We simply slot in the lemmas of the target
expression directly into the following CQL
query pattern. For example, for the expres-
sion “spill the beans”, the CQL would be:
[lemma=“spill”][lemma=“the”][lemma=“bean”].
This would capture occurrences such as
“spilled the beans”, “spilling the beans”, and
other morphological variants. We utilize
NLTK (Bird and Loper, 2004) to perform
lemmatisation and acquire the lemmas needed
for the CQL query.

It is important to note that CQL query we use
does not account for more syntactically flexi-
ble realizations, such as passive constructions
(e.g., “the beans were spilled”), as these devi-
ate from the fixed linear ordering captured by
the CQL query. Consequently, the resulting
frequency estimates represent a conservative
measure. Nonetheless, for the purposes of cor-
relating expression frequency with downstream
model performance, we consider this approxi-
mation to be sufficiently informative.

G Sentence Likelihood

We derive the sentence likelihood by using the
cross-entropy loss. For a sequence of tokens
y = [y(1), y(2), . . . , y(T )], the sentence-level

cross-entropy loss Lsentence is defined as:

Lsentence = −
T∑

t=1

logP (y(t) | y(<t)) (8)

where y<t represents all tokens preceding the
token at position t.

Recognizing the relationship between the cross-
entropy loss and the sequence probability, we
observe:

Lsentence = − log

(
T∏

t=1

P (y(t) | y(<t))

)
(9)

= − logP (y) (10)

Thus, the log likelihood of the sentence is

logP (y) = −Lsentence (11)

We calculate the log likelihood for all sentences
in DICE.

H Additional Results for Frequency
and Likelihood Analysis

We present the results we obtained across all the
models. This includes both frequency analysis
per setting, and across both settings.

Due to resource limitations we could not obtain
probabilities for the larger models, which are
Llama 3.1 (405B), Llama 3 (70B) and Llama 2
(70B). As a result, we only conducted the fre-
quency analysis on these models, see Figure 6.
Figure 9 presents side-by-side regression plots
of the frequency and likelihood analysis. Simi-
larly, Figure 8 presents the plots for the smaller
Llama models. Finally, Figure 7 shows the
frequency analysis plots for the GPT models.
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Method Prompt No. Prompt Design

Zero-shot
Prompt 1 Is the expression ’idiom’ used figuratively or literally in the sentence: ’sentence’.

Answer ’i’ for figurative, ’l’ for literal.
Prompt 2 In the sentence ’sentence’, is the expression ’idiom’ being used figuratively or

literally? Respond with ’i’ for figurative and ’l’ for literal.
Prompt 3 How is the expression ’idiom’ used in this context: ’sentence’. Output ’i’ if the

expression holds figurative meaning, output ’l’ if the expression holds literal
meaning.

Example – The expression ’play with fire’ is used figuratively in the sentence: ’The war
took away the unfortunate necessity, as Unionists saw it, to play with fire in
the national interest, but it did not materially alter their view of themselves.’
→ Output: i The expression ’play with fire’ is used literally in the sentence:
’Despite the danger, he decided to play with fire, poking the embers with a stick.’
→ Output: l"

Few-shot
Prompt 1 Example + Prompt 1
Prompt 2 Example + Prompt 2
Prompt 3 Example + Prompt 3

Table 5: We use three prompts for our experiments. The top panel of the table shows the prompts used in the
zero-shot setting, while the bottom panel displays the few-shot prompts. For the few-shot setting, we prepend the
same example (middle panel) to each of the zero-shot prompts.
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Figure 6: Left to right: Frequency analysis for Llama 2 (70B), Llama 3 (70B), and Llama 3.1 (405B)
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Figure 7: Left to right: Frequency analysis for GPT-3.5 Turbo, GPT-4 and GPT-4o.
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Llama 2 (13B)
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Llama 3 (8B)
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Figure 8: Visualisations of the frequency and likelihood. Smaller Llama models only.
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Flan-T5 Large
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Figure 9: Visualisations of the frequency and likelihood analysis. Flan-T5 models only.
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