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Abstract

In this paper, we present ControlSpeech, a
text-to-speech (TTS) system capable of fully
cloning the speaker’s voice and enabling arbi-
trary control and adjustment of speaking style.
Prior zero-shot TTS models only mimic the
speaker’s voice without further control and ad-
justment capabilities while prior controllable
TTS models cannot perform speaker-specific
voice generation. Therefore, ControlSpeech
focuses on a more challenging task—a TTS
system with controllable timbre, content, and
style at the same time. ControlSpeech takes
speech prompts, content prompts, and style
prompts as inputs and utilizes bidirectional at-
tention and mask-based parallel decoding to
capture codec representations corresponding to
timbre, content, and style in a discrete decou-
pling codec space. Moreover, we analyze the
many-to-many issue in textual style control and
propose the Style Mixture Semantic Density
(SMSD) module, which is based on Gaussian
mixture density networks, to resolve this prob-
lem. To facilitate empirical validations, we
make available a new style controllable dataset
called VccmDataset. Our experimental results
demonstrate that ControlSpeech exhibits com-
parable or state-of-the-art (SOTA) performance
in terms of controllability, timbre similarity,
audio quality, robustness, and generalizability.
Codes are available at https://github.com/
jishengpeng/ControlSpeech.

1 Introduction

Over the past decade, the field of speech synthe-
sis has seen remarkable advancements (Ren et al.,
2020; Kim et al., 2021), achieving synthesized
speech that rivals real human speech in terms of
expressiveness and naturalness (Tan et al., 2024).
Recently, with the development of large language
models (Brown et al., 2020; Touvron et al., 2023)
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Figure 1: The voice prompt, the content description, and
the style description correspond to the timbre, content,
and style representations in the discrete codec space in
the left panel . The right panel compares ControlSpeech
with previous style-controllable TTS and zero-shot TTS
systems. In this comparison, we use the amplitude and
color of the waveform to represent the styleand timbre.

and generative models in other domains (Ho et al.,
2020; Kim et al., 2020), the tasks of zero-shot
TTS (Wang et al., 2023; Shen et al., 2023; Le et al.,
2023) and style-controllable speech synthesis (Guo
et al., 2023; Yang et al., 2023b) have garnered
significant attention in the speech domain due to
their powerful zero-shot generation and control-
lability capabilities. Zero-shot TTS (Kharitonov
et al., 2023) refers to the ability to perfectly clone
an unseen speaker’s voice using only a few sec-
onds of a speech prompt, commonly achieved by
significantly scaling up both the training data and
model sizes. On the other hand, style-controllable
TTS (Guo et al., 2023) supports the control of
a speaker’s style (prosody, accent, emotion, etc.)
through textual descriptions.

However, these two types of models have their
own limitations. As illustrated in the right panel of
Figure 1, prior zero-shot TTS (Wang et al., 2023)
can clone the voice of any speaker, but the style is
fixed and cannot be further controlled or adjusted.
Conversely, prior style-controllable TTS (Leng
et al., 2023) can synthesize speech in any desired
style, but it cannot specify the timbre of the syn-
thesized voice. Although some efforts (Yang et al.,
2023b; Liu et al., 2023) have been made to use
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speaker IDs to control the timbre, these approaches
are limited to testing on constrained in-domain
datasets and lack the zero shot ability. As a re-
sult, current speech synthesis systems lack inde-
pendent and flexible control over content, timbre,
and style at the same time, for example, they are
unable to synthesize speech in Trump’s voice with
a child’s joyful style saying “Today is Monday”.
To address these limitations, we propose a novel
model called ControlSpeech. To the best of our
knowledge, ControlSpeech is the first model to
simultaneously and independently control timbre,
content, and style, and demonstrate competitive
zero-shot voice cloning and style control abilities.

There are two main challenges to achieve si-
multaneous and independent control over content,
timbre, and style in a TTS system. First, the in-
formation from the style prompt and the speech
prompt can become entangled and interfere with
or contradict each other. For instance, the speech
prompt might contain a style different from that
described by the textual style prompt; therefore,
simply adding a style prompt control module or a
speech prompt control module to previous model
frameworks (Leng et al., 2023; Wang et al., 2023)
is evidently insufficient. Second, there lacks large
datasets that fulfill both requirements of zero-shot
TTS systems and textual style-controllable TTS
systems. Specifically, due to the scarcity of style-
descriptive textual data, the training data for main-
stream style-controllable TTS systems (Guo et al.,
2023; Liu et al., 2023) typically amounts to only
a few hundred hours (Ji et al., 2023), far from
meeting the requirements of a large-scale, multi-
speaker training dataset (Kahn et al., 2020) that is
crucial to attain robust zero-shot speaker cloning
capabilities. To tackle these two challenges, we
explore a novel approach in ControlSpeech that
leverages a pre-trained disentangled representation
space for controllable speech generation. On one
hand, disentangling representations enables inde-
pendent control over content, style, and timbre.
On the other hand, utilizing a representation space
pre-trained on a large-scale multi-speaker dataset
ensures robust zero-shot capabilities of Control-
Speech. In this work, we use the disentangled
representation space from (Ju et al., 2024) that is
pre-trained on 60,000 hours (Kahn et al., 2020).
During the speech synthesis process, we adopt an
encoder-decoder architecture (Ren et al., 2020) as
the backbone synthesis framework and integrate a
high-quality non-autoregressive, confidence-based

codec generator (Chang et al., 2022; Borsos et al.,
2023; Villegas et al., 2022) as the decoder.

We also identify and analyze the many-to-many
issue in textual style-controllable TTS for the first
time, that is, different textual style descriptions
may correspond to the same audio, while a sin-
gle textual style description may be associated
with varying degrees of a particular style for the
same speaker. For instance, the phrases “The man
speaks at a very rapid pace" and “The man articu-
lates his words with considerable speed" describe
the same speech style, yet “The man speaks at a
very rapid pace" can also correspond to many audio
clips exhibiting different levels of high speaking
rate. To address this many-to-many issue in style
control, we propose a novel module called Style
Mixture Semantic Density Sampling (SMSD).
This module integrates the global semantic infor-
mation of style control and utilizes sampling from a
mixed distribution (Zen and Senior, 2014; Hwang
et al., 2020) of style descriptions to achieve hier-
archical control. Additionally, we incorporate a
noise perturbation mechanism to further enhance
style diversity. The design motivation and detailed
architecture of SMSD are elaborated in Section 3.3.

To comprehensively evaluate ControlSpeech’s
controllability, timbre similarity, audio quality, di-
versity, and generalization, we create a new open
sourced dataset called VccmDataset based on Tex-
trolSpeech (Ji et al., 2023) to foster advancements
in controllable TTS. In summary, our contributions
are as follows:

• We conduct detailed analysis of existing zero-
shot TTS and style-controllable TTS models and
identify their inability to simultaneously and in-
dependently control content, style, and timbre
in a zero-shot setting. We propose the Control-
Speech to achieve independent control over these
speech factors at the same time.

• To the best of our knowledge, this is also the first
work to identify and analyze the many-to-many
issue in text style-controllable TTS, we propose
a novel Style Mixture Semantic Density (SMSD)
module. Furthermore, we investigate integrating
various noise perturbation mechanisms within
SMSD to enhance control diversity.

• We conduct comprehensive experiments and
demonstrate that ControlSpeech exhibits com-
parable or state-of-the-art performance in terms
of controllability, timbre similarity, audio quality,
robustness, and generalizability. We also create a
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new open-source dataset VccmDataset tailored
for style and timbre control at the same time.

2 Related Work

In this section, we summarize previous studies on
text prompt-based controllable TTS. Detailed dis-
cussions of discrete codec related to ControlSpeech
are in Appendix A.

2.1 Text Prompt Based Controllable TTS
Some recent studies propose to control speech style
through natural text prompts. PromptTTS (Guo
et al., 2023) employs manually annotated text
prompts to describe four to five attributes of speech
(gender, pitch, speaking speed, volume, and emo-
tion). InstructTTS (Yang et al., 2023b) employs a
three-stage training approach to capture semantic
information from natural language style prompts as
conditioning to the TTS system. Textrolspeech (Ji
et al., 2023) introduces an efficient architecture
which treats textual controllable TTS as a language
model task. PromptStyle (Liu et al., 2023) proposes
a two-stage TTS approach for cross-speaker style
transfer with natural language descriptions based
on VITS (Kim et al., 2021). PromptTTS 2 (Leng
et al., 2023) proposes an automatic description cre-
ation pipeline leveraging large language models
(LLMs) (Bubeck et al., 2023) and adopts a diffu-
sion model to capture the one-to-many relationship.
Audiobox (Vyas et al., 2023) propose a unified
model based on flow-matching that is capable of
generating and controlling various audio modali-
ties. While AudioBox supports multiple inputs, it
does not decouple the speech prompt from the style
prompt. Consequently, when there is a conflict be-
tween the styles in the speech prompt and the style
text prompt, it significantly impacts the controlla-
bility. We also validate the necessity of decoupling
in our ablation study presented in Table 4. It is note-
worthy that existing style-controllable TTS models
are either speaker-independent or can only control
timbre using speaker IDs, without the capability for
timbre cloning. The introduction of ControlSpeech
expands the scope of the controllable TTS task.

Furthermore, to the best of our knowledge, Con-
trolSpeech is the first model to identify the many-
to-many problem in the field of style control. It is
worth noting that while PromptTTS 2 (Leng et al.,
2023) also identifies a one-to-many issue between
style descriptions and audio, the one-to-many is-
sue identified in PromptTTS 2 is fundamentally
different from the one-to-many issue we identify

in ControlSpeech. PromptTTS 2 attributes the one-
to-many issue to the absence of the timbre infor-
mation in the style descriptions, and thus employs
a Q-former combined with a diffusion model to
generate the missing latent speech features. In
contrast, we argue that the textual style descrip-
tions themselves are inherently insufficient to
capture the range of variations in one style, lead-
ing to the one-to-many issue.

2.2 Zero-shot TTS

Zero-shot speech synthesis refers to the ability to
synthesize the voice of an unseen speaker based
solely on a few seconds of audio prompt, also
known as voice cloning. In recent months, with
the advancement of generative large-scale mod-
els, a plethora of outstanding works have emerged.
VALL-E (Wang et al., 2023) leverages discrete
codec representations and combines autoregressive
and non-autoregressive models in a cascaded man-
ner, preserving the powerful contextual capabilities
of language models. NaturalSpeech 2 (Shen et al.,
2023) employs continuous vectors instead of dis-
crete neural codec tokens and introduces in-context
learning to a latent diffusion model. NaturalSpeech
3 (Ju et al., 2024) proposes a TTS system with
novel factorized diffusion models to generate nat-
ural speech in a zero-shot way, although Natural-
speech 3 also employs a disentangled codec repre-
sentation, all its codec targets are generated with
the same textual content. SpearTTS (Kharitonov
et al., 2023) and Make-a-Voice (Huang et al., 2023)
utilize semantic tokens to reduce the gap between
text and acoustic features. VoiceBox (Le et al.,
2023) is a non-autoregressive flow-matching model
trained to infill speech, given audio context and text.
Mega-TTS (Jiang et al., 2023c,b,a), on the other
hand, utilizes traditional mel-spectrograms, decou-
pling timbre and prosody and further modeling the
prosody using an autoregressive approach. Voice-
Box (Le et al., 2023) and P-flow (Kim et al., 2024)
employ flowing models as generators, demon-
strating robust generative performance. Sound-
Storm (Borsos et al., 2023) and MobileSpeech (Ji
et al., 2024c) utilize a non-autoregressive and mask-
based iterative generation method, achieving an
excellent balance between inference speed and gen-
eration quality. It is noteworthy that existing zero-
shot TTS models (including NaturalSpeech3) are
unable to achieve arbitrary language style control
and modify. ControlSpeech is the first TTS
model capable of simultaneously and indepen-
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dently performing zero-shot timbre cloning and
style control.

3 ControlSpeech

3.1 Overall Architecture

As illustrated in Figure 2 (a), ControlSpeech is
fundamentally an encoder-decoder model (Ji et al.,
2024c) designed for parallel codec generation (Bor-
sos et al., 2023). ControlSpeech employs three
separate encoders to encode the input content
prompt, style prompt, and speech prompt, respec-
tively. Specifically, the content text is converted
into phonemes and fed into the text encoder, while
style text is prepended with the special [CLS] token
and encoded at the word level using BERT’s tok-
enizer (Devlin et al., 2018). Meanwhile, the speech
prompt is processed by the pre-trained codec en-
coder (Ju et al., 2024) and timbre extractor to cap-
ture the timbre information. In Figure 2, the dashed
box represents frame-level features, while the solid
box represents global features. The Style Mixture
Semantic Density (SMSD) module samples style
text to generate the corresponding global style rep-
resentations, which are then combined with text
representations from the text encoder via a cross-
attention module. The combined representations
are then fed into the duration prediction model and
subsequently into the codec generator, which is a
non-autoregressive Conformer based on mask iter-
ation and parallel generation. The timbre extractor
is a Transformer encoder that converts the output
of the speech encoder into a global vector, repre-
senting the timbre attributes. Given the input of
a style description Xs, a content text Xc, and a
speech prompt Xt, ControlSpeech aims to sequen-
tially generate the corresponding style codec Ys,
content codec Yc, and timbre embedding Yt. These
representations are then concatenated and upsam-
pled into speech through the pre-trained codec de-
coder (Ju et al., 2024).

3.2 Codec Decoupling and Generation

3.2.1 Decouple Content, Style, and Timbre
ControlSpeech leverages the pre-trained disentan-
gled representation space to separate different as-
pects of speech. We utilize FACodec (Ju et al.,
2024) as our codec disentangler and timbre extrac-
tor module, since FACodec facilitates codec de-
coupling and is pre-trained on a large-scale, multi-
speaker dataset, ensuring robust zero-shot TTS ca-
pabilities. Specifically, during the training process

of ControlSpeech, we freeze the corresponding
codec encoder to obtain downsampled compressed
audio frames h from the target speech Y . The
frames h are processed through the disentangling
quantizer module and the timbre extractor mod-
ule (Ju et al., 2024) to derive the original content
codec Yc, prosody codec Yp, acoustic codec Ya, and
timbre information Yt. Theoretically, after exclud-
ing the content Yc and timbre information Yt, the
remaining representation collectively is treated as
the style codec Ys. In practice, we concatenate the
prosody codec Yp and the acoustic codec Ya along
the channel dimension to obtain the corresponding
style codec Ys, as follows:

Ys = concat(Yp, Ya) (1)

3.2.2 Codec Generation Process
The codec generation comprises two stages.

In the first stage, based on the paired text
and speech data {X,Ycodec}, where X =
{x1, x2, x3, · · · , xT } represents the cross-attention
fusion of the global style representations and the
aligned text representations, and Ycodec denotes the
speech representations through vector quantization,
formulated as follows:

Ycodec = concat(Ys, Yc) = C1:T,1:N ∈ RT×N

(2)
where T denotes the downsampled utterance length,
which is equal to the text length extended by the
duration predictor. N represents the number of
channels for every frame. The row vector of each
acoustic code matrix Ct,1:N represents the N codes
for frame t, and the column vector of each acoustic
code matrix C1:T,i represents the i-th codebook se-
quence (the length is T ), where i ∈ {1, 2, · · · , N}.
Following VALL-E (Wang et al., 2023), in the train-
ing process of ControlSpeech, we randomly select
the i-th channel C1:T,i for training. For the gen-
eration of the i-th channel P (C1:T,i | X1:T ; θ),
as illustrated in Figure 2 (c), we employ a mask-
based generative model as our parallel decoder. We
sample the mask Mi ∈ {0, 1}T according to a
cosine schedule (Chang et al., 2022) for codec
level i, specifically, sampling the masking ratio
p = cos(u

′
) where u

′ ∼ U
[
0, π2

]
. and the mask

Mi ∼ Bernoulli(p). Here, Mi represents the por-
tion to be masked in the i-th level, while M̄i de-
notes the unmasked portion in the i-th level. As
shown in Figure 2 (c), the prediction of this por-
tion C1:T,i is refined based on the prompt j(j < i)
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Figure 2: Figure (a) depicts the overall architecture of ControlSpeech, which is an encoder-decoder parallel
disentangled codec generation model. Figure (b) provides a detailed illustration of the SMSD module, which
addresses the many-to-many problem in style control by sampling from the style mixture semantic distribution
and incorporating an additional noise perturbator. Figure (c) shows the process of the codec generator. Through
masking, the codec can generate discrete codec representations in a fully non-autoregressive manner.

channels C1:T,<i, and the concatenation of the tar-
get text X1:T and the unmasked portion of the i-th
channel M̄iC1:T,i. Therefore, the prediction for
this part can be specified as P (C1:T,i | X1:T ; θ) =
P (MiC1:T,i | C1:T,<i, X1:T , M̄iC1:T,i; θ)

In the second stage, as illustrated in Figure 2
(c), following AdaSpeech (Chen et al., 2021), we
utilize a conditional normalization layer to fuse the
previously obtained Ycodec and the global timbre
embedding Yt, resulting in Y

′
. This result Y

′
is

then processed by the pre-trained codec decoder (Ju
et al., 2024) to generate the final speech output Y .
Specifically, we first use two simple linear layers
Wγ and Wβ , which take the global timbre embed-
ding Yt as input and output the scale vectors γ
and bias vectors β respectively. These lightweight,
learnable scale vectors γ and bias vectors β are then
fused with Ycodec. This process can be represented
by the following formula:

Y = CodecDecoder(WγYt
Ycodec − µc

σc2
+WβYt)

(3)
where µc and σc

2 are the mean and variance of the
hidden representation of Ycodec.

3.3 The Style Mixture Semantic Density
(SMSD) Module

We identify a many-to-many relationship between
style text descriptions and their corresponding
audio. Specifically, different style descriptions
can correspond to the same audio sample (that
is, many-to-one), while a single style description

may correspond to multiple audio samples with
varying degrees of the same style (that is, one-to-
many). More precisely, the many-to-one relation-
ship arises because multiple textual descriptions
can refer to the same style of speech. For example,
both “Her speaking speed is considerably fast” and
“Her speech rate is remarkably fast” can refer to
the “fast-speed” speech style and could correspond
to the same audio sample. On the other hand, the
one-to-many relationship occurs because a single
textual description is unable to capture the vary-
ing degrees of a style. For instance, if we divide
the tempo of different speech into 100 levels, any
speech with the tempo above 70 may be considered
as “fast-speed”. As a result, the text description
suggesting “fast speed” could correspond to differ-
ent audio samples with speech rates of 75, 80, or
even 90 for the same speaker.

To address the many-to-many issue in style con-
trol, we propose the Style Mixture Semantic Den-
sity (SMSD) module. To address the many-to-one
issue, similar to previous approaches (Guo et al.,
2023; Liu et al., 2023), we utilize a pre-trained
BERT model within the SMSD module to extract
the semantic representation Xs

′
from style descrip-

tions, thereby aligning different style texts into the
same semantic space and enhancing generalization
of out-of-domain style descriptions. To address
the one-to-many issue, we observe that addressing
this phenomenon of a single style description cor-
responding to multiple audio with varying degrees
of style closely aligns with the motivation of mix-
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ture density networks (MDN). We hypothesize that
Xs

′
as the semantic representation of style can be

considered as a global mixture of Gaussian distri-
butions, where different Gaussian distributions rep-
resent varying degrees of a particular style. During
training, each independent Gaussian distribution is
multiplied by a corresponding learnable weight and
then summed. By constraining the KL divergence
between the style representation distribution of the
target audio and the summed mixture density distri-
bution, we establish a one-to-one correspondence
between the style text and the target audio. This ap-
proach also enhances the diversity of style control
directly with the text descriptions. During infer-
ence, we sample from the mixture of style semantic
distributions to obtain an independent Gaussian dis-
tribution, with each sampled distribution reflecting
different degrees of the same style. Additionally,
to further enhance the diversity of style control, we
incorporate a noise perturbation module within the
MDN network of SMSD in ControlSpeech. The
noise perturbation module controls the isotropy of
perturbations across different dimensions.

Specifically, one raw style prompt Xs =
[X1, X2, X3, · · · , XL] is prepended with a [CLS]
token, then converted into word embedding, and
fed into the BERT model, where L denotes the
length of the style prompt. The hidden vector
corresponding to the [CLS] token is regarded
as the global style semantic representation Xs

′
,

which guides generation and sampling of subse-
quent modules. Based on the MDN network (Zen
and Senior, 2014; Duan, 2019; Du and Yu, 2021),
we aim to regress the target style representation
Ys

′ ∈ Rd, using the style semantic input repre-
sentation Xs

′ ∈ Rn as covariates, where d and
n are the respective dimensions. We model the
conditional distribution as a mixture of Gaussian
distribution, as follows:

Pθ(Ys
′ |Xs

′
) =

K∑

k=1

πkN (µ(k), σ2(k)) (4)

where K is a hyperparameter as the number of in-
dependent Gaussian distribution, and other mixture
distribution parameters πk, µk, σ2(k) are output of
a neural MDN network fθ based on the input style
semantic representation Xs

′
, as follows:

π ∈ ∆K−1, µ(k) ∈ Rd, σ2(k) ∈ Sd
+ = fθ(Xs

′
)
(5)

Note that the sum of the mixture weights is con-
strained to 1 during the training phase, which is

achieved by applying a softmax function on the
corresponding neural network output αk, as fol-
lows:

πk =
exp(ak)∑K
k=1 exp(ak)

(6)

To further enhance the diversity of style control,
we design a specialized noise perturbation module
within the SMSD module to constrain the noise
model. As illustrated by the circles within the
SMSD module in Figure 2 (b), this noise perturba-
tion module regulates the isotropy of perturbations
ε across different dimensions in variance σ2(k).
The four types of perturbations from left to right in
Figure 2 (b) are as follows:

• Fully factored: σ2(k) = fθ(Xs
′
) + fθ(ε) =

diag(σ2(k)) ∈ Rd
+, which predicts the noise

level for each dimension separately.
• Isotropic: σ2(k) = fθ(Xs

′
) + fθ(ε) = σ2(k)I ∈

R+, which assumes the same noise level for each
dimension over d.

• Isotropic across clusters: σ2(k) = fθ(Xs
′
) +

fθ(ε) = σ2I ∈ R+, which assumes the same
noise level for each dimension over d and cluster.

• Fixed isotropic is the same as Isotropic across
clusters but does not learn σ2.

As shown in the experimental results in Ap-
pendix I, isotropic across clusters outperforms the
other types for striking a balance between accuracy
and diversity and is used as the mode for noise
perturbation. We obtain more robust mean, vari-
ance, and weight parameters for the mixture of
Gaussian distributions with the noise perturbation
module. The training objective of the SMSD mod-
ule is the negative log-likelihood of the observa-
tion Ys

′
given its input Xs

′
. The loss function is

formulated as LSMSD = −logsumexpk(logπk −
1
2

∥∥∥∥
Ys

′−µ(k)

σ

∥∥∥∥
2

). Details for deriving the non-

convex LSMSD are in Appendix K.

3.4 Training and Inference

During the training process, the duration predic-
tor is optimized using the mean square error loss,
with the extracted duration serving as the train-
ing target. We employ the Montreal Forced Align-
ment (MFA) tool (McAuliffe et al., 2017) to extract
phoneme durations, and denote the loss for the
duration predictor as Ldur. The codec generator
module is optimized using cross-entropy loss. We
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randomly select a channel for optimization and de-
note this loss as Lcodec. In the SMSD module, the
target style representation Ys

′
is the global style

representation obtained by passing style codec Ys
through the style extractor. During training, we
feed the ground truth style representation Ys

′
and

the ground truth duration into the codec generator
and duration predictor, respectively. The overall
loss L for ControlSpeech is the sum of losses:

L = Lcodec + Ldur + LSMSD (7)

During the inference stage, we initiate the pro-
cess by inputting the original stylistic descriptor
Xs into the BERT module to obtain the style se-
mantic representation Xs

′
, and then input Xs

′
into

the SMSD module to obtain the corresponding π,
µ and σ2. By directly sampling Xs

′
, we can de-

rive the predicted style distribution. Subsequently,
we iteratively generate discrete acoustic tokens
by incorporating the predicted style into the text
state and employing the confidence based sampling
scheme (Chang et al., 2022; Borsos et al., 2023).
Specifically, we perform multiple forward passes,
and at each iteration j, we sample candidates for
the masked positions. We then retain Pj candidates
based on their confidence scores, where Pj follows
a cosine schedule. Finally, by integrating the timbre
prompt through the condition normalization layer
and feeding it into the codec decoder, we generate
the final speech output.

4 Experiments

4.1 Experimental Setup
VccmDataset. To the best of our knowledge,
there is no large-scale TTS dataset that includes
both text style prompts and speaker prompts. We
build upon the TextrolSpeech dataset (Ji et al.,
2023) and create VccmDataset. Based on Tex-
trolSpeech, we optimize the pitch distribution, la-
bel boundaries, the dataset splits, and then select
new test sets. Specifically, we use LibriTTS and
the emotional data from TextrolSpeech as the base
databases, and annotate each speech sample with
five attribute labels: gender, volume, speed, pitch,
and emotion. We use the gender labels available
in the online metadata. Regarding volume, we
compute the L2-norm of the amplitude of each
short-time Fourier transform frame. We utilize the
Montreal forced alignment tool (McAuliffe et al.,
2017) to extract phoneme durations and silence
segments. Subsequently, we calculate the average

duration of each phoneme within voiced segments
for the speaking speed. The Parselmouth 3 tool 1

is employed to extract fundamental frequency (f0)
and calculate the geometric mean across all voiced
regions as pitch values. We partition speech sam-
ples into 3 categories (high/normal/low) according
to the proportion of speed, pitch, and volume val-
ues respectively. Considering the close proximity
of attribute values of speech samples between adja-
cent categories, we exclude the 5% of data samples
at the boundaries of each interval for each attribute.
Particularly, We use gender-specific thresholds to
bin the pitch into three different levels. After ob-
taining more accurate labels through these proce-
dures, we align each audio segment with the cor-
responding style description text in TextrolSpeech
based on the labeled attributes to obtain the Vccm-
Dataset. We then select four distinct test sets from
VccmDataset, namely, test set A, test set B, test set
C, test set D. Details of the VccmDataset test sets
are in Appendix C.

Baselines. To ensure a fair comparison of the
actual performance of various models, we reim-
plement several SOTA style-controllable models,
including PromptStyle (Liu et al., 2023), Salle (Ji
et al., 2023), InstructTTS (Yang et al., 2023b), and
PromptTTS 2 (Leng et al., 2023), to serve as pri-
mary comparative models for evaluating the con-
trollability of ControlSpeech. For the comparison
of voice cloning effectiveness, we reimplement the
VALL-E model (Wang et al., 2023) and the Mobile-
Speech model (Ji et al., 2024c), which are repre-
sentatives of the autoregressive paradigm and the
parallel generation paradigm, respectively. All re-
produced baseline will be also made publicly.

Evaluation Metrics and Experimental Settings.
For objective evaluations, we adopt the common
metrics used in prior works (Guo et al., 2023; Ji
et al., 2023; Leng et al., 2023). To evaluate the
model’s style controllability, we use accuracy of
pitch, speaking speed, volume, emotion as the met-
rics, which measures the correspondence between
the style factors in the output speech and those in
the prompts. We evaluate timbre similarity (Spk-
sv) between the original prompt and the synthe-
sized speech, and evaluate speech synthesis accu-
racy and robustness by using an ASR system to
transcribe the synthesized speech and computing
word error rate (WER) against the content prompt.

1https://github.com/YannickJadoul/Parselmouth

6972

https://github.com/YannickJadoul/Parselmouth


For subjective evaluations, we conduct mean opin-
ion score (MOS) evaluations on the test set to mea-
sure audio naturalness via crowdsourcing. We fur-
ther analyze MOS in two aspects: MOS-Q (Quality,
assessing clarity and naturalness of the duration
and pitch) and MOS-S (Speaker similarity). We
also design new subjective MOS metrics: MOS-
TS (Timbre similarity), MOS-SD (Style diversity),
and MOS-SA (Style accuracy). Details of the eval-
uation metrics, experimental settings, and specifics
of model architecture are provided in Appendix D,
E, and F, respectively.

4.2 Results and Discussions

Evaluation on style controllability. We first
compare the performance of ControlSpeech with
various SOTA models on the style controllability
task. The evaluation is conducted on the 1,500-
sample VccmDataset test set A. To eliminate the
influence of timbre variations on the controllabil-
ity results of ControlSpeech, we use the ground
truth (GT) timbre as the prompt for ControlSpeech.
We compare the controllability of the models using
pitch accuracy, speed accuracy, volume accuracy,
and emotion accuracy. Additionally, we measure
the audio quality generated by the models using
WER, timbre similarity (Spk-sv), and MOS-Q. Re-
sults are shown in Table 1, and we drew the fol-
lowing conclusions: 1) Comparing ControlSpeech
with other baselines on controllability metrics, we
find that, except for pitch accuracy, ControlSpeech
achieves best results in volume, speed, and emo-
tion classification accuracy. Upon analyzing the
synthesized audio of ControlSpeech, we attribute
the degraded pitch accuracy to the difficulty aris-
ing from simultaneously controlling different tim-
bres and styles. 2) In terms of Spk-sv, MOS-Q,
and WER metrics, the audio generated by Control-
Speech demonstrates best timbre similarity, audio
quality, and robustness.

Evaluation on the timbre cloning task. To eval-
uate the timbre cloning capability of ControlSpeech
in an out-of-domain speaker scenario, we compare
the performance of ControlSpeech with SOTA mod-
els such as VALL-E and MobileSpeech on the out-
of-domain speaker test set (test set B). The exper-
imental results are shown in Table 2. We observe
that in terms of the robustness metric (WER), the
zero-shot TTS systems that are trained on small
datasets perform worse than ControlSpeech. We
attribute these performance gains of ControlSpeech

to its pre-trained speaker prompt component. Addi-
tionally, in terms of the MOS-Q and MOS-S met-
rics, we find that ControlSpeech also maintains
performance comparable to zero-shot TTS systems
on the timbre cloning task.

Evaluation on addressing the many-to-many is-
sue. To better evaluate the performance of style-
controllable models on addressing the many-to-
many issue, we compare ControlSpeech with con-
trollable baseline models on the VccmDataset test
set D. Results are shown in Table 3. We find that
ControlSpeech markedly outperforms PromptStyle
and InstructTTS on both MOS-SA (style accuracy)
and MOS-SD (style diversity) metrics. This sug-
gests that the unique SMSD module in Control-
Speech enables the model to synthesize both accu-
rate and diverse speech.

4.3 Ablation Studies

We validate the necessity of the codec decoupl in-
gand the SMSD module. We also investigate the
impact of hyperparameters for mixed distributions
and various noise models in Appendix H and I.

Decouple codec. To analyze the impact of de-
coupling, we maintain the main framework of Con-
trolSpeech and directly encode the speech prompt
and style prompt using the frozen speech encodec
encoder and style encoder (replicated from the
structure of the text encoder) respectively, then feed
them into the codec generator through cross atten-
tion. We denote this model as ControlSpeech w/o
decoupling. As shown in Table 4, ControlSpeech
w/o decoupling performs substantially worse in
controllability compared to ControlSpeech, sug-
gesting that the speech prompt and style prompt
indeed may interfere with each other.

The SMSD module. We replace the SMSD
module with a style encoder (replicated from the
structure of the text encoder) and denote this
model as ControlSpeech w/o SMSD. As shown
in Table 3, ControlSpeech w/o SMSD performs
markedly worse in terms of MOS-SA and MOS-
SD compared to ControlSpeech, which strongly
validates that the SMSD module enables more fine-
grained control of the model’s style and increases
style diversity through style sampling. We also vi-
sualize the distribution of the SMSD under varying
pitch/speed/volume (details in Appendix B).
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Table 1: The style controllability evaluation results of style-controlled models on VccmDataset test set A. Pitch,
Speed, Volume, Emotion denote accuracy of the style. ± denotes standard deviation.

Model Clone Timbre Control Style Pitch ↑ Speed ↑ Volume ↑ Emotion ↑ WER ↓ Spk-sv ↑ MOS-Q ↑
GT Codec - - 0.954 0.885 0.977 0.758 2.6 0.96 4.25±0.10

Salle × √
0.788 0.756 0.831 0.389 5.5 - 3.52±0.14

PromptStyle × √
0.831 0.786 0.787 0.366 3.3 0.84 3.74±0.11

InstructTTS × √
0.849 0.761 0.822 0.412 3.0 0.86 3.81±0.12

PromptTTS 2 × √
0.867 0.785 0.825 0.406 3.1 - 3.83±0.11

ControlSpeech (Ours)
√ √

0.833 0.829 0.894 0.557 2.9 0.89 3.91±0.09

Table 2: The timbre cloning results of different zero-
shot models on the VccmDataset test set B.

Model Clone Timbre Control Style WER ↓ MOS-Q ↑ MOS-S ↑
GT Codec - - 2.3 4.21±0.14 4.29±0.12
VALL-E

√ × 6.7 3.76±0.13 3.89±0.13
MobileSpeech

√ × 4.1 3.94±0.09 4.01±0.11
ControlSpeech (Ours)

√ √
3.3 3.95±0.12 3.96±0.14

Table 3: The results under many-to-many style control
conditions on VccmDataset test set D. MOS-TS, MOS-
SA, MOS-SD measure timbre stability, accuracy and
diversity of style generation.

Model MOS-TS ↑ MOS-SA ↑ MOS-SD↑
PromptStyle 3.81±0.10 3.45±0.13 3.53±0.12
InstructTTS 3.89±0.12 3.57±0.11 3.48±0.14

ControlSpeech w/o SMSD 3.95±0.08 3.59±0.09 3.66±0.11
ControlSpeech 4.01±0.10 3.84±0.12 4.05±0.09

5 Conclusion

In this paper, we present ControlSpeech, the first
TTS system capable of simultaneously perform-
ing zero-shot timbre cloning and zero-shot style
control independently. Additionally, we identify a
many-to-many problem in style control and design
a unique SMSD module. We will also open source
VccmDataset to foster community development.
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Limitations

In this work, we introduce ControlSpeech, the first
TTS system capable of simultaneously cloning tim-
bre and controlling style independently. While Con-
trolSpeech has demonstrated competitive controlla-
bility and cloning capabilities, there remains con-

Table 4: An ablation experiment on impact of codec
decoupling on the VccmDataset test set A.

Model Pitch ↑ Speed ↑ Volume ↑ Emotion ↑
ControlSpeech w/o decoupling 0.492 0.517 0.582 0.237

ControlSpeech 0.833 0.829 0.894 0.557

siderable scope for further research and improve-
ment based on the current framework.

Larger Training Datasets. The field of style-
controllable TTS demands larger training datasets.
Although TextrolSpeech and our VccmDataset
have established a foundation, we hypothesize that
achieving more advanced speech controllability
may require datasets comprising tens of thousands
of hours of speech with style descriptions.

Exploring Generative Models. In this work,
we experiment with decoupled codecs and non-
autoregressive parallel generative models. In future
research, we plan to explore a broader range of
generative model architectures and audio represen-
tations.
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A Related work

A.1 Acoustic Codec Models
In recent times, neural acoustic codecs (Zeghidour
et al., 2021; Défossez et al., 2022; Kumar et al.,
2024) have demonstrated remarkable capabilities
in reconstructing high-quality audio at low bitrates.
Typically, these methods employ an encoder to
extract deep features in a latent space, which are
subsequently quantized before being fed into the
decoder. To elaborate, Soundstream (Zeghidour
et al., 2021) utilizes a model architecture compris-
ing a fully convolutional encoder/decoder network
and a residual vector quantizer (RVQ) to effec-
tively compress speech. Encodec (Défossez et al.,
2022) employs a streaming encoder-decoder archi-
tecture with a quantized latent space, trained in an
end-to-end fashion. AudioDec (Wu et al., 2023)
has demonstrated the importance of discriminators.

PromptCodec (Pan et al., 2024) enhances represen-
tation capabilities through additional input prompts.
DAC (Kumar et al., 2024) significantly improves re-
construction quality through techniques like quan-
tizer dropout and a multi-scale STFT-based discrim-
inator. Vocos (Siuzdak, 2023) eliminates codec
noise artifacts using a pre-trained Encodec with an
inverse Fourier transform vocoder. HILCodec (Ahn
et al., 2024) introduces the MFBD discriminator to
guide codec modeling. APCodec (Ahn et al., 2024)
further enhances reconstruction quality by incor-
porating ConvNextV2 modules in the encoder and
decoder. HiFi-Codec (Yang et al., 2023a) proposes
a parallel GRVQ structure, achieving good speech
reconstruction with just four quantizers. Language-
Codec (Ji et al., 2024a) introduces the MCRVQ
mechanism to evenly distribute information across
the first quantizer, also requiring only four quantiz-
ers for excellent performance across various genera-
tive models. Single-Codec (Li et al., 2024) designs
additional BLSTM, hybrid sampling, and resam-
pling modules to ensure basic performance with a
single quantizer, though reconstruction quality still
needs improvement. TiCodec (Ren et al., 2024)
models codec space by distinguishing between
time-independent and time-dependent information.
FACodec (Ju et al., 2024) further decouples codec
space into content, style, and acoustic detail mod-
ules. Additionally, recognizing the importance of
semantic information in generative models, recent
efforts have begun integrating semantic informa-
tion into codec models. RepCodec (Huang et al.,
2024) learns a vector quantization codebook by re-
constructing speech representations from speech
encoders like HuBERT. SpeechTokenizer (Zhang
et al., 2023) enriches the semantic content of the
first quantizer through semantic distillation. Fun-
Codec (Du et al., 2024) makes semantic tokens op-
tional and explores different combinations. Seman-
ticCodec (Liu et al., 2024) is based on quantized
semantic tokens and further reconstructs acoustic
information using an audio encoder and diffusion
model. WavTokenizer (Ji et al., 2024b) represents
the latest state-of-the-art codec model, capable of
reconstructing high-quality audio using only forty
discrete codebooks. Given that ControlSpeech
requires disentangled discrete audio representa-
tions that are pre-trained on large-scale multi-
speaker data, we select FACodec (Ju et al., 2024)
as the tokenizer for ControlSpeech.
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B Distribution visualization

In this section, we visualize the distribution of the
SMSD mixed density network. As shown in Fig-
ure 3, we select the original style descriptions from
TextrolSpeech and visualize the distributions pro-
duced by the SMSD module under three experi-
mental settings: varying pitch (high/low), speech
rate (fast/slow), and volume (high/low). Each ex-
perimental setting includes 1,000 different style
descriptions, with other factors held constant. For
example, in the speech rate experiment, both pitch
and volume descriptions are set to “normal." We
employ t-SNE for dimensionality reduction of the
features. Our results show that the SMSD module
effectively distinguishes between different types
of styles, and the mixed density distribution is not
confined to a small region, indicating that the style
control module exhibits substantial diversity.

high energy
low energy

high pitch
low pitch

fast speed
slow speed

Figure 3: The t-SNE visualization of mixture density
distribution after the SMSD module.

C VccmDataset test set

To further validate ControlSpeech’s ability to si-
multaneously control style and clone speaker tim-
bre, we create four types of test sets in the Vc-
cmDataset: the main test set (test set A), the out-
of-domain speaker test set (test set B), the out-of-
domain style test set (test set C), and the special
case test set (test set D). Each test set corresponds to
four experiments: style controllability experiments,
out-of-domain speaker cloning experiments, out-
of-domain style controllability experiments, and
many-to-many style control experiments, respec-
tively. We randomly select 1,500 audio samples
as the ControlSpeech main test set (test set A) and
match the corresponding prompt voice based on
speaker IDs. Additionally, to evaluate Control-
Speech’s performance on out-of-domain timbre
and styles, we further filter an appropriate test set
(speakers that are not present in the training set) and
enlist language experts to compose style descrip-
tions distinct from those in TextrolSpeech. Using
these two methods, we generate the out-of-domain
speaker test set (test set B) and the out-of-domain

style test set (test set C). The test set B consists of
1,086 test utterances, and we ensure that none of
the speakers in test set B appear in the training set.
The special case test set (test set D) is designed to
evaluate the model’s performance under many-to-
many style control conditions. Firstly, we select
four groups of speakers, each of whom is matched
with 60 different style descriptions while the con-
tent text remains fixed. This particular set of test
samples is referred to as test set D1. We further
select six distinct style descriptions paired with 50
different timbre prompts, with pitch, speed, and
volume labels set to the following combinations:
normal, fast, normal; normal, slow, normal; high,
normal, normal; low, normal, normal; normal, nor-
mal, high; and normal, normal, low, respectively.
This set of special test samples is referred to as test
set D2.

D Evaluation metrics

For objective evaluations, we adopt the metrics
used in prior works (Guo et al., 2023; Ji et al.,
2023; Leng et al., 2023). To evaluate the model’s
style controllability, we use accuracy as the met-
ric, which measures the correspondence between
the style factors in the output speech and those
in the prompts. The accuracy of pitch, speaking
speed, and volume is calculated using signal pro-
cessing tools. We fine-tune the official version of
the Emotion2vec model (Ma et al., 2023) on the
emotional dataset of VccmDataset, and compute
the speech emotion classification accuracy with
the fine-tuned model. To evaluate timbre similar-
ity (Spk-sv) between the original prompt and the
synthesized speech, we utilize the base-plus-sv ver-
sion of WavLM (Chen et al., 2022). For Word
Error Rate (WER), we use an ASR model 2 to tran-
scribe the synthesized speech. This ASR model
is a CTC-based HuBERT pre-trained on Librilight
and fine-tuned on the 960 hours training set of Lib-
riSpeech. For subjective evaluations, we conduct
mean opinion score (MOS) evaluations on the test
set to measure audio naturalness via crowdsourcing.
We randomly select 30 samples from the test set
of each dataset for subjective evaluation, and each
audio sample is listened by at least 10 testers. We
analyze the MOS in two aspects: MOS-Q (Quality,
assessing clarity and naturalness of the duration
and pitch) and MOS-S (Speaker similarity).

2https://huggingface.co/facebook/
hubert-large-ls960-ft
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Furthermore, for the evaluation of style-
controllable many-to-many scenarios in the test set
D, we design new subjective MOS metrics: MOS-
TS (Timbre Similarity), MOS-SD (Style Diversity),
and MOS-SA (Style Accuracy). Specifically, the
MOS-TS metric is used to assess whether the tim-
bre remains stable across 60 different style descrip-
tions for four speakers on the test set D1. The
MOS-SA and MOS-SD metrics represent the ac-
curacy and diversity of style control for each style
description respectively on the test set D2.

E Training and Inference Settings

ControlSpeech is trained on VccmDataset using 8
NVIDIA A100 40G GPUs with each batch accom-
modating 3500 frames of the discrete codec. We
optimize the models using the AdamW optimizer
with parameters β1 = 0.9 and β2 = 0.95. The learn-
ing rate is warmed up for the first 5k updates, reach-
ing a peak of 5× 10−4, and then linearly decayed.
We utilize the open-source FACodec’s voice con-
version version as the codec encoder and decoder
for ControlSpeech. The style-controllable baseline
models are trained on the same VccmDataset train-
ing set to eliminate potential biases. We utilize a
pre-trained BERT (Devlin et al., 2018) model con-
sisting of 12 hidden layers with 110M parameters.
For the implementation of the basic MDN network
model, we largely follow the approach described
in (Duan, 2019).

F Model Architecture in ControlSpeech

Following (Ju et al., 2024), the basic architecture of
codec encoder and codec decoder follows (Kumar
et al., 2024) and employs the SnakeBeta activation
function (Lee et al., 2022). The timbre extractor
consists of several conformer (Gulati et al., 2020)
blocks. We use Nqc = 2, Nqp = 1, Nqd = 3 as the
number of quantizers for each of the three FVQ Qc,
Qp, Qd, the codebook size for all the quantizers
is 1024. Text encoder and variance adaptor share
the similar architecture which comprises several
FFT blocks or attention layers as used by Fast-
Speech2 (Ren et al., 2020). The Style Extractor is a
module comprising both convolutional and LSTM
networks from FACodec (Ju et al., 2024) and out-
puts a 512-dimensional global ground truth style
vector. The codec generator is a decoder primarily
based on conformer blocks (Gulati et al., 2020),
similar to MobileSpeech (Ji et al., 2024c). How-
ever, we opt for fewer decoder layers (6 layers) and

a smaller parameter count in the codec generator.

G Evaluation on the out-of-domain style
control task.

We further evaluate the controllability of style-
controllable models with out-of-domain style de-
scriptions. We compare the performance of Con-
trolSpeech with controllable baseline models on the
VccmDataset test set C. The test set C comprises
100 test utterances, with style prompts rewritten
by experts. None of the test set style prompts are
present in the training set. Results are shown in Ta-
ble 5. We find that the generalization performance
of ControlSpeech is remarkably better than that
of the baseline models, which could be attributed
to the SMSD module and its underlying mixture
density network mechanism. The accuracies of
speech speed and volume from ControlSpeech are
markedly better than those from baseline models,
especially in terms of the volume accuracy. Con-
trolSpeech also yields best WER, MOS-Q, and
speaker timbre similarity. Similar to the results
shown in Table 1, the pitch accuracy of Control-
Speech is slightly lower. We believe this is due to
pitch inconsistencies arising from the simultaneous
control of style and timbre cloning. Note that there
is no significant difference between the test set A
and test set C, except the style descriptions in test
set C are out-of-domain while those in test set A
are in-domain. Comparing Table 5 and Table 1,
degradations from ControlSpeech on all metrics
are much smaller than degradations from baselines.

Table 5: The out-of-domain style control results of
different style-controlled models on the VccmDataset
test set C. None of the style prompts are present in the
training set.

Model Pitch ↑ Speed ↑ Volume ↑ WER ↓ Spk-sv ↑ MOS-Q ↑
GT Codec 0.85 0.87 0.91 2.8 0.96 4.25±0.11

Salle 0.67 0.55 0.56 6.4 - 3.47±0.08
PromptStyle 0.77 0.57 0.49 3.7 0.81 3.65±0.11
InstructTTS 0.75 0.55 0.54 3.1 0.82 3.76±0.14

PromptTTS 2 0.76 0.59 0.58 3.3 - 3.54±0.13
ControlSpeech (Ours) 0.75 0.73 0.85 3.0 0.88 3.86±0.12

H Ablation Experiments about Mixed
Distributions

In this section, we investigate the impact of the
number of mixtures in the SMSD module on
model performance. We conduct ablation studies
under the isotropic across clusters noise perturba-
tion mode (the mode selected for ControlSpeech),
examining the effects of using 3, 5, and 7 mixtures.
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As shown in Table 6, the differences in the MOS-
SD metric are negligible. However, an increase in
the number of mixtures leads to a decline in the
MOS-SA metric, indicating that an excessive num-
ber of mixtures may reduce the model’s control
accuracy.

Table 6: Under the Isotropic across clusters noise per-
turbation scheme, we investigate the influence of the
number of Gaussian mixture components in the SMSD
module on stylistic diversity. Subsequently, we analyze
the corresponding outcomes using the MOS-SA and
MOS-SD metrics.

Model MOS-SA↑ MOS-SD↑
ControlSpeech w/ Isotropic across clusters w/ components=3 3.83±0.14 3.95±0.12
ControlSpeech w/ Isotropic across clusters w/ components=5 3.84±0.12 4.05±0.09
ControlSpeech w/ Isotropic across clusters w/ components=7 3.73±0.11 3.98±0.09

I Ablation Experiments on Various Noise
Modes

We analyze the impact of different noise pertur-
bation modes on the many-to-many style control
problem, with the number of mixture distributions
fixed at 5. As shown in Table 7, we find that the
noise perturbation mode maintaining isotropy at
the cluster centers achieves a balance between the
MOS-SA and MOS-SD metrics and outperforms
all other modes.

Table 7: The results of different noise perturbation
modes on the MOS-SA and MOS-SD metrics.

Model MOS-SA↑ MOS-SD↑
ControlSpeech w/ Fully factored 3.77±0.14 3.96±0.09

ControlSpeech w/ Isotropic 3.75±0.11 4.03±0.10
ControlSpeech w/ Isotropic across clusters 3.84±0.12 4.05±0.09

ControlSpeech w/ Fixed isotropic 3.72±0.13 3.87±0.11

J Ethics Statement

ControlSpeech is capable of zero-shot voice
cloning; hence, there are potential risks from mis-
use, such as voice spoofing. For any real-world
applications involving unseen speakers, it is cru-
cial to establish protocols ensuring the speaker’s
authorization over using the certain speaker’s voice.
Also, to mitigate these risks, we will also develop
approaches such as speech watermarking technol-
ogy to identify whether a given audio is synthesized
by ControlSpeech.

K The SMSD Loss

The loss function for the SMSD module represents
the conditional probability of the input style repre-
sentation Xs

′
given the target global style Ys

′
. We

further refine this into a maximum likelihood loss
involving the style distribution parameters πk, µ(k),
σ2(k) derived through the MDN network and noise
perturbation module. The detailed derivation of the
loss function is as follows.
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