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Abstract

Given the rapid progress of generative AI, there
is a pressing need to systematically compare
and choose between the numerous models and
configurations available. The scale and versa-
tility of such evaluations make the use of LLM-
based judges a compelling solution for this chal-
lenge. Crucially, this approach requires first to
validate the quality of the LLM judge itself.
Previous work has focused on instance-based
assessment of LLM judges, where a judge is
evaluated over a set of responses, or response
pairs, while being agnostic to their source sys-
tems. We argue that this setting overlooks criti-
cal factors affecting system-level ranking, such
as a judge’s positive or negative bias towards
certain systems. To address this gap, we con-
duct the first large-scale study of LLM judges
as system rankers. System scores are generated
by aggregating judgment scores over multiple
system outputs, and the judge’s quality is as-
sessed by comparing the resulting system rank-
ing to a human-based ranking. Beyond over-
all judge assessment, our analysis provides a
fine-grained characterization of judge behavior,
including their decisiveness and bias.

1 Introduction

The evaluation of Large Language Models (LLMs)
is rapidly adopting the LLM-as-a-judge paradigm
(Zheng et al., 2023), where automatic evaluations
with LLMs complement the use of human anno-
tators, or even replace them altogether. LLM-
based judges are increasingly relied upon to con-
clude which models exhibit superior performance,
whether novel training and inference approaches
are beneficial, and ultimately which LLM configu-
rations offer a better value proposition to users.

Since relying on an inaccurate judge will likely
result in sub-optimal decisions, this trend lends an
urgency to evaluating the performance of the LLM
judges themselves. Indeed, recent works attempt to
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Figure 1: Instance and system level judges make
different calls: An instance-level judge (top) is used
to make decisions about the quality of individual re-
sponses (which may be produced by different systems).
A system-level judge (bottom) is used to make decisions
about the overall quality of systems. For clarity, in this
illustration, we focus on pairwise decisions.

benchmark judging capabilities, compiling leader-
boards of judge performance (Lambert et al., 2024;
Tan et al., 2024) as well as analyzing their sensitivi-
ties and biases (Wang et al., 2023; Wei et al., 2024;
Bavaresco et al., 2024; Feuer et al., 2024; Liu et al.,
2024b; Xu et al., 2024; Ye et al., 2024).

These works all focus on the instance-level per-
formance of judges. A “good” instance-level judge
is expected to make a correct judgment about each
response, regardless of the system generating it.
For example, given a specific pair of responses, the
judge may be asked to determine which one is bet-
ter (Figure 1, top). This approach is very much in
line with prevailing paradigms for model alignment
(e.g., RLHF, DPO; Lee et al., 2024b) and synthetic
data generation (Yehudai et al., 2024); these often
rely on LLM judges and reward models for making
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Figure 2: System-level judge pipeline. Schematic of our data generation pipeline for judge system rankings.

instance-level pairwise decisions on the quality of
individual responses.

Although judges are evaluated based on their
instance-level performance, very commonly they
are actually used for making system-level deci-
sions; namely, to compare and rank different mod-
els or different configurations (Figure 1, bottom).
Crucially, even very good instance-level capabili-
ties do not guarantee accurate model ranking; and
at the same time, mediocre performance on in-
stances could still yield a very accurate overall
ranking (Dorner et al., 2024, §2). Thus, the system-
level performance of judges – that is, to what de-
gree they can correctly decide between candidate
systems, and produce accurate model performance
rankings – remains largely an open question. Fur-
thermore, system-level evaluations can unveil an
entire range of under-explored judge qualities, such
as being biased towards certain models or making
un-calibrated model preference judgments.

In this work we aim to address this gap, and char-
acterize the system-level evaluation capabilities
and behaviors of LLM-based judges. To this end,
we introduce a novel judge benchmark – JuStRank
(Judges for System Ranking). JuStRank compares
judges by their ability to correctly rank models,
based on agreement with a ground-truth model
ranking. JuStRank encompasses a collection of
48 state-of-the-art judges, including both general-
purpose LLMs and reward models. Our large-scale
benchmark and analysis allow us to explore the per-
formance and behavior of judges as system rankers.

Our contributions are as follows:
1. We introduce JuStRank, the first large-scale

benchmark of judges for ranking target systems.
2. We quantify the tendency of a judge to ex-

hibit system bias, where some models are judged
“unfairly” (§6.2).

3. We reveal an emergent quality of a system-
level judge, its decisiveness factor; decisive judges
consistently amplify the gap between strong and
weak target systems (§6.1).

4. To facilitate further research into judge behav-
ior, we release our data1, comprising 1.5M judg-
ment scores given by LLMs and reward models.

2 The Gap in Judge Benchmarking

In this section, we outline why existing estima-
tions of judge performance are insufficient to de-
cide which judge is best at choosing between target
systems (Figure 1, bottom).

At present, users looking for a judge for ranking
models, will likely choose it according to the avail-
able instance-level judge benchmarks. Yet, from a
theoretical standpoint instance-level judge perfor-
mance does not directly correspond to system-level
judge performance (Dorner et al., 2024).

More specifically, instance-level judge evalua-
tions focus on how many errors the judge makes,
and do not address the distribution of these errors
across systems.

For system-level judge evaluation, however, the
error distribution plays a key role, as judge errors
may distribute unevenly across systems, impact-
ing their induced ranking (Dorner et al., 2024; von
Däniken et al., 2024). For example, a judge may ex-
hibit an unjustifiable preference (positive bias) for
responses from a particular system A. Thus, this
judge will tend to give A an incorrect ranking, even
if it makes very few mistakes on responses from
other systems (i.e., has an overall high instance-
level accuracy). Hence, a more uniform distribu-
tion of errors – reflecting less biased judgment – is
a desirable quality for system-level judges, and one
that may lead to a more accurate ranking.

1JuStRank Judge Scores data
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Drawing on this observation, our goal here is to
construct a system-level benchmark for judges. As
a benchmark tailored for system-level evaluation, it
will enable reliably estimating a judge’s ability to
rank systems; moreover, our ranking-oriented anal-
ysis can shed light on judge behaviors and biases,
as they occur in real-world data.

3 Task Formulation

In this work we study the use of LLM-based judges
for determining the relative quality of systems2,
over a given set of user instructions (prompts).

Formally, we begin with a set of L systems
S = {sl}Ll=1, and K user instructions I = {ik}Kk=1.
Each system produces a response for each such user
instruction, denoted as R = {rlk}

k,l=K,L
k,l=1,1 , such that

sl(ik) = rlk (see Figure 2).
Judges J = {jp}Pp=1 map a pair of instruction

ik, and system response rlk to a scalar score that
estimates the quality of the response. Each judge
has a specific realization for performing this score
mapping3, of the form: jp(ik, r

l
k) = Scorepk,l.

Once a judge jp scores all K × L responses, we
can define a scores matrix jp(R) ∈ RK×L where
jp(R)k,l = Scorepk,l.

In order to quantify system-level quality, we
must apply an aggregation method, a ∈ A =
{a : RK×L −→ RL}. The aggregation method
a maps a scores matrix jp(R) to a system-level
vector V p,a ∈ RL where each entry, V p,a

l , is a sin-
gle overall quality score for system sl by judge jp.
In turn, ordering the system scores in V p,a induces
a ranking over the systems set S.

We test the performance of judge jp as a ranker
by checking the correlation between the ranking
induced by V p,a and a golden ranking for S.

4 Experimental setup

To explore judge performance and behavior, we
utilize responses from multiple systems (§4.1) and
run reward model judges (§4.2.1) and LLM judges
(§4.2.2) over these responses. To obtain system
rankings, we experiment with different aggregation
methods (§4.3) over the judge scores. Finally, the

2Henceforth, we will use the term System to refer to a target
model or pipeline that performs a task, and Judge for one that
is asked to score (or compare) the quality of such systems.
Generative LLMs can act as both systems and judges.

3We note that some realizations, such as the comparative re-
alization in §4.2.2, may incorporate a separate set of responses
to perform the judgment.

resulting rankings are compared against a gold sys-
tem ranking, taken from a separate dataset (§4.4).

4.1 System Responses Data
We utilize the Arena Hard v0.1 dataset (Li et al.,
2024) for a diverse set of instructions and system
responses. The dataset uses a curated set of K =
500 challenging instructions, I . As of September
2024, it includes responses from L = 63 systems,
S, totaling about 32K pairs of instructions and their
associated system responses, R.

4.2 Generating Judgments
For every judge realization, jp, we generate a judg-
ment scores matrix, jp(R), over R. In total, we
examine 48 judge realizations, yielding a total of
1.5M individual judge scores (63 systems × 500
instances × 48 judge realizations).

4.2.1 Reward Models
We run multiple reward models over R. While their
exact architectures vary, reward models generally
produce a scalar quality score for a given pair of an
instruction and a system response.

We utilize the following reward models:
ArmoRM-Llama3-8B-v0.1 (Wang et al., 2024),
Eurus-RM-7b (Yuan et al., 2024), InternLM2-7b-
reward, InternLM2-20b-reward (Cai et al., 2024),
Skywork-Reward-Llama-3.1-8B-v0.2 (Liu et al.,
2024a), Llama-3-OffsetBias-RM-8B (Park et al.,
2024), GRM-Llama3.2-3B-ft (Yang et al., 2024),
URM-LLaMa-3.1-8B (Lou et al., 2024).

4.2.2 LLM Judge Realizations
Unlike dedicated reward models that produce a
single score, generative LLMs can be prompted to
judge in multiple ways. Thus, for every LLM we
examine several judge realizations.

Absolute judgment - Numeric score (Numeric)
The LLM judge is given an instruction and system
response, and is asked to provide a quality score
for the response between 0 and 100.

Absolute judgment - Textual score (Likert) The
judge provides a quality score of the response on
a Likert (Likert, 1932) scale with 5 labels: [Very
Bad, Bad, Mediocre, Good, Very Good]. We then
convert the textual judgments to scores in [1− 5].

Absolute judgment - Token probablities
(TokenProbs) The task is framed to the judge as
a yes/no question: Is this a good response?. We
then extract the top log-probabilities for the first
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Judge Model Realization Aggregation Agreement (τ )
with Gold Ranking

Qwen2.5-72B-Instruct Likert Win-Rate .83
URM-LLaMa-3.1-8B Reward Mean .82
GPT-4o-2024-11-20 Anchor Mean .82
Llama-3-1-405b-instruct-fp8 Numeric Mean .81
Mistral-large-instruct-2407 Likert BT .81
GPT-4o-mini-2024-07-18 Numeric Win-Rate .81
ArmoRM-Llama3-8B-v0.1 Reward Mean .80
Llama-3-1-70b-instruct Numeric Win-Rate .80
Skywork-Llama-3.1-8B-v0.2 Reward Mean .79
Llama-3.1-8B-Instruct TokenProbs Mean .78

Table 1: Top 10 judges by ranking performance. Judges are sorted by the Kendall’s Tau correlation between
their overall system ranking and the gold ranking from Chatbot Arena (§4.4). For every judge model, only the
best-performing realization and aggregation method is shown. For the full results, refer to Appendix Table 2.

generated token, and specifically look at the prob-
abilities for the tokens yes or no. The judgment
score [0.0− 1.0] is the sum of probabilities for yes
divided by the sum of probabilities for yes and no.

Comparative judgment - Anchor model
(Anchor) Here the judgment task is comparative,
i.e., the judge is asked to state a preference
between two responses rather than an absolute
quality judgment of a given response. Conducting
paired comparisons between a system and all other
systems is unfeasible; thus, we follow Li et al.
(2024) and use the responses of GPT-4-0314 as
anchors to which the responses of other systems
are compared. Given an anchor response and a
system response, we ask the judge which one it
prefers. The output is then converted to scores in
[−2,+2] (where 0 indicates a tie, and +1 / +2
indicate slight/strong preference for the system
response over the anchor response, respectively).

In total, we collect judgments from 10 LLMs and
4 realizations, yielding 40 LLM judges. Prompts
for all realizations are provided in Appendix G.

We use the following generative LLM judges:
Llama-3.1-405B-Instruct (Dubey et al., 2024),
Llama-3.1-70B-Instruct, Llama-3.1-8B-Instruct,
Llama-3-70B-Instruct, Mixtral-8x22B-Instruct-
v0.1, Mixtral-8x7B-Instruct-v0.1 (Jiang et al.,
2024), Mistral-Large-Instruct-2407, Qwen2.5-72B-
Instruct, GPT-4o and GPT-4o-mini.

4.3 Aggregations

Given the raw judgment scores of each judge,
jp(R), there are multiple ways to construct a rank-

ing of the 63 target systems. We calculate rankings
using Win-rate aggregation, Mean aggregation,
Median aggregation, and BT (Bradley-Terry) ag-
gregation. Details are provided in Appendix B.
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Figure 3: Comparison to RewardBench. The plot de-
picts the relative performance of judges present in both
JuStRank and RewardBench (Lambert et al., 2024). For
comparison, we perform Min-Max normalization over
the judge performance scores (accuracy for Reward-
Bench, Kendall’s Tau for our results). Results shown
are for the BT aggregation method; the LLM judges use
the Anchor realization, which is closest to the setting
in RewardBench. Plots for the different RewardBench
subsets are shown in Appendix Figure 8.

4.4 Gold Ranking - Chatbot Arena Battles

Human preference data from Chatbot
Arena (Zheng et al., 2023) serve as our ground-
truth reference for the relative quality of systems.
Chatbot Arena relies on human-annotated “battles”
between system responses to produce a system
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Figure 4: LLM judge realizations. Kendall’s Tau correlations (±95% bootstrapping CI) between the system
rankings produced by various LLM judge realizations (§4.2.2) and the gold system ranking from Chatbot Arena.
The plot depicts results for the BT aggregation method; for the full results, refer to App. Table 2.

ranking. We use the English Hard Prompts
subset4 of their data. We chose this subset as its
distribution of user instructions has been shown (Li
et al., 2024) to match that of our system response
data (§4.1). We extract the data and ranking
following the official code (see Appendix C).

Given a system ranking produced by a judge,
we quantify judge performance via the correlation
between its ranking and the reference ranking from
Chatbot Arena. Simply put, we assume that a rank-
ing given by a good automated judge would have
a high agreement with the ranking compiled from
human judgments.

5 JuStRank - Judge Performance Results

Table 1 depicts the 10 top-performing judges on
JuStRank, based on their ranking agreement (τ )
with the ground-truth human ranking from Chatbot
Arena. For each judge model, the best-performing
realization and aggregation method is shown.

As seen in the table, there are both LLMs and
reward models that reach decent agreement with
the gold ranking. Moreover, several 8B-parameter
reward models are on par with much larger LLMs
on the task of system ranking. Thus, we see that
reward models, which are explicitly trained to make
instance-level decisions between pairs of responses,
can excel at the system-level ranking task as well.

Note that an identical correlation score with
the ground-truth ranking does not indicate that
the judges produce the same ranking; rather, each
judge has a different pattern of agreement with

4Chatbot Arena Hard Prompts

the ground-truth. Correlations among the judges
themselves are shown in App. Fig. 9.

Comparison to Instance-Level Performance In
Figure 3 we compare our system-level judge leader-
board to the instance-level benchmark Reward-
Bench (Lambert et al., 2024). The results demon-
strate that better instance-level judges are not al-
ways better system rankers, highlighting the dis-
crepancy between the two tasks. Thus, JuStRank
offers a novel perspective on judge ability. How-
ever, there may be additional factors at play as well.
For LLM judges, we use a slightly different re-
alization from the comparative prompts used for
RewardBench. Moreover, since creators of reward
models aim to do well on RewardBench, it is pos-
sible that some newer reward models are slightly
overfitted to this test distribution.

5.1 Effects of LLM Realizations

Figure 4 depicts the performance of the LLM judge
models by their realization (§4.2.2). The plot
demonstrates that the choice of realization has a
considerable effect on the system ranking quality;
this appears to be nearly as important as the identity
of the LLM used. We confirm this finding using
statistical variance analysis (Appendix D).

Many works recommend asking LLMs for com-
parative rather than absolute judgments (Zheng
et al., 2023). However, in our experiments the
comparative realization (Anchor) exhibits lower
performance, with the notable exception of GPT-
4o. The best realizations overall were Numeric and
Likert, where the judge is asked to provide a ver-
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Figure 5: Predicted pairwise win-rates. Each point represents a win-rate between a pair of systems WR(sa, sb)
(App. E). The x-axis denotes the gold win-rate from Chatbot Arena, and the y-axis denotes the predicted win-rate as
derived from the judge scores. The diagonal marks an exact match between the predicted and gold win-rate; the
quadrants signify whether the predicted winning system is the same (green) or different (red) from the gold winning
system for this pair. Note that every pair is represented twice (e.g., WR(sa, sb) = 0.2, WR(sb, sa) = 0.8).

balized quality score. This is in line with findings
from Tian et al. (2023), who report better calibra-
tion with verbalized LLM confidence scores. The
higher performance for both Numeric and Likert
realizations – compared to Anchor and TokenProbs
– is statistically significant (App. D).

We also note that each realization induces a char-
acteristic distribution of judge scores, Dp, such that
Scorepk,l ∼ Dp. Notably, the LLM judges tend to
produce particular score values more often than
others. Refer to Appendix A for more details.

6 Judge Behavior

Next, we explore more fine-grained judge behav-
iors, beyond the bottom-line system rankings.

To that end, we focus on the judgment task of
pairwise system preference, as this is the founda-
tion of system ranking tasks. As in §5, our aim is
to gain an understanding of judge performance and
characteristics, by comparing judge behavior on
pairwise system preference to ground-truth data.

Pairwise Win-Rates For every judge jp, and for
every pair of systems (sa, sb), the win-rate of sa, de-
noted by WRp(sa, sb), is the number of instances
where it received a higher score than sb, divided by
the number of non-tied instances (cf. Appendix E).
Thus, we calculate the pairwise win-rate for each
system pair according to each judge. Note that the
win-rates are calculated on the scores matrix jp(R),
i.e., before applying an aggregation method.

Gold Win-Rates Similarly, we extract gold
pairwise win-rates, WRg, from Chatbot Arena
(App. C). 59 systems appear both in our response

data (§4.1) and in Chatbot Arena; in total, we have
both judge and gold data for 968 head-to-head com-
parisons between pairs of systems.

6.1 Some Judges are Particularly Decisive

Figure 5 depicts the relationship between predicted
win-rates and gold win-rates for several judges.
The quadrants in the figure indicate whether the
judge’s pairwise preference decision is aligned with
the gold preference. As can be expected, the judge
predictions in Figure 5 are often centered around
the ground-truth win-rates determined by humans.
But strikingly, some judges exhibit unique predic-
tion patterns, yielding win-rates that are consis-
tently closer to the extremes (0.0 / 1.0) compared
to the human data. For instance, for pairs with a
ground-truth win-rate of ∼0.8, the predicted win-
rate in the judgments of Llama-405B (Fig. 5, right)
tends to exceed 0.9. Put simply, when faced with
a response from a strong system, the judge is very
likely to prefer it over the response of a less capable
system, even where human judges are less decisive.

This sigmoidal win-rate prediction pattern re-
sembles behaviors previously described for clas-
sifier calibration (Silva Filho et al., 2023), where
classifiers may exhibit “overconfidence” in their
predicted probabilities.5 Thus, following Kull et al.
(2017), we quantify judges’ decisive (overconfi-
dent) behavior by fitting the cumulative beta dis-
tribution function to the win-rate prediction plots.
This enables describing judge prediction behav-

5Note, however, that the behavior in our case does not
reflect judge probability scores, but rather the empirical ratio
of instances where the responses {rlk}l=L

l=1 of a system k are
preferred over those of another system.
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(a) (b)

Figure 6: Beta distribution fit of pairwise win-rates. (a): Judge beta fit example. Each point represents the
win-rate between a pair of systems, WR(sa, sb); the curve and α value describe a fit to the beta distribution (App. F).
Plots for all judges are in App. Fig. 11. (b): Decisiveness by judge realization. Cell values denote the decisiveness
behaviors of different LLM judge realizations, as described by the α value for their win-rate distribution.

ior in terms of a single fit value α = β, where
α ∈ [0,∞], a value of α = 1 represents no over-
or under-decisiveness, and larger values represent
more decisive behavior (refer to Appendix F for
details). Figure 6a and App. Fig. 11 depict the beta
curve fit for win-rates of various judges.

Figure 6b compares judge realizations in terms
of their decisiveness behavior. We see that LLM
judges are usually more decisive when directly
asked to provide a quality score, and in particular a
textual one (Likert); in contrast, the realization that
relies on token probabilities (TokenProbs) does not
give rise to such a pattern, and can even result in
judge “indecision” (i.e., α < 1).

This pattern can be explained from two direc-
tions. First, the human judgments (§4.4) were col-
lected from multiple individuals, who likely have
differing preferences; this may introduce some
noise that could lead to less extreme win-rates in
the gold data. The other factor is the judges, who
may rely on certain heuristics to identify responses
from strong systems (Feuer et al., 2024), leading
to more extreme win-rates in the judge data. While
the variance between judges (Fig. 6b) supports the
latter, we cannot determine this conclusively.

In practical terms, extreme win-rates can be ben-
eficial to users, as they increase the likelihood of a
correct system preference decision given a smaller
set of responses (see Ashury Tahan et al., 2024).

6.2 Bias Towards Specific Systems

A major concern when using judges for system
preference is judge bias – a judge may treat a
specific system “unfairly”, by consistently judg-
ing its responses too favorably or too harshly (see
Von Däniken et al., 2024).

We define the bias Bp
sa of judge jp towards sys-

tem sa by the expectation over the differences be-
tween the predicted and gold win-rates, over all
systems that sa interacts with. Formally, Bp

sa =
Esb∈S(WRp(sa, sb) − WRg(sa, sb)).6 In other
words, if according to jp the win-rates of system
sa are (on average) higher than those in the human
data, we will say that jp exhibits positive bias to-
wards it; and if they are lower than the ground-truth,
jp would be said to exhibit negative bias.

Note that the decisiveness behavior in §6.1 di-
rectly entails a general bias pattern in some judges –
namely, a positive bias towards strong systems, and
a negative bias towards weak ones. Thus, we calcu-
late a decisiveness-corrected bias, B′

sa
p, where the

gold win-rate WRg is replaced by WRg′p , i.e., the
predicted value for the gold win-rate on the beta
distribution fit for judge jp (App. F).

We observe some consistent trends of system-
specific bias that are common across judges. Fig-
ure 7 depicts systems for which there is high bias
across judges. For instance, most judges exhibit
a strong positive bias towards Athene-70B, to the
extent that it is often ranked by them as the #1 sys-
tem. In contrast, GPT-4-0613, which is 27th in the
gold ranking, receives negative bias, resulting in a
median rank of 38 among the judges.

We also ask whether LLM judges exhibit self-
bias (Xu et al., 2024; Panickssery et al., 2024),
i.e., bias towards the system that uses the same
underlying LLM. While we find some instances of

6Our formulation of bias aims to reflects the practical im-
pact of the judge bias on system preference. This is in con-
trast to the Favi-Score metric proposed by Von Däniken et al.
(2024), which is decoupled from the overall accuracy of pref-
erence decisions.
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Figure 7: System-specific judge biases. The plot de-
picts win-rate biases of judges towards specific systems,
with respect to the ground-truth win-rates from Chatbot
Arena (after correction for the beta distribution fit of
each judge). This plot portrays select systems with high
bias; the full heat map, including all judge realizations
and all systems, is shown in App. Fig. 10b.

self-bias, this is not a consistent effect across judge
realizations (App. Table 3).

To quantify the overall propensity of a judge for
bias, we measure the standard deviation of its bias
over all systems, δ = σs∈S(B′p). The bias measure
for each judge is presented in App. Table 4.

6.3 Characterizing Judge Behaviors
We have shown that beyond their overall ranking
capability (§5), judges exhibit distinct traits in their
system-level judgments – in particular, they show
different levels of decisiveness (§6.1), and overall
propensities for bias (§6.2). Interestingly, each
of these traits (cf. App. Table 4) is correlated to
the ranking quality τ , with r = 0.55 for the α
decisiveness measure, and r = −0.56 for the bias
propensity δ. At the same time, these marked traits
are – by design – uncorrelated with each other (r =
−0.07 between α and δ). Thus, our analyses reveal
global system-level judge traits, ones that remain
hidden when assessing judges from an instance-
level perspective.

7 Related Work

Applying and assessing automatic metrics for
system-level evaluation has been studied for
decades, in particular for natural language gen-
eration tasks (Reiter and Belz, 2009; Louis and
Nenkova, 2013; Deutsch et al., 2022). In the con-
text of LLM-based judges, however, system-level
evaluation is still under-explored.

Prior works on LLM-based judges have opted
for an instance-level evaluation approach, curating
benchmarks of responses with ground-truth quality
annotations in order to evaluate judge performance.
Most prominently, RewardBench (Lambert et al.,

2024) compares dozens of judges (including reward
models, generative LLMs, and classifiers) on the
task of deciding between pairs of outputs. Reward-
Bench aims to identify the most suitable judges for
model alignment, e.g., for use in RLHF; in con-
trast, our work measures judges in terms of their
ability to compare the performance of candidate
systems. Another recent instance-level benchmark,
JudgeBench (Tan et al., 2024), focuses on curating
challenging response pairs where the judge must
discern subtle errors.

Multiple works are dedicated to analyzing var-
ious biases (Ye et al., 2024) and undesirable be-
haviors exhibited by judges. These include posi-
tional bias (Wang et al., 2023), verbosity bias (Saito
et al., 2023; Chen et al., 2024) and self-bias (Xu
et al., 2024), as well as sensitivity to prompts (Wei
et al., 2024), source datasets (Bavaresco et al.,
2024), epistemic markers (Lee et al., 2024a) and
style (Feuer et al., 2024; Liu et al., 2024b).

Several popular benchmarks rely on LLM judges
to produce leaderboards of state-of-the-art systems.
Such benchmarks – e.g., Arena Hard (Li et al.,
2024) and AlpacaEval (Dubois et al., 2024) – do
perform a system-level validation of their result-
ing leaderboards against other benchmark rankings
(see Perlitz et al., 2024). However, such efforts
are limited to validating the particular dataset and
judge setup chosen for the benchmark (usually with
GPT-4 as the judge), rather than comparing and an-
alyzing the performance of different judge models
and implementations. Thakur et al., 2024 conduct
a task-specific system-level evaluation of judges,
over the TriviaQA (Joshi et al., 2017) dataset. Com-
pared to their work, the present study is on a larger
scale and offers novel metrics and analyses on
system-level judge behaviors.

8 Discussion

The usage of LLM-based judges is continually ex-
panding. Moreover, many research papers – propos-
ing novel architectures, algorithms and training
methods – rely heavily on system-level evaluations
using judges as evidence for the utility of their ap-
proach. But without evaluating the judges on such
system-level tasks, how can one know whether to
trust such evaluations, and their conclusions?

We are the first to investigate on a large scale the
performance of LLM-based judges on the system
ranking task. Our resulting benchmark, JuStRank,
will assist users and researchers in choosing the
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judge best suited for their needs.
Choosing a judge requires many fine-grained de-

cisions. A user can decide which reward model
or LLM to use as the judge; opt for relative judg-
ments or absolute scores; try various prompts; ap-
ply different aggregations to compile a ranking,
etc. Furthermore, these decisions may interact in
non-trivial ways (e.g., the distribution of scores a
judge tends to output can dictate which aggrega-
tions will work well). Indeed, our findings confirm
that such decisions substantially affect system-level
judgments (§5), and thus are quite likely to change
the model selection of an end user, or flip the con-
clusions of an NLP research paper.

Our system-level approach has multiple addi-
tional benefits. First, it forces the evaluation of
judges to be representative with respect to the dis-
tribution of systems that generate the responses.
In existing instance-level benchmarks this factor
is not taken into account, and likely results in less
accurate judge evaluations. Second, it affords a
new perspective on what it means for a judge to be
biased; on the one hand, we discover some deci-
siveness trends (§6.1) that may actually be useful
for making correct preference decisions, and in-
creasing the separability between systems; and on
the other, we report some problematic biases that
directly distort the judgment of particular systems
(§6.2). An important avenue for future work is to
connect our findings here to the existing literature
on judge biases (Ye et al., 2024), and understand
to what extent both of these behaviors stem from
particular LLM style attributes (Feuer et al., 2024).

Given this vast and complex space, our work
is admittedly only a first step in understanding
the behavior of judges for ranking and selecting
LLMs. We release our raw judgment scores data,
and encourage the community to explore these is-
sues further: for instance, by training dedicated
system-level judges, exploring judge ensembles, or
studying other aggregation approaches. We believe
that JuStRank can facilitate such research direc-
tions, as it can be easily extended to new judges
without requiring additional human annotations.

Our hope is that both practitioners and re-
searchers can benefit from JuStRank, by making
more informed choices of judges for their needs.

9 Conclusion

In this work we conducted the first comprehen-
sive evaluation of system ranking by LLM judges.

We tested a wide array of judges, including re-
ward models and different realizations of genera-
tive LLMs, over a large collection of systems.

We collected system responses over a diverse set
of instructions. The judges scored each response,
and we compiled a ranking by aggregating the judg-
ments over all responses. Then, the quality of the
judge’s system ranking was compared to a human
ranking, producing the JuStRank leaderboard.
JuStRank allows users to pick judges that are

better aligned with the goal of choosing between
different models and configurations. JuStRank
demonstrates that judge ranking abilities are not
directly tied to LLM size or overall quality, and that
some dedicated reward models are on par with lead-
ing LLM judges. Moreover, our analysis reveals
emergent judge traits – decisiveness and bias – that
are strongly correlated with their ranking ability.

Limitations

The gold reference data – the English Hard
Prompts subset of Chatbot Arena – does not in-
clude user instructions or responses. Hence, we
collect judgment data over Arena Hard, which con-
tains a large set of instructions and responses. This
raises some questions regarding our ability to di-
rectly compare the LLM judges and human judges.
However, given that Arena Hard was designed to
match the distribution of user instructions in En-
glish Hard Prompts (see Li et al., 2024), we assume
that these datasets are sufficiently similar.

Our analyses of LLM judge realizations are, by
necessity, limited to the specific realization prompts
that we used. Several studies show that LLMs
(Mizrahi et al., 2024) as well as LLM judges (Wei
et al., 2024) are brittle with respect to prompt phras-
ing, and hence this may have had an impact on the
results. In addition, there can be some variations in
judge responses depending on the exact API and
inference implementation used.

As in multiple other works, here we treat hu-
man preference as a single concept. In practice,
however, preference is inherently subjective, and
is composed of numerous dimensions (e.g., help-
fulness, safety, style, coherence etc.). For instance,
one individual may prefer succinct model responses
while another would prefer more detailed answers.
Thus there is no single “human preference”, but
rather a collection of preference decisions that de-
pend on the annotation guidelines, cultural context,
and human idiosyncrasies (Conitzer et al., 2024;
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Kirk et al., 2024).
Note that following Peyrard et al. (2021), as well

as Chatbot Arena (Chiang et al., 2024), we gener-
ally regard the ground-truth quality of a system in
terms of the Bradley-Terry model; simply put, a
better system is a system that “wins” more often.
Thus, in this work we do not directly consider the
quality difference in system responses per instance,
i.e., beyond counting wins/losses. Still, some of the
aggregation methods we use (e.g., mean) implicitly
reflect other perspectives on system quality.

All of our analyses are performed on heteroge-
neous datasets of user instructions to LLMs. Thus,
while we study judges through the lens of general-
purpose LLM usage, we cannot draw conclusions
on judge behavior that is task-specific (or in special-
ized domains), nor on performance in languages
other than English (Gureja et al., 2024). The issue
of task, domain, and language-specific judge be-
havior is thus an important avenue for future work.
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A Judge Score Distributions

Figure 12 depicts the score distributions, Dp, of
the judges in our data.

Reward model distributions The reward mod-
els exhibit continuous score distributions. As seen
in Figure 12, these distributions vary in the range
of scores, as well as in the shape of the distribution.
Some reward model judges have a narrow range
of scores, e.g., −0.1 to 0.4, whereas in others it
is much wider, e.g., −3000 to 5000. Similarly,
some distributions are more symmetric while oth-
ers have peaks at more extreme values. However,
all distributions are uni-modal, with a single peak.
Moreover, we note that the continuous nature of
these judgment scores also entails an absence of
ties between the judged responses.

LLM Numeric distributions As shown in Fig-
ure 12, even though the LLM judges are given a
wide range of possible judgment scores ([0−100]),
in practice they tend to prefer specific score val-
ues. This results in many ties when comparing
responses from different systems.

LLM Likert distributions Similarly to the Nu-
meric distributions, the Likert realizations put most
of their probability mass on specific scores, which
leads to an even greater inclination towards ties (as
here they are limited to a smaller range of scores).

LLM TokenProbs distributions TokenProbs
scores tend to be extreme, namely very close to
either 0.0 or 1.0. Thus, in many cases the score gap
between responses is extremely small. This can
result in low judge robustness (see the error bars
in Figure 4), as well as a higher sensitivity to the
choice of aggregation method.

LLM Anchor distributions The distribution for
Anchor judgments is mainly tied to the quality of
the anchor system relative to the other systems.
However, we see that it is also affected by the char-
acteristics of the judge. For example, we see in
Fig. 12 that Llama-3.1-8B exhibits indecision, rat-
ing most responses as comparable to those of the
anchor. In addition, for some judges, the proportion
of −1 scores (i.e., the response is slightly worse
than the anchor) or 1 scores (the response is slightly
better than the anchor) is unusually low.

B Aggregation Methods

Given the raw judgments of each judge, jp(R),
there are multiple aggregation methods, a, that con-

struct a ranking over all the target systems. Here,
we calculate rankings using Win-rate aggregation,
BT aggregation, Mean aggregation, and Median
aggregation. In the following, we provide further
details on each aggregation.

Mean & Median Aggregation These aggrega-
tion methods map a score for each system, sl, by re-
lying solely on the scores assigned to its responses
by judge jp. In other words, the mapping of V p,a

l

by a depends only on the column corresponding
to system sl in jp(R). Accordingly, these aggrega-
tions can be viewed as an operation on the columns
of the scores matrix jp(R). Specifically, for the
Mean aggregation, V p,a

l = 1
KΣK

k=1Score
p
k,l. Sim-

ilarly, Median aggregation is the median of the
vector jp(R)∗l.

We note that for realizations with discrete score
distributions (see §A), many systems will likely
share the same median score; in this case, the Me-
dian aggregation method fails to separate the sys-
tems. Hence, Table 2 contains only a handful of
LLM judges with Median aggregation, all using
the TokenProbs realization.

Win-rate Aggregation This aggregation maps
each system based on its proportion of wins
over other systems, averaged over all in-
structions ik ∈ I . Formally, V p,a

b =
1
KΣK

k=1
1

L−1Σ
L
l=1,l ̸=bI(Score

p
k,b > Scorepk,l),

where I(·) denotes the indicator function.

Bradley-Terry Aggregation Following Chiang
et al. (2024), we use the vector of Bradley-Terry
(BT) coefficients (Bradley and Terry, 1952) as sys-
tem scores.

For calculating the BT scores we use the imple-
mentation of the Chatbot Arena official notebook7.
Whereas Chiang et al. (2024) apply this method
for battles between responses with a human judge,
we apply it over our LLM-based judge data, i.e.,
each “battle” is a comparison between the judge
scores Scorepk,a, Scorepk,b for a response generated
by systems sa and sb.

When there are no ties, e.g., for the reward model
judges, this aggregation produces similar rankings
to the win-rate aggregation.

C Chatbot Arena Data

The data for the Chatbot Arena LLM leaderboard
(https://lmarena.ai) consists of "battles" be-
tween systems over the same instructions. In these

7Arena official notebook
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battles, users indicate a preference (or a tie) be-
tween a pair of responses generated by different
LLMs (Zheng et al., 2023; Chiang et al., 2024).

We use their public data file from August 20248,
and follow the official notebook7 to extract the raw
data, deduplicate it, and calculate the overall sys-
tem rankings. This dataset includes the human
preference judgments and names of the participat-
ing systems, but not the instructions or system re-
sponses for the battles.

Here we limit the analysis to the English Hard
Prompts subset of their data9 (300K battles). No-
tably, Arena Hard was specifically designed to
match the distribution of user instructions in the En-
glish Hard Prompts subset, as described by Li et al.
(2024). We follow their code to construct a full
system ranking based on these 300K battles, using
Bradley-Terry coefficients. This yields a score for
each system in their data, including 59 systems that
are also in our system responses data (§4.1)

Out of this full English Hard data, we also ex-
tract a total of 113K battles that were not judged
by humans as ties, and that are between pairs of
systems which appear in our responses data. We
then use those to calculate win-rates between pairs
of systems (§E), yielding a total of 968 system pair-
wise win-rates. Note that the Chatbot Arena data
does not contain battles between every possible
pairing of systems, and thus we do not have win-
rates for all combinations of the 59 systems under
consideration. In addition, we limit the analysis to
system pairs with at least 10 non-tied battles.

D Statistical Analysis of Judge
Performance

In §5 and Table 2 we report results of agree-
ment with the gold ranking (τ ) for various judge
pipelines. Each pipeline consists of a chosen judge
model, a realization (§4.2.2) and an aggregation
method (§4.3, App. B).

We focus on the LLM judges and perform a
three-way ANOVA (analysis of variance), with the
ranking correlation τ as a dependent variable and
the model, realization and aggregation as factors.
In addition to the variance analysis estimating the
effects of these factors, we perform post-hoc pair-
wise comparisons to ask whether certain configu-
rations (i.e., a specific realization/aggregation) out-
perform the others. We conduct all analyses using

8Chatbot Arena data
9Chatbot Arena Hard Prompts

IBM SPSS Statistics v30.0.

The ANOVA shows that both the judge model
and the realization have a strong influence on
τ , with an effect size (Partial Eta-Squared) of
η2 = 0.81 for the judge model (p < 0.001; F =
36.0), η2 = 0.51 for the realization (p < 0.001;
F = 26.6), and η2 = 0.78 for the interaction ef-
fect between model and realization (p < 0.001;
F = 10.1). In contrast, the aggregation methods
were not found to have a significant effect on τ
(η2 = 0.02; p > 0.5).

We also perform Tukey’s HSD (Tukey, 1949)
post-hoc tests to compare the means of the vari-
ables. The analysis indicates that the both the Nu-
meric (mean τ = 0.75; στ = 0.06) and Likert
(τ = 0.74; στ = 0.07) realizations are signifi-
cantly better than the Anchor (τ = 0.71; στ =
0.07) and TokenProbs (τ = 0.68; στ = 0.13) real-
izations (all p values <= 0.002). The differences
between aggregation methods are not statistically
significant.

E Pairwise Win-Rates

We denote the win-rate of system sa over system
sb as WR(sa, sb)

p where p denotes the judge upon
which the win-rate was calculated, and p ∈ J∪{g},
where g stands for human gold data.

The win-rate of system sa over system sb ac-
cording to judge jp over the set of instances
I is calculated as the proportion of instances
where the score given by jp to the response gen-
erated by sa surpasses that of system sb, where
ties are excluded. Namely WRp(sa, sb) =

1
K−|T p

a,b|
ΣK
k=1I(Score

p
k,a > Scorepk,b) Where

T p
a,b = {ik|Scorepk,a = Scorepk,b}, and I(·)

denotes the indicator function. Notice that
WRp(sa, sb) = 1−WRp(sb, sa).

To quantify the agreement between the judge and
gold win-rates we also define an Accuracy metric.
This measures the proportion of pairs where the
judge pairwise system preference decisions are in
agreement with those of the human gold-data. In
other words, we want to count the pairs that appear
in the first and third quadrants in Figure 5; namely,
the pairs where the judge and gold win-rate are both
bigger than 0.5, or the pairs where both are lower
than 0.5, representing agreement on the winning
system. For that, we denote all the pairs of systems
we have in the gold data as {sam , sbm}Mm=1. Now
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the Accuracy is defined as follows:

AccpWR =
1

M
ΣM
m=1I(I(WRp(sam , sbm) > 0.5)

= I(WRg(sam , sbm) > 0.5))

Additionally, we define a second metric, the Mean
Squared Error over all win-rate pairs.

MSEm
WR =

1

M
ΣM
m=1(WRg(sam , sbm)

−WRp(sam , sbm))
2.

The AccpWR scores are in high agreement with
the JuStRank judge ranking quality scores τ (Pear-
son correlation of r = 0.96 for the BT aggregation,
r = 0.79 for the Mean aggregation). This high-
lights the direct link between judges’ ability to rank
systems and their performance on pairwise system
preference.

The MSEp
WR scores have a low correlation with

the JuStRank judge τ scores (r = −0.19 for the
BT aggregation, r = −0.07 for the Mean aggrega-
tion). This can be explained by the decisiveness ef-
fect (§6.1), where judges deviate substantially from
the gold win-rate, but mostly toward the stronger
system in the pair.

F Beta Distribution Fit

Following Kull et al. (2017), we model the relation
between judge and gold win-rates using the cumu-
lative distribution function (CDF) of the Beta distri-
bution. We parameterize the distribution such that
both shape parameters α and β are equal (α = β).

The CDF of the Beta distribution, defined over
the interval [0, 1], for α = β ∈ [0,∞] provides
a wide range of function fits: a linear y = x fit
for α = 1, a sigmoidal fit for larger α values, and
approaching a step function as α → ∞. These
attributes make it particularly suited for our data
characteristics.

Given a set of data points
{(WRp(sam , sbm),WRg(sam , sbm)}Mm=1, where
WRp(sam , sbm) ∈ [0, 1] represents the judge
win-rate and WRg(sam , sbm) ∈ [0, 1] denotes the
gold win-rate between system, sam and sbm . We fit
the Beta CDF by optimizing the shape parameter
α. The optimization objective is minimizing
the sum of absolute errors (SAE) between the
judge win-rate, WRp(sam , sbm), and the predicted
values from the Beta CDF. In order to capture the
behavior across the entire range of win-rates, we

weight the errors by the distance of WRp from
0.5:

SAE =
M∑

m=1

γ(WRp(sam , sbm)) ·
∣∣∣∣WRp(sam , sbm)

−FBeta(WRg(sam , sbm);α)

∣∣∣∣

where FBeta(x;α) denotes the Beta CDF with
shape parameters α = β, and γ is the distance of
WRp from 0.5.

The optimization was performed using the
scipy.optimize.minimize10 function, with the
parameter (α) constrained to a reasonable range
[0.1, 10000]. This approach efficiently identified
the best-fit parameter (α).

The resulting Beta CDF closely captures the em-
pirical data distribution, as validated both quanti-
tatively, through low SAE, and qualitatively via
visual inspection. Figure 11 depicts the fitted Beta
CDF curve and the observed data points, demon-
strating the effectiveness of this approach for mod-
eling the judges’ predicted win-rate distribution.

10SciPy Documentation for scipy.optimize.minimize
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G LLM Judge Prompts

Below we list the prompts we use for each LLM judge realization (§4.2.2).

Numeric

Here is a user input and a model response. On a scale of 0 to 100, to what extent is this
a good response for the given input? Reply with your rating score without any preceding
explanation. Input: [user instruction]
Response: [system response]
Rating (0-100):

Likert

Here is a user input and a model response. To what extent is this a good response
for the given input? Provide a rating from one of the following choices: ’Very Bad’,
’Bad’, ’Mediocre’, ’Good’, ’Very Good’. Reply using the format of [[rating]], for example:
’[[Mediocre]]’
Input: [user instruction]
Response: [system response]
Rating:

TokenProbs

Here is a user input and a model response. Is this a good response for the given input?
Answer with only yes/no. Input: [user instruction]
Response: [system response]
Good response? (Yes/No):
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Anchor

Here is a user input and responses from two assistants, A and B. Which response is better?
You must output only one of the following choices as your final verdict with a label:

1. Assistant A is significantly better: [[A>>B]]

2. Assistant A is slightly better: [[A>B]]

3. Tie, relatively the same: [[A=B]]

4. Assistant B is slightly better: [[B>A]]

5. Assistant B is significantly better: [[B>>A]

Example output: "My final verdict is tie: [[A=B]]".

<|User Prompt|>
[user instruction]

<|The Start of Assistant A’s Answer|>
[system response]
<|The End of Assistant A’s Answer|>

<|The Start of Assistant B’s Answer|>
[anchor system response]
<|The End of Assistant B’s Answer|>
Final Verdict:
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Judge Model Realization Aggregation Agreement (τ )
w/ Gold Ranking

Qwen2.5-72B-Instruct Likert Win-Rate .827
URM-LLaMa-3.1-8B Reward Mean .823
GPT-4o-2024-11-20 Anchor Mean .822
URM-LLaMa-3.1-8B Reward BT .819
Qwen2.5-72B-Instruct Likert BT .817
URM-LLaMa-3.1-8B Reward Win-Rate .816
Qwen2.5-72B-Instruct Numeric BT .814
GPT-4o-2024-11-20 Anchor Win-Rate .814
Qwen2.5-72B-Instruct Numeric Win-Rate .813
Llama-3-1-405b-instruct-fp8 Numeric Mean .812
Llama-3-1-405b-instruct-fp8 Numeric Win-Rate .812
Mistral-large-instruct-2407 Likert BT .811
GPT-4o-2024-11-20 Anchor BT .809
Mistral-large-instruct-2407 Numeric BT .809
URM-LLaMa-3.1-8B Reward Median .809
GPT-4o-mini-2024-07-18 Numeric Win-Rate .807
Llama-3-1-405b-instruct-fp8 Numeric BT .805
GPT-4o-mini-2024-07-18 Numeric BT .804
Mistral-large-instruct-2407 Numeric Win-Rate .802
Qwen2.5-72B-Instruct Likert Mean .801
ArmoRM-Llama3-8B-v0.1 Reward Mean .800
Qwen2.5-72B-Instruct Anchor Mean .799
GPT-4o-mini-2024-07-18 Likert BT .798
Llama-3-1-70b-instruct Numeric Win-Rate .798
Llama-3-1-70b-instruct Numeric BT .798
Mistral-large-instruct-2407 Likert Win-Rate .798
Qwen2.5-72B-Instruct Anchor BT .794
Llama-3-1-405b-instruct-fp8 Likert Win-Rate .793
Llama-3-1-70b-instruct TokenProbs Win-Rate .793
GPT-4o-mini-2024-07-18 Likert Win-Rate .793
ArmoRM-Llama3-8B-v0.1 Reward Median .793
Llama-3-1-405b-instruct-fp8 Likert BT .787
Mistral-large-instruct-2407 Anchor Win-Rate .786
Skywork-Llama-3.1-8B-v0.2 Reward Mean .786
Qwen2.5-72B-Instruct Anchor Win-Rate .786
Mistral-large-instruct-2407 Likert Mean .782
GPT-4o-mini-2024-07-18 Numeric Mean .781
Skywork-Llama-3.1-8B-v0.2 Reward Win-Rate .780
Llama-3-1-405b-instruct-fp8 Likert Mean .780
Skywork-Llama-3.1-8B-v0.2 Reward BT .778
Llama-3.1-8B-Instruct TokenProbs Mean .778
Qwen2.5-72B-Instruct TokenProbs BT .777
Llama-3.1-8B-Instruct TokenProbs Median .776
Mixtral-8x22B-instruct-v0.1 Numeric BT .776
Llama-3-1-70b-instruct TokenProbs Median .776
GPT-4o-2024-11-20 Numeric BT .774
GPT-4o-mini-2024-07-18 Likert Mean .773
Qwen2.5-72B-Instruct Numeric Mean .773
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GPT-4o-2024-11-20 Likert BT .773
GPT-4o-2024-11-20 Numeric Win-Rate .771
Llama-3-OffsetBias-RM-8B Reward Win-Rate .765
Llama-3-1-70b-instruct TokenProbs BT .765
Llama-3-OffsetBias-RM-8B Reward BT .765
Skywork-Llama-3.1-8B-v0.2 Reward Median .764
Llama-3-1-70b-instruct TokenProbs Mean .764
Mistral-large-instruct-2407 Anchor Mean .764
Llama-3-1-70b-instruct Numeric Mean .764
ArmoRM-Llama3-8B-v0.1 Reward BT .763
ArmoRM-Llama3-8B-v0.1 Reward Win-Rate .762
Llama-3-OffsetBias-RM-8B Reward Median .759
GPT-4o-mini-2024-07-18 TokenProbs Win-Rate .759
GPT-4o-2024-11-20 Likert Win-Rate .758
Llama-3-OffsetBias-RM-8B Reward Mean .757
Mixtral-8x22B-instruct-v0.1 Numeric Win-Rate .756
GPT-4o-mini-2024-07-18 TokenProbs BT .752
Qwen2.5-72B-Instruct TokenProbs Median .752
Mistral-large-instruct-2407 Numeric Mean .750
Llama-3-70b-instruct Numeric BT .749
Qwen2.5-72B-Instruct TokenProbs Win-Rate .748
Llama-3-1-405b-instruct-fp8 Anchor Win-Rate .748
Llama-3-1-70b-instruct Likert Mean .746
GPT-4o-2024-11-20 Likert Mean .744
Llama-3.1-8B-Instruct TokenProbs Win-Rate .744
Llama-3-1-405b-instruct-fp8 Anchor Mean .744
Llama-3.1-8B-Instruct TokenProbs BT .741
Llama-3-1-405b-instruct-fp8 TokenProbs Win-Rate .741
GPT-4o-mini-2024-07-18 TokenProbs Mean .741
Mixtral-8x22B-instruct-v0.1 Likert BT .738
GPT-4o-2024-11-20 Numeric Mean .738
Llama-3-1-405b-instruct-fp8 TokenProbs Median .737
Llama-3.1-8B-Instruct Likert Mean .736
Llama-3-70b-instruct Numeric Win-Rate .733
Llama-3-1-405b-instruct-fp8 TokenProbs Mean .733
Llama-3-1-70b-instruct Likert Win-Rate .732
Mixtral-8x22B-instruct-v0.1 Likert Win-Rate .732
Qwen2.5-72B-Instruct TokenProbs Mean .732
Internlm2-7b-reward Reward Mean .731
Llama-3-1-405b-instruct-fp8 Anchor BT .730
Mistral-large-instruct-2407 TokenProbs Mean .730
Internlm2-20b-reward Reward Mean .728
Mistral-large-instruct-2407 Anchor BT .725
Internlm2-20b-reward Reward Median .724
GPT-4o-mini-2024-07-18 TokenProbs Median .723
Llama-3.1-8B-Instruct Likert BT .723
Llama-3-1-70b-instruct Likert BT .722
Internlm2-7b-reward Reward Median .721
Mixtral-8x22B-instruct-v0.1 Likert Mean .719
Internlm2-7b-reward Reward Win-Rate .717
Internlm2-20b-reward Reward BT .717
Mixtral-8x22B-instruct-v0.1 TokenProbs Win-Rate .717
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Llama-3-1-70b-instruct Anchor Win-Rate .716
GRM-Llama3.2-3B Reward Mean .716
Internlm2-20b-reward Reward Win-Rate .716
Mixtral-8x22B-instruct-v0.1 Numeric Mean .715
Llama-3-1-70b-instruct Anchor Mean .714
GRM-Llama3.2-3B Reward Win-Rate .712
Internlm2-7b-reward Reward BT .712
GRM-Llama3.2-3B Reward BT .711
GRM-Llama3.2-3B Reward Median .706
GPT-4o-2024-11-20 TokenProbs Median .704
Llama-3-70b-instruct Numeric Mean .704
Mixtral-8x22B-instruct-v0.1 TokenProbs BT .702
GPT-4o-2024-11-20 TokenProbs Mean .701
GPT-4o-2024-11-20 TokenProbs BT .700
Llama-3-70b-instruct Likert BT .698
Llama-3-70b-instruct TokenProbs Win-Rate .696
GPT-4o-2024-11-20 TokenProbs Win-Rate .696
Llama-3.1-8B-Instruct Anchor Mean .695
Llama-3.1-8B-Instruct Likert Win-Rate .694
Llama-3-1-70b-instruct Anchor BT .688
Llama-3-70b-instruct Likert Win-Rate .681
Llama-3.1-8B-Instruct Numeric Mean .680
Llama-3-70b-instruct Likert Mean .678
Llama-3.1-8B-Instruct Anchor BT .677
GPT-4o-mini-2024-07-18 Anchor Mean .675
Llama-3-1-405b-instruct-fp8 TokenProbs BT .672
Llama-3.1-8B-Instruct Numeric BT .668
GPT-4o-mini-2024-07-18 Anchor Win-Rate .668
Llama-3-70b-instruct Anchor Mean .667
Llama-3-70b-instruct TokenProbs Mean .666
Mixtral-8x22B-instruct-v0.1 Anchor Mean .665
Llama-3-70b-instruct TokenProbs BT .663
GPT-4o-mini-2024-07-18 Anchor BT .659
Mixtral-8x7B-instruct-v0.1 Numeric BT .656
Mixtral-8x7B-instruct-v0.1 Anchor BT .655
Mixtral-8x22B-instruct-v0.1 TokenProbs Mean .650
Eurus-RM-7b Reward Median .643
Eurus-RM-7b Reward Mean .641
Mixtral-8x22B-instruct-v0.1 Anchor BT .641
Llama-3.1-8B-Instruct Anchor Win-Rate .639
Llama-3-70b-instruct Anchor Win-Rate .638
Llama-3-70b-instruct Anchor BT .633
Llama-3.1-8B-Instruct Numeric Win-Rate .632
Eurus-RM-7b Reward Win-Rate .629
Eurus-RM-7b Reward BT .628
Mixtral-8x7B-instruct-v0.1 Numeric Win-Rate .626
Mixtral-8x7B-instruct-v0.1 Numeric Mean .626
Mixtral-8x7B-instruct-v0.1 Anchor Win-Rate .622
Mixtral-8x22B-instruct-v0.1 Anchor Win-Rate .612
Mixtral-8x7B-instruct-v0.1 Anchor Mean .610
Mixtral-8x7B-instruct-v0.1 Likert BT .590
Mixtral-8x7B-instruct-v0.1 Likert Mean .585
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Mixtral-8x7B-instruct-v0.1 Likert Win-Rate .543
Mixtral-8x7B-instruct-v0.1 TokenProbs BT .427
Mistral-large-instruct-2407 TokenProbs Win-Rate .417
Mixtral-8x7B-instruct-v0.1 TokenProbs Mean .411
Mixtral-8x7B-instruct-v0.1 TokenProbs Win-Rate .371
Mistral-large-instruct-2407 TokenProbs BT .369
Mistral-large-instruct-2407 TokenProbs Median .363

Table 2: Judges by ranking performance. The judges are sorted by the Kendall’s Tau correlation between their
overall system ranking and the gold ranking from Chatbot Arena (§4.4).
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Figure 8: Comparison to RewardBench. The plot depicts the relative performance of judges present in both
JuStRank and RewardBench (Lambert et al., 2024). For comparison, we perform Min-Max normalization over the
judge performance scores (accuracy for RewardBench, Kendall’s Tau for our results). The results shown are for the
BT aggregation method; the LLM judges use the Anchor realization, which is closest to the setting in RewardBench.
Each panel portrays a different subset of RewardBench.
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Figure 9: Judge Correlations. Kendall’s Tau correlations between the system rankings produced by the different
judge realizations, using the BT aggregation method. The first row/column denotes correlations with the reference
ranking from Chatbot Arena.

Judge Self-bias Significance p-value

GPT-4o-mini-2024-07-18 (Anchor) −0.05 –
GPT-4o-mini-2024-07-18 (Likert) −0.04 –
GPT-4o-mini-2024-07-18 (Numeric) +0.03 > 0.5 (N.S.)
GPT-4o-mini-2024-07-18 (TokenProbs) +0.06 0.13 (N.S.)
Llama-3-1-70b-instruct (Anchor) −0.05 –
Llama-3-1-70b-instruct (Likert) +0.16 7.1e− 03
Llama-3-1-70b-instruct (Numeric) −0.00 –
Llama-3-1-70b-instruct (TokenProbs) −0.03 –
Llama-3-70b-instruct (Anchor) +0.09 4.7e− 04
Llama-3-70b-instruct (Likert) +0.15 8.4e− 08
Llama-3-70b-instruct (Numeric) +0.14 1.8e− 13
Llama-3-70b-instruct (TokenProbs) −0.01 –
Llama-3.1-8B-Instruct (Anchor) −0.07 –
Llama-3.1-8B-Instruct (Likert) −0.04 –
Llama-3.1-8B-Instruct (Numeric) +0.02 > 0.5 (N.S.)
Llama-3.1-8B-Instruct (TokenProbs) −0.04 –
Mistral-large-instruct-2407 (Anchor) −0.07 –
Mistral-large-instruct-2407 (Likert) +0.02 > 0.5 (N.S.)
Mistral-large-instruct-2407 (Numeric) +0.06 0.33 (N.S.)
Mistral-large-instruct-2407 (TokenProbs) +0.01 > 0.5 (N.S.)

Table 3: Judge self-bias. The table shows the self-bias values for LLM judge realizations, i.e., the value of
the corrected bias B′

sa
p (§6.2) where the LLM judge p and system sa correspond to the same underlying LLM.

For positive self-bias values we test the statistical significance using paired t-tests (one-sided, with Bonferroni
correction). N.S.: non-significant (p > 0.05).

703



Arm
oR

M
-Llam

a3-8B
Skyw

ork-Llam
a-3.1-8B

U
R

M
-LLaM

a-3.1-8B
E

urus-7b
Internlm

2-7b
Internlm

2-20b
Llam

a-3-O
ffsetB

ias-8B
G

R
M

-Llam
a3.2-3B

M
ixtral-8x22B

 (N
um

eric)
M

istral-large (N
um

eric)
M

ixtral-8x7B
 (N

um
eric)

Llam
a-3-1-405b (N

um
eric)

Llam
a-3-1-70b (N

um
eric)

Q
w

en2.5-72B
 (N

um
eric)

Llam
a-3.1-8B

 (N
um

eric)
Llam

a-3-70b (N
um

eric)
G

PT-4o-m
ini (N

um
eric)

G
PT-4o (N

um
eric)

M
ixtral-8x22B

 (Likert)
M

istral-large (Likert)
M

ixtral-8x7B
 (Likert)

Llam
a-3-1-405b (Likert)

Llam
a-3-1-70b (Likert)

Q
w

en2.5-72B
 (Likert)

Llam
a-3.1-8B

 (Likert)
Llam

a-3-70b (Likert)
G

PT-4o-m
ini (Likert)

G
PT-4o (Likert)

M
ixtral-8x22B

 (TokenProbs)
M

istral-large (TokenProbs)
M

ixtral-8x7B
 (TokenProbs)

Llam
a-3-1-405b (TokenProbs)

Llam
a-3-1-70b (TokenProbs)

Q
w

en2.5-72B
 (TokenProbs)

Llam
a-3.1-8B

 (TokenProbs)
Llam

a-3-70b (TokenProbs)
G

PT-4o-m
ini (TokenProbs)

G
PT-4o (TokenProbs)

M
ixtral-8x22B

 (Anchor)
M

istral-large (Anchor)
M

ixtral-8x7B
 (Anchor)

Llam
a-3-1-405b (Anchor)

Llam
a-3-1-70b (Anchor)

Q
w

en2.5-72B
 (Anchor)

Llam
a-3.1-8B

 (Anchor)
Llam

a-3-70b (Anchor)
G

PT-4o-m
ini (Anchor)

G
PT-4o (Anchor)

athene-70b-0725
claude-2.0
claude-2.1

claude-3-5-sonnet-20240620
claude-3-haiku-20240307
claude-3-opus-20240229

claude-3-sonnet-20240229
command-r-plus

command-r
dbrx-instruct-preview

deepseek-coder-v2
gemini-1.5-flash-api-0514

gemini-1.5-pro-api-0409-preview
gemini-1.5-pro-api-0514

gemini-pro
gemma-1.1-2b-it
gemma-1.1-7b-it
gemma-2-27b-it

gemma-2b-it
gemma-7b-it
glm-4-0116
glm-4-0520

gpt-3.5-turbo-0125
gpt-3.5-turbo-0314
gpt-3.5-turbo-0613
gpt-3.5-turbo-1106

gpt-4-0125-preview
gpt-4-0314
gpt-4-0613

gpt-4-1106-preview
gpt-4-turbo-2024-04-09

gpt-4o-2024-05-13
gpt-4o-mini-2024-07-18

llama-2-70b-chat
llama-3-70b-instruct
llama-3-8b-instruct

llama-3.1-70b-instruct
llama-3.1-8b-instruct

mistral-7b-instruct
mistral-large-2402
mistral-large-2407

mistral-medium
mistral-next

mixtral-8x22b-instruct-v0.1
mixtral-8x7b-instruct-v0.1
nemotron-4-340b-instruct
phi-3-medium-4k-instruct
phi-3-mini-128k-instruct

phi-3-small-8k-instruct
qwen1.5-72b-chat

qwen2-72b-instruct
snowflake-arctic-instruct

starling-lm-7b-alpha
starling-lm-7b-beta

tulu-2-dpo-70b
vicuna-33b
yi-34b-chat

yi-large-preview
yi-large

Sy
st

em

Judge

0.3

0.2

0.1

0.0

0.1

0.2

0.3

W
in

-R
at

e 
B

ia
s

(a)
Arm

oR
M

-Llam
a3-8B

Skyw
ork-Llam

a-3.1-8B
U

R
M

-LLaM
a-3.1-8B

E
urus-7b

Internlm
2-7b

Internlm
2-20b

Llam
a-3-O

ffsetB
ias-8B

G
R

M
-Llam

a3.2-3B
M

ixtral-8x22B
 (N

um
eric)

M
istral-large (N

um
eric)

M
ixtral-8x7B

 (N
um

eric)
Llam

a-3-1-405b (N
um

eric)
Llam

a-3-1-70b (N
um

eric)
Q

w
en2.5-72B

 (N
um

eric)
Llam

a-3.1-8B
 (N

um
eric)

Llam
a-3-70b (N

um
eric)

G
PT-4o-m

ini (N
um

eric)
G

PT-4o (N
um

eric)
M

ixtral-8x22B
 (Likert)

M
istral-large (Likert)

M
ixtral-8x7B

 (Likert)
Llam

a-3-1-405b (Likert)
Llam

a-3-1-70b (Likert)
Q

w
en2.5-72B

 (Likert)
Llam

a-3.1-8B
 (Likert)

Llam
a-3-70b (Likert)

G
PT-4o-m

ini (Likert)
G

PT-4o (Likert)
M

ixtral-8x22B
 (TokenProbs)

M
istral-large (TokenProbs)

M
ixtral-8x7B

 (TokenProbs)
Llam

a-3-1-405b (TokenProbs)
Llam

a-3-1-70b (TokenProbs)
Q

w
en2.5-72B

 (TokenProbs)
Llam

a-3.1-8B
 (TokenProbs)

Llam
a-3-70b (TokenProbs)

G
PT-4o-m

ini (TokenProbs)
G

PT-4o (TokenProbs)
M

ixtral-8x22B
 (Anchor)

M
istral-large (Anchor)

M
ixtral-8x7B

 (Anchor)
Llam

a-3-1-405b (Anchor)
Llam

a-3-1-70b (Anchor)
Q

w
en2.5-72B

 (Anchor)
Llam

a-3.1-8B
 (Anchor)

Llam
a-3-70b (Anchor)

G
PT-4o-m

ini (Anchor)
G

PT-4o (Anchor)

athene-70b-0725
claude-2.0
claude-2.1

claude-3-5-sonnet-20240620
claude-3-haiku-20240307
claude-3-opus-20240229

claude-3-sonnet-20240229
command-r-plus

command-r
dbrx-instruct-preview

deepseek-coder-v2
gemini-1.5-flash-api-0514

gemini-1.5-pro-api-0409-preview
gemini-1.5-pro-api-0514

gemini-pro
gemma-1.1-2b-it
gemma-1.1-7b-it
gemma-2-27b-it

gemma-2b-it
gemma-7b-it
glm-4-0116
glm-4-0520

gpt-3.5-turbo-0125
gpt-3.5-turbo-0314
gpt-3.5-turbo-0613
gpt-3.5-turbo-1106

gpt-4-0125-preview
gpt-4-0314
gpt-4-0613

gpt-4-1106-preview
gpt-4-turbo-2024-04-09

gpt-4o-2024-05-13
gpt-4o-mini-2024-07-18

llama-2-70b-chat
llama-3-70b-instruct
llama-3-8b-instruct

llama-3.1-70b-instruct
llama-3.1-8b-instruct

mistral-7b-instruct
mistral-large-2402
mistral-large-2407

mistral-medium
mistral-next

mixtral-8x22b-instruct-v0.1
mixtral-8x7b-instruct-v0.1
nemotron-4-340b-instruct
phi-3-medium-4k-instruct
phi-3-mini-128k-instruct

phi-3-small-8k-instruct
qwen1.5-72b-chat

qwen2-72b-instruct
snowflake-arctic-instruct

starling-lm-7b-alpha
starling-lm-7b-beta

tulu-2-dpo-70b
vicuna-33b
yi-34b-chat

yi-large-preview
yi-large

Sy
st

em

Judge

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

W
in

-R
at

e 
B

ia
s 

(R
el

at
iv

e 
to

 B
et

a 
C

D
F)

(b)

Figure 10: System-specific judge biases. The heat maps depict the win-rate biases of various judges towards
specific systems (§6.2), with respect to the ground-truth win-rates from Chatbot Arena. (a): Bias w.r.t. the raw
ground-truth win-rates WRg; (b): Bias w.r.t. the fit value for the gold win-rate WRg′

on the beta distribution fit
(App. F) for each judge.
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Figure 11: Beta distribution fit of pairwise win-rates (Part 1/4)
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Figure 11: Beta distribution fit of pairwise win-rates (Part 2/4)

706



Figure 11: Beta distribution fit of pairwise win-rates (Part 3/4)
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Figure 11: Beta distribution fit of pairwise win-rates (Part 4/4). Each point represents the win-rate between
a pair of systems, WR(sa, sb); the curve and α value describe a fit to the beta probability distribution. Refer to
Appendix F for details.
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Figure 12: Judge score distributions (Part 1/3)
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Figure 12: Judge score distributions (Part 2/3)
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Figure 12: Judge score distributions (Part 3/3).
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Judge Model Realization Agreement Decisiveness Bias
with Gold τ ↑ α ↑ δ↓

URM-LLaMa-3.1-8B Reward .819 1.84 .085
Qwen2.5-72B-Instruct Likert .817 4.76 .079
Qwen2.5-72B-Instruct Numeric .814 4.09 .079
Mistral-large-instruct-2407 Likert .811 5.47 .086
GPT-4o-2024-11-20 Anchor .809 3.07 .085
Mistral-large-instruct-2407 Numeric .809 3.01 .082
Llama-3-1-405b-instruct-fp8 Numeric .805 4.33 .087
GPT-4o-mini-2024-07-18 Numeric .804 2.91 .077
GPT-4o-mini-2024-07-18 Likert .798 4.61 .087
Llama-3-1-70b-instruct Numeric .798 2.69 .087
Qwen2.5-72B-Instruct Anchor .794 2.93 .090
Llama-3-1-405b-instruct-fp8 Likert .787 5.22 .097
Skywork-Llama-3.1-8B-v0.2 Reward .778 2.46 .100
Qwen2.5-72B-Instruct TokenProbs .777 2.69 .082
Mixtral-8x22B-instruct-v0.1 Numeric .776 2.12 .089
GPT-4o-2024-11-20 Numeric .774 2.15 .077
GPT-4o-2024-11-20 Likert .773 5.49 .089
Llama-3-1-70b-instruct TokenProbs .765 1.26 .070
Llama-3-OffsetBias-RM-8B Reward .765 1.39 .076
ArmoRM-Llama3-8B-v0.1 Reward .763 1.84 .092
GPT-4o-mini-2024-07-18 TokenProbs .752 2.10 .084
Llama-3-70b-instruct Numeric .749 1.27 .084
Llama-3.1-8B-Instruct TokenProbs .741 .598 .061
Mixtral-8x22B-instruct-v0.1 Likert .738 2.53 .108
Llama-3-1-405b-instruct-fp8 Anchor .730 3.58 .112
Mistral-large-instruct-2407 Anchor .725 2.13 .111
Llama-3.1-8B-Instruct Likert .723 .935 .090
Llama-3-1-70b-instruct Likert .722 3.90 .120
Internlm2-20b-reward Reward .717 1.90 .098
Internlm2-7b-reward Reward .712 2.35 .113
GRM-Llama3.2-3B Reward .711 2.30 .114
Mixtral-8x22B-instruct-v0.1 TokenProbs .702 1.85 .088
GPT-4o-2024-11-20 TokenProbs .700 2.22 .093
Llama-3-70b-instruct Likert .698 2.40 .122
Llama-3-1-70b-instruct Anchor .688 2.71 .126
Llama-3.1-8B-Instruct Anchor .677 .868 .085
Llama-3-1-405b-instruct-fp8 TokenProbs .672 1.55 .092
Llama-3.1-8B-Instruct Numeric .668 1.20 .104
Llama-3-70b-instruct TokenProbs .663 .775 .071
GPT-4o-mini-2024-07-18 Anchor .659 1.41 .111
Mixtral-8x7B-instruct-v0.1 Numeric .656 1.27 .102
Mixtral-8x7B-instruct-v0.1 Anchor .655 1.17 .102
Mixtral-8x22B-instruct-v0.1 Anchor .641 1.50 .140
Llama-3-70b-instruct Anchor .633 1.82 .132
Eurus-RM-7b Reward .628 2.49 .138
Mixtral-8x7B-instruct-v0.1 Likert .590 .838 .110
Mixtral-8x7B-instruct-v0.1 TokenProbs .427 .739 .107
Mistral-large-instruct-2407 TokenProbs .369 1.17 .123

Table 4: Judge characteristics. The table presents three measures for each judge realization: an overall ranking
quality τ (§5, Kendall’s Tau correlation with the Chatbot Arena gold ranking), a decisiveness score α (§6.1, App. F),
and its propensity for system-specific biases δ (§6.2). Correlations τ shown are for the BT aggregation method; α
and δ are calculated on the judge scores before aggregation. ↓: Lower is better.
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