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Abstract

This paper introduces a novel task to evaluate
the robust understanding capability of Large
Multimodal Models (LMMs), termed Unsolv-
able Problem Detection (UPD). Multiple-
choice question answering (MCQA) is widely
used to assess the understanding capability of
LMMs, but it does not guarantee that LMMs
truly comprehend the answer. UPD assesses
the LMM’s ability to withhold answers when
encountering unsolvable problems of MCQA,
verifying whether the model truly understands
the answer. UPD encompasses three problems:
Absent Answer Detection (AAD), Incompat-
ible Answer Set Detection (IASD), and In-
compatible Visual Question Detection (IVQD),
covering unsolvable cases like answer-lacking
or incompatible choices and image-question
mismatches. For the evaluation, we introduce
the MM-UPD Bench, a benchmark for assess-
ing performance across various ability dimen-
sions. Our experiments reveal that even most
LMMs, which demonstrate adequate perfor-
mance on existing benchmarks, struggle signif-
icantly with MM-UPD, underscoring a novel
aspect of trustworthiness that current bench-
marks have overlooked. A detailed analysis
shows that LMMs have different bottlenecks
and chain-of-thought and self-reflection im-
proved performance for LMMs with the bot-
tleneck in their LLLM capability. We hope our
insights will enhance the broader understand-
ing and development of more reliable LMMs.

1 Introduction

In recent years, following the revolutionary devel-
opment of Large Language Models (LLMs) (Chen
et al., 2024a; Chiang et al., 2023; Touvron et al.,
2023; Wei et al., 2023), Large Multimodal Models
(LMMs, also referred to as Multimodal Large Lan-
guage Models or MLLMs) (Liu et al., 2024¢; Wang
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Figure 1: The Unsolvable Problem Detection (UPD)
Challenges. Current Large Multimodal Models
(LMMs) like LLaVA-OneVision show adequate perfor-
mance (blue) on standard problems (MMBench) where
an answer is guaranteed. However, they exhibit a no-
table deficiency (red) refraining from answering unsolv-
able problems.

et al., 2023c; Hurst et al., 2024) have also demon-
strated profound capabilities in various applications
and significantly enhance the performance in im-
age reasoning tasks (Antol et al., 2015; Liu et al.,
2024b.e; Yue et al., 2024a).

Assessing the understanding capability of
LMMs is crucial for advancing fundamental
progress. Multiple-Choice Question Answering
(MCQA) serves as a fundamental format for un-
derstanding evaluation and is widely used in well-
established benchmarks such as MMBench (Liu
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etal., 2024e) and MMMU (Yue et al., 2024a). Each
MCQA instance consists of a question paired with
multiple answer options, requiring models to select
the correct one. MCQA enables precise evalua-
tion of LMMs and facilitates solid progress in the
field. Consequently, many MCQA-based bench-
marks have been proposed recently (Fu et al., 2024;
Yue et al., 2024b; Hu et al., 2025; Onohara et al.,
2025).

Despite the advanced performance of LMMs on
the accuracy of MCQA-format benchmarks, con-
cerns remain regarding the reliability of their pre-
dictions. While previous works in the field of
LLMs have discussed challenges such as main-
taining invariance to different orderings of answer
choices (Robinson et al., 2023; Wang et al., 2024a;
Zheng et al., 2025), overcoming order sensitivity
alone is not sufficient to ensure that the model truly
understands the correct answer. A more recent
study (Wang et al., 2025) investigated LLMs’ abil-
ity to reject unsolvable problems, such as questions
where the correct answer is not present among the
given choices. The ability to reject unsolvable
problems can serve as a more reliable means of
verifying the model’s true understanding. How-
ever, this study does not focus on LMMs. When
extending the evaluation from LLMs to LMMs,
the types of unsolvable problems differ. Addition-
ally, there is a lack of benchmarks and systematic
evaluation protocols for comprehensively assessing
recent LMMs. Consequently, existing works fail to
assess the depth of LMMs’ robust comprehension.

To assess the robust comprehension of LMMs,
we propose Unsolvable Problem Detection
(UPD), which examines the LMM’s ability to with-
hold answers when faced with unsolvable problems.
UPD encompasses three distinct settings: Absent
Answer Detection (AAD), Incompatible Answer
Set Detection (IASD), and Incompatible Visual
Question Detection (IVQD). Fig. 1 shows the il-
lustration of each setting. AAD evaluates whether
the model declines to provide an answer when the
correct answer is absent. IASD examines whether
the model rejects a question when the given answer
set is entirely incompatible. IVQD investigates the
model’s ability to reject a question when there is no
relevance between the image and the text question.
A model that effectively rejects unsolvable prob-
lems while accurately solving standard solvable
problems can be regarded as truly understanding
them. On the other hand, a model that incorrectly
selects an answer for unsolvable problems cannot

be considered to have a true understanding of them.

For the evaluation, we introduce MM-UPD
Bench, a carefully designed benchmark for evalu-
ating UPD capability across various ability dimen-
sions. MM-UPD employs a rigorous three-step con-
struction process that builds upon MMBench (Liu
et al., 2024e): (1) filtering out questions that can
be answered by text-only language models, (2) ap-
plying the carefully designed approach for creat-
ing UPD questions, (3) finally, manually removing
ambiguous samples. Built on the foundation of
MMBench, our benchmarks allow us to highlight
the difficulty of MM-UPD by comparing it to the
self-established MMBench, and also serves as a
fine-grained diagnostic tool, offering detailed in-
sights into each LMM’s weaknesses in a broad
range of MMBench’s abilities.

Our experimental results demonstrate the diffi-
culty of MM-UPD across various state-of-the-art
LMMs. The most important finding is that there is
little correlation between the performance on the
existing MMBench and MM-UPD Bench. This in-
dicates that the community’s efforts to improve per-
formance on existing benchmarks do not directly
contribute to enhancing model reliability. In partic-
ular, we found that the gap between open-source
and closed-source models is large, while open-
source LMMs outperform closed-source LMMs on
MMBench. Furthermore, our fine-grained ability
analysis revealed that even closed-source models
such as GPT-4o0 (Hurst et al., 2024) exhibit weak-
nesses in specific abilities.

Finally, we revealed that whether the bottle-
neck lies in the LLM’s refusal capability or its
visual understanding depends on the specific LMM.
For LMMs where the bottleneck is in the LLM’s
refusal capability, we observed performance im-
provements with LLM-driven approaches such as
chain-of-thought (Kojima et al., 2022) and self-
reflection (Kadavath et al., 2022).

Our contributions are summarized as follows:

* Definition of Unsolvable Problem Detec-
tion: We propose a novel challenge called
Unsolvable Problem Detection, which evalu-
ates the LMM’s robust understanding in three
problem settings: AAD, IASD, and IVQD.

* Construction of MM-UPD Bench: We rigor-
ously construct the MM-UPD Bench and pro-
vide a fine-grained diagnostic tool for broader
abilities.
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* Benchmarking with Recent LMMs: We
evaluate state-of-the-art LMMs on the UPD
problem and show that our benchmarks repre-
sent a new and meaningful dimension of the
performances of LMMs.

2 Related Work

Vulnerability of MCQA Evaluation. The vulnera-
bility of MCQA has mainly been researched in the
field of LLM. Previous work has aimed to mitigate
bias in answer options and enhance LLMs’ con-
sistency across different option orders (Robinson
et al., 2023; Wang et al., 2024a; Zheng et al., 2025).
As a more recent work, Wang et al. (2025) tested
LLM’s ability to refuse unsolvable problems. They
found that LLMs may perform MCQA by selecting
the least incorrect option rather than distinctly cor-
rect. However, it only deals with AAD, and when
applied to LMMs, the types of unsolvable problems
are limited. Additionally, we consider that handling
unsolvable problems requires rigorous evaluation
based on ability-specific assessments, while they
have not clearly identified the performance differ-
ences across abilities.

Unsolvable Problems. Unsolvable questions have
been studied in NLP (Rajpurkar et al., 2018; Choi
et al., 2018; Reddy et al., 2019; Sulem et al., 2022)
and in VQA before the rise of LMMs (Gurari
et al., 2018; Bhattacharya et al., 2019; Davis, 2020;
Whitehead et al., 2022). Early VQA studies fo-
cused on task-specific models, making their bench-
marks misaligned with modern LMMs due to task
simplicity or differing evaluation protocols. While
recent works have explored unsolvable questions
in LMMs (Guo et al., 2024; Akter et al., 2024; Cao
et al., 2024), they do not assess the robustness of
LMMs for common MCQA.

Answer Refusal. In the task of refusing to provide
an answer, there are studies in the field of LLMs
that focus on abstaining due to a lack of knowl-
edge (Kadavath et al., 2022; Feng et al., 2024). The
main difference between their work and ours is that
while they focus on knowledge gaps, we focus on
the flaws or incompleteness of the problem itself,
which leads to a different problem formulation.

3 Problem Definition

In this section, we introduce the concept of Unsolv-
able Problem Detection (UPD), a task designed to
evaluate models’ capacity to not blindly offer incor-
rect answers when presented with unsolvable prob-

lems. We consider various discrepancies among
the provided image, question, and answer options.
Then, we categorize UPD into three distinct prob-
lem types: Absent Answer Detection (AAD), In-
compatible Answer Set Detection (IASD), and
Incompatible Visual Question Detection (IVQD).
Here, AAD has been proposed as an unsolvable
type for LLMs in existing work (Wang et al., 2025),
but it has not been examined with LMMs. Addi-
tionally, by incorporating IASD and IVQD, we can
cover a broader scope of unsolvable types, enabling
a more precise diagnosis of model weaknesses. The
details of each setting are as follows:

1. Absent Answer Detection (AAD): AAD tests
the model’s capability to recognize when the cor-
rect answer is absent from the provided choices.
It challenges the model to not only analyze the
content of questions and images but also identify
when it cannot select a correct response due to the
absence of an appropriate option.

2. Incompatible Answer Set Detection (IASD):
IASD tests the model’s ability to identify situations
where the set of answer choices is incompatible
with the context. Differing from AAD, in which the
answer set is related to the question or the image,
IASD deals with answer sets that are entirely irrele-
vant, challenging the model to withhold a response
due to the lack of reasonable options. By giving a
completely unrelated answer set, [ASD evaluates
the inherent capacity of LMMs to withhold answer-
ing, which is not affected by the granularity of the
given choices.

3. Incompatible Visual Question Detection
IVQD): IVQD evaluates the LMMs’ capability
to discern when a question and image are irrele-
vant or inappropriate. This setting tests the model’s
understanding of the alignment between visual con-
tent and textual questions, aiming to spot instances
where image-question pairs are incompatible.

4 Benchmarks and Evaluations

4.1 Construction of MM-UPD Bench

We create MM-UPD Bench based on MMBench
(dev, 20231003) (Liu et al., 2024e). MM-
Bench (Liu et al., 2024e) is a systematically de-
signed benchmark for evaluating various abilities
of LMMs. Utilizing MMBench allows us to assess
the reliability of LMMs for general VQA questions
and also enables fine-grained, ability-wise evalua-
tion (e.g., , “Coarse Perception: Image Scene” and
“Logic Reasoning: Future Prediction”).
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Standard Q: What kind of weather is depicted in the picture?

(a) Base (b) Option (c) Instruction (d) Original

A.sunny  A.sunny A. sunny A. sunny
B. rainy B. rainy B. rainy B. rainy

C.windy C.windy C. windy C. windy
D.snowy D.snowy D. snowy D. snowy

E. None of the above

(E. The image and If all the options are incorrect,
question are irrelevan[] Answer “F. None of the above”.
elevant to
The image
‘elevant.’)

(Ifthe given imay
the question, an:
and question are

Answer with the option's letter
from the given choices directly.

Extra Prompt None

Correct Ans. B B B B

IASD

Q: What kind of weather is depicted in the picture?

(a) Base (b) Option (c) Instruction
A. Father and daughter
B. Mother and son

C. Brother and sister
D. Husband and wife

A. Father and daughter
B. Mother and son

C. Brother and sister
D. Husband and wife
E. None of the above

A. Father and daughter
B. Mother and son

C. Brother and sister
D. Husband and wife

Answer with the option’s letter
from the given choices directly.

Extra Prompt None

None of the above. E

Correct Ans, Ty F. None of the above

Ifall the options are incorrect,
Answer “F. None of the above”.

A AD Q: What kind of weather is depicted in the picture?
(a) Base (b) Option (c) Instruction
A. sunny A. sunny A. sunny
B. windy B. windy B. wi
. wind;
C. snowy C. snowy C v
D. None of the above - Snowy
Extra Prompf None Answer with the option’s letter Ifall the options are incorrect,
from the given choices directly. Answer “F. None of the above”.
Correct Ans, :";::e":;:':y D F. None of the above

IVQD Q: What kind of weather is depicted in the picture?
(a) Base (b) Option (c) Instruction
A. sunny A. sunny A. sunny
B. rainy B. rainy B. rainy
John C. windy C. windy C. windy
36 D. snowy D. snowy D. snowy
E. The image and
question are irrelevant If the given image is
irrelevant to the question,
answer “F. The image and
Extrao Prompt N Answer with the option's letter e irralevant®
P one from the given choices directly. estionlaizelerany
Correct Ans,  Theimageis E F

irrelevant

Figure 2: Examples of standard and UPD questions in each scenario. We evaluate all 4 four scenarios (Standard,
AAD, IASD, and IVQD) as follows: the base setting, where no UPD-specific options/instructions are provided;
the Option setting, which includes an option like “None of the above"; and the Instruction setting, where explicit
guidance such as “Answer F. None of the above" is given. We calculate the Dual accuracy with the prediction of
each Standard-UPD question pair (e.g., Standard-base and AAD-base).

To create MM-UPD Bench, we first filter image-
agnostic questions from MMBench.
Filtering Image-Agnostic Questions. Most ex-
isting benchmarks, including MMBench, con-
tain some image-agnostic questions (Chen et al.,
2024b), which can be answered with only text in-
formation. This hinders the accurate evaluation of
LMM performance. To address this issue, we first
removed image-agnostic questions with text-only
GPT-4 (Achiam et al., 2023). To eliminate the ef-
fect of random guessing, we applied CircularEval,
which is explained in Sec. 4.4, for filtering. Next,
we carefully examined the extracted question to
guarantee neglectable impact of GPT-4 bias. After
that, we manually eliminated the few remaining
image-agnostic questions.

Next, we will construct MM-AAD, MM-IASD,
and MM-IVQD, which constitute MM-UPD.

1. MM-AAD Bench: MM-AAD Bench is a dataset
where the correct answer option for each question
is removed. When creating the MM-AAD Bench,
we mask the correct options and remove all ques-
tions that originally have two options (which after
removal would have only one option left). To en-
sure no answer is present in the options, we also
manually remove some questions with ambiguity.
Our MM-AAD Bench has 820 AAD questions over
18 abilities.

2. MM-IASD Bench: MM-IASD Bench is a
dataset where the answer set is completely incom-
patible with the context specified by the question

and the image. To create MM-IASD, we shuffle all
questions and answer sets and pair each question
with a random answer set. To further ensure the
incompatibility, after the shuffling, we manually
removed questions where the shuffled answer set
was somehow compatible with the question. Our
MM-IASD Bench has 919 IASD questions over 18
abilities.

3. MM-IVQD Bench: MM-IVQD Bench is a
dataset where the image and question are incompat-
ible. This is achieved by focusing on questions that
are specific, which are more likely to be incompat-
ible with a randomly picked image. Specifically,
we first exclude the questions that can be relevant
to most images (e.g., , “Which one is the correct
caption of this image?”’) and then shuffle the orig-
inal image-question pairs. Again, we conduct a
manual check to guarantee the incompatibility of
image-question pairs. Our MM-IVQD Bench has
356 IVQD questions over 12 abilities.

In total, our UPD benchmark consists of 2,095
questions. Note here that although the MM-UPD
Bench utilizes source data from MMBench, our
construction approach enables us to emphasize
the difficulty of MM-UPD by comparing the per-
formance to the established MMBench, provid-
ing a deeper insight than creating an entirely new
benchmark. Here, we also considered adopting
MMMU (Yue et al., 2024a). However, preliminary
experiments showed that due to MMMU’s high dif-
ficulty level, the accuracy for standard questions
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was still low, making it challenging to assess relia-
bility and potentially causing critical insights to be
overlooked (as discussed in Appendix B.7). More
detailed information for the construction process is
provided in Appendix B.

4.2 Evaluation Metrics

To capture the ideal behavior of LMMs, we define
several metrics and evaluate their performance un-
der both standard and UPD settings. Ideal LMMs
should not only yield correct answers in the stan-
dard setting (where the image, question, and answer
sets are all aligned and the ground-truth answer
is always within the options) but also be able to
withhold answering in the UPD scenario where the
question becomes unsolvable. In Fig. 2, we show
the examples of these standard and UPD settings.
Here, for AAD, the standard scenario refers to the
correct answer included in the provided answer set.
For IASD, the standard scenario refers to the cor-
rect answer included in the provided answer set
and the rest options are also relevant. For IVQD,
given the same question and answer set, the stan-
dard scenario has a compatible image. To better
reflect the ideal behavior of LMMs, we measure
several metrics throughout the paper:

1. Standard Accuracy: The accuracy on standard
questions in Fig. 2.

2. UPD (AAD/TASD/IVQD) Accuracy: The ac-
curacy of AAD/IASD/IVQD questions in Fig. 2
(AAD/IASD/IVQD).

3. Dual Accuracy: The accuracy on standard-UPD
pairs, where we count success only if the model is
correct on both the standard and UPD questions.
This metric considers both Standard and UPD per-
formances, making it the most suitable evaluation
metric for UPD. Our evaluation thus uses this as
the primary metric.

4. Original Standard: This refers to the Standard
accuracy evaluated using the prompt for the orig-
inal MMBench. By adding the prompt “Answer
with the option’s letter from the given choices di-
rectly” at the end of the question, it focuses specifi-
cally on improving Standard accuracy performance
at the expense of UPD performance. While the
Original Standard score is not Dual accuracy, we
consider it the upper bound of Dual accuracy for
each model based on the definition of Dual accu-
racy.

4.3 Evaluation Setting

To reflect the real-world use cases, we test in three
settings, including a basic one and two carefully
designed ones that attempt to address UPD with
prompt engineering.

1. Base Setting: In the base setting, no instructions
and options are provided to the model to withhold
answers (shown in Fig. 2 (a)). This setting repre-
sents the most common case for using LMMs in
the real world.

2. Option Setting: We add extra option ‘“None of
the above” for AAD and IASD and “The image
and question are irrelevant.” for IVQD, respec-
tively (shown in Fig. 2 (b)). Following LLaVA (Liu
et al., 2024¢), we also add an instruction of “An-
swer with the option’s letter from the given choices
directly.” to reinforce the instruction following ca-
pability.

3. Instruction Setting: We add additional instruc-
tion to explicitly gear the model towards acknowl-
edging the unsolvable problem. The instruction
is “If all the options are incorrect, answer F. None
of the above.” for AAD and IASD and “If the
given image is irrelevant to the question, answer F.
The image and question are irrelevant.” for IVQD,
respectively.

Note here that these additional options and in-
structions are also added to the questions in stan-
dard scenarios to make a fair comparison.

4.4 Evaluation Protocol

We adopt Circular Evaluation and GPT-involved
Choice Extraction in MMBench (Liu et al., 2024e).
In Circular Evaluation, a problem is tested multiple
times with circularly shifted choices, and the LMM
needs to succeed in all tests to pass. GPT-involved
Choice Extraction first performs the matching al-
gorithm and then uses GPT for those that do not
match. To accurately identify when the model
predicts as “no answer”, we leverage GPT-4o-
mini (gpt-40-mini-2024-07-18). Specifically,
we count as correct for UPD questions if the
model’s output is similar to “none of the above”, “I
cannot answer”, or the masked correct option for
AAD and IASD and “the image is irrelevant” or “I
cannot answer” for IVQD. The details are shown
in Appendix E.2.
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AAD TIASD IVQD
Orig Base Opt Inst Orig Base Opt Inst Orig Base Opt Inst
Open-source LMMs
LLaVA1.5-13b 744 0.7 38.8 37.1 70.8 57 460 52.0 688 0.0 393 31.7
LLaVA-NeXT-13B 76.7 17.8 182 383 732 27.0 29.6 559 713 33.1 379 542
LLaVA-NeXT-34B 84.3 50.5 299 55.1 80.2 489 22,6 61.8 809 553 50.6 72.5
LLaVA-OV-0.5B 670 222 182 0.1 o644 17.8 115 38 596 96 79 3.1
LLaVA-OV-7B 86.0 4.5 294 259 825 55 37.0 27.1 848 25 50.6 47.8
Phi-3-Vision 804 0.1 274 388 77.0 0.1 46.5 49.0 795 0.0 56.2 61.0
Phi-3.5-Vision 80.2 1.8 222 277 77.1 0.3 239 332 772 03 52.5 559
CogVLM-17B 71.5 0.5 393 38 67.7 0.5 183 44 629 0.0 194 9.0
CogVLM2-19B 84.0 0.0 46.1 445 80.8 0.1 51.6 58.2 854 00 427 42.7
Idefics2-8B 76.1 1.0 30.1 27.3 725 1.1 30.6 452 730 14 492 458
idefics3-8B 81.0 0.1 333 29.1 77.8 03 50.5 522 798 3.7 534 413
InternVL2-2B 78.2 6.8 306 174 742 146 50.6 17.8 764 154 199 143
InternVL2-8B 87.7 285 56.0 34.0 839 30.1 663 56.5 865 284 58.7 59.6
InternVL2-40B 91.1 435 559 679 879 450 598 75.7 90.7 427 562 80.6
Xgen-MM 83.2 0.7 38.3 31.6 80.0 0.1 52.1 425 809 0.0 58.1 35.1
Qwen2-VL-7B 84.4 115 384 483 81.0 197 499 64.0 80.1 37.1 63.5 69.1
Qwen2.5-VL-7B 88.7 322 49.0 585 849 46.1 70.0 704 843 711 747 79.5
Closed-source LMMs

GeminiPro 727 245 40.1 429 709 28.1 485 521 69.1 37.6 573 604
Geminil.5Pro 794 478 49.0 523 757 577 658 605 739 69.1 719 683
GPT4V 80.0 524 505 565 758 602 656 608 753 624 612 584
GPT40-mini 78.0 335 489 451 756 46.5 63.0 569 728 483 584 475
GPT4o0 832 456 57.8 593 805 56.1 689 68.0 764 652 694 66.0

Table 1: Comparison results of the overall Dual accuracy for the base setting, additional-option setting, and
additional-instruction setting. The “Orig” (Original Standard) value is the upper bound of Dual accuracy. The
results show that the difference between each Dual accuracy and the Original Standard is clear and most open-source

LMMs have significantly low scores.

B Standard = UPD (AAD/IASD/IVQD)

100 Base 100 Option 0o  Instruction Dual  UPD
A o s Base 259 223
:ﬂﬁ o I I zg II o I I AAD Opt 495 374
0 i i il iv ovovi vid il 0 i il v ovoovi vil viil 0 i1 il iv o vovi vl viil InSt 649 22'5
100 Base 100 Option 100 Instruction Base 27.0 19.6
o & 80 80 TIASD Opt 56.5 423
ok IIIIIIII : III“ : III o eea a9
(20 20 20
O S i v v ovioviviii O i i vV oviovilviii O 0 di i iy v v vid viil Base 146 6.5
Base Option Instruction IVQD Opt 567 35.6
a 100 100 100 Inst 62.6 39.1
80 80 80
(@ 60 60
> 40 40 40 . . ..
~ 20 IIIIIIII 2 IIIIIIII 2 IIIIIIII Table 2: Correlation coefficients for Original
0= 0

i1 i v ovovi vii vidl il il v ovovi vid viil

il diioivovovi vl viid

Standard vs. Dual/UPD accuracy.

(i) LLaVA-OV-7B, (ii) Phi3.5V, (iii) InternVLM2-8B, (iv) LLaVA-NeXT-34B,

(v) InternVL2-40B, (vi) Geminil.5Pro, (vii) GPT4V, (viii) GPT40

Figure 3: Comparison between Standard (blue) and UPD (red) accu-

racy.
5 Experiments

5.1 Experimental Setups

We evaluated the performance of open-source and
closed-source LMMs from lightweight models to
40B models. For inference, we perform a greedy
search for all LMMs.

Open-source LMMs: We evaluate a range of
open-source models, including InternVL2 (Chen
et al., 2024c) (2B, 8B, and 40B), LLaVA se-
ries (Liu et al., 2023, 2024c,d; Li et al., 2024a)
(LLaVA-1.5-13B, LLaVA-NeXT-13B, LLaVA-
NeXT-34B, and the latest OneVision-0.5B, 7B),
Phi-3 model family (Abdin et al., 2024) (3-Vision,
3.5-Vision), CogVLM series (Wang et al., 2023c;

Hong et al., 2024) (CogVLM-17B, CogVLM2-
19B), Idefics series (Laurencon et al., 2024b,a)
(Idefics2-8B, Idefics3-8B), Xgen-MM (Xue et al.,
2024) (instruct-interleave-r-v1.5), and Qwen
series (Qwen2-VL-7B (Wang et al., 2024b) and
Qwen2.5-VL-7B (Team, 2025)).

Closed-source LMMs: We evaluate Gem-
mmiPro (Team et al, 2023), Gemini 1.5
Pro (Reid et al., 2024), GPT-4V (gpt-4-vision-
preview) (Achiam et al., 2023), GPT-40 mini (Ope-
nAl, 2024), and GPT-40 (0513) (Hurst et al.,
2024).
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Figure 4: Fine-grained Analysis with InternVL2-40B and GPT-4o.

5.2 Main Results

Table 1 presents the overall Dual accuracies. Also,
we show the Standard and UPD accuracies for
some LMMs in Fig. 3. In Fig. 4, we show the radar
charts of InternVL2-40B and GPT-4o for ability-
wise fine-grained analysis.

First, we describe the three most crucial findings
(F1, F2, and F3 below).

F1: Different Performance Trends of MM-
Bench and MM-UPD Bench. Table 1 shows that
the performance trends of MMBench (Orig) and
MM-UPD (Base/Opt/Inst) are completely different.
For instance, although LLaVA-OV-7B (Li et al.,
2024a), CogVLM?2 (Hong et al., 2024), and Xgen-
MM (Xue et al., 2024) exhibit very high perfor-
mance (>80%) in all Original Standard, their per-
formances in the UPD Base setting drop to less
than 6% in all Base settings. To investigate the
correlation more rigorously, we calculate the corre-
lation coefficients between the Original Standard
and Dual accuracy/UPD accuracy in Table 2. We
found that the correlation coefficient between UPD
accuracy and the Original Standard is quite low
(Max: 39.1, Min: 6.5). Dual accuracies still do
not indicate a strong correlation. This suggests that
our benchmark is capable of accurately capturing
an important aspect of trustworthiness that has not
been measured by previous benchmarks.

F2: Large Gap between Open-source LMMs
and Closed-source LMMs. As shown in Table 1,
there is a significant performance gap between
open-source LMMs and closed-source LMMs. One

of the reasons for this performance gap is the train-
ing difference: Closed-source models are trained
for refusal considering real-world user applications
according to their system cards (Hurst et al., 2024;
OpenAl, 2023). On the other hand, open-source
models usually compete for performance with lim-
ited publicly available benchmarks.

F3. Larger Open-source LMMs Mitigate
the Gap. Among open-source LMMs, models
with large LLMs such as LLaVA-NeXT-34B and
InternVL2-40B demonstrate performance compara-
ble to closed-source models. Compared to smaller
models trained on the same VQA data, such as
LLaVA-NeXT-13B and InternVL2-2B/8B, there is
a significant performance improvement, suggest-
ing that the performance of the base LLM also
plays a crucial role. However, a detailed check of
each output reveals that a quality gap still exists
between these powerful open-source LMMs and
closed-source LMMs (refer to Appendix F.2).

Next, we provide detailed findings below to sup-
port the rationale behind the above findings.

F4: UPD Score is Significantly Lower than Stan-
dard in Base and Solution Varies by LMMs.
Fig. 3 shows the Standard (blue) and UPD (red)
accuracy. The performance was compared, with
each row showing the results for AAD, IASD, and
IVQD, and each column showing the results for
Base, Option, and Instruction. Models (i)-(v) in
the figure denote open-source models and Models
(vi)-(viii) denote closed-source models. First, for
the Base settings, open-source LMMs indeed ex-
hibit lower UPD accuracy compared to Standard
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LLaVA
NeXT13B

LLaVA-OV-7B

InternVL2-8B

GPT-40

4.5 (85.4/5.1)
37.9 (77.1/42.8)
27.6 (84.6/29.1)

28.5 (82.7/30.2)
29.0 (83.7/29.6)
38.7 (81.5/41.2)

45.6 (80.2/52.3)
47.7 (77.9/56.0)
55.2 (69.8/75.1)

5.5 (81.8/5.7)
36.7 (73.7/45.7)
35.4 (81.1/45.2)

30.1 (78.3/35.0)
29.4 (79.5/32.5)
34.0 (77.4/41.0)

56.1 (77.9/70.0)
48.4 (74.5/64.2)
57.9 (61.8/83.6)

Base 17.8 (72.6/23.2)
AAD CoT 42.8 (60.0/60.5)
Self-reflection  37.8 (66.2/50.0)
Base 27.0 (68.9/40.8)
IASD CoT 43.9 (56.4/70.8)
Self-reflection  36.7 (62.6/55.8)
Base 33.1(67.4/44.9)
IVQD CoT 47.5 (59.0/75.3)

Self-reflection

39.0 (59.8/61.5)

2.5 (85.4/3.1)
14.9 (75.3/18.0)
31.7 (85.4/34.6)

28.4 (82.3/35.1)
14.9 (83.1/17.1)
30.3 (81.2/37.9)

65.2 (73.6/90.2)
57.2(70.5/83.4)
57.9 (61.8/96.1)

Table 3: Overall Dual accuracy with chain of thought prompting and self-reflection. The values in () represent

Standard accuracy and UPD accuracy, respectively.

accuracy. Even for the Option setting, open-source
LMMs still tend to perform worse on UPD than
on Standard. When additional instruction is added,
some models finally show a reversal in UPD and
Standard performance. However, for (i) LLaVA-
OV-7B and (iii) InternVL2-8B, the UPD accuracy
decreases compared to the Option setting. There-
fore, effective prompting strategies to refrain from
providing answers vary by LMMs.

F5: Performance of AAD, IASD, and IVQD
Diagnose Each LMM’s Weakness. The weak-
nesses of each model can be diagnosed by exam-
ining the performance differences in AAD, IASD,
and IVQD. Regarding IVQD, even in Base set-
tings, closed-source models demonstrate high UPD
performance (Fig. 3 (vi)-(viii) in IVQD), whereas
open-source models show significantly lower UPD
performance (Fig. 3 (i)-(v) in IVQD). In the com-
parison between AAD and IASD, models such as
LLaVA-OV-7B and Phi3.5V exhibit low UPD accu-
racy under both Base settings (Fig. 3 (i)-(ii) in AAD
and IASD), indicating that these models inherently
lack the refusal ability, regardless of the option’s
semantics. On the other hand, other LMMs show
high UPD performance in IASD Base setting while
they have difficulty for AAD Base setting (Fig. 3
(iii)-(viii) in AAD and IASD), which indicates they
possess a certain level of refusal capability, but the
option’s granularity affects the performances a lot.

F6: Performance Trends Vary across Abilities.
Fig. 4 presents the detailed scores for each ability
of InternVL2-40B and GPT-40. These results re-
veal that the ease of withholding responses varies
by ability. Thus, by examining the ability-wise
scores, we can more clearly identify each model’s
weaknesses.

e

&= nternVL2-8B

s Qwen2VL-7B

mmm GPT40
Figure 5: Analysis of the performance of language com-
ponent in LMMs. We provide the correct answer to
LMMs and examine whether they can correctly identify

unsolvable problems.

2 ——
#11 410 #9

5.3 Analysis
5.4 Bottleneck Analysis

To determine whether the issue lies with the vision
or language side, we tested if the LMM could cor-
rectly choose “None of the above" when directly
given the answer in the prompt. For example, we
prompted: “$Question (How many cows are...) The
answer is three. Choose the option that best fits the
above answer. A. two B. four C. eight D. None of
the above." If the LMM answers correctly, the issue
likely stems from unstable image understanding; if
not, it is a limitation of the LLM.

The experimental results are shown in Fig. 5.
GPT-40 was found to successfully refuse in most
abilities and the next challenge lies in improving
image understanding. While InternVL2 does not
match GPT-4o, it has relatively high performance,
highlighting that improving image understanding
is a future challenge. On the other hand, it was
found that LLaVA-NeXT-13B, LLaVA-OV, and
Qwen2VL have very low performance on the lan-
guage side itself (fine-tuned Vicunal.5-13B (Chi-
ang et al., 2023) for LLaVA-NeXT-13B, and fine-
tuned Qwen2-7B (Yang et al., 2024a) for LLaVA-
OV and Qwen2VL).

Based on these results, we hypothesized that
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for models with a bottleneck on the language side,
approaches aimed at improving language capabili-
ties, such as chain of thought (Kojima et al., 2022)
and self-reflection (Kadavath et al., 2022), would
be effective. The results of these approaches are
presented in Table 3. As expected, we found that
these approaches were indeed effective for mod-
els with a bottleneck on the language side, such as
LLaVA-OV and LLaVA-NeXT. We also examine
the performance of instruction tuning. The detail
of these additional experiments is included in Ap-
pendix C.2.

5.5 The Effect of Fine-tuning

We provide a brief discussion on the perfor-
mance gains obtained through fine-tuning on UPD-
like data. For the training dataset, we use a
subset of an open-knowledge VQA dataset, A-
OKVQA (Schwenk et al., 2022). The samples in
A-OKVQA do not overlap with our benchmarks.

Our training results suggest the following key ob-
servations: (i) The performance is sensitive to the
composition ratio of Standard, AAD, and IVQD
samples in the training set. The optimal recipe
was found to be a ratio of 0.6 for Standard, 0.2 for
AAD, and 0.2 for IVQD, while excluding IASD en-
tirely. (ii) Compared to the prompt-based approach,
fine-tuning on UPD-like data yields measurable
performance improvements. However, we note
that specializing the model for UPD may lead to
degraded performance on general-purpose tasks,
indicating that this strategy may not represent a
universally optimal solution.

Further details and experimental results are pro-
vided in Appendix D.

6 Conclusion

This paper proposes the UPD challenges for LMMs.
For the UPD challenge, we introduce the MM-UPD
Bench. Our experimental results indicate the diffi-
culty of MM-UPD across various state-of-the-art
LMMs and reveal a new aspect of reliability that
cannot be measured by existing benchmarks.

Limitations

Proposing Innovative Approach for UPD. This
study primarily focuses on the rigorous task design
of UPD and proposing approaches is left as an im-
portant future work. We applied existing methods
and crucial baseline approaches, clarifying the effi-
cacy and limitations of each method. Building on

our findings, to develop novel methods will be an
important future work.

Extension to More Diverse Questions. MM-
UPD Bench provides general multiple-choice QA
datasets. We did not add more challenging ques-
tions, as the current models still struggle with stan-
dard questions (refer to Appendix B.7). However,
as LMMs advance, incorporating these difficult
questions into UPD will be an important future
work.
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Appendix

A Additional Related Work

Large Multimodal Model (LMM). Recent ad-
vancements in multimodal models have been driven
by innovative training methods (Chen et al., 2020;
Zhou et al., 2020; Zhang et al., 2021; Li et al.,
2020; Alayrac et al., 2022; Awadalla et al., 2023).
Following the success of large language models
(LLMs), many LMMs have been developed with
improved instruction-following capabilities (Liu
et al., 2023, 2024¢,d; Li et al., 2024a; Dai et al.,
2023; Zhu et al., 2024; Zhang et al., 2024c; Gao
et al., 2023; Ye et al., 2023, 2024; Zhao et al., 2023;
Li et al., 2023a; Monajatipoor et al., 2024; Zhao
et al., 2024; Li et al., 2025; Lin et al., 2024; Zhang
et al., 2024b). Additionally, closed-source LMMs
like GPT-4V (Achiam et al., 2023), GPT-40 (Hurst
et al., 2024), and Gemini (Team et al., 2023) have
exhibited strong performance across various vision-
language tasks. However, a significant challenge re-
mains in accurately evaluating the trustworthiness
of these LMMs, highlighting the need for more
robust and comprehensive benchmarks.

LMM Benchmarks. As multi-modal pretrain-
ing and instruction tuning has gained prominence,
the previous standard evaluation benchmarks e.g.,
VQA (Antol et al., 2015; Goyal et al., 2017), OK-
VQA (Marino et al., 2019), COCO (Lin et al.,
2014), and GQA (Hudson and Manning, 2019) be-
come insufficient (Yue et al., 2024a,b). To more
comprehensively assess the capabilities of LMMs,
recent efforts have introduced benchmarks such as
SEED (Li et al., 2024b), LLaVA-Bench (Liu et al.,
2023), MMBench (Liu et al., 2024e), MM-Vet (Yu
et al., 2024), MathVista (Lu et al., 2024), Math-
verse (Zhang et al., 2024d), MMStar (Chen et al.,
2024b), BLINK (Fu et al., 2024), MMMU (Yue
et al., 2024a), and MMMU-Pro (Yue et al., 2024b)
have emerged and become common benchmarks
for evaluating LMMs (Li et al., 2024a). Among
these, MMBench provides evaluations across a
broad range of fine-grained abilities, which is
highly important for assessing UPD. Therefore,
by adopting MMBench, we can (i) evaluate per-
formance across a wider range of tasks compared
to similar recent works (Guo et al., 2024; Akter
et al., 2024; Cao et al., 2024) that adopt conven-
tional benchmarks (Lin et al., 2014; Goyal et al.,
2017), and (ii) emphasize the challenge of UPD by
comparing standard MMBench performance with

UPD performance.

Model Hallucinations. In LMMs, “hallucination”
typically refers to situations where the generated
responses contain information that is inconsistent
in the visual content (Rohrbach et al., 2018; Wang
et al., 2023b; Zhou et al., 2024; Guan et al., 2024,
Sun et al., 2024; Cui et al., 2023; Jiang et al., 2024).
Recent LMMs, such as LLaVA (Chung et al., 2024;
Liu et al., 2024c), have also encountered the chal-
lenge of hallucination (Jiang et al., 2024). To eval-
uate hallucination in LMMs, various benchmarks,
POPE (Li et al., 2023b), M-HalDetect (Gunjal
et al., 2024), GAVIE (Liu et al., 2024a), Hallusion-
Bench (Guan et al., 2024), and Bingo (Cui et al.,
2023) have been proposed. Hallucination evalua-
tion and detection (Li et al., 2023b; Wang et al.,
2023b; Liu et al., 2024a), and hallucination miti-
gation (Yin et al., 2024; Zhou et al., 2024; Gunjal
et al., 2024; Liu et al., 2024a; Favero et al., 2024,
Huang et al., 2024; Park et al., 2024; Wang et al.,
2024c) have also been explored. These existing
studies deal with a wide range of hallucination is-
sues. Unlike previous works, we address the hallu-
cination issues where the LMM produces incorrect
responses when presented with unsolvable prob-
lems. Only a few very recent works have addressed
this type of hallucination (Guo et al., 2024; Akter
et al., 2024; Cao et al., 2024). However, they do
not assess the robustness of LMMs for common
MCQA.

AI Safety. A reliable visual recognition system
should not only produce accurate predictions on
known context but also detect unknown exam-
ples (Amodei et al., 2016; Mohseni et al., 2022;
Hendrycks et al., 2021; Hendrycks and Mazeika,
2022). The representative research field to address
this safety aspect is out-of-distribution (OOD) de-
tection (Hendrycks and Gimpel, 2017; Liang et al.,
2018; Yang et al., 2024b, 2022; Zhang et al., 2024a).
OOD detection is the task of detecting unknown
samples during inference to ensure the safety of the
in-distribution (ID) classifiers. Along with the evo-
lution of the close-set classifiers, the target tasks
for OOD detection have evolved from the detec-
tors for conventional single-modal classifiers to
recent CLIP-based methods (Miyai et al., 2024;
Hendrycks and Gimpel, 2017; Yu and Aizawa,
2019; Wang et al., 2021; Du et al., 2022; Ming
et al., 2022b; Esmaeilpour et al., 2022; Ming et al.,
2022a; Yang et al., 2023; Wang et al., 2023a; Miyai
et al., 2023a,b). The next crucial challenge is to
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evolve the problems faced in OOD detection to
LMMs in the VQA task. We consider that our
UPD is an extension of the concept of OOD detec-
tion, where the model should detect and not predict
unexpected input data.

B Benchmark Construction

We carefully adapt MMBench (validation) to create
our MM-UPD Bench. For simplicity of explana-
tion, we show the mapping table of each index and
each ability in MMBench in Table A. MMBench
(20231003) is a VQA dataset consisting of 1,164
questions. To create the MM-UPD Bench from
MMBench, we conduct the following processes.

B.1 Processing for MMBench Adaptation

First, we performed the following steps for the
original MMBench to ensure the quality of our
benchmarks.

Exclusion of Image-Agnostic Questions. In the
original MMBench, a subset of the questions were
image-agnostic questions, which can be answered
with only text information. To ensure the validity of
the LMM benchmark, we carefully excluded these
questions. First, we removed the questions that
could be accurately answered by text-only GPT-
4. To eliminate the effect of random guessing, we
applied CircularEval for filtering. This process ex-
tracted 124 questions as image-agnostic questions.
To investigate GPT-based biases, we thoroughly
examined all the 124 questions excluded by GPT-
4. As a result, we found that 110 of 124 were
questions that could be answered using only the
question texts. The remaining 14 questions ap-
peared image-specific but could be answered by
GPT-4 using information from its training, such
as the frequency of words in the answer options.
However, these 14 questions were primarily limited
to common questions in the benchmark. Therefore,
the impact of removing these 14 questions is con-
sidered to be minimal and we have confirmed that
our filtering process does not introduce bias from
GPT-4. Then, we manually checked and excluded
the few remaining image-agnostic questions. In
total, we removed 13% of the original questions
as image-agnostic questions. Therefore, we argue
that our benchmark consists of image-dependent
questions.

Exclusion of Image Quality Ability. In the orig-
inal MMBench, the Image Quality ability ques-
tions consist of 31 two-choice questions and 22

four-choice questions. We removed the two-choice
questions in the AAD settings so that more than
one choice remains after masking the choices. As
for the remaining four-choice questions in Image
Quality, our preliminary experiments indicated that
these questions proved to be extremely difficult
even with the original standard settings. Since it
is difficult to measure accurate UPD performances
with the questions that is extremely difficult even
for the Standard setting, we removed the Image
Quality ability.

Exclusion of Options related ‘“None of the
above''. We remove the questions that originally
had options related “None of the above" in order to
guarantee that no correct option exists after mask-
ing the correct option. Specifically, a few questions
have the option of “None of these options are cor-
rect." or “All above are not right". Since these
options are not correct answers for the original
questions, we simply deleted such options.

Clarification of the Semantics of the Options.
We clarify the meaning of the options. Specifically,
some questions in #6: Attribute Comparison have
“Can’t judge”. “Can’t judge” means that “I can’t
judge from the image since the image does not
have enough information”. However, “Can’t judge”
might be interpreted as “Since the given options
are incorrect, can’t judge.” Therefore, we changed
the option of “Can’t judge” to “Can’t judge from
the image due to the lack of image information” to
reduce the ambiguity.

After the above adaptation process, we construct
MM-UPD Bench (MM-AAD, MM-IASD, MM-
IVQD) as follows:

B.2 Construction of MM-AAD Bench

When creating the MM-AAD Bench, we mask the
correct options and remove all questions that origi-
nally have two options (which after removal would
have only one option left). Also, we remove the
questions whose answer is “both A,B, and C" and
“all of these options are correct”. To ensure no an-
swer is present in the options, we also manually re-
move some questions with ambiguity where one of
the remaining options is very similar to the masked
correct option (e.g., Q. What can be the relation-
ship of these people in this image? Masked Option:
Friends, Similar remaining option: Colleagues).
Our MM-AAD Bench has 820 AAD questions over
18 abilities. The distribution of questions for each
ability is shown at the top of Table B.
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#1 #2 #3 #4 #5 #0 #7
OCR Celebrity Object Attribute Action Attribute Nature
Recognition | Localization | Recognition | Recognition | Comparison | Relation
#8 #9 #10 #11 #12 #13
Physical Social Identity Function Physical Structuralized
Relation | Relation | Reasoning | Reasoning Proper't y Image-tex.t
Reasoning | Understanding
#14 #15 #16 #17 #18
Future Image Image Image | Image
Prediction | Topic | Emotion | Scene | Style

Table A: Mapping table of indices and abilities in MM-UPD Bench

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 #17 #18 total

AAD 3594 62 50 49 44 45 1532 38 46 29 44 25 31 42 93 46
IASD 39 97 77 54 53 39 43 2042 41 63 42 43 35 33 49 98 51

IVQD 31 68 36 18 14 23 45 1543 -

820
919

16 23 - - - - 24 - |356

Table B: Distribution of questions per each ability.

B.3 Construction of MM-IASD Bench

To create MM-IASD, we shuffle all questions and
answer sets and pair each question with a random
answer set. To further ensure the incompatibil-
ity, after the shuffling, we manually removed ques-
tions where the shuffled answer set was somehow
compatible with the question (e.g., Q. Which of
the following captions best describes this image?
Correct answer: A person holding a bouquet of
flowers, Similar shuffled option: Happiness). Our
MM-IASD Bench has 919 IASD questions over
18 abilities. The distribution of questions for each
ability is shown in the middle of Table B.

B.4 Construction of MM-IVQD Bench

To create MM-IVQD Bench, we first exclude the
questions that can be relevant to most images and
then shuffle the original image-question pairs. In
Table C, we show some representative examples of
removed questions. For example, the question of
“How many ..." can be compatible with any image,
since the correct option of “None of the above"
always exists for any image even when the image
has no corresponding objects. For the question of
“What’s the profession ...", we can interpret the pro-
fession from any kind of image (e.g., A beautifully
captured image would suggest the profession of
a photographer). In addition, we exclude the op-
tion “Can’t judge from the image due to the lack
of image information.” because this option can be
a correct answer for IVQD questions. Again, we
conduct a manual check to guarantee the incom-

patibility of image-question pairs. Our MM-IVQD
Bench has 356 IVQD questions over 12 abilities.
The distribution of questions for each ability is
shown in the bottom of Table B. Here, the lack of
some ability (e.g.,#16 Image Emotion) indicates
that there are many removed questions that can be
applied to any image. Note that the small number
of IVQD questions compared to AAD and IASD
is due to our careful annotation. The additional
experiments in Sec. B.5 indicate even this number
of questions is sufficient to show the performance
difference between each LMM and method from
our main experimental results.

Here, one might wonder why we exclude ques-
tions rather than modify them. That is true that
we can increase the number of questions by mak-
ing the general question more specific. However,
these question types are inherently less likely to
encounter IVQD situations, and there is a concern
that forcibly modifying the questions might lead
to a divergence from real-world IVQD distribution.
Moreover, incorporating numerous question types
with low IVQD frequency could overshadow the
significance of question types that are more likely
to occur, thereby compromising the accurate assess-
ment of IVQD performance. Therefore, we chose
to exclude these questions rather than modify them.

B.5 Performance Variance on IVQD

We demonstrate that the dataset size is sufficient
by showing that the performance variance remains
small under different conditions, such as shifting
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Ability

Example of removed question

#3 Object Localization

How many dogs are in this picture?

#15 Image Topic

Which one is the correct caption of this image?

#16 Image Emotion

Which mood does this image convey?

#13 Structuralized
Image-text Understanding

Which Python code can generate the content of the image?

#14 Future Prediction

What will happen next?

#10 Identity Reasoning

What’s the profession of the people in this picture?

#18 Image Style

Which style is represented in this image?

Table C: Representative samples for removed questions for MM-IVQD construction

Model AAD (Base) IASD (Base) IVQD (Base)
InternVL2-8B 39.83 £1.51(41.7,39.8,38.0) 48.03+0.97 (49.4,47.4,47.3) 37.37+0.60 (37.1, 38.2, 36.8)
LLaVA-OV-7B 7.93+0.29 (7.9, 8.3,7.6) 8.83£0.40 (8.5, 8.6,9.4) 3.67+0.38(4.2,3.4,3.4)
InternVL2-40B  39.80 + 1.80 (42.1, 39.6, 37.7) 47.77 £0.52 (48.5,47.4,47.4) 37.53+0.74 (36.7, 38.5,37.4)
GPT-40 55.37 £1.06 (54.1, 56.7,55.3)  68.40 £ 0.64 (68.9, 67.5, 68.8) 70.60 + 1.08 (71.6, 69.1, 71.1)

Table D: Performance variance on AAD, TIASD, and IVQD (Base). The variance in IVQD is similarly small

compared to AAD and TASD.

the positions of answer options. We conducted ad-
ditional experiments using three different patterns
based on option shifting and measured the accuracy
for each. For unsolvable problems with only two
answer choices, a third shift pattern does not exist.
In such cases, we reused the questions from Pattern
2 for Pattern 3. The proportion of two-choice ques-
tions is 10.1% in AAD, 1.85% in IASD, and 8.7%
in IVQD.

We show the results in Table D. The results show
that the variance in IVQD is similarly small com-
pared to AAD and IASD, which supports the relia-
bility of the evaluation in terms of dataset size.

B.6 Manual Curation Procedure

The dataset curation is carried out by four annota-
tors from the authors. To improve the efficiency
of collaborative curation and ensure consistency
in quality, we first transcribed the image-question
pairs from MMBench into an online editing tool
(i.e., Google Docs) and conducted the curation pro-
cess directly within the platform. To enhance the
consistency, each question was independently re-
viewed by two annotators. Finally, the lead author
verified the validity of all curation. If a problem
needed to be refined, the reason was recorded in
detail as a comment. For example, in the case of
IVQD, which required the most careful curation,
one annotator would leave a comment on points
such as “The reason the image relates to the ques-
tion is..." or “If we change this image into ..., the

irrelevance is guaranteed.". If another annotator
agreed with the comment, the problem was refined.
In cases where the other annotator disagreed, all
four annotators engaged in discussions to reach a
consensus.

We consider that collaborative tools such as
Google Docs, double-checking by two annotators,
and detailed justifications with collective decisions
ensure curation consistency.

B.7 Validity of UPD Benchmark on More
Complex Datasets

The reason for the exclusion of the recent chal-
lenging dataset (e.g., MMMU (Yue et al., 2024a))
for our UPD benchmark is that the evaluation sig-
nificantly deviates from the aspect of reliability
and potentially causes us to miss important find-
ings. To verify this, we conducted experiments
with MMMU in the AAD setting.

Setup. As preprocessing, we first removed
about 24.2% of image-agnostic questions from
the MMMU’s validation set (900 questions) using
GPT-4-based CircularEval. Then, to improve the
interpretability of scores, we utilized only multiple-
choice questions with four options (which make up
the majority of questions in MMMU) and created
MMMU-AAD using the same pipeline of MM-
UPD. MMMU-AAD consists of 459 questions. For
the evaluation of MMMU-AAD, we applied the
CircularEval strategy as used in MM-UPD.
Result. We show the comparison results in Table E.
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Orig. Base Opt Inst
LLaVA-OV-7B 23,5 0.7(20.5,5.7) 0.7 (22.4/2.4) 0.7 (20.0/2.4)
InternVL2-8B 244 4.1(19.8,9.4) 2.8(22.0,4.1) 3.5(21.8,11.8)
LLaVA-NeXT-34 239  6.3(12.0,354) 04(234,18) 4.2(9.6,59.7)
GPT-4o 27.5% 15.5(42.9,20.9) 8.9(24.4,19.0) 23.7(35.9,48.4)

Table E: Performance comparison on MMMU-AAD. We report overall Dual accuracy. The values in () represent
Standard accuracy and UPD accuracy, respectively. *: The reason GPT-40’s Original Standard performance is lower
than its Base Standard is that GPT-40 generates extensive long reasoning for challenging datasets like MMMU,
solving problems with a chain-of-thought process. However, this arises from GPT-40’s proprietary tuning strategy
and this is unrelated to UPD. Therefore, we omit it from our discussion here.

Based on these results, in contrast to MM-UPD, we
could not verify the efficacy of either the Option or
Instruction approaches. This result reveals that the
evaluation using MMMU fails to capture important
findings of the effectiveness of these prompting
approaches for UPD. Specifically, for expert-level
problems, LMMs do not have accurate answers
due to the lack of capability. Therefore, even if
they choose an incorrect option when encounter-
ing an unsolvable problem, this only indicates a
lack of reasoning ability or knowledge and does
not necessarily demonstrate a lack of refusal ability.
Additionally, due to the very low overall perfor-
mance, it becomes difficult to have meaningful
discussions based on these minute differences in
scores. Therefore, we exclude datasets with low
Standard accuracy.

C Experimental Detail

C.1 Experimental Setup

Computing Infrastructures. We conduct all our
evaluations of open-source models on a single
NVIDIA A100 (80GB) GPU.

HyperParameters of LMM Inference. We set a
temperature to O for all models during inference.

C.2 Detail of LLM-driven Methods

In this section, we explain the details of the LLM-
driven approaches in Sec. 5.3.

Chain of Thought (CoT) Prompting. In this ex-
periment, we investigate whether a widely used
Zero-shot CoT (Kojima et al., 2022) is effective for
UPD. We added the prompt “Let’s think step by
step.” at the end of the prompt and measured the
performance.

Self-reflection Self-reflection is a method that al-
lows the model to reflect on its own responses (Ka-
davath et al., 2022). It has been shown that LLMs
might have preliminary capabilities for judging
and evaluating their own answers (Kadavath et al.,

2022; Feng et al., 2024). In this experiment, we
evaluate whether self-reflection is effective for
UPD. We show the prompt for self-reflection in
Table G. We prompt the LMM to self-reflect di-
rectly after its generated answer with the phrase
“The above answer is: 1. True 2. False,” follow-
ing LLM protocols (Kadavath et al., 2022; Feng
et al., 2024). For evaluation, if the LMM outputs
“2. False," the response will be withdrawn. Other-
wise, we use the original LMM’s response for the
evaluation.

D Additional Experiments

We explore effective instruction-tuning recipes for
solving UPD. To solve all kinds of UPD problem:s,
we meticulously designed the data distribution for
instruction tuning on Standard, AAD, IASD, and
IVQD questions.

D.1 Setup

Dataset. For the dataset, we use a sub-
set of an open-knowledge VQA dataset, A-
OKVQA (Schwenk et al., 2022). It is a multiple-
choice type VQA dataset that has been used for
training InstructBLIP (Dai et al., 2023) and LLaVA-
1.5 (Liu et al., 2024c). The samples in A-OKVQA
do not overlap with our benchmarks.

To address all three types of problems, the ratio
of the tuning data for each task is important. There-
fore, we examine the difficulty and heterogeneity
of each task and then seek the optimal amount and
proportion of each type of question. We first create
4 kinds of datasets for standard questions, AAD
questions, IASD questions, and IVQD questions,
respectively. For each dataset, we include the ques-
tions for the base setting and the questions with
additional options. For AAD/IASD/IVQD datasets,
we set “I cannot answer.” as the answer for the
base-setting questions and set the UPD-specific op-
tions such as ‘“None of the above” to the answer
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(a) LLaVA-NeXT-13B

Orig
before after

AAD | 767 689 |18.3 18.2 38.8 47.6
IASD | 732 65.4|31.4 29.8 57.8 60.0
IVQD| 71.3 67.4|29.8 37.9 542 59.6

Orig Base Opt Inst TLIII:I?:Ig

(b) LLaVA-NeXT-34B

Orig
before after

AAD | 843 78.6(53.2 299552 63.8
IASD| 80.2 74.8|56.7 22.6 619 733
IVQD| 80.9 74.7|53.4 50.6 72.5 70.2

Orig Base Opt Inst Tl.Ilrrls;g

Table F: Overall Dual accuracy with UPD instruction tuning.

for the option-setting questions. Also, to make it
robust for the number of options, we create the
questions with 2-4 options by augmentations.
Model and Tuning Method. The experiments
were conducted based on LLaVA-NeXT-13B/34B
due to its ease of implementation and its powerful
performance. We adopt LoRA tuning (Hu et al.,
2022) by considering the effectiveness and low
memory usage.

D.2 Analysis

In this section, we aim to explore the optimal tun-
ing recipe. First, we investigate the difficulty and
heterogeneity of the AAD, IASD, and IVQD tasks.
Then, by conducting experiments with varying pro-
portions of each task and adjusting the amount of
data, we identify the best tuning recipe.

Difficulty and Heterogeneity of Each Task. To
create a dataset that addresses all UPD problems,
it is crucial to examine the difficulty and hetero-
geneity of each task. To this end, we compare the
performances when we use only one UPD dataset
from all three kinds of UPD datasets, which indi-
cates the difficulty or similarity of each task. In
Table H, we show the result. From this result, we
find that, for AAD and IVQD, we need to include
their own training data, while both IVQD and AAD
data are sufficient to solve IASD questions. This is
because IASD can be considered a simpler version
of the AAD question since the answer-set does not
include the correct answer, and it is also related
to IVQD since the answer-set is not related to the
given image. Hence, to reduce the complexity, we
can create the tuning dataset from AAD and IVQD
data.

Ablation on Ratio of Each UPD Task. In Fig. B,
we illustrate the relationship between the ratio of
Standard, AAD, and IVQD instruction tuning data
and the performance of each UPD, Standard, and
Dual accuracy. We set the ratio of Standard: AAD:
IVQD to 3.3:3.3:3.3, 6:2:2, 7:2:1, 1:0:0. From
this result, increasing the ratio of UPD tuning data,
the UPD performance improved much while the
standard accuracy degrades. Conversely, increasing

the proportion of Standard data degrades the UPD
performance. We can see that the ratio of 6:2:2 is
an effective ratio for all the settings.

Ablation on Data Size. In Fig. C, we illustrate
the relationship between the tuning data size and
the performance of each UPD, Standard, and Dual
accuracy. In this experiment, we set the ratio of
Standard, AAD, and IVQD is 0.6, 0.2, and 0.2.
From this result, 10,000 samples are enough to
tune for our LoRA-based instruction tuning.

From these experiments, we find that the most
effective approach is to include 20% AAD and
20% IVQD questions each, and 10,000 samples are
sufficient for tuning.

D.3 Result

Table F demonstrates that instruction tuning is ef-
fective for UPD, showing the performance efficacy
and limitations with UPD-specific training. How-
ever, UPD-specific training may degrade the perfor-
mance of other general tasks. Therefore, if the user
intends to use LMMs for broader, more general
purposes rather than just for UPD tasks, instruc-
tion tuning may not be a good approach. It is a
future challenge to propose a method that improves
UPD performance while maintaining performance
on general tasks.

E Evaluation

E.1 Further Discussion of Evaluation Metrics

We consider the Original Conditional Dual accu-
racy (OC-Dual) score, a metric that takes into ac-
count the Original Standard Accuracy for each
LMM. Dual Accuracy is an evaluation metric that
equally assesses Standard accuracy and UPD accu-
racy. This metric inherits the widely supported con-
cept of a reliable model that answers when it should
and refuses when it should not (Amodei et al., 2016;
Hendrycks et al., 2021; Yang et al., 2024b). How-
ever, it also takes into account differences in the
original capability for Standard problems. There-
fore, we consider the OC-Dual score as a score that
does not depend on the original capability. The
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Figure A: Relationship between OC-Dual accuracy and Dual accuracy.

OC-Dual score is defined as follows: OC-Dual =
(Success in all Original Standard, Standard, UPD
settings) / (Success in Original Standard).

We plotted the relationship between OC-Dual
accuracy and Dual accuracy in Fig A. To quantify
the relationship between these scores, we calcu-
lated the correlation coefficient (") and Spearman’s
rank correlation coefficient (p). The analysis re-
vealed a very strong correlation between the two
metrics. This is attributed to the fact that the Origi-
nal Standard performance of current LMMs shows
little variation within the MM-UPD Bench. Given
that OC-Dual accuracy does not guarantee practi-
cal usability, the Dual accuracy for MM-UPD is
the most effective to precisely assess the reliability
of state-of-the-art LMMs without compromising
real-world applicability.

E.2 Automatic Evaluation Strategy

We adopt Circular Evaluation and GPT-involved
Choice Extraction in MMBench (Liu et al., 2024e)
as an evaluation strategy. In Circular Evaluation,
a problem is tested multiple times with circularly
shifted choices, and the LMM needs to succeed in
all testing passes. GPT-involved Choice Extraction
first performs the matching algorithm and then uses
GPT for those that do not match.

However, since the existing MMBench evalua-
tions are optimized for standard questions, directly
using them would assign standard options to re-
fusal responses. Therefore, we made the following
modifications for the UPD challenge.

Simplification of the Matching Algorithm. To
apply the matching algorithm for UPD, we simplify
the matching algorithm to prevent the refusal re-
sponses from matching the given options. In detail,
when an option is denoted simply by a letter such
as ‘A’ or expressed as ‘A) XXX, ‘A. XXX, ‘A,
XXX, ‘(A) XXX’ without the inclusion of other
choices within the ‘XXX’ portion, it is considered
that ‘A’ is being predicted.

Change of the Template for GPT Evaluation.
Next, to identify the refusal prediction, we leverage
GPT following MMBench. We leverage GPT-40-
mini (gpt-40-mini-2024-07-18), considering its
high performance and low cost.

We slightly change the template for the original
MMBench, and create the query template for each
setting in Fig. D. As for ${option}, we add UPD-
specific options to recognize UPD predictions. In
Fig. E, we illustrate the options for each setting.
For AAD, we add two options: a masked correct
option, and the option of “The correct answer is
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${Question}

The above answer is:
1. True
2. False

Your Previous Answer: <LMM’s Answer>

Answer with the letter of either option: 1 or 2 directly.

Table G: Prompt for Self-Reflect

Table H: Task difficulty and heterogeneity. We use LLaVA-Next-34B. AAD and IVQD require their own training data, while

IASD can be addressed with AAD and IVQD training data.
(a) Dual Accuracy

Training Data AAD IASD IVQD

Standard+AAD 66.5 729 51.7
Standard+IASD 45.2 744 26.7
Standard+IVQD 52.1 722 73.6

No answer, None of the above, all provided options
are incorrect, or I cannot answer.”. For IASD, we
add two options: a masked correct option, and the
option of “The correct answer is No answer, None
of the above, all provided options are irrelevant
or incorrect, or I cannot answer.”. For IVQD, we
add an option of “The correct answer is that The
image is incompatible with the question, or I cannot
answer.” For the additional-instruction setting, we
also add the option “F. None of the above” or “F.
The image and question are irrelevant.”. In each
setting, we regard the options indicated by check
marks (Fig. E), as correct ones.

E.3 Comparison to Human Decision

In Fig. F, we investigate the alignment of scores
given by GPT-40-mini and humans for the base
setting. To investigate the performance of the UPD
predictions, we sampled every 100 predictions of
LLaVA-Next-34B and GPT-40 output that were
not matched by pattern matching and manually
evaluated them. We found that the match rate with
human evaluations is sufficiently high.

F Error Analysis
F.1 Failure Examples of GPT-40

We show some GPT-40’s failure examples in Fig G,
H, and 1. GPT-40 is weak in the following cate-
gories in AAD: #3: Object Localization, #6: At-
tribute Comparison, #7: Nature Relation, and #12:

(b) UPD Accuracy
Training Data AAD IASD IVQD
Standard+AAD 739 964 63.8

Standard+IASD 46.7 96.1 32.0
Standard+IVQD 55.8 94.7 95.8

Physical Property Reasoning, so we included ex-
amples of these abilities. From this result, it is clear
that it selects answers from incorrect options.

There are two interesting discoveries. The first
point is that GPT-40 tends to select the option that
is closest to the masked answer. For instance, in
the examples shown in Fig. G, it can be observed
that in both cases, GPT-40 chooses an option that
is similar to the correct answer. The second is that
there are cases where the correct answer is reached
within the reasoning process but the final answer
is incorrect. For example, in the example above in
Fig. I, although the reasoning process mentions a
predatory relationship, it is finally pulled towards a
competitive relationship and answers “A". When
we look up the meanings of “predatory relation-
ship" and “competitive relationship" in a dictionary,
we see that they are clearly different. Also, when
we ask GPT-4o itself, it introduces them as differ-
ent concepts. Therefore, this mistake is unique to
UPD, and it shows the difficulty of refraining from
answering. In the example below Fig. I, the reason-
ing stated the correct answer, “the magnitude of the
magnetic force is greater in Pair 2. T", but GPT-40
chose “A" as a final answer. This also shows the
difficulty of refraining from answering.
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F.2 Qualitative Differences in Outputs G Full Results for Each Setting

Bet Closed and Open Model
ctween LHosed and Lpen Models We show the full results for each setting in Table I,

We compare some correct cases of GPT-40, Gem- J- K, L, M, N, 0.P.Q.
inil.5Pro, LLaVA-NeXT-34B, and InternVL2-40B

in Fig, J. Closed-source models often provide both

the correct answer and an explanation like “None

of the provided options are correct. The correct

answer is ...". In contrast, Open-source models
typically only give the correct answer without pro-
viding “None of the ....". While both are considered
correct in our evaluation, closed-source models of-
fer a better response. The development of open-
source models that can both provide the correct
answer and respond with “None" is a crucial chal-
lenge for the future.

F.3 Other Failure Examples

We show other failure examples in Fig. K, L, M,
N, O, and P.
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You are an Al assistant who will help me to match an answer with several options of a single-choice
question. You are provided with a question, several options, and an answer, and you need to find which
option is most similar to the answer. If the meaning of all options are significantly different from the
answer, output H. Your should output a single uppercase character in A, B, C, D, E, F, G (if they are valid
options), and H.

Example 1: Question: What is the main object in image?

Options: A. teddy bear B. rabbit C. cat D. dog E. no answer

Answer: a cute teddy bear

Your output: A

Example 2: Question: What is the main object in image?

Options: A. teddy bear B. rabbit C. cat D. dog E. None of the above

Answer: no answer

Your output: E

Example 3:

Question: What is the main object in image?

Options: A. teddy bear B. rabbit C. cat D. dog E. None of the above

Answer: fish

Your output: H

Example 4:

Question: ${question}?

Options: ${option}

Answer: ${answer}

Your output:

(a) GPT query template for AAD and IASD.

You are an Al assistant who will help me to match an answer with several options of a single-choice
question. You are provided with a question, several options, and an answer, and you need to find which
option is most similar to the answer. If the meaning of all options are significantly different from the
answer, output H. Your should output a single uppercase character in A, B, C, D, E, F, G (if they are valid
options), and H.

Example 1: Question: What is the main object in image?

Options: A. teddy bear B.rabbit C. cat D. dog E. The image and question are irrelevant

Answer: a cute teddy bear

Your output: A

Example 2: Question: What is the main object in image?

Options: A. teddy bear B. rabbit C. cat D. dog E. The image and question are irrelevant

Answer: The uploaded image and question are incompatible.

Your output: E

Example 3:

Question: What is the main object in image?

Options: A. teddy bear B. rabbit C. cat D. dog E. The image and question are irrelevant

Answer: fish

Your output: H

Example 4:

Question: ${question}?

Options: ${option}

Answer: ${answer}

Your output:

(b) GPT query template for IVQD.

Figure D: GPT query templates for AAD, IASD, and IVQD.
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Figure E: Question and options for Chat-GPT evaluation. Brown options are additionally given to recognize UPD predictions.

GPT Eval

Figure F: We manually annotate the correctness of LMMs’ predictions and compare its alignment with GPT-40-mini
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AAD: Object Localization

Where is the broccoli located in the picture?

Standard AAD

A. top right A. top right

B. top left B. top left

C. bottom left C. bottom right

D. bottom right

GPT-40’s Answer GPT-40’s Answer
v XThe broccoli is located at the
bottom right (C) of the picture.

AAD: Object Localization

How many Cows in this picture?

Standard AAD

A. four A. four

B. one B. one

C. two C. nine

D. nine

GPT-40’s Answer GPT-40’s Answer
‘/C. two B. one

Figure G: Failure examples of GPT-4o.
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AAD: Attribute Comparison

Which of the following statements match the image?

Standard AAD

A. Ared rectangle is below a blue ellipse. A. A red rectangle is below a blue ellipse.

B. A cross is above an ellipse. B. A cross is above an ellipse.

C. A red shape is above an ellipse. C. A blue ellipse is below a red ellipse.

D. A blue ellipse is below a red ellipse.

GPT-40’s Answer

GPT-40’s Answer Y The statement that matches the image is:

v/C. A red shape is above an ellipse. A. Ared rectangle is below a blue ellipse.

AAD: Attribute Comparison

In this comparison picture, are the left
and right modules the same color?

Standard AAD
A. same A. Not the same
B. Not the same B. Can't judge from the image
C. Can't judge from the image due to the lack of image information
due to the lack of image information.
GPT-40’s Answer GPT-40’s Answer
v'A. Same XA, Not the same

The left module is a lighter shade of
green compared to the right module.

Figure H: Failure examples of GPT-4o.
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AAD: Nature Relation

In nature, what's the relationship between these
two creatures?

Standard AAD

A. Predatory relationships A. Competitive relationships }%
B. Competitive relationships B. Parasitic relationships

C. Parasitic relationships C. Symbiotic relationship

D. Symbiotic relationship

GPT-40’s Answer P

v/ A. Predatory relationships xThe relationship between the spider and the fly in
the image is a predatory relationship, which is a
type of competitive relationship. Therefore, the
correct answer is: A. Competitive relationships

AAD: Physical Property Reasoning

Think about the magnetic force between the magnets in each pair.
1

Which of the following statements is true? Bal Ll
s N I [N s

Standard + 125in J F=0.75in—
A. The magnitude of the magnetic force AAD

is smaller in Pair 2. A. The magnitude of the magnetic force
B. The magnitude of the magnetic force is smaller in Pair 2.

is smaller in Pair 1. B. The magnitude of the magnetic force
C. The magnitude of the magnetic force is the same in both pairs.

is the same in both pairs. C. None of the above
D. None of the above

GPT-40’s Answer

GPT-40’s Answer Given that the distance between the
B. The magnitude of the magnetic force magnets ..., the magnitude of the magnetic
is smaller in Pair 1. force is greater in Pair 2. Therefore, the

correct statement is:
A. The magnitude ... smaller in Pair 2.

Figure I: Failure examples of GPT-4o.
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Q. What's the function of B
the demonstrated object?
A. running

B. Play football

C. Play basketball

GPT-40
None of the provided options are correct. The object demonstrated in the image
is a tennis court, which is used for playing tennis.

Geminil.5Pro
The function of the demonstrated object is to **play tennis**. Although none of the
provided options are correct, the image clearly shows a tennis court.

LLaVA-NeXT-34B

The object in the image is a tennis racket, which is used for playing tennis.
The person in the image is holding the racket and appears to be in the middle
of a tennis match or practice session.

InternVL2-40B

The object in the image is a tennis racket, and it is being used to play tennis.
Tennis is a sport that involves hitting a ball over a net with a racket, aiming
to make the ball land within the opponent's court.

Q. What kind of human behavior does this picture describe?
A. A group of friends are rock climbing on a cliff face,
using ropes and harnesses to ascend steep heights
while feeling exhilarated by the challenge.
B. A musician is recording music in a studio, singing or
playing instruments and perfecting tracks for an upcoming album.
C. A man is playing basketball at a court, dribbling, passing,
and shooting hoops with precision and skill.

GPT-40

The picture describes a man standing in the rain with his arms outstretched and his face
turned upwards, appearing to be experiencing a moment of emotional release or exhilaration.
This does not match any of the provided options (A, B, or C).

Geminil.5Pro

None of the options provided describe the image. The image depicts a man standing in heavy|
rain with his arms outstretched and head tilted back.

LLaVA-NeXT-34B

The image depicts a person with their arms outstretched, seemingly in a state of joy or
exasperation, possibly after a swim or being in water.

InternVL2-40B

The picture depicts a man standing in the rain with his arms outstretched.

This behavior can be described as a form of emotional expression or a moment of

connection with nature.

Figure J: Comparison of outputs of GPT-40, Geminil.5Pro, LLaVA-NeXT-34B, and InternVL2-40B. Green part is
the description for the correct masked answer. Brown part points out the inability to solve the problem. Closed-
source LMMs tend to point out both the correct answer and the fact that the problem cannot be solved, while
open-source LMMs tend to only indicate the correct answer.
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Image Scene
Q. Which one is the correct caption of this image?

Standard AAD
A. some clouds a traffic light and some A. some clouds a traffic light and some
buildings buildings
B. A man walks through the ocean water B. A man walks through the ocean
with a surfboard under his arm. water with a surfboard under his arm.
C. A vehicle is shown transporting a C. alaptop a mouse a desk and some
shipment of bicycles. wires
D. a laptop a mouse a desk and some
wires
Standard AAD
‘é A vehicle is shown xA. some clouds a traffic light and some
LLaVA-OV-7B transporting a shipment... buildings
xThe correct caption for this
InternVL2-40B Ve P

image is: A. some clouds ...

xA. some clouds a traffic light and

GPT-40 C. A vehicle is shown some buildings

transporting a shipment...

Image Emotion

Q. Which mood does this image convey?

Standard AAD
A. Cozy A. Cozy
B. Anxious B. Anxious
C. Happy C. Angry
D. Angry
Standard AAD
v x ,
LLaVA-OV-7B C. Happy B. Anxious
v v .
InternVL2-40B c Thg image conveys ? mood of
excitement or surprise.
GPT-40 ‘/ C. Happy \/ The mood conveyed by this

image is not listed ...

Figure K: Examples for AAD.
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Q. Which one is the correct caption of this image?

Standard AAD
A

Image Topic

Cooked snack item in bread on plate with condiment. A. Cooked snack item in bread on plate with condiment.

B. Agray chairand a black chair sit in aroom B. astop sign on the corner of a street of apartments.
near alamp. C. Old Double Decker bus driving through heavy traffic
C. astop sign on the corner of a street of apartments.
D. 0Old Double Decker bus driving through heavy traffic
Standard AAD
B. A gray chair and a black chair xA. Cooked snack item in bread on
LLaVA-OV-78B sitin aroom neara... plate with condiment.
\/ x The correct caption for this
InternVL2-40B E.Agray chair and a black chair image is: A. cOokgd snack.item in
sitin a room neara ... bread on plate with condiment.
GPT-4 B. A gray chair and a black chair None of the provided captions
-40 sitinaroom neara ... accurately describe ...
Attribute Comparison
Standard AAD
A.same

B. Not the same
C. Can't judge from the image due to

A.same
B. Can't judge from the image due to
the lack of image information.

the lack of image information.

Standard AAD

x B. Can't judge from the
image due to the lack of
image information .

LLaVA-OV-7B ‘/B4 Not the same

\/ x B. Can't judge from the
InternVL2-40B B. Not the same image due to the lack of

image information .

\/ B. Not the same
GPT-40 The two objects in the
sketch...

x B. Can't judge from the
image due to the lack of
image information .

Figure L: Examples for AAD.
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Future Prediction
Q. What is the transformation in this image?

[N
Standard IASD s
v(. X
A. The water will freeze A.one ) p: o
B. The water will remain liquid B. two
C. The water will evaporate C. four
D. The water will condense D. zero
A A A
Boiling
Standard IASD
LLaVA-OV-7B C. The water will D
evaporate

\/ Therefore, the correct answer is:C. x Therefore, the correct
InternVL2-40B The water will evaporate answer is:A. one

‘/C. The water will &he correct answer is:B. two (liquid
GPT-40 evaporate to gas)

Object Localization

Q. How many TV remote controls are in this photo?

Standard IASD
A. four A.D
B. twelve B.B
C. two C.A
D. three D.C
Standard IASD
LLaVA-OV-7B v'c X

InternVL2-40B C. two ‘/There are two TV remote

controls in the photo.

GPT-40 xD. three XD' ¢

There are two TV remote
controls in the photo.

Figure M: Examples for IASD.
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Image Scene
Q. Which scene category matches this image the best?

Standard IASD

A. manufactured_home A. top-right
B. campus B. top-left
C. badlands

C. bottom-left

D. field/cultivated D. bottom-right

Standard IASD
LLaVA-OV-7B \/B X A
\/ This image depicts a scene..,
InternVL2-40B B. campus which is best categorized as
"top-right."
The scene category that
GPT-40 Vs

matches this image the best
is: C. bottom-left

Identity Reasoning

Q. What's the profession of the people in this picture?
Standard IASD

A. detective A. oil painting

B. accountant B. sketch

C. cashier C. digital art

D. architect D. photo

Standard IASD
LLaVA-OV-7B v C. cashier xD
InternV12-408 ¥/ C. cashier o el oresston
‘/The person in the
GPT-40

picture is most likely a xD. photo
cashier (Option C).

Figure N: Examples for IASD.
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Celebrity Recognition
Q. What is the name of this city? 1IVQD

Standard

A. Hong Kong

B. Shanghai

C. Singapore

D. New York

Standard IVvQD
v o )'a
LLaVA-OV-7B C. Singapore A
. ‘/None of these options are related to
InternVL2-40B C. Singapore P

the image of a magnet.

GPT-40 qhecitvintheimage ‘/This image does not provide
is Singapore. any information about a city.

Attribute Comparison
Q. Are the two sofas the same color in the picture?

Standard IVQD

e

A.same
B. Not the same

Standard IVQD
LLaVA-OV-7B ‘/B X A: same
InternVL2-408 5. Not the same X5, Not the same
GPT-40 \{3 Not the same The image you provided does

not contain any sofas

Figure O: Examples for IVQD.
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OCR
Q. The area of which figure can be calculated using the formula
in this picture?

Standard IVQD
A. Square
B. Rectangle

C. Triangle S 2
D. Circle

Standard IvaD

LLaVA-OV-7B v A.square. X

..the correct answer ‘énce the figure in the image is not
Is :A. Square acircle, the formula provided is not
applicable for calculating its area.

InternVL2-40B

‘/ Therefore, the correct
GPT-40 answer is: I don't see a formula in the

A. Square picture provided

Function Reasoning
Q. Which material is this spatula made of?

Standard
A. rubber
B. cotton
,z/ I
Standard Ivap
LLaVA-OV-7B ‘/A x A

\/...the material of this

x The spatula in the image
spatula is most likely rubber.

appears to be made of rubber.

InternVL2-40B
GPT-40 ‘/A. rubber ‘/Icannot determine the material

of a spatula from this image.

Figure P: Examples for IVQD.
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th instructions. We report Standard accuracy, AAD accuracy, and

ing wi

the sett

mn

Full results for AAD i

Dual accuracy.
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. We report Standard accuracy, IVQD accuracy, and Dual accuracy.

ing

in the base sett

Full results for IASD

Table L
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. We report Standard accuracy, IASD accuracy, and Dual

in the setting with options

Full results for IASD

Table M

accuracy.
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h instructions. We report Standard accuracy, IASD accuracy, and

ng wit

in the setti

Full results for IASD

Table N

Dual accuracy.

#2 #3 #4 #5 #6 #1 #3 #9 #10 #11 #12 #13 #14 #15 #16 #17 #18

#1

SOV O ONNAD ORISR

l\—oomo—4—c«m|\vww<rcxo<r~oooxo
AN——=F—=AFNFOD

oo — O—'OOO\OI\Oﬁw\O\OMOmG\ONw

wmoooooo~__ Se=
(k- A ieleh st dniviviv el iy

[SIStSIoloIole ottt Iolo ottt Tt It )

CVWWOOOOOOWOOWOOWWOOWWO
Feoa==<+3"R Q==&

cl\l\ol\ooochvvvlnl\@vm—mt\lmoov

owcxoo-nomv—u—._.ﬂ 106 S en e ol
i=pspsiciabaiebsispet il

QRSO0 — M50 AN M AN AN Oy

et tadabelal fudchaelule-Iotmtobs Si i
NN =0 N IN Al en <F 501N 0 001N 00 50 0 N

OO =N O ANNINSOSNO N

mo~v—oc\oc~|\<\lc\mmmv(\lvo\mvc~m-—<
AN N == F O NN N — Ol —

cmnﬁ-omo-aocN-n:nchm-—@w\oomo—wﬁo

-—mﬁ-oml\t\l\n SO =GR G BRNG
< ) SISBRIEBRSRRSE

O = Q=10 50 < A1 00 17 00 000 W) OY 00 00
ooc\ow\ot\lwc\ll\s\mowv\nmm Swi—
Nefreite} SN N — 800 I~ =0 S~ 00

Oyt < 001N O\ 1 0000 00 — O AN A\ F 00O N\ O 1

\Docol\rmnvoool\ S \O i80S
OB B — =N O~ IN O~~~

SO —AAT — NN AN N NN D < 00000
ocNmm@NvOom(\ll\vo S ——=c®
<t NBO B — O T =0 ~ND X

NN =N — A TF — AN N AT N
WMM\OOOO\O\MNNﬁ'wa—MG\ earsn
O~ = nhtnetAa S NINOIN= 000

OC\OONOl\v—'\nv‘,l\Nm-—<®Nv‘,mNNc~v

oooc-ncmooooooov—«\loo Sagooain
BRESSBRINEIERSS

TOA—OLVOON = — AN ON N NOOO O

~N|\oooooo\nl\l\ml\moom\n<rooo~oo
A — AN —N—< Nt ATFA—

NSTOOALTANSINNAORS TSNS
OB NN N = (0 F B = F S G RO e et~ —
VNS A SOCNATOSROSND O 0

OV AN O A — AN IS Oy 00 — 00 < — 1N e 00 W U

hwmwmwooomoo AF G =N w
OFT NN ANIO T~~~ <t <+

NN O —— S INT NN —S O

w@ |\<r~-—©ool\mm(\loowc\ll\oommmm
—0V VNS0 M F oINS

mwNowoonwmﬁl\Nmemc\on
—'\D\DONOM\D-—'\D BN eq =N
wn FECRACRBRRBRRTES

CNNANOANSNSAN TSN NN

@Nm~v—<OO|\\Dml\v—<<rl\Ov— DS — O
ot REELE"IRARERGERR

VLM2-19B
cs2-8B

e
idefics3-8B
Phi3V

LLaVA-NeXT-34B
ide

LLaVA-OV-0.5B
LLaVA-OV-7B

LLaVA-NeXT-13B
CogVLM

Dual Acc.
LLaVA1.5-13b
Phi3.5V
InternVLM2-2B
InternVLM2-8B
InternVLM2-40B
XgenMM
Qwen2-VL
Qwen2.5-VL
GeminiPro
Geminil.5Pro
GPT4V
GPT40-mini

Q00N 0000 < ANV QYA — — < I — <L D en
o I T T L e L L e o R Rl T Vet =
BESTCCCR TR CFTAREIRRBSER

ANOO RO A0 — 0SSN OO0

mml\oml\ooowl\moovmmml\l\l\l\
St TOREVENASSNBRARANNR

cocoooooooooeooeeeX

oo
OSSOSO KRNNBINS SOV
BES ANBONENARN OO~ RNDORSARN

O(\l@vmvvwmmmvwwmmc\[\vcml\o
v—4~oz\<\l<r-—axm<r<rz\|<r<rm s
SRR TR RGIT R I LI LCCRRERLS

—NONOTANONSNANT = OSSO

val\ml\a\~~\owc~ol\vvc~~col\l\
L AADFNOATINORR=SSAN

SO 0\O D00 — IO 00 O — (] — €7} OY 00 00 00 )

I\I\WNMOOO[\M\O—'C\D\DMMOOWWVVDO
L0 ONACRN R OANND

ml\l\Ole\vwl\NNl\Ov—-M[\—d’\Ol\m
Ihl\l\Oglhmﬁ'N Tl =d N =Ta"]
[==N=N oc[\ocomml\cxoool\aoc\:h

QRO—=ANDRNNNNAODORNRRNDDD

NY OO AN G BB RSN = F eSS~
[aalecle)) ANOH-OSOFT—=ORANRVORONSODN

N—=ORNONHINNINAINEORANA NS ——

ST Sl IS e eEIEX S S
SRECENAOSHERARARND

NSA— QAN O—NNANT OO NS NN

wovocmwmv HABRARBNR BT S
FTORNOOT—OCAF ORISR

VROV QN T NN —AND— IO

mwwwwwc\m—mwwmwmmo s
0 AR O=ON  NANOE=ARARN

RO NN NSO N QOO

v&l\l\ONt\Owww—«\locmm(\ht\l\l\N
RRRRO—EST-0oRNRR

—N =N OMN— OO MmN NOON

NN CYT RO SN B NS =TS0
SO T NOFINOFTFRANOAS-ND 00

=N IN NN ANNSRND SO 0

ﬁcwmm\cml\momm OO =it SBBC
ST RXEEOFTTRADOA=SAAR

ANAN—ANTRONSANSN N ORNND 0

le\wwl\l\mc\ oSS SOl
XN T AASFTNOT OSSN RRININR

0O T FINS OO — — 50— — N\

—No
NS AT NS CBAN N F LS BF L ORBS
[ N A AN IRt [ ate s ol Yo N 1o

OO CANANDONRORNRNND

COORANINNNON— NSO DRSS N0
ST~ A=A S F N RNBS IO
REITFERRRIES ©Snwwo®o

SO\QO

ag @
il PR 823

nEESRE DU <}
TS%3% Jmm 999 o5& E
0220055%n  Shdssudl E
See223399 2EE5S0dE 00
RRRER Yy S e EE85 92 SEERRR
AAASA00ERRASSEXOO0OVO0

6537

SN D QNI A O 00 00 QYWD 17 00 W 1 00 I

—4\00# Ommo #MNI\O\MOOMONM
—_ AAnAnFOoNMINTFIND 0K

OO OO — RO — IS0 O

RS CAC — IR0 0000 W5 W o5 <f — 00\
OSSO~ 000X N0 NGO~ N~

Qeeoeooeoeeeeeeeeeeeee
NNNoOVNOoOVOoOVINNNNNONOO
AT AN ENESOEESONNA—— Q@

TNOTROTN— NS ORI — RSO0

Seaaigoagiegidn s S ==
N ARACH AN RN

NS N NN AN N QN Ay — AT N <

S8t —adoa——=dadaa—atF=oar
OO 0RO~ O OENAN RO RNN

OO DR A — RIS RN A N NN

i = Rt A R Byl o] l\vNNOOOON
TFNAC T NFNINTFINO OO0~

NSO —— N — —— 0D ——
CuS ~ l\mowmmommw—wmowc\w
TN No0 O ~1n O F I~ 517 00 I~ 10 00 1A I~ 00

QRN — QRS ANNNANNRNRN AR KR

o Sl =T e N S L f = e |
OI~D00dN | O\ O\ SN 00 00 00 00 ON 00 AN I~ 11 S 1= 00

Ot TN NN O NS NN

Saig— omwcvwovoooowr\lt\lvoo
NoodnS 000000 O\ [~ 00 [= 00 XN 00 \O I~ I~ = &

ANRNSNRANNNSSANN NN AR

AN B NS S NN B NS F ST ON TF wio
ANRAR—RAANNANRNARNI RO~ NORN

(\mmc\oomcoo\oonm(\\ooﬁ-mmwﬁ-
RN =S =R = =
SRR ECLRERREBLRRERRERS

RO CO— 0O O — — OIS

I\K\OONI\OWK\OOOOI\WLHONNNNWN
SSE21SN-NCN ASSSSRNS RN

=T OO NSO = O~ SARND —

I\Nl\—'wONlﬁ\f)NOwI\wNI\ONNOl\—‘
Al — TEFATF I FnFAFTA—n

QNSO =N NN NSO — < —

e vl b s T = L N R Ao ¥
[~\OM~\000 ~ 000000 I~ [~ = 00 [~ 00 00 00 I~ [~ \O [~ 00

ww@ooN(\hmwmwww(\wwmoo\m@
QR =GN GRS S BANF S =G —
RRCEE BRI LREIRRERZSRE

AN NOS OO ONNO NSNS N
LU= ACAE SO AS SR RN g s
Eelaecl ot al-cloo ool tlo oo Yo Ne ol el oV e Nk )

NONCOO— NN T L ST NINS AN
IR Bty Svfe o i - gk ti-ded
o - L=l e e e e e IS v

MO\ — OO RN INDS NS — N
PSS S oNv—[\Nwt\w\omw@l\l\N

oo SO~ ONO~ 000 X0 F O~
a8 @
—n
sppiinm 8 882 °
2; 100
$T%%22 dmm EE% o5 & E
< =
<0Z78858%s  SASsSLET 2
s S350 255554055 8o
S SSSS e e NI T TR RS
BRSSPSR E S8 85 5aan
§0000N00ERAR EEEXOO00TT0
w




. We report Standard accuracy, IASD accuracy, and Dual accuracy.

he base setting

n t

Full results for IVQD

Table O

#6 #1 #3 #9 #11 #12 #17

#5

#2 #3

#1

Dual Acc.
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. We report Standard accuracy, IVQD accuracy, and Dual

the setting with options

m

Full results for IVQD

Table P

accuracy.

#2 #3 #4 #5 #6 #7 #3 #9 #11 #12 #17

#1

Dual Acc.
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Full results for IVQD

Table Q

Dual accuracy.

#2 #3 #4 #5 #6 #1 #3 #9 #11 #12 #17
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LLaVA-NeXT-34B
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Standard Acc.
LLaVA1.5-13b
Phi3.5V
InternVLM2-2B
InternVLM2-8B
InternVLM2-40B
XgenMM
Qwen2-VL
Qwen2.5-VL
GeminiPro
Geminil.5Pro
GPT4V
GPT40-mini




