
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 6463–6480
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

GIFT-SW: Gaussian noise Injected Fine-Tuning of Salient Weights for
LLMs

Maxim Zhelnin♣ 1, Viktor Moskvoretskii♣ 1,3, Egor Shvetsov1,
Egor Venediktov1, Maria Krylova, Aleksandr Zuev, Evgeny Burnaev 1,2

1 Skolkovo Institute of Science and Technology
2 Artificial Intelligence Research Institute

3 HSE University

Correspondence: m.zhelnin@skol.tech ♣ indicates equal contribution.

Abstract

Parameter Efficient Fine-Tuning (PEFT) meth-
ods have gained popularity and democratized
the usage of Large Language Models (LLMs).
Recent studies have shown that a small subset
of weights significantly impacts performance.
Based on this observation, we introduce a
novel PEFT method, called Gaussian noise In-
jected Fine Tuning of Salient Weights (GIFT-
SW). Our method updates only salient columns,
while injecting Gaussian noise into non-salient
ones. To identify these columns, we developed
a generalized sensitivity metric that extends
and unifies metrics from previous studies. Ex-
periments with LLaMA models demonstrate
that GIFT-SW outperforms full fine-tuning and
modern PEFT methods under the same com-
putational budget. Moreover, GIFT-SW offers
practical advantages to recover performance
of models subjected to mixed-precision quan-
tization with keeping salient weights in full
precision.

1 Introduction

Modern LLMs demonstrate remarkable generaliza-
tion capabilities on unseen tasks. However, fine-
tuning remains crucial to enhance these models per-
formance or to restore the performance after com-
pression techniques like quantization (Dettmers
et al., 2024; Moskvoretskii et al., 2024), prun-
ing (Frantar and Alistarh, 2023; Kim et al., 2023),
or tensor decomposition have been applied. Given
the large scale of modern LLMs, fine-tuning all
parameters can be computationally and memory-
intensive. To overcome this challenge, Parame-
ter Efficient Fine-Tuning schemes have been de-
veloped, aimed to improve model performance
while using limited computational and memory re-
sources.

To date, PEFT methods have not matched the
accuracy of full fine-tuning (Nikdan et al., 2024),
highlighting the need for new approaches that can

Figure 1: GIFT-SW procedure follows Equation 2. We
first sample some noise, relative to quantization lev-
els, then, perform forward pass, and then update salient
weights only. In GIFT-SW, quantization, pruning or ten-
sor decomposition can be applied to non-salient weights
and then, salient weights can be fine-tuned effectively
without changing non-salient weights structure. In our
experiments we select only 128 columns of salient
weights, unless specified otherwise.

close this gap while still minimizing resource use.
Additionally, most PEFT methods involve adding
extra parameters, which increases computational
demands.

To address those issues and enhance the perfor-
mance of efficiently trained LLMs, we introduce a
novel PEFT method, GIFT-SW. This approach fo-
cuses on updating a small subset of salient weights
while injecting noise into the non-salient weights.
The development of this method is grounded in
observations from previous studies and the related
questions they raise, which we aim to answer:

Previous research has shown that there is a small
subset of salient weights which can significantly
affect the effectiveness of post-training quantiza-
tion (PTQ) (Dettmers et al., 2022, 2023; Kim et al.,
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2023) and pruning techniques (Yin et al., 2023;
Frantar and Alistarh, 2023; Sun et al., 2023). More-
over, Gurnee et al. identified a group of "universal
neurons" that are critical to a model’s functional-
ity, emphasizing the importance of selecting and
updating these salient weights.

Question 1: Does updating a small subset of
salient weights is sufficient to adjust the model?

Recent studies have demonstrated that Perturbed
Gradient Descent (PGD), with noise injections ap-
plied both before and after the gradient step, can
stabilize convergence and help prevent overfitting
(Poole et al., 2014; Zhu et al., 2018; Jin et al., 2021).
Question 2: Does Injecting Noise helps conver-
gence?

PGD is commonly employed to enhance model
robustness by approximating the quantization pro-
cess (Shvetsov et al., 2022; Shin et al., 2023; Défos-
sez et al., 2021). This increased robustness can aid
in maintaining the quality of the quantized model.
Question 3: Does injecting noise helps robust-
ness?

Selecting salient weights is a significant chal-
lenge, particularly in quantization and pruning, and
it is central to our method. In our paper, we derive
a general formulation for all previously established
saliency metrics and present experiments to com-
pare their effectiveness.

The main contributions of our work can be sum-
marized as follows:

• We introduce a novel PEFT method for pre-
trained and quantized LLMs, called GIFT-SW.
It is designed to fine-tune weights in salient
columns while injecting Gaussian noise into
non-salient weights, which are kept frozen
during training.

• We generalize sensitivity metrics for identify-
ing salient columns in pre-trained LLMs. We
compare various novel and existing instances
of the proposed general form and identify a
new metric, which on average outperform pre-
viously studied in the literature metrics(Xiao
et al., 2023; Lee et al., 2024).

• Experiments demonstrate that GIFT-SW out-
performs modern PEFT methods and full fine-
tuning baselines across most zero-shot tasks.
GIFT-SW for LLaMA models achieve com-
parable accuracy to the corresponding state-
of-the-art TÜLU2 models, despite fine-tuning

only 3% of the parameters and utilizing ten
times less computational resources.

We provide the code with GIFT-SW integrated
into the popular PEFT library (Mangrulkar et al.,
2022), making it easy to use 1.

2 Related Work

2.1 Parameter efficient fine-tuning of LLM
One of the most popular method with high effi-
ciency is LoRA (Hu et al., 2021), which trains
the low-rank adapters. Recent modifications to
the method aim to improve the initialization of the
adapters (Liu et al., 2024) and enhance the low-rank
representation of pre-trained weights by adding
sparse adapters (Nikdan et al., 2024). Another im-
provement of the learning capacity of LoRA is
given by DoRA (Liu et al., 2024), which fine-tunes
magnitude and direction components of the pre-
trained weights. This method achieves consider-
able performance across various fine-tuning tasks.

2.2 Salient Weights in LLMs
The identification of salient weights2 is one of the
main problems in weight pruning. Recently, several
approaches have been proposed to identify such
weights in LLMs, including SparseGPT (Frantar
and Alistarh, 2023), Wanda (Sun et al., 2023), and
OWL (Yin et al., 2023).

Dettmers et al.’s (2022) demonstrated that a
small subset of outliers in input activations has a
substantial impact on LLM performance, highlight-
ing the relationship between the activation outliers
and the salient weights. Many subsequent Post-
Training Quantization (PTQ) methods used similar
or identical pruning metrics to identify these salient
weights (Dettmers et al., 2023; Xiao et al., 2023;
Lee et al., 2024).

In our work, we generalize the identification met-
rics for salient weights by considering metrics from
both the literature on pruning and quantization.

2.3 Structured and Non-structured Salient
Weights selection

Since salient weights represent only a small per-
centage of all weights, a simple approach to pre-
serve them is storing them in a sparse matrix.
Dettmers et al. (2023) showed this method is com-
putationally efficient and enhances performance.

1https://github.com/On-Point-RND/GIFT_SW
2In our work, we use the terms salient weights and weight

outliers interchangeably.
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Meanwhile, Xiao et al. (2023) found that activa-
tion outliers are limited to a few weight channels,
which SmoothQuant addresses by identifying out-
lier columns with a small calibration dataset. This
idea is expanded in QUIK (Ashkboos et al., 2023),
where outlier columns are kept at full precision
while others are quantized using GPTQ (Frantar
et al., 2022). OWQ (Lee et al., 2024) follows a
similar approach but utilizes an OBD-based met-
ric (LeCun et al., 1989).

Given the lack of literature on whether structured
or unstructured salient weight selection yields bet-
ter results, and motivated by the computational ef-
ficiency noted in (Ashkboos et al., 2023), we adopt
structured column-wise salient weight selection in
our work.

2.4 Noise Injections
In this section, we briefly describe Gaussian Noise
Injections (GNI) and its benefits. Then we discuss
studies which show close similarity between quan-
tization noise and Gaussian Noise. Therefore, to
study our third question, we sample noise relative
to quantization levels, leaving other sampling op-
tions for future work.

Gaussian Noise Injections (GNI). Perturbed
Gradient Descent (PGD) is a family of methods
that involve adding or multiplying weights with
samples from some random distribution, during an
optimization procedure. Gaussian noise injection
(GNI) after the gradient step helps to escape saddle
points efficiently in non-convex optimization (Jin
et al., 2021). However, Gaussian noise injections
before the gradient step helps to escape from the
spurious local optimum (Zhu et al., 2018).

Quantization Noise Injections (QNI). Quanti-
zation aware training (QAT) is applied to mitigate
accuracy degradation after quantization. However,
uniform quantization 3 Q is a non-differentiable
operation. For simplicity, it can be expressed as
a composition of scaling and rounding operations,
Q(W) = ∆

⌊
W
∆

⌋
. In terms of QAT operation Q

can be efficiently approximated with quantization
noise ξ such that ξ = Q(W)−W Défossez et al.
(2021); Shvetsov et al. (2022); Shin et al. (2023).
Thus, training models with QNI is exactly the same
as employing PGD with GNI before evaluating the
gradient.

Under some assumptions the noise ξ induced
by uniform quantization can often be modeled

3For the reader not familiar with uniform quantization, we
discuss it in more details in Section A.

by an additive noise that is uniformly distributed
(Section H), uncorrelated with the input signal,
and has a white spectrum (Widrow et al., 1996).
However in practice, the conditions are often not
satisfied. Therefore employing Gaussian distri-
bution N (µ, σ2) for ξ typically yields improved
outcomes (Défossez et al., 2021; Shvetsov et al.,
2022).

2.5 Straight Through Estimator

The most popular QAT technique incorporating
quantization operation into the training process
is Straight Through Estimation (STE) (Bengio
et al., 2013; Shang et al., 2023), which basically re-
parameterizes gradients. However, Défossez et al.;
Shin et al.’s (2021; 2023) demonstrated that STE
has some disadvantages compared with QNI. More
technical details about STE are provided in Sec-
tion C.

3 Method

GIFT-SW consists of the following steps:

(1) Identify a fixed number of salient columns
using a chosen sensitive metric, based on a
small calibration set. This number remains
consistent across all layers.

(2) Split columns of the matrices into subsets of
salient columns and regular ones.

(3) During training, add noise to the weights in
non-salient columns and update weights only
in the salient columns.

Thus, the method depends on two main design
choices: 1) how to choose salient columns and 2)
the parameters of noise injections. We cover the
choice of metrics in Section 3.1. Noise injection
details are provided in Section 3.2.

GIFT-SW enables efficient inference when com-
bined with mixed-precision quantization, outper-
forming low-rank PEFT methods like LoRA and
DoRA by avoiding additional adapter parameters.
In 4-bit settings, it achieves up to 2.5× speedup
over float16 and matches the efficiency of state-of-
the-art quantization methods.4

3.1 Generalizing parameter sensitivity
metrics

Several approaches have been proposed recently to
identify weights sensitive to quantization (Dettmers

4Efficient implementation is available with CUDA kernels
from QUIK (Ashkboos et al., 2023) and OWQ (Lee et al.,
2024).
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LLaMA2-7b LLaMA2-13b LLaMA3-8b
TÜLU-V2-mix OpenOrca TÜLU-V2-mix OpenOrca TÜLU-V2-mix OpenOrca

FT 71.97 71.88 75.09 75.21 76.13 77.02
LoRA 71.78 70.89 74.03 74.01 75.91 75.63
DoRA 72.03 70.97 73.97 73.96 75.89 75.72

GIFT-SW 73.33 72.33 75.93 76.02 76.37 76.78

Table 1: Mean accuracy of LLaMA models fine-tuned with various instructive datasets and different methods.

Bits Method LLaMA2-7b LLaMA2-13b LLaMA3-8b

4 bit
STE 72.43 75.29 74.84
QUIK + LORA 63.99 71.08 74.27
GIFT-SW 72.53 74.50 75.46

3 bit
STE 69.82 74.37 70.24
QUIK + LORA 62.91 71.30 71.65
GIFT-SW 71.00 74.34 73.27

2 bit
STE 58.20 62.19 48.96
QUIK + LORA 41.44 47.14 53.80
GIFT-SW 61.09 67.61 58.89

Table 2: Mean accuracy of quantized and then fine-tuned models. For fine-tuning we used TÜLU-V2-mix.

et al., 2023) or pruning (Sun et al., 2023). We gen-
eralize them as metrics for sensitivity to perturba-
tions, and by applying these metrics, we determine
which columns are more susceptible to degradation.
Therefore, we avoid adding noise to such columns
and use them to fine-tune the model.

General Sensitivity Metric is written for a col-
umn j of weight matrix W as

sj = ∥Dj∥τ∥Xj∥γρ , (1)

where Dj is a measure of weights perturbation,
sj denotes sensitivity of the column to perturba-
tions, X is the input feature, and γ takes on one
of the following values 1/2, 1, 2. As discussed in
Section 2.4 we could apply GNI as a source of per-
turbations, then we would compute Dj = W:,j+ξ.
However, sampling noise ξ is not deterministic. To
approximate an influence of the noise ξ we utilize
perturbations caused by quantization.5 That would
lead to Dj = W:,j − Q(W:,j), where Q(W:,j)
corresponds to the weights subjected to uniform
symmetric quantization (see Appendix A).

The input feature X for each layer is computed
using a number of random sentences from a cal-
ibration dataset. After that, sensitivity values sj
are estimated for individual columns. Columns

5Optionally, one could use weight pruning as a source of
perturbations or any other.

with the highest values are identified as the salient
columns. Some details about the calibration dataset
is described in Section 4.1.

Special Cases. The metric ∥X∥∞ is employed
in QUIK (Ashkboos et al., 2023) and SmoothQuant
(Xiao et al., 2023). OWQ (Lee et al., 2024) adopts
λj∥Dj∥22, where λj = ∥Xj∥22 is the j-th diagonal
element of the Hessian matrix H for the layer quan-
tization error. It can be seen, that the sensitivity
metric used in OWQ is a modification for column
quantization of the salience measure provided in
OBD (LeCun et al., 1989) for network pruning.
A metric proposed in Wanda (Sun et al., 2023) is
element-wise variant of the metric ∥Dj∥1∥Xj∥2,
which can be easily obtained from Equation 1 with
pruning as a source of perturbations for Dj .

Parameter Choice. In our method we choose
γ = 1, ρ = ∞, τ = ∞. In contrast to Wanda,
we use l∞ norm due to the following observations,
examples contained in a calibration dataset induce
different values of the input feature, a use of l2
norm leads to averaging of the values along input
channels. Therefore, the appearance of the outlier
values in the input activation can be obscured by
a large number of lower values. The same conclu-
sions can be also applied to the weight error. In
the case of the l2 norm, the error for each channel
includes all deviations between the quantized and
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original weights. Therefore, rare considerable er-
rors can be mitigated by a large number of small
deviations. Further ablations are performed in Sec-
tion 6.

3.2 Quantization Noise Injection
To enhance our fine-tuning procedure with QNI,
we avoid perturbing sensitive weights. After identi-
fying sensitive or salient columns, we inject quan-
tization noise only into non-salient columns across
all layers, as shown in Figure 1.

The scale parameters of the Gaussian noise are
determined by the quantization step sizes, which
are computed for each layer prior to the training
process.

For the weight matrix W of a given layer in
the model, the process of noise injection can be
described as follows. During each forward pass
in the training phase, we first sample elements of
noise matrix Ω from standard normal distribution
N (0, 1). Subsequently, the matrix Ω is scaled
with the quantization step size ∆. Finally, we
add scaled noise to weights of non-salient columns
W[:,¬salient]. The operation of the noise injection ℧
is given as

℧(W) =

{
W[:,salient],

W[:,¬salient] +
1
2diag(∆)Ω

, (2)

where diag(∆) is the diagonal matrix with ele-
ments of the vector ∆.

Only weights of the salient columns W[:,salient]
are updated during training, whereas weights of
other columns W[:,¬salient] are frozen. We do not
inject noise to salient weights since small perturba-
tions in them can cause high model degradation.

The quantization step size ∆ is determined only
for weights in non-salient columns W[:,¬salient]. To
closer match the initial distribution of the weights,
quantization scale factors including in ∆ are esti-
mated for each row individually. For i-s row the
scale factor ∆i is computed as:

∆i =
αi

2b−1 − 1
, (3)

where b is the bit-width and αi is the quantization
parameter. As in quantization methods, smaller bit-
width b corresponds to higher quantization noise.
The parameter αi is estimated by optimizing weight
error through linear search as discussed in Ap-
pendix A.

Based on Equations 2 and 3, the variance of
the injected noise is determined by the distribution

of non-salient weights across rows. We exclude
salient columns from this distribution, as the salient
weights may induce large quantization error and
distort row-wise scale factors. This approach helps
us to minimize the noise variance, which, in turn,
leads to a reduction in the deviation of the non-
salient weights during training.

Sampling noise in this manner enables the quan-
tization pre-training discussed in Section 6.4.

4 Experiments

In this section, we describe the experimental pro-
cedure used to test the performance of GIFT-SW
compared to others. Training details could be found
in Appendix D

4.1 Data
Following previous studies (Nikdan et al., 2024;
Hu et al., 2021; Liu et al., 2024), we focus on the
instruction tuning task. For this purpose, we use the
TÜLU-V2-Mix as the main source of data (Ivison
et al., 2023), as it encompasses a wide range of
instructions from different sources. This dataset
has been filtered, contains a substantial amount of
data without being too large, and models tuned to
this set show superior performance. Additionally,
we utilize the OpenOrca dataset (Mukherjee et al.,
2023) to demonstrate that our method does not
depend on a specific set of instructions.

The sensitivity metrics to find salient columns
are estimated based on 512 random sentences from
the Pile validation dataset (Xiao et al., 2023).

4.2 Baselines
We consider several baselines for both full pre-
cision and quantized experiments. All baselines
are applied to LLaMA2-7b, LLaMA2-13b and
LLaMA3-8b.

Full precision version includes the choice of
baselines, following recent studies (Liu et al., 2024;
Nikdan et al., 2024). We employ:

• LoRA is a widely used adapter-based method
(Hu et al., 2021)

• DoRA is modification of LoRA outperform-
ing all current PEFT methods (Liu et al.,
2024)

• FT is full fine-tuning of all parameters

We do not include PEFT methods connected with
prompt tuning, as they show worse performance
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Figure 2: Mean performance of different fine-tuning approaches for LLaMA models with scaling data budget.
GIFT-SW shows superior performance with nearly all data budgets, also being as stable as full fine-tuning.

compared to adapter-based methods (Xu et al.,
2023).

Quantized version is presented by baselines of
only weight quantization at {4, 3, 2} bit-widths:

• STE is quantization-aware fine-tuning of all
parameters of a pre-trained model (Bengio
et al., 2013). During fine-tuning all parame-
ters are trained, but 128 salient columns are
updated in full-precision without quantization.

• QUIK + LoRA is an application of LoRA
to the QUIK quantized model. Only low-
rank adapters are trained, while the quantized
weights and the salient weights are frozen.

QUIK is a mixed-precision quantization method,
that leverages GPTQ for quantization non-salient
columns, while keeping the salient weight in full-
precision (Frantar et al., 2022; Ashkboos et al.,
2023). Due to the techniques, QUIK achieves the
highest performance among PTQ methods, such
as GTPQ (Frantar et al., 2022), AWQ (Lin et al.,
2023), SmoothQuant (Xiao et al., 2023).

4.3 Evaluation and Datasets

We perform a comprehensive evaluation measuring
zero-shot performance on HellaSwag (Zellers et al.,
2019), BoolQ (Clark et al., 2019), WinoGrande
(Sakaguchi et al., 2021), PiQA (Tata and Patel,
2003), ARC-easy, and ARC-challenge (Clark et al.,
2018) using the LM Eval Harness (Gao et al., 2023).
The choice of baselines is similar to those in previ-
ous studies (Egiazarian et al., 2024; Frantar et al.,
2022; van Baalen et al., 2024). We demonstrate
average accuracy across all the datasets, detailed
per-dataset comparison can be found in Section E.

LLaMA2-7b LLaMA2-13b
Performance Compute† Performance Compute†

TÜLU2 73.49 6.7B / 5K 75.51 13B / 5K
TÜLU2-DPO 73.8 6.7B / 5K 75.53 13B / 11K

GIFT-SW 73.33 174M / 500 75.93 272M / 500

Table 3: Comparison of Performance and Compute for
LLaMA2 Models using our fine-tuning method versus
original TÜLU2 models. Note: Compute values are
represented as Trainable Parameters / Iterations.

Furthermore, we assess model performance on
a range of more challenging benchmarks, such as
MMLU (Hendrycks et al., 2021), open-ended gen-
eration tasks in TriviaQA (Joshi et al., 2017), and
the instruction-following evaluation suite IFEval
(Zhou et al., 2023).

4.4 Compute Budget
In all experiments, the number of salient columns
in the models is fixed at 128. Furthermore, we
fix our training budget at 500 training iterations,
unless specified otherwise. According to a recent
study (Komatsuzaki, 2019), it is more effective to
train for one epoch with a larger dataset rather than
multiple epochs with less data. Therefore, all 500
iterations are performed within one epoch with no
instruction repetitions.

5 Results

In this section, we present the results of our com-
putational experiments and answer the questions
posed in Section 1. In short, our results are as
follows:

Q1: The results confirm that fine-tuning a subset of
salient weights produces results comparable
to those obtained using low-rank adapters.
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Method
QA / Reasoning IfEval

TriviaQA MMLU Prompt (A) Inst (A) Prompt (B) Inst (B)

FP 52.50 40.78 18.67 31.89 21.26 34.41
full FT 54.61 42.54 19.41 32.01 20.70 33.21
GIFT-SW 53.41 44.20 21.63 34.17 23.84 36.45
LoRA 53.53 41.48 14.42 22.42 16.27 24.22
DoRA 51.88 41.54 7.02 7.43 7.58 7.79

QUIK 4bit – – 19.78 33.09 21.07 34.41
GIFT-SW 4bit – – 21.26 33.69 22.74 35.61

Table 4: Performance of LLaMA2-7b models after fine-
tuning (full and PEFT) and 4-bit quantized fine-tuning
on a subset of TÜLU-V2-mix. Columns show exact
match on TriviaQA, average accuracy on MMLU, and
IfEval prompt-/instance-level metrics on two evaluation
variants (A, B).

Q2: Noise injections lead to improved model per-
formance.

Q3: We could not confirm that models fine-tuned
with noise injections are more robust to further
quantization.

5.1 Full Precision
The average performance across closed-form com-
mon sense reasoning evaluation benchmarks for
full precision models is presented in Table 1. GIFT-
SW generally shows superior metrics across most
models and instruction sets. However, we ob-
serve slight underperformance in LLaMA3 on the
OpenOrca subset, where full training proves supe-
rior. This issue likely stems from the choice of
learning rate and schedule, which can impact the
tuning of outliers.

Table 4 reports the exact match score for Trivi-
aQA and mean accuracy for MMLU. While GIFT-
SW achieves performance comparable to LoRA
on TriviaQA, it significantly outperforms both full
fine-tuning and other PEFT methods on MMLU.
Moreover, GIFT-SW improves effectiveness on the
insturiction-following tasks.

Notably, during training of LLaMA-2-7B using a
4-GPU data parallel setup, GIFT-SW demonstrates
greater memory efficiency than LoRA, requiring
only 148GB of total GPU memory compared to
LoRA’s 156GB. This 8GB reduction is attributed to
the selective fine-tuning mechanism of GIFT-SW,
which improves efficiency without introducing ad-
ditional parameters.

5.2 Quantized Models
Table 2 presents the average performance of
LLaMA family models quantized at different pre-
cisions: 4, 3, and 2 bits. For 4 and 3 bits GIFT-
SW achieves comparable quality with STE, how-

ever, latter one requires significantly more compute.
In the 2-bit setting, GIFT-SW shows a substantial
quality improvement, surpassing the second-ranked
model by over 5 points.

In addition, Table 4 demonstrate that GIFT-SW
can enhance the quality of the LLaMA2-7B model
after 4-bit quantization on more challenging bench-
marks, including MMLU, the open-ended Trivi-
aQA benchmark, and instruction-following tasks.

To demonstrate the efficiency of our method for
other model architectures, we also conduct exper-
iments with Falcon-7b (Almazrouei et al., 2023)
and GLM (Du et al., 2022) quantized into 3 bits.
Table 6 demonstrates that GIFT-SW effectively re-
stores quality of the models after quantization.

5.3 Comparison with TÜLU2

We compare GIFT-SW with TÜLU2 models (Ivi-
son et al., 2023), which are LLaMA2 models
full fine-tuned using instructions TÜLU-V2-Mix,
and then aligned with DPO (Rafailov et al.,
2023). These models are among the top-performing
LLaMA2 modifications, but demand significant
computational resources.

In Table 3, we show that by applying GIFT-SW
with significantly lower computational budget (a
smaller number of parameters and iterations) we
achieve comparable results for LLaMA2-7b and
outperform TÜLU2 for 13b.

5.4 Data Scaling Properties

We perform experiments to explore the perfor-
mance of GIFT-SW and baselines with scaling
data using LLaMA2 and LLaMA3 models. The
results reported in Figure 2 show that while LoRA
and DoRA exhibit unstable performance with scal-
ing data, our method and full fine-tuning are more
stable. Moreover, GIFT-SW method consistently
ranks first across nearly all data budgets.

6 Ablation

6.1 Comparison sensitivity metrics

We study sensitivity metrics with respect to differ-
ent noise levels (various perturbation magnitudes),
which translate into varying quantization preci-
sion. In this experiment, the non-salient weights
of LLaMA2 and TÜLU2 with 7B and 13B parame-
ters. Models are quantized with QUIK, the salient
weights are not updated. We select 128 columns of
salient weights.
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Bits Model ∥Dj∥22∥Xj∥22 ∥Dj∥∞∥Xj∥∞ ∥Xj∥∞ ∥Dj∥∞∥Xj∥1/2∞ ∥Dj∥∞∥Xj∥2∞

4 bit

LLaMA2-7b 69.86 69.85 69.68 69.55 69.52
TÜLU2-7b 72.94 73.17 72.77 72.22 72.78
LLaMA2-13b 72.92 72.99 72.83 72.83 72.56
TÜLU2-13b 75.12 74.86 75.19 75.47 75.17

3 bit

LLaMA2-7b 67.50 68.31 67.47 68.09 67.86
TÜLU2-7b 70.91 71.30 70.85 71.14 70.88
LLaMA2-13b 71.92 71.59 72.10 71.77 71.45
TÜLU2-13b 74.33 74.07 74.07 74.09 74.31

2 bit

LLaMA2-7b 45.86 46.78 45.99 46.81 46.83
TÜLU2-7b 54.84 46.85 46.78 48.56 48.20
LLaMA2-13b 57.07 57.36 51.83 57.30 56.73
TÜLU2-13b 59.62 59.62 59.43 60.67 59.39

Table 5: Performance of LLaMA2 and TÜLU2 models after QUIK quantization with salient columns selected via
various metrics. Weight perturbation is given by Dj = W:,j −Q(W:,j).

Model Method BoolQ HellaSwag Winogrande Average

Falcon-7b
FP 73.6 76.4 70.7 73.5

QUIK 3 bit 65.5 73.4 67.4 68.7
GIFT-SW 3 bit 77.3 77.5 70.2 75.0

GLM-10b
FP 37.8 37.6 52.5 42.6

QUIK 3 bit 37.8 36.0 53.1 42.3
GIFT-SW 3 bit 37.8 39.4 51.7 43.0

Table 6: Performance of Falcon-7b and GLM after
QUIK quantization and fine-tuning with GIFT-SW us-
ing the TÜLU-V2-mix subset.

Method 4 bit 3 bit 2 bit
Salient FT 72.82 71.06 59.82
Pre-GIFT-SW 73.15 70.24 47.08
Post-GIFT-SW 72.53 71.00 61.09

Table 7: Mean performance for quantized models with
or without applying GIFT-SW before or after quantiza-
tion, results are demonstrated for LLaMA2-7b model.

Mean results for zero-shot tasks in Table 5 show
that for most precisions, the best performance is
achieved with salient columns identified by Equa-
tion 1 with γ = 1, ρ = ∞, τ = ∞ (second col-
umn). Columns identified by the squared l2 norm
of the input feature (the OWQ metric) show better
performance only for TÜLU2 quantized to 3 and 2
bits. Choosing salient columns solely by the input
features (the QUIK metric) leads to underperfor-
mance, especially for 2 bit. Therefore, identifying
salient columns sensitive to quantization noise re-
quires considering both the weight quantization
error and the maximum values of input activation.

Based on the results, we chose the best-
performing sensitivity metric with γ = 1, ρ =
∞, τ = ∞. However, the results do not reveal

a clear rule for selecting the optimal sensitivity
metric, as performance varies across different bit-
widths and models with no discernible pattern. Fur-
ther mathematical exploration of optimal sensitivity
metric is presented in Appendix G.

6.2 Noise Injection Impact

To ablate the importance of QNI in the full-
precision setting, we measure the mean perfor-
mance of LLaMA2 models with and without noise
injections for both salient columns fine-tuning and
full fine-tuning. In the latter case, the noise is ap-
plied to the entire weight matrix.

The results in Table 9 show that QNI consis-
tently enhances the performance of outlier fine-
tuning. Although QNI can reduce performance
when applied to the entire network, it still benefits
LLaMA3-8b. Notably, outlier fine-tuning outper-
forms full fine-tuning, but only when QNI is used.

6.3 Noise Type Impact

Table 8 presents the results of experiments involv-
ing Gaussian and uniform noise injections during
the fine-tuning of salient weights in Llama2-7b on
the TULU-V2 mix instructive dataset. The results
indicate that GIFT-SW slightly outperforms fine-
tuning with uniform noise injection. Consequently,
we adopt Gaussian noise injection for fine-tuning.

6.4 Quantization Before and After Training

From studies related to QAT, it is known that pre-
training a model with noise injection enables to
improve its predictive capabilities after quantiza-
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Model Orig GIFT-SW Uniform Noise
LLaMA2-7b 70.50 73.33 73.11

Table 8: Performance of LLaMA 2-7B after fine-tuning
salient weights with Gaussian or uniform noise injec-
tions.

Model
Salient Weights FT Full FT

w/ Noise w/o Noise w/ Noise w/o Noise

LLaMA2-7b 73.33 73.16 71.64 71.97
LLaMA2-13b 75.93 74.80 74.58 75.09
LLaMA3-8b 76.37 75.45 76.32 76.13

Table 9: Mean Performance of LLaMA models with and
without Noise Injection for salient weights fine-tuning
and full model fine-tuning

tion (Défossez et al., 2021; Shvetsov et al., 2022).
Based on those observations, in this section we ex-
amine the performance of the quantized LLaMA2-
7b after fine-tuning full precision salient columns
in several settings:

• Pre-GIFT-SW. Applying GIFT-SW prior to
the quantization.

• Post-GIFT-SW. Applying GIFT-SW after the
quantization.

• Salient FT. Fine-tuning salient columns after
quantization with no noise injected

In the case of the pre-training, the bit-width for
the model quantization corresponds to the noise
level injected during the training. For the post-
training, the noise injection is always performed at
4 bit.

Table 7 presents the average scores achieved by
the models across evaluation benchmark. In the
case of 4 bit quantization the Pre-GIFT-SW model
considerable outperforms other models. But in the
case of 3 and 2 bits, fine-tuning salient columns af-
ter quantization enables to achieve quantized mod-
els better generative capabilities.

The cause is the significant deviation of the quan-
tized weights from original values induced by the
extremely low-bit quantization. As a result, the
interrelations between the salient weights and the
quantized weights are disrupted, and the positive
effect of pre-training disappears. However, post-
training of the salient weight enables to form them
new relations with other weights, so the model par-
tially recovers its generative capabilities.

Also it can be observed that application of Post-
GIFT-SW and Salient FT to model quantized in
3 bit gives the similar scores. But in the case of 2

bit quantization, the noise injection improves the
fine-tuning of the quantized model.

7 Conclusion

In this paper, we introduce GIFT-SW, a parameter-
efficient fine-tuning method that trains only weights
in a small subset of salient columns while injecting
quantization noise into the frozen weights. GIFT-
SW proves to be superior to previous fine-tuning
strategies in both full precision and quantized set-
tings, requiring less compute budget. In data scal-
ing experiments, GIFT-SW demonstrates greater
stability than previous PEFT methods and outper-
forms both PEFT and full fine-tuning across nearly
all data budgets. Our ablation studies show that
QNI is beneficial but only with salient weights. Al-
though GIFT-SW outperforms previous methods,
further research is needed to determine how to max-
imize its performance in quantized settings.

We generalize the criterion for selecting salient
columns from previous studies and empirically
compare various parameters. Our experiments
show that while some criteria perform better than
others, none emerge as a clear dominant choice.
This significant finding underscores the need for
further research to refine these criteria.
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9 Limitations

We find the main limitations of our work as follows:

1. We report results of GIFT-SW exclusively for
LLaMA models. Currently, numerous open-
source pre-trained LLMs with high generative
capabilities are available. However, LLaMA
models are the most commonly chosen for
studying the efficiency of modern PEFT and
quantization methods. Despite the architec-
tural similarities among most LLMs, future
experiments with different models are neces-
sary.

2. For quantizing models, we use only the GPTQ
method, which is widely used for mixed-
precision quantization of LLMs. This method
improves the performance of quantized mod-
els by aggregating quantization error into
columns stored in full precision. However,
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GIFT-SW can be easily integrated with other
methods, such as conventional RTN or Quan-
tEase.

3. Experiments with GIFT-SW report results for
salient columns selected using the sensitivity
metric (1) with γ = 1, ρ = ∞, τ = ∞. Our
proposed metric, based on our analysis, shows
high sensitivity of the salient columns to quan-
tization in most LLaMA2 cases. However,
other sensitivity metrics may yield better per-
formance for GIFT-SW and mixed-precision
quantization in different LLMs.

4. Noise parameters for fine-tuning the salient
weights are determined using the QNI ap-
proach. However, other noise distributions
may also enhance the fine-tuning process.
Identifying the optimal noise distribution is
beyond the scope of this paper.

5. In this study, we focus on developing the
GIFT-SW algorithm for effective fine-tuning
of LLMs, but we do not provide computation-
ally efficient implementations of CUDA ker-
nels for the algorithm. In the future, CUDA
kernels for GIFT-SW can be developed based
on the code from QUIK (Ashkboos et al.,
2023) and OWQ (Lee et al., 2024).

6. We train GIFT-SW with only a few fine-
tuning instruction sets, selected for their size
and high benchmark results in previous stud-
ies. However, expanding the number of fine-
tuning sets could make the experiments more
comprehensive.

7. We evaluate our method using six distinct
benchmarks inherited from various previous
studies. In future research, it would be ben-
eficial to include more benchmarks to gain
additional insights.

10 Ethical Statement

The GIFT-SW method poses risks similar to those
of any PEFT method. For example, it omits ex-
plicit safety training measures, so could be applied
to fine-tune LLMs for generating harmful content.
Also it can be applied to tailor LLMs to tailor
highly specific and potentially dangerous outputs.
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Figure 3: Uniform quantization step function with real valued one dimensional w and integer valued Q(w).

A Uniform quantization

While non-uniform quantization may lead to higher compression rates, in our work we focus on uniform
quantization since it widely used in efficient PTQ methods such as GPTQ, QUIK, OWQ (Frantar et al.,
2022; Ashkboos et al., 2023; Lee et al., 2024). Quantization is a mapping that converts a range of
full-precision values into a discrete range of values allowing usage of integer arithmetic and reduced
memory consumption. For example, Fig. 3 depicts a mapping with the quantization scale size ∆ = 1

4 of
float values from the interval (0, 1) into integer values.

In our work we apply uniform symmetric quantization with the row-wise quantization step size ∆.
In this case, computations of quantization, dequantization and estimation of ∆ are performed for the
bit-width b as below

qmin = −2b−1, qmax = 2b−1 − 1 (4)

clamp(x; qmin, qmax) = max(qmin,min(x, qmax)) (5)

∆ = (∆1, . . . ,∆n)
T, ∆i =

αi

qmax
(6)

Wint
i,: = clamp

(⌊
Wi,:

∆i

⌋
; qmin, qmax

)
(7)

W ≈ Q(W) = diag(∆)Wint (8)

where ∆i is the scale factor for i row Wi,:, Wint denotes the matrix of the quantized weights, diag(∆)
is the diagonal matrix with elements of the vector ∆. For the given bit-width b, the parameter αi is found
for each row by performing linear grid search over the interval [0,max(Wi,:)], where max(Wi,:) is the
maximum element of i row . The search is conducted to minimize layer-wise mean squared error between
weights:

argmin∆∥W −Q(W)∥22, (9)

B Details of LLMs quantization

For only weight quantization of LLaMA and TÜLU2 models models, we apply QUIK implementation
of mixed-precision GPTQ method (Ashkboos et al., 2023; Frantar et al., 2022). We isolate 128 salient
columns in full-precision. Non-salient columns are subjected to uniform symmetric quantization, as
discussed in Appendix A. The salient columns are identified through sensitive metrics described in Section
3.1. The Hessian matrix for the GPTQ method is computed on 128 random samples of the Wikitext-2
dataset.
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C Straight Through Estimator

STE can be described in two steps:

• Obtain quantized weights Q(W) from the real-valued parameters W with some quantization function
Q, which is usually is non differentiable.

• Compute gradients at quantized weights Q(W) and update real valued weights Wt+1 ←Wt −
τ∇f(Q(W))

STE makes a particular choice of a quantization function to obtain the discrete weights from the real-
valued weights. This approximation can be justified in some settings (Lin et al., 2017) but in general the
reasons behind its effectiveness are unknown.

D Training Details

The training was performed with 4 GPUs (40 GB each) for 500 iterations. The batch size is 128 for 7b
models and 64 for 13b models. For baseline methods, the learning rate was set to 3× 10−5 for LLaMA2
models and to 1 × 10−5 for the LLaMA3 model. We experimented with different learning rates and
found these to be the most beneficial for baseline methods. We used a cosine annealing scheduler with
the warmup ratio of 0.03. The LoRA and DoRA alpha and dropout values were as specified in the
original papers, and the rank was set to 64 to match the number of trainable parameters in our method.
Thus, the number of trainable parameters is 160M for LLaMA2-7b, 250M for LLaMA2-13b, 167M for
LLaMA3-8b.

For our method, the learning rate was set to 1× 10−4 for salient columns of LLaMA2 models and to
1× 10−5 of the LLaMA3 model. We fixed the number of salient columns at 128, such that the number of
trainable parameters is 174M for LLaMA2-7b, 272M for LLaMA2-13b, and 176M for LLaMA3-8b.

In the case of full fune-tuning with the noise injection, the learning rate was set to 3 × 10−5 and
1× 10−5 for LLaMA2 & 3 models, correspondingly.

E Detailed Benchmark Results

In this section we report detailed benchmark results for LLaMA 2 & 3 after training with different methods.
Tables 10, 11 present accuracy metrics which are achieved by the full-precision models after fine-tuning
on the TÜLU-V2-mix and OpenOrca subsets. Corresponding mean values are listed in Table 1. Tables
present accuracy metrics which are achieved by quantized in 4, 3, 2 bits models after fine-tuning on the
TÜLU-V2-mix subset. Corresponding mean values are listed in Table 2.

Model Method BoolQ HellaSwag WinoGrande ARC-e ARC-c PiQA

LLaMA2-7b

FP 78.65 76.91 69.93 77.99 48.63 79.71
LoRA 80.28 76.67 69.85 76.64 47.95 79.27
DoRA 81.93 76.27 70.09 76.05 48.89 78.94

GIFT-SW 82.63 76.68 70.80 80.01 49.91 79.92

LLaMA2-13b

FP 83.27 79.77 72.69 80.43 53.67 80.69
LoRA 81.10 79.57 72.77 78.91 51.28 80.52
DoRA 81.01 79.64 72.22 78.87 51.54 80.52

GIFT-SW 84.22 80.18 73.24 82.20 55.38 80.36

LLaMA3-8b

FP 83.64 79.56 74.35 82.41 55.72 81.12
LoRA 83.30 79.62 75.14 80.15 56.06 81.18
DoRA 83.61 79.53 75.45 80.09 55.63 81.01

GIFT-SW 83.88 80.02 75.22 80.56 57.00 81.56

Table 10: LLaMA models performance fine-tuned with TÜLU-V2-mix subset
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Model Method BoolQ HellaSwag WinoGrande ARC-e ARC-c PiQA

LLaMA2-7b

FT 80.03 77.02 69.69 76.64 48.72 79.16
LoRA 78.81 76.24 68.82 75.42 46.59 79.43
DoRA 78.78 76.30 68.92 75.67 46.93 79.22

Our Best 82.51 76.64 72.22 74.71 48.89 79.00

LLaMA2-13b

FT 82.66 80.30 73.01 79.97 54.78 80.52
LoRA 81.68 79.64 72.85 78.41 51.11 80.36
DoRA 81.65 79.64 72.93 78.28 51.19 80.09

Our Best 85.44 80.07 74.03 79.97 56.48 80.14

LLaMA3-8b

FT 84.37 80.11 75.93 81.82 57.85 82.05
LoRA 82.84 79.76 74.19 80.30 55.54 81.12
DoRA 82.63 79.71 75.22 80.30 55.46 81.01

Our Best 84.34 80.10 75.53 81.06 57.76 81.88

Table 11: LLaMA models performance fine-tuned with OpenOrca

LLaMA Method
Benchmarks

BoolQ HellaSwag WinoGrande ARC-e ARC-c PiQA

2-7b
4bit

STE 80.21 76.27 70.01 79.63 48.55 79.92
QUIK + LORA 68.96 74.85 69.85 55.30 37.20 77.80
GIFT-SW 82.78 76.14 70.48 79.76 50.00 79.71

2-13b
4bit

STE 84.77 79.16 72.69 80.76 53.67 80.69
QUIK + LORA 74.89 78.01 72.22 71.76 50.17 79.43
GIFT-SW 84.65 79.59 73.01 78.37 53.50 80.52

3-8b
4bit

STE 81.59 78.55 73.88 79.76 54.27 81.01
QUIK + LORA 82.51 77.73 74.66 79.04 51.62 80.03
GIFT-SW 83.15 79.05 74.09 80.01 55.20 81.28

2-7b
3bit

STE 76.79 74.19 68.19 75.04 45.65 79.05
QUIK + LORA 63.88 72.00 66.93 61.24 38.74 74.64
GIFT-SW 80.46 74.20 68.90 75.88 47.35 79.22

2-13b
3bit

STE 83.33 78.02 71.59 79.92 53.24 80.09
QUIK + LORA 82.02 76.64 70.95 71.51 48.21 78.45
GIFT-SW 85.44 78.20 71.90 79.12 51.54 79.82

3-8b
3bit

STE 75.87 74.38 69.14 74.41 49.32 78.29
QUIK + LORA 78.72 74.54 70.72 77.31 50.60 78.02
GIFT-SW 80.31 75.98 71.51 79.63 52.99 79.22

2-7b
2bit

STE 68.47 58.90 60.62 57.66 32.17 71.38
QUIK + LORA 62.11 26.77 49.88 29.67 26.45 53.75
GIFT-SW 71.90 64.18 62.59 61.57 34.90 71.38

2-13b
2bit

STE 73.09 63.74 61.40 64.14 36.09 74.70
QUIK + LORA 59.36 41.34 55.41 40.28 27.82 58.60
GIFT-SW 81.99 69.49 65.43 70.33 43.17 75.24

3-8b
2bit

STE 60.46 43.82 54.46 44.23 27.65 63.16
QUIK + LORA 64.68 48.55 58.25 53.32 32.17 65.83
GIFT-SW 74.13 48.92 58.88 63.17 37.88 70.35

Table 12: Performance of quantized LLaMA models fine-tuned with TÜLU-V2-mix subset
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Figure 4: Number of examples in datasets included in TÜLU-V2-mix subset

F TÜLU-V2-mix subset

Figure 4 shows number of examples in datasets included in the TÜLU-V2-mix subset, which is used for
fine-tuning experiments presented in this paper.

G Discussion about sensitivity metric optimality

We consider the sensitivity metric for a column j of the weight matrix W, defined as:

sj = ∥Dj∥τ ∥Xj∥γρ , (10)

where:

• Dj is the perturbation in the weights corresponding to column j,

• Xj is the input feature vector,

• ∥ · ∥τ and ∥ · ∥ρ are vector norms,

• γ is an exponent parameter.

Empirical evaluations indicate that the parameter combination γ = 1, τ = ∞, and ρ = ∞ yields
superior performance. We aim to provide a rigorous mathematical justification for this observation by
analyzing the formula using Hölder’s inequality and ensuring all constants are appropriately considered.

G.1 Impact of Weight Perturbations on Model Output

Consider a linear model where the output y is given by:

y = W⊤X. (11)

A perturbation δW in the weights leads to a change in the output:

δy = (δW)⊤X. (12)
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For column j, the change in the output due to perturbation Dj is:

δyj = D⊤
j X. (13)

Our goal is to bound |δyj | in terms of norms of Dj and X.
First, we will apply Hölder’s inequality.
Hölder’s inequality states that for vectors a,b ∈ Rn and conjugate exponents p, q (i.e., 1

p + 1
q = 1):

|a⊤b| ≤ ∥a∥p ∥b∥q. (14)

We can use this inequality to bound |δyj |:

|δyj | = |D⊤
j X| ≤ ∥Dj∥p ∥X∥q, (15)

where p and q are conjugate exponents.

G.2 Worst Case Bound
To capture the worst-case (maximum) impact of perturbations, we aim to maximize the bound on |δyj |.
This involves selecting norms that emphasize the largest components of Dj and X.

G.2.1 Choosing p =∞ and q = 1:
• 1

∞ + 1
1 = 1.

• The ℓ∞-norm ∥Dj∥∞ captures the maximum absolute value in Dj .

• The ℓ1-norm ∥X∥1 sums the absolute values of X.

Using these norms:
|δyj | ≤ ∥Dj∥∞ ∥X∥1. (16)

G.2.2 Choosing p = 1 and q =∞:
• 1

1 + 1
∞ = 1.

• The ℓ1-norm ∥Dj∥1 sums the absolute values of Dj .

• The ℓ∞-norm ∥X∥∞ considers the maximum absolute value in X.

Using these norms:
|δyj | ≤ ∥Dj∥1 ∥X∥∞. (17)

From Equations (16) and (17), we observe that the bounds involve products of norms:

• ∥Dj∥∞ ∥X∥1,

• ∥Dj∥1 ∥X∥∞.

However, to capture the absolute maximum effect (i.e., when both |δWij | and |Xi| are simultaneously
large), the combination τ =∞ and ρ =∞ is most appropriate:

sj = ∥Dj∥∞ ∥Xj∥γ∞. (18)

G.3 Optimal Scaling Choice
In our formulation, we consider only three types of exponent scaling: linear γ = 1, sublinear γ = 1

2 and
superlinear γ = 2.

The choice of linear as optimal may be motivated as it ensures the sensitivity metric scales proportionally
with ∥Xj∥∞.

Sublinear is suboptimal as it reduces the influence of large input features and may underestimate
sensitivity when large features are significant. And superlinear is suboptimal as it exaggerates the effect
of large input features and may overestimate sensitivity, leading to overly conservative decisions.
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H Relation between noise injection and quantization

Let us consider x a random variable and a quantization step ∆. Then quantization error is defined as e =
Q(x)− x, where Q(x) = ∆

⌊
x
∆

⌋
, ⌊·⌋ is the rounding operation. It can be written as e = ∆

(⌊
x
∆

⌋
− x

∆

)
.

Thus, the quantization error e can take any value within the interval: e ∈ [−∆/2,∆/2].
In the literature on signal processing, it is common to make the assumption that x follows a uniform

distribution with zero-mean, Q(x) and e are independent random variables (Défossez et al., 2021). In that
case, Q(x) follows a uniform distribution (Sheppard, 1897). Consequently, E[e] = 0 and Var[e] = ∆2/12.
This corresponds with results in the analysis of Vardeman (2005) for approximate relationships between x
and Q(x).

In reality, pretrained neural network weights usually have a zero-centered normal distribution (Widrow,
1956). Therefore, it is reasonable to assume that x follows a normal distribution with zero-mean. Then
Q(x) follows a normal distribution, that implies e follows a normal distribution with E[e] = 0. Also, it
can be shown that Var[e] = ∆2/C, where C =

√
6 (Widrow and Kollár, 2008).

Based on the derivation, we can write quantization operation as Q(x) = x+ e, where e is a random
variable with a normal distribution and Var[e] = ∆2/C. In our work, we used Gaussian noise with σ = ∆,
because we did not notice any difference. Moreover, it has been shown empirically that approximating
quantization noise for quantization-aware training with a normal distribution with σ = ∆ yields acceptable
results, and is more preferable than using uniform noise (Défossez et al., 2021; Shvetsov et al., 2022).
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