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Abstract

Chain-of-Thought significantly enhances a
model’s reasoning capability, but it also comes
with a considerable increase in inference costs
due to long chains. With the observation that
the reasoning path can be easily compressed
under easy tasks but struggles on hard tasks,
we explore the feasibility of elastically con-
trolling the length of reasoning paths with only
one model, thereby reducing the inference over-
head of reasoning models dynamically based
on task difficulty. We introduce a new tun-
ing and inference strategy named CoT-Valve,
designed to allow models to generate reason-
ing chains of varying lengths. To achieve this,
we propose to identify a direction in the pa-
rameter space that, when manipulated, can ef-
fectively control the length of generated CoT.
Moreover, we show that this property is valu-
able for compressing the reasoning chain. We
construct datasets with chains from long to
short for the same questions and explore two en-
hanced strategies for CoT-Valve: (1) a precise
length-compressible CoT tuning method, and
(2) a progressive chain length compression ap-
proach. Our experiments show that CoT-Valve
successfully enables controllability and com-
pressibility of the chain and shows better per-
formance than the prompt-based control. We
applied this method to QwQ-32B-Preview, re-
ducing reasoning chains on GSM8K from 741
to 225 tokens with a minor performance drop
(95.07% to 94.92%) and on AIME from 6827
to 4629 tokens, with only one additional incor-
rect answer.

1 Introduction

Chain-of-Thought (CoT) reasoning (Wei et al.,
2022) has emerged as a powerful technique for
enhancing the reasoning capabilities of large lan-
guage models (Jaech et al., 2024; Dubey et al.,
2024; Abdin et al., 2024), particularly in complex
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tasks such as mathematics and coding (Sprague
et al., 2024) that require multi-step inference. By
simulating the process of human-like thought pro-
gression, CoT enables models to break down com-
plex problems into sub-questions, improving accu-
racy and interpretability (Joshi et al., 2023). Those
reasoning abilities have also been tested in differ-
ent domains, such as image generation (Ma et al.,
2025) and visual understanding (Shao et al., 2024).

Training reasoning models often involves gen-
erating extensive reasoning paths through meth-
ods such as sampling (Wang et al., 2023), tree
search (Yao et al., 2023; Guan et al., 2025; Zhang
et al., 2024) or reinforcement learning (DeepSeek-
AI, 2025) to reach the correct answer ultimately.
However, these long chains often incorporate re-
dundant intermediate steps that can be unneces-
sary or too complex (Lightman et al., 2024), and
the redundancy in the reasoning paths for train-
ing leads to inefficiencies in token usage and in-
creased inference costs. However, crafting an opti-
mal reasoning chain that omits extraneous details
is challenging due to the limited availability of
intermediate rewards to guide the process and hu-
man annotations (Zhang et al., 2025a). Removing
some or all of the intermediate steps and then train-
ing or distilling the model (Liu et al., 2024b; Yu
et al., 2024) will degrade the performance. Al-
ternative approaches employ information-theoretic
measures (Ton et al., 2024) or identify an "over-
thinking" solution in QwQ (Team, 2024b) to eval-
uate the contribution of each sentence to the final
answer.

We observe that current reasoning models,
such as QwQ (Team, 2024b) and DeepSeek-
R1 (DeepSeek-AI, 2025) allocate an excessive
number of tokens to simple tasks, while poten-
tially providing insufficient tokens for complex
tasks. Thus, a long reasoning path is still essential,
while maintaining the ability to compress reason-
ing paths for simpler questions is equally important.
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So John starts with €100. He buys a roast that costs €17 and some vegetables for
€11. I need to find out how much money he has left after these purchases. First, I
should figure out the total amount he spent <Omitted> Let me add those up: 17
plus 11 is 28. So, he spent a total of €28. Now, to find out how much money he
has left, I need <Omitted>So, final answer: John has €72 left.

Question:
John goes to the
market with €100.
He buys a roast for
€17 and vegetables
for €11. How much
money does he have
left?

1. John starts with €100. 2. He buys a roast for €17: €100 - €17 = €83 remaining
3. Then he buys vegetables for €11:\n €83 - €11 = €72 remaining So, after his
purchases, John has €72 left.

John starts with €100. He makes two purchases: a roast for €17 and vegetables for
€11. To find out how much money he has left, we need to subtract the total
amount he spent from his initial amount. First, <Omitted>Yes, that seems correct.
John has €72 remaining.

Medium CoT

Short CoT #Token: 85

#Token: 232

#Token: 449Long CoT (QwQ-32B-Preview)

So John goes to the market with €100. That‘s his starting amount. Then he buys 
a roast for €17 and vegetables for €11. I need to find out how much money he 
has left after these purchases. Alright, first, I should figure out the total amount 
he spent. He bought a roast for €17 and vegetables for €11. So, the total 
expenditure is €17 plus €11. Let’s add those up. 17 plus 11 is 28. So, he spent a 
total of €28. Now, he started with €100, and he spent €28. <Omitted>Yes, that 
seems straightforward. I don’t think there‘s any trick here or additional steps I 
need to consider. So, the final answer is €72.

#Token: 833Extrapolation to Unseen LengthCoT Valve

Long Short

Figure 1: The reasoning model, after the length-compressible CoT tuning, can generate reasoning paths from long
to short, leveraging LoRA as a ‘Valve’. We show one example from our constructed dataset MixChain.

To solve this, our goal is to fine-tune a model ca-
pable of generating both long and short reasoning
paths, rather than being restricted to a compressed
form. We offer a new way to control the length of
CoT, which we refer to as Length-Compressible
Chain-of-Thought Tuning.

A central component of the proposed method
is to identify an update direction in the parame-
ter space, which, by manipulating it, acts as in-
creasing or decreasing the length of CoT. Taking
a large step in this direction leads the model to
generate a short sequence, while a small step still
produces a long and complex reasoning trajectory.
We choose to incorporate this update direction by
LoRA (Hu et al., 2022), enabling it to function
as an additional branch that facilitates easy mod-
ulation of intensity while imposing minimal extra
parameters on the model. We explore methods
to identify this direction and demonstrate that it
offers superior controllability compared to prompt-
based approaches, which enables the generation of
short CoT that prompt-based methods are unable to
achieve. Besides, we observe that the direction can
be extrapolated, allowing the reasoning chains to
be extended beyond or shortened to lengths unseen
in the training set. Leveraging this compressibil-
ity, we construct a dataset that pairs long and short
reasoning chains for each question. This dataset is
then utilized in two ways: (1) to refine the direction
for more precise tuning, and (2) to compress the
reasoning path progressively.

We evaluate our method across different types
of models, ranging from a pre-trained LLM
with little reasoning ability, LLaMA-3.1-8B and
LLaMA-3.2-1.5B-Instruct (Dubey et al., 2024),
to post-trained reasoning models, QwQ-32B-
Preview (Team, 2024b), and distilled reasoning
models, DeepSeek-R1 (DeepSeek-AI, 2025). Our
results demonstrate that, with training for one time,
our approach enables a model to generate reasoning

paths of varying lengths, and we can achieve better
results than previous chain compression baselines.
Besides, our study highlights several interesting
findings: (1) Short reasoning paths can sometimes
outperform longer ones, underscoring the signifi-
cance of CoT-Valve in enhancing model efficiency.
(2) Not every reasoning chain, despite all leading
to the correct final answer, is conducive to model
optimization. Excessively long or short chains com-
plicate the distillation of CoT, posing challenges to
the model training.

In summary, our contributions are: (1) CoT-
Valve: Enables elastic control of length for CoT
within the parameter space, allowing a single model
to generate CoT from short to long. (2) MixChain
Dataset: A dataset with reasoning paths of varying
lengths for each question. (3) Improved Tuning &
Progressive Compression: Refines the direction-
tuning process based on MixChain and introduces
progressive compression for inference efficiency.
(4) Performance & Controllability: Achieves
controllable reasoning generation and state-of-the-
art results for compressed CoT.

2 Related Work

Chain-of-Thought. Chain-of-thought (Wei et al.,
2022) reasoning has shown promising progress in
recent years, especially the success of OpenAi-
O1 (Jaech et al., 2024) and Deepseek-R1 mod-
els (DeepSeek-AI, 2025). This introduces the test-
time scaling law, apart from the traditional scaling
law for training (Hoffmann et al., 2022). Several
approaches have been proposed to boost the lan-
guage model to have better problem-solving abil-
ities, including the model has its self-reasoning
abilities (Team, 2024b) or use Best-of-N (Nakano
et al., 2021), beam search and Monte Carlo Tree
Search (Kocsis and Szepesvari, 2006; Guan et al.,
2025) to search and refine the solution without fur-
ther finetune the large language models. The out-
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come reward model and process reward models are
also introduced to evaluate the score for the entire
solution, especially the final answer (Cobbe et al.,
2021a) and the quality of the reasoning path (Wang
et al., 2024; Luo et al., 2024)

Chain Compression in reasoning model. Due
to the high computational cost associated with in-
ference in reasoning models, particularly for long-
chain reasoning, chain compression has become a
critical area of research. (Yu et al., 2024) attempts
to distill the chain-of-thought into System 1 but
fails to observe improvements when intermediate
steps are omitted. (Jin et al., 2024) conducts a com-
prehensive empirical study between length and per-
formance. (Deng et al., 2023) proposes internaliz-
ing reasoning steps within the hidden states of mod-
els, while several implicit-based approaches(Deng
et al., 2024; Hao et al., 2024; Cheng and Durme,
2024) aim to compress token-wise generation by
transitioning from language space to hidden space.
Other studies focus on skipping intermediate rea-
soning steps (Liu et al., 2024b) or using summa-
rization techniques to generate shorter reasoning
chains (Kang et al., 2024). Additionally, (Chen
et al., 2024) addresses the overthinking issue in
QwQ (Team, 2024b) and employs SimPO (Meng
et al., 2024) for optimization. Kimi K1.5 (Team
et al., 2025) proposes merging long-CoT models
with short-CoT models in a training-free manner.
O1-Pruner (Luo et al., 2025) adopts reinforcement
learning to shorten responses.

3 Method

In this section, we provide an in-depth discussion
of our method. Section 3.1 introduces a simple
yet effective approach that enables a single tuning
process to generate models with CoT with different
lengths. This stage also serves as an initial step for
subsequent refinements. Next, in Section 3.2, we
explore multiple scenarios in which we can apply
CoT-Valve to construct the dataset MixChain. In
Section 3.3, we propose several advanced meth-
ods that take advantage of long-to-short datasets to
improve precision and control over the generated
reasoning paths in compressible fine-tuning.

3.1 Length-Compressible CoT Tuning

Our primary objective is to achieve a new way to
control the length of reasoning paths after training
a reasoning model. Existing approaches, such as
prompt-based control, explicitly define sequence

length in the prompt (Han et al., 2024) or utilize
summary tokens (Ding et al., 2024) for guidance.
However, these methods offer only limited control
over the length of CoT generated. For instance,
requesting a sequence of less than 20 tokens may
result in the model generating over 350 tokens (see
Table 14 in the Appendix), and these methods strug-
gle to produce answers with very short lengths. To
address these limitations, we introduce CoT-Valve
for training one model but can adjust the length of
reasoning paths.

Consider a reasoning model defined by the pa-
rameter ✓. For a given question q in the dataset
D, the probability of generating an answer a and
its reasoning thoughts {ti}n

i=1 given the question q
can be described by:

p (a | t1, . . . , tn, q; ✓)
nY

i=1

p (ti | t<i, q; ✓) (1)

where {ti}n
i=1 might include errors or unnecessary

details. With short synthesized or human-annotated
explanations {ti}m

i=1 with m < n, the training
objective is to adjust the parameter in such a way
that the chain is shortened while still yielding the
correct answer:

max
�✓

E(q,a)⇠Dp (a | t1, . . . , tm, q; ✓ + �✓)

mY

i=1

p (ti | t<i, q; ✓ + �✓) (2)

and �✓ denotes the change in the parameter space
that steers the model towards generating a more
concise chain.

Since the model, with and without �✓, outputs
the same final answer, �✓ can be interpreted as a
task vector (Ilharco et al., 2023). The task here is to
control the length of the CoT, provided that the only
difference in the training set lies in intermediate
reasoning steps {ti}n

i=1. Those reasoning paths are
different in length but ultimately lead to the same
final answer. Thus, we can control the task vector
to achieve the goal of adjusting the length of CoT.
�✓ is designed within a parameter-efficient space,
functioning as an external branch for inference that
incurs minimal overhead. Controlling this external
branch enables the manipulation of the length of
the reasoning path.

Task Arithmetic: Interpolation and Extrapola-
tion of �✓. To manipulate this update within the
parameter space, we can control the magnitude of a
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Figure 2: Illustration of CoT-Valve. In Stage 1, we first determine �✓ from distilling or post-training. Then, the
trained �✓ is utilized to construct the MixChain dataset. Using this dataset, we can then apply two enhanced
training methods to achieve more precise control over reasoning paths or to shorten the reasoning paths as needed.

�✓ as an arithmetic operation. We use two primary
operations on �✓ here: interpolation and extrapola-
tion. Let ↵ denote the magnitude of �✓ for LoRA.
When ↵ falls within the range of (0,1), the model
smoothly transitions between longer and shorter
reasoning paths, similar to weight interpolation be-
tween two models (Frankle et al., 2020; Team et al.,
2025). When ↵ > 1, extrapolation is introduced,
further shortening the reasoning path beyond what
was observed during training. This enables an ex-
ploration of the minimal reasoning length required
to arrive at a given answer. Thus, by adjusting ↵
at inference, we can modulate the model’s behav-
ior, with each value of ↵ corresponding to different
CoT lengths.

Application Unlike prompt-based approaches
that can only regulate the overall length of the rea-
soning process using prompt words, �✓ provides
finer granularity control. �✓ is served in the exter-
nal parameter space. This allows for greater flexi-
bility in adjusting the reasoning trajectory. Specif-
ically, it facilitates the selective retention of long-
chain reasoning in certain thoughts while apply-
ing stronger compression to simpler reasoning seg-
ments. As a result, reductions in chain length can
be localized to specific portions of the inference
process rather than being uniformly applied across
the entire reasoning path. We remain the design of
this segment selection in future work.

3.2 Construct the MixChain Dataset

A crucial thing for the above process is the construc-
tion of the training dataset, especially the reason-
ing chain {ti}n

i=1. To have reasoning chains with
different lengths, previous approaches rely on mul-

tiple rounds of sampling, selecting reasoning paths
under different random seeds, or using some hand-
crafted way to remove parts of the answer (Chen
et al., 2024).

We introduce MixChain, a dataset inherently
generated by our method that contains reasoning
paths of varying lengths. This dataset is structured
such that each question is associated with multi-
ple reasoning paths, with lengths progressively de-
creasing from long to short. By simply adjusting
the parameter ↵, our approach avoids the need for
repeated sampling and achieves this diverse set of
reasoning paths. In contrast to multi-sampling tech-
niques, MixChain enables a more reliable and con-
sistent generation of shorter reasoning paths while
simultaneously capturing a spectrum of reasoning
lengths. To construct MixChain, we consider two
possible scenarios:

• If a well-annotated dataset with human-
labeled solutions is available, such
as GSM8K (Cobbe et al., 2021b) or
PRM800k (Lightman et al., 2024), it can
be leveraged to fine-tune the model for
generating shorter reasoning chains as a cold
start (✓1 ! ✓̃1 and ✓2 ! ✓̃2 in Figure 2).

• In the absence of a dataset containing ex-
plicit reasoning paths, or when only final an-
swers are available without full explanations,
training solely on final answers is unlikely
to enable the model to generate reasoning
steps. To address this limitation, we propose
an alternative method for constructing Mix-
Chain. Specifically, we leverage an existing
base LLM (e.g., LLaMA-3.1-8B or Qwen-
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32B-Instruct) as ✓1 and use its corresponding
reasoning model (e.g., DeepSeek-R1-Distill-
Llama-8B or QwQ-Preview) to derive �✓.
The parameter update between these models
serves as a form of linear interpolation, en-
abling the transition from ✓1 to ✓2. This tran-
sition is then used to construct the dataset, as
illustrated in Figure 2, where the parameter
shift is represented by ✓1 ! ✓2.

3.3 Improved Tuning for CoT-Valve

In this section, we present two enhanced variants
of CoT-Valve: one aimed at achieving improved
controllability and the other focused on optimizing
the compression ratio of the reasoning paths.

A More Precise CoT-Valve Paradigm: CoT-
Valve++. In the previously proposed CoT-Valve
framework, the training process only constrained
�✓ to satisfy the final objective with ↵ = 1. How-
ever, during inference, we expect all positions
along this direction to exhibit reasoning trajectories
of varying lengths. This leads to the inconsistency
between training and inference. With MixChain,
we can explicitly incorporate this requirement dur-
ing training by introducing an additional constraint,
ensuring that the model can adapt to reasoning
chains of different lengths across all positions in
this direction. For each training sample, in addition
to the question, answer, and solution, we have in-
troduced a normalized term �, which represents the
factor for the length of the reasoning path. Under
this dataset, our training objective is modified to
find a parameter update �✓0 such that it satisfies:

max
�✓0

E(q,a)⇠D0p
⇣
a | t<m, q; ✓ + ��✓

0
⌘

mY

i=1

p(ti|t<i, q; ✓ + ��✓
0
) (3)

Where D0 is the Mixchain dataset. Each sample
consists of the question q, the answer a, the solution
{ti}m

i=1 and �, where � is calculated as:

� = 1 � m � mmin

mmax � mmin
(4)

Here, mmin and mmax is the length of the short-
est solution and longest solution for this question.
Based on synthetic samples, we introduce addi-
tional constraints that enable us to better identify
the updated parameter �✓

0
, facilitating more pre-

cise compressibility and controllability.

Progressive Chain Compression: CoT-Valve+P.
The structure of MixChain, which features progres-
sively shorter reasoning paths for each question,
facilitates a progressive chain-length compression
strategy. This approach is similar to iterative prun-
ing in model compression (Molchanov et al., 2017).
In this process, the model is trained with a shorter
reasoning path from the dataset at each iteration,
rather than training directly with the shortest rea-
soning CoT. This gradual compression method al-
lows the model to progressively reduce the length
of its reasoning paths.

4 Experiments

4.1 Experimental Setup

Models. We evaluate our method under several
models: QwQ-32B-Preview (Team, 2024b),
DeepSeek-R1-Distill-Llama-8B (DeepSeek-AI,
2025), LLaMA-3.1-8B (Dubey et al., 2024),
LLaMA-3.2-1B (Dubey et al., 2024) and Qwen-
32B-Instruct (Team, 2024a) with LIMO (Ye
et al., 2025). We tested different scenarios for
CoT-Valve:

• (Long to Short CoT) For QwQ-32B-Preview
(QwQ for abbreviation) and DeepSeek-R1-
Distill-Llama-8B (R1-Distill), we used our
method to control and compress the length of
the reasoning chain.

• (Short to Long CoT) For LLaMA-3.1-8B
and LLaMA-3.2-1B-Instruct, we applied our
method to distill reasoning abilities from
QwQ-32B-Preview and incorporated CoT-
Valve in the distillation process.

• (Short-Long-Short CoT) We tested another
setting to first post-train a short-CoT LLM,
Qwen-2.5-32B-Instruct (Team, 2024a), to gen-
erate Long CoT and then compress it to Short
CoT. CoT-Valve can be applied in both two
stages.

Metrics. We report both accuracy and the num-
ber of tokens in the answer for each experiment.
Given the trade-off between reasoning path length,
model size, and performance, we use a new metric,
Accuracy per Computation Unit(ACU), to better
capture this balance and evaluate model efficiency.
It is defined as:

ACU =
Accuracy

#Params ⇥ #Tokens
(5)
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(a) GSM8K, QwQ-32B-Preview (b) GSM8K, Llama-3.2-1B-Instruct (c) AIME, Qwen2.5-32B-I w/ LIMO

Figure 3: Token length and accuracy for different methods, datasets and reasoning models. Points connected by
curves in (a) and (b) represent results from one model.

Since the ACU value typically falls within the
range of 10�5 to 10�2, we report it in units of
102 for improved readability.

Training and Evaluation. For training the
model, we use LoRA (Hu et al., 2022) in most
of our experiments, except in the experiment for
LIMO on Qwen-2.5-32B-Instruct we use full pa-
rameter fine-tuning. We also show the results using
DoRA (Liu et al., 2024a) in the Appendix. The
hyper-parameters for each experiment are shown in
Appendix A. We select two math datasets to eval-
uate the performance, for one easy math dataset,
GSM8K (Cobbe et al., 2021b) and one hard math
dataset, AIME24.

4.2 Datasets
We find in our experiments that the quality of the
solution is important to the performance, even if all
the human-annotated solutions or synthesized so-
lutions reach the final answer. In our experiments,
we use the question from the train set of GSM8K,
the math split of PRM800K or the question from
LIMO, and we employ three types of datasets with
those questions in our experiments:

• Ground-truth Dataset: The dataset provides a
human-annotated or model-synthesized solu-
tion. We use this as the cold start.

• MixChain from cold-start (MixChain-C): Af-
ter taking the ground-truth dataset to train the
model, we can get the first model to generate
solutions from short to long. Then we use it
to generate the dataset.

• MixChain from zero-shot (MixChain-Z): We
employ CoT-Valve between a reasoning
model (✓2) and a base LLM (✓1) to generate
the solutions.

Method Accuracy #Token ACU "
Llama-3.3-70B-Instruct 92.6 235.4 0.56
Llama-3.1-405B-Instruct 95.6 186.7 0.13
Qwen2.5-32B-Instruct 93.1 269.3 1.09
Qwen2.5-Math-72B-Instruct 95.8 312.1 0.43
QwQ-32B-Preview 95.1 741.1 0.40

Prompt (Han et al., 2024) 93.6 355.5 0.82
Prompt (Ding et al., 2024) 95.5 617.7 0.48

In-domain Train Set: GSM8K

CoT-Valve - Ground-Truth 94.0 352.8 0.83
CoT-Valve++ - MixChain-C 94.4 276.3 1.07
CoT-Valve+P - MixChain-Z 96.1 317.1 0.95
CoT-Valve+P - MixChain-Z 94.9 225.5 1.32

Out-of-Domain Train Set: PRM12K

Overthink(Chen et al., 2024) - SFT 94.8 749.5 0.40
Overthink(Chen et al., 2024) - SimPO 94.8 326.2 0.91
O1-Pruner(Luo et al., 2025) - SFT 95.7 717 0.42
O1-Pruner(Luo et al., 2025) 96.5 534 0.56
CoT-Valve+P - MixChain-Z 95.4 288.5 1.03

Table 1: Results of QwQ-32B-Preview on GSM8K. Val-
ues of ACU are scaled by 102 for readability. We list
the dataset we use after the method name.

For each dataset, we filter out all the solutions with
incorrect answers. We show the statistics of the
dataset in Table 11 in the Appendix.

4.3 From Long-CoT to Short-CoT.
Controllable Results. We illustrate the result in
Figure 3a. First, using ground-truth samples as a
cold start, we develop a model capable of generat-
ing reasoning paths of various lengths, as demon-
strated in ‘CoT-Valve’ in Figure 3a. CoT-Valve
already matches the performance of prompt-based
control but can generate shorter reasoning chains.
We then extrapolate �✓ to produce even shorter rea-
soning paths. Then, building on MixChain-C from
this first model, we conduct further training by CoT-
Valve++. CoT-Valve++ substantially surpasses the
baseline and shows greater generalization capabili-
ties in cases of extrapolation.

6030



Method AIME24 #Token ACU"
Qwen2.5-32B-Instruct 4/30 1794.2 0.023
Qwen2.5-Math-72B-Instruct 7/30 1204.5 0.061
Gemini-Flash-Thinking (Team et al., 2023) 15/30 10810.5 -

QwQ-32B-Preview.Train set: GSM8K

QwQ-32B-Preview 14/30 6827.3 0.021
Prompt (Han et al., 2024) 13/30 6102.5 0.022
Prompt (Ding et al., 2024) 13/30 5562.3 0.024
Overthink (Chen et al., 2024) 13/30 5154.5 0.026

CoT-Valve - GSM8K 14/30 5975.0 0.024
CoT-Valve++ - MixChain-C 13/30 5360.5 0.025
CoT-Valve+P - MixChain-Z 13/30 4629.6 0.029

Qwen-32B-Instruct. Train set: LIMO

Qwen-32B-LIMO 15/30 10498.2 0.015
CoT-Valve 11/30 6365.2 0.018
SFT - MixChain - Solution 1 13/30 5368.0 0.025
CoT-Valve - MixChain - Solution 1 15/30 8174.8 0.019

Table 2: Results of QwQ-32B-Preview and Qwen-32B-
Instruct w/ LIMO on AIME 24.

GSM8k AIME24
Model Acc #Token Acc # Token

Llama-3.1-8B (0-shot) 15.7 915.0 0/30 1517.6
R1-Distill-Llama-8B 87.1 1636.6 14/30 12359.9

CoT-Valve 87.3 1315.2 6/30 7410.5
CoT-Valve+P - MixChain-Z 84.0 755.2 11/30 9039.0

Table 3: Result of DeepSeek-R1-Distill-Llama-8B.

Compression Results. We evaluated our method
against previous chain compression approaches,
with the results detailed in Table 1, Table 2, and
Table 3. For GSM8K, we adhered to the baseline
setup to train with PRM12K. Utilizing progressive
compression, our method surpassed the baseline by
producing shorter reasoning paths and improved
performance.

We also report experimental results on AIME,
where the model was trained using MixChain-Z de-
rived from GSM8K. To minimize the impact of ran-
domness on performance, we employed greedy de-
coding in our AIME experiments. Compared to the
baseline (Chen et al., 2024), our method reduced
the token count from 5155 to 4630 while maintain-
ing the same accuracy, despite being trained on an
easier dataset.

4.4 From Short-CoT to Long-CoT &
Short-Long-Short CoT

Our method can also be applied if a short-CoT
model is distilled or post-trained to be a Long-CoT
model. The results are shown in Figure 3b, Table
4 and Table 5. We found that CoT-Valve can also
effectively control the length of the chains in this
setting. Notably, we observed that shorter chains
could achieve higher accuracy on GSM8K. More-

Method Accuracy #Tokens ACU"
LLaMA-3.2-1B-Instruct(8-shot) 45.9 104.3 44.008
LLaMA-3.2-1B-Instruct(0-shot) 45.9 199.8 22.973

SFT-Full Finetune - GSM8k 46.1 139.4 33.070
SFT - GSM8k 43.8 137.7 31.808
Prompt 46.7 209.9 22.249

SFT - QwQ Distill 52.7 759.3 6.941
CoT-Valve - QwQ Distill 55.5 267.0 20.786
CoT-Valve+P - MixChain-Z 55.8 291.0 19.175
SFT - MixChain-Z - Solution 1 57.0 288.4 19.764
CoT-Valve - MixChain-Z - Solution 1 58.9 275.4 21.387

Table 4: Results on LLaMA-3-2-1B-Instruct. We report
the result of Flexible Match here. QwQ Distill means
we use QwQ to synthesize the solution and distill it.

Method Accuracy #Tokens ACU"
LLaMA-3.1-8B (8-shot) 56.9 282.1 2.521
LLaMA-3.1-8B (0-shot) 15.7 915.0 0.214

SFT-LoRA - GSM8k 59.0 191.9 3.843

SFT-LoRA - QwQ Distill 76.3 644.8 1.479
CoT-Valve - QwQ Distill 77.5 569.8 1.700
CoT-Valve+P - MixChain-Z 77.1 371.2 2.596
CoT-Valve + MixChain-Z - Solution 1 75.7 264.1 3.583

Table 5: Result on LLaMA-3.1-8B. We report the result
of Strict Match here.

over, if the model is trained using the MixChain-Z
dataset, the results are significantly better, whether
using CoT-Valve (55.5 to 58.9) or just simply SFT
(52.7 to 57.0). Additionally, after training a long-
chain model, we can employ the MixChain dataset
to reduce the length of its reasoning chains further.
As illustrated in Figure 3c, the results suggest that
initially training the chains to be long and subse-
quently compressing them to be shorter (Results
with Long-to-Short) can yield better performance
than directly using CoT-Valve in the short-to-long
stage (Results with Short-to-Long). This demon-
strates significant potential for compressing the
reasoning chains. We can also surpass the result
of Gemini-Flash-Thinking, with the same accuracy
but fewer tokens (10810.5 v.s. 8174.8)

Training dynamics does not have the same effect
as CoT-Valve. We also explore whether inter-
mediate training steps can achieve similar effects.
As depicted in Figure 3c, during the early train-
ing phases, the length of the CoT increases but
does not correspond with the same rapid improve-
ment in performance. As training progresses, the
token length begins to decrease while performance
improves. CoT-Valve exhibits a distinct pattern,
smoothly bridging the gap between the length of
CoT and performance.
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Solution Solution Length Accuracy #Token

Ground-Truth (Solution 0) 116.0 43.8 139.4
Solution 1 279.6 57.0 288.4
Solution 2 310.7 55.1 330.0
Solution 3 386.7 56.5 414.6
Solution 4 497.2 52.5 558.3

Table 6: Train LLaMA-3.2-1B-Instruct with solutions
in MixChain-Z of different lengths on GSM8K.

4.5 Observations

Based on the results from LLaMA-3.1-8B,
LLaMA-3.2-1.5B, QwQ, DeepSeek-R1-Distill-
Llama-8B and Qwen2.5-32B-Instruct with LIMO,
we summarize the following observations:

• Longer reasoning chains are not always the
best on simple datasets. Across nearly all
models, we find that those directly trained on
long CoT data typically do not show the best
performance. These models often underper-
form compared to those generated through
CoT-Valve, which results in shorter but more
accurate reasoning chains. This trend is par-
ticularly pronounced in smaller models. For
instance, in the LLaMA-3.2-1B model, train-
ing on QwQ synthesized data yields an accu-
racy of 52.69 with 759.3 tokens. However,
using CoT-Valve, we can achieve an accuracy
of 55.50 with only 267.0 tokens. However,
we do not observe this phenomenon in more
complex datasets, indicating that while the
reasoning model may be redundant for simple
datasets, it still requires test-time scaling to
effectively handle complex datasets.

• Some reasoning chains are difficult for the
model to learn, especially for small LLMs.
We fine-tuned LLaMA-3.2-1B-Instruct using
only one solution from MixChain, where all
solutions lead to the same final answer but
involve different intermediate reasoning steps.
The results, presented in Table 6, indicate
that neither the shortest nor the longest chains
are optimal for learning. Instead, the model
most effectively learns from moderately short
chains, achieving the highest accuracy while
maintaining a relatively low token count. This
phenomenon is particularly evident in smaller
models, but it is not observed in larger mod-
els. We believe this could be beneficial for the
distillation of CoT in small LLMs.

Solution Used #Epoch #Samples Accuracy #Tokens ACU"
- - - 95.07 741.1 0.40

4 1 6.8k 95.68 597.3 0.50
4+3 1 13.7k 94.84 458.4 0.65
4+3+2 1 20.5k 94.84 339.9 0.87
4+3+2+1 1 27.4k 96.13 317.1 0.95
4+3+2+1+0 1 34.2k 94.92 225.5 1.32

0 5 37.4k 92.19 250.5 1.15

Table 7: Ablation of Progressive Compression on QwQ.
Here, solution 0 is the human-annotated solution from
the original dataset.

QwQ-32B-Preview Llama-3.2-1B-I
Method Acc #Token Acc #Token

Prompt (Shortest) 93.6 355.5 52.5 621.0
Ours (Best) 94.4 276.3 55.5 267.0

Ours (Shortest) 87.5 133.8 50.4 247.0

Table 8: CoT-Valve can achieve shorter chains than
prompts with better performance.

4.6 Analysis

Ablation on Progressive Compression. Table 7
demonstrates the effect of progressive compression.
We compare two settings: training directly with the
ground-truth solution for five epochs and applying
progressive compression for five epochs in total,
with the final epoch using the ground-truth data.
Our results show that progressive compression sig-
nificantly improves the performance of short CoT
(from 92.19 to 94.92). For each turn, progressive
compression gradually reduces the token number
while maintaining accuracy.

CoT-Valve achieves shorter chains compared to
prompt control We also present in Table 8 the
shortest chain achieved by our method and compare
these with those obtained using prompt control.
Our method outperforms prompt control methods
at shorter chain lengths. Additionally, we explored
the limits of chain length for both methods and
found that our approach can generate substantially
shorter chains than what can be achieved through
prompt control.

General Performance after Finetuning We
tested the fine-tuned model (The best model of our
method in Table 1) on the MMLU benchmark and
two common-sense datasets (PIQA and Hellaswag)
and the results are shown in Table 9. Since we only
finetune the model with 6k samples with 5 epochs
(The training takes 1k steps), the finetuning does
not harm the performance on these tasks but can
significantly shorten the reasoning chain.
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MMLU HellaSwag PIQA

Before CoT-Valve 80.87 84.51 82.15
After CoT-Valve 81.15 84.51 82.48

Table 9: The results of QwQ-32B-Preview before and
after CoT-Valve+P - MixChain-Z, using GSM8K.

# Tokens Qwen2.5-Math-PRM Skywork-o1-PRM

GSM8K 121.8 88.02 77.93
QwQ-32B-Preview 737.3 98.04 89.16

Solution 4 497.2 99.00 (+0.96) 91.76 (+2.60)
Solution 3 386.7 99.53 (+1.49) 92.66 (+3.50)
Solution 2 310.7 99.82 (+1.78) 93.79 (+4.63)
Solution 1 279.6 99.85 (+1.81) 93.47 (+4.31)

Table 10: Step Correctness of MixChain-Z - GSM8K
dataset.

Step Correctness of MixChain dataset We vali-
date the MixChain dataset by two process reward
models, Qwen2.5-Math-PRM-72B (Zhang et al.,
2025b) and Skywork-o1-Open-PRM-7B (He et al.,
2024), to identify intermediate errors in the reason-
ing processes. The score in the table represents
the average reward for each step, indicating step
correctness. The results show that our proposed
dataset, which features shorter reasoning paths, im-
proves the step-level score compared to the base-
line model (QwQ-32B-Preview) and the official
chain in the dataset. This improvement is due to
the reduction of redundant or noisy chains in rea-
soning, which enhances the overall step correctness
in reasoning and increases the score.

5 Conclusion

In this paper, we propose a method that enables
a model to generate reasoning chains of varying
lengths instead of the prompt control. Based on this
approach, we construct a dataset containing both
long and short reasoning chains to further enhance
controllability and compression efficiency. Experi-
mental results demonstrate the effectiveness of our
method in dynamic reasoning chain control and the
compression of CoT. Future research can further
explore finer-grained control strategies to improve
reasoning efficiency and model controllability.

6 Limitations

While CoT-Valve effectively shortens reasoning
chains with minimal impact on performance, ex-
treme compression can still result in accuracy
losses, particularly affecting complex tasks. More-
over, performance remains limited by the quality

of the original model; if the model cannot generate
high-quality reasoning chains, constructing and tun-
ing a short-chain dataset becomes challenging. Ad-
ditionally, the interpretability of this mechanism is
limited. Although CoT-Valve enables a controlled
reasoning chain, the theoretical understanding of
this remains insufficiently explored.

Acknowledgement

This project is supported by the National Research
Foundation, Singapore, and Cyber Security Agency
of Singapore under its National Cybersecurity
R&D Programme and CyberSG R&D Cyber Re-
search Programme Office (Award: CRPO-GC1-
NTU-002).

References

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien
Bubeck, Ronen Eldan, Suriya Gunasekar, Michael
Harrison, Russell J Hewett, Mojan Javaheripi, Piero
Kauffmann, et al. 2024. Phi-4 technical report. arXiv
preprint arXiv:2412.08905.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He,
Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, et al. 2024. Do
not think that much for 2+ 3=? on the overthinking
of o1-like llms. arXiv preprint arXiv:2412.21187.

Jeffrey Cheng and Benjamin Van Durme. 2024. Com-
pressed chain of thought: Efficient reasoning through
dense representations. Preprint, arXiv:2412.13171.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021a. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021b. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

DeepSeek-AI. 2025. Deepseek-r1: Incentivizing rea-
soning capability in llms via reinforcement learning.
Preprint, arXiv:2501.12948.

Yuntian Deng, Yejin Choi, and Stuart Shieber. 2024.
From explicit cot to implicit cot: Learning to inter-
nalize cot step by step. Preprint, arXiv:2405.14838.

Yuntian Deng, Kiran Prasad, Roland Fernandez, Paul
Smolensky, Vishrav Chaudhary, and Stuart Shieber.
2023. Implicit chain of thought reasoning via knowl-
edge distillation. arXiv preprint arXiv:2311.01460.

6033

https://arxiv.org/abs/2412.13171
https://arxiv.org/abs/2412.13171
https://arxiv.org/abs/2412.13171
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2405.14838
https://arxiv.org/abs/2405.14838


Mengru Ding, Hanmeng Liu, Zhizhang Fu, Jian Song,
Wenbo Xie, and Yue Zhang. 2024. Break the chain:
Large language models can be shortcut reasoners.
arXiv preprint arXiv:2406.06580.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel
Roy, and Michael Carbin. 2020. Linear mode con-
nectivity and the lottery ticket hypothesis. In Inter-
national Conference on Machine Learning, pages
3259–3269. PMLR.

Xinyu Guan, Li Lyna Zhang, Yifei Liu, Ning Shang,
Youran Sun, Yi Zhu, Fan Yang, and Mao Yang.
2025. rstar-math: Small llms can master math rea-
soning with self-evolved deep thinking. Preprint,
arXiv:2501.04519.

Tingxu Han, Chunrong Fang, Shiyu Zhao, Shiqing
Ma, Zhenyu Chen, and Zhenting Wang. 2024.
Token-budget-aware llm reasoning. arXiv preprint
arXiv:2412.18547.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li,
Zhiting Hu, Jason Weston, and Yuandong Tian. 2024.
Training large language models to reason in a contin-
uous latent space. Preprint, arXiv:2412.06769.

Jujie He, Tianwen Wei, Rui Yan, Jiacai Liu, Chaojie
Wang, Yimeng Gan, Shiwen Tu, Chris Yuhao Liu,
Liang Zeng, Xiaokun Wang, Boyang Wang, Yong-
cong Li, Fuxiang Zhang, Jiacheng Xu, Bo An, Yang
Liu, and Yahui Zhou. 2024. Skywork-o1 open series.
https://huggingface.co/Skywork.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes
Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katie Millican, George van den Driessche, Bogdan
Damoc, Aurelia Guy, Simon Osindero, Karen Si-
monyan, Erich Elsen, Jack W. Rae, Oriol Vinyals,
and Laurent Sifre. 2022. Training compute-optimal
large language models. Preprint, arXiv:2203.15556.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Worts-
man, Ludwig Schmidt, Hannaneh Hajishirzi, and Ali
Farhadi. 2023. Editing models with task arithmetic.
In The Eleventh International Conference on Learn-
ing Representations.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard-
son, Ahmed El-Kishky, Aiden Low, Alec Helyar,
Aleksander Madry, Alex Beutel, Alex Carney, et al.
2024. Openai o1 system card. arXiv preprint
arXiv:2412.16720.

Mingyu Jin, Qinkai Yu, Dong Shu, Haiyan Zhao,
Wenyue Hua, Yanda Meng, Yongfeng Zhang, and
Mengnan Du. 2024. The impact of reasoning step
length on large language models. In Findings of the
Association for Computational Linguistics ACL 2024,
pages 1830–1842, Bangkok, Thailand and virtual
meeting.

Brihi Joshi, Ziyi Liu, Sahana Ramnath, Aaron Chan,
Zhewei Tong, Shaoliang Nie, Qifan Wang, Yejin
Choi, and Xiang Ren. 2023. Are machine rationales
(not) useful to humans? measuring and improving
human utility of free-text rationales. arXiv preprint
arXiv:2305.07095.

Yu Kang, Xianghui Sun, Liangyu Chen, and Wei Zou.
2024. C3ot: Generating shorter chain-of-thought
without compromising effectiveness. Preprint,
arXiv:2412.11664.

Levente Kocsis and Csaba Szepesvari. 2006. Bandit
based monte-carlo planning. In European Confer-
ence on Machine Learning.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri-
son Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2024. Let’s verify step by step. In The Twelfth Inter-
national Conference on Learning Representations.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting
Cheng, and Min-Hung Chen. 2024a. Dora: Weight-
decomposed low-rank adaptation. In ICML.

Tengxiao Liu, Qipeng Guo, Xiangkun Hu, Cheng Ji-
ayang, Yue Zhang, Xipeng Qiu, and Zheng Zhang.
2024b. Can language models learn to skip steps?
In The Thirty-eighth Annual Conference on Neural
Information Processing Systems.

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shi-
wei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao,
and Dacheng Tao. 2025. O1-pruner: Length-
harmonizing fine-tuning for o1-like reasoning prun-
ing. arXiv preprint arXiv:2501.12570.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat
Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun Zhu,
Lei Meng, Jiao Sun, et al. 2024. Improve mathemati-
cal reasoning in language models by automated pro-
cess supervision. arXiv preprint arXiv:2406.06592.

Nanye Ma, Shangyuan Tong, Haolin Jia, Hexiang Hu,
Yu-Chuan Su, Mingda Zhang, Xuan Yang, Yan-
dong Li, Tommi Jaakkola, Xuhui Jia, and Sain-
ing Xie. 2025. Inference-time scaling for diffusion
models beyond scaling denoising steps. Preprint,
arXiv:2501.09732.

Yu Meng, Mengzhou Xia, and Danqi Chen. 2024.
Simpo: Simple preference optimization with a
reference-free reward. In Advances in Neural In-
formation Processing Systems (NeurIPS).

6034

https://arxiv.org/abs/2501.04519
https://arxiv.org/abs/2501.04519
https://arxiv.org/abs/2412.06769
https://arxiv.org/abs/2412.06769
https://huggingface.co/Skywork
https://huggingface.co/Skywork
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=6t0Kwf8-jrj
https://aclanthology.org/2024.findings-acl.108
https://aclanthology.org/2024.findings-acl.108
https://arxiv.org/abs/2412.11664
https://arxiv.org/abs/2412.11664
https://api.semanticscholar.org/CorpusID:15184765
https://api.semanticscholar.org/CorpusID:15184765
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=3d5CIRG1n2
https://openreview.net/forum?id=3d5CIRG1n2
https://openreview.net/forum?id=w4AnTVxAO9
https://arxiv.org/abs/2501.09732
https://arxiv.org/abs/2501.09732


Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo
Aila, and Jan Kautz. 2017. Pruning convolutional
neural networks for resource efficient inference. In
International Conference on Learning Representa-
tions.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
Ouyang Long, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders,
Xu Jiang, Karl Cobbe, Tyna Eloundou, Gretchen
Krueger, Kevin Button, Matthew Knight, Benjamin
Chess, and John Schulman. 2021. Webgpt: Browser-
assisted question-answering with human feedback.
ArXiv, abs/2112.09332.

Hao Shao, Shengju Qian, Han Xiao, Guanglu Song,
Zhuofan Zong, Letian Wang, Yu Liu, and Hongsheng
Li. 2024. Visual cot: Unleashing chain-of-thought
reasoning in multi-modal language models. Preprint,
arXiv:2403.16999.

Zayne Sprague, Fangcong Yin, Juan Diego Rodriguez,
Dongwei Jiang, Manya Wadhwa, Prasann Singhal,
Xinyu Zhao, Xi Ye, Kyle Mahowald, and Greg Dur-
rett. 2024. To cot or not to cot? chain-of-thought
helps mainly on math and symbolic reasoning. arXiv
preprint arXiv:2409.12183.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M Dai, Anja Hauth, Katie
Millican, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing,
Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. 2025.
Kimi k1. 5: Scaling reinforcement learning with llms.
arXiv preprint arXiv:2501.12599.

Qwen Team. 2024a. Qwen2.5: A party of foundation
models.

Qwen Team. 2024b. Qwq: Reflect deeply on the bound-
aries of the unknown.

Jean-Francois Ton, Muhammad Faaiz Taufiq, and
Yang Liu. 2024. Understanding chain-of-thought
in llms through information theory. Preprint,
arXiv:2411.11984.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai
Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui.
2024. Math-shepherd: Verify and reinforce LLMs
step-by-step without human annotations. In Proceed-
ings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 9426–9439, Bangkok, Thailand. Associ-
ation for Computational Linguistics.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023. Self-consistency improves
chain of thought reasoning in language models. In
The Eleventh International Conference on Learning
Representations.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik R
Narasimhan. 2023. Tree of thoughts: Deliberate
problem solving with large language models. In
Thirty-seventh Conference on Neural Information
Processing Systems.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie
Xia, and Pengfei Liu. 2025. Limo: Less is more for
reasoning. arXiv preprint arXiv:2502.03387.

Ping Yu, Jing Xu, Jason Weston, and Ilia Kulikov. 2024.
Distilling system 2 into system 1. arXiv preprint
arXiv:2407.06023.

Di Zhang, Xiaoshui Huang, Dongzhan Zhou, Yuqiang
Li, and Wanli Ouyang. 2024. Accessing gpt-4
level mathematical olympiad solutions via monte
carlo tree self-refine with llama-3 8b. Preprint,
arXiv:2406.07394.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen
Zhang, Runji Lin, Bowen Yu, Dayiheng Liu, Jin-
gren Zhou, and Junyang Lin. 2025a. The lessons of
developing process reward models in mathematical
reasoning. Preprint, arXiv:2501.07301.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen
Zhang, Runji Lin, Bowen Yu, Dayiheng Liu, Jin-
gren Zhou, and Junyang Lin. 2025b. The lessons of
developing process reward models in mathematical
reasoning. arXiv preprint arXiv:2501.07301.

6035

https://openreview.net/forum?id=SJGCiw5gl
https://openreview.net/forum?id=SJGCiw5gl
https://api.semanticscholar.org/CorpusID:245329531
https://api.semanticscholar.org/CorpusID:245329531
https://arxiv.org/abs/2403.16999
https://arxiv.org/abs/2403.16999
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://arxiv.org/abs/2411.11984
https://arxiv.org/abs/2411.11984
https://doi.org/10.18653/v1/2024.acl-long.510
https://doi.org/10.18653/v1/2024.acl-long.510
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=5Xc1ecxO1h
https://openreview.net/forum?id=5Xc1ecxO1h
https://arxiv.org/abs/2406.07394
https://arxiv.org/abs/2406.07394
https://arxiv.org/abs/2406.07394
https://arxiv.org/abs/2501.07301
https://arxiv.org/abs/2501.07301
https://arxiv.org/abs/2501.07301

