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Abstract

Pruning has become a widely adopted tech-
nique for reducing the hardware requirements
of large language models (LLMs). To recover
model performance after pruning, post-training
is commonly employed to mitigate the resulting
performance degradation. While post-training
benefits from larger datasets, once the dataset
size is already substantial, increasing the train-
ing data provides only limited performance
gains. To balance post-training cost and model
performance, it is necessary to explore the opti-
mal amount of post-training data. Through ex-
tensive experiments on the Llama-3 and Qwen-
2.5 series models, pruned using various com-
mon pruning methods, we uncover the scaling
Law for Post-training after model Pruning, re-
ferred to as the P2 Law. This law identifies four
key factors for predicting the pruned model’s
post-training loss: the model size before prun-
ing, the number of post-training tokens, the
pruning rate, and the model’s loss before prun-
ing. Moreover, P2 Law can generalize to larger
dataset sizes, larger model sizes, and higher
pruning rates, offering valuable insights for the
post-training of pruned LLMs.

1 Introduction

Large language models (LLMs) based on the Trans-
former architecture (Vaswani et al., 2017) have
been applied across diverse domains and tasks.
However, as LLMs grow in size, their hardware
demands increase substantially, limiting their prac-
tical deployment in real-world scenarios. To ad-
dress this challenge, researchers have focused on
developing compact models through model pruning
techniques (Han et al., 2016) that maintain high per-
formance while reducing hardware requirements.

Model pruning can be broadly categorized into
unstructured pruning (Frantar and Alistarh, 2023;
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Figure 1: Loss curves derived by P2 Law and the ac-
tual checkpoints of Llama-3 series models pruned by
depth pruning with a pruning rate of approximately 15%.
Compute (C) denotes the computational cost, which is
calculated by C = 6ND (Kaplan et al., 2020), where
N denotes the model size after pruning, and D denotes
the number of post-training tokens.

Zhang et al., 2024; Sun et al., 2024) and struc-
tured pruning (Chen et al., 2024; Hu et al., 2024;
Liu et al., 2024; Muralidharan et al., 2024; Ma
et al., 2023; Ashkboos et al., 2024; Men et al.,
2024). Unstructured pruning removes individual
elements from weight matrices, producing sparse
matrices while preserving satisfactory model per-
formance. However, the introduced structural irreg-
ularities make this approach hardware-unfriendly
and hinder its ability to accelerate computation. To
mitigate this problem, semi-structured pruning, a
variant of unstructured pruning, leverages specific
hardware support (Mishra et al., 2021) to achieve
acceleration but may result in greater performance
degradation compared to unstructured pruning. In
contrast, structured pruning removes entire compo-
nents, such as attention heads or layers, effectively
reducing the model size but often with a higher per-
formance drop compared to other pruning methods.

To effectively leverage hardware-friendly mod-
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els pruned using semi-structured or structured prun-
ing methods, post-training (Ashkboos et al., 2024;
Chen et al., 2024; Yang et al., 2024; Ma et al., 2023;
Kim et al., 2024) serves as an essential step after
model pruning to mitigate the performance degra-
dation. For example, LLM-Pruner (Ma et al., 2023)
utilizes 50,000 instruction data samples for fine-
tuning, whereas Shortened Llama (Kim et al., 2024)
uses 627B tokens of pre-training data for continual
pre-training of the pruned LLMs. In general, com-
pared to fine-tuning with a small dataset, continual
pre-training with a large dataset is a more effective
way to fully recover performance, but it demands
substantial hardware resources. Given the signifi-
cant hardware demands, a question is raised: is it
truly necessary to use a vast amount of data for
performance recovery? LLM-Streamline (Chen
et al., 2024) answers the question by demonstrating
that using large amounts of data for post-training
only slightly improves performance compared to
using a suitably sized amount. Hence, this raises
another question: whether a scaling law can be
established to predict the optimal amount of
post-training data required after model pruning
for resource efficiency?

To address the problem, we conduct pilot ex-
periments on the Llama-3 (Dubey et al., 2024)
and Qwen-2.5 series models (Team, 2024), ap-
plying both typical structured and semi-structured
pruning methods. In specific, we observe several
trends in the post-training loss curves, allowing us
to identify the necessary conditions that the scal-
ing Law for Post-training after model Pruning (P2

Law) must satisfy. Building on the Chinchilla scal-
ing law (Hoffmann et al., 2022) proposed for pre-
training and the identified conditions, we define
multiple parameterizations of our P2 Law and se-
lect the most suitable parameterization. To assess
the fit of different parameterizations to P2 Law, we
introduce a new metric named Average Slope Dif-
ference (ASD). As scaling laws are used to find the
suitable training data size by balancing cost and
performance, focusing on the slope of the predicted
loss curve rather than the predicted loss values, the
ASD metric is designed to measure the slope dis-
crepancy between predicted and actual loss curves.
Finally, P2 Law is parameterized as,

L(N0, D, ρ,L0) = L0 + (
1

ρ
)γ(

1

N0
)δ(

NC

Nα
0

+
DC

Dβ
+ E)

(1)

where NC , DC , E, α, β, γ, δ are constants, N0

denotes the model size before pruning, D denotes

the number of post-training tokens, ρ denotes the
pruning rate, L0 denotes the model’s loss before
pruning, and L denotes the pruned model’s post-
training loss.

In this paper, we conduct a series of experiments
to validate the P2 Law. Taking Llama-3 series mod-
els pruned by depth pruning with a pruning rate of
approximately 15% as an example, Figure 1 illus-
trates that P2 Law accurately fits the actual post-
training losses of the pruned model checkpoints,
where compute (C) represents the computational
cost calculated as C = 6ND (Kaplan et al., 2020),
N is the model size after pruning, and D is the
number of post-training tokens. Utilizing the post-
training loss curves derived by P2 Law, we can
accurately predict that the computational cost re-
quired for the post-training loss of Llama-3.2-1B to
start decreasing gently is approximately 104. This
predicted size of post-training data provides a good
balance between cost and performance. Further-
more, we evaluate the generalization ability of the
P2 Law, demonstrating that P2 Law can effectively
generalizes to larger dataset sizes, larger model
sizes, and higher pruning rates.

Overall, this work makes the following contribu-
tions:

• We conduct extensive studies to uncover the
P2 Law, the first scaling law for post-training
after pruning, helping balance post-training
cost and pruned LLM performance.

• We propose ASD, an effective metric for
the evaluation of parameterizations of scaling
laws for the post-training of pruned LLMs.

• We demonstrate that the P2 Law generalizes
effectively to larger dataset sizes, larger mod-
els, and higher pruning rates, offering valuable
insights for optimizing pruned LLMs across
diverse settings.

2 Preliminary

In this section, we present the preliminary of this
work, including various pruning methods and the
post-training method.

2.1 Pruning
We utilize three common pruning methods to prune
LLMs, including two structured pruning methods
(depth pruning (Chen et al., 2024; Song et al., 2024;
Gromov et al., 2024) and width pruning (Ashkboos
et al., 2024; Hu et al., 2024; Liu et al., 2024)) and
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a hardware-friendly variant of unstructured prun-
ing method known as 2:4 semi-structured prun-
ing (Sun et al., 2024; Frantar and Alistarh, 2023;
Zhang et al., 2024).

Depth Pruning. Depth pruning is a structured
pruning method that removes entire Transformer
layers from LLMs. Specifically, depth pruning
involves estimating the importance of each Trans-
former layers in LLMs and then removing those
layers with the lowest importance.

Width Pruning. Width pruning is another struc-
tured pruning method that reduces the number of
embedding channels in LLMs. This method in-
volves measuring the importance of embedding
channels and pruning the least important ones.

2:4 Semi-Structured Pruning. Unstructured
pruning removes individual unimportant elements
from the weight matrices, producing sparse ma-
trices. 2:4 semi-structured pruning is a variant
of unstructured pruning, with a sparse pattern of
2:4. In this pattern, every four elements in the
weight matrices are grouped together, with two of
the elements in each group set to zero. This semi-
structured sparsity can be efficiently accelerated
by hardware. We utilize SparseGPT (Frantar and
Alistarh, 2023), a well-known 2:4 semi-structured
pruning method, to prune LLMs.

For more details about the pruning methods used
in this paper, please refer to the Appendix B.

2.2 Post-Training
After the pruning, we conduct post-training on the
pruned LLMs to mitigate the performance decline.
For LLMs pruned using depth or width pruning, we
train all parameters of the pruned LLMs. For sparse
LLMs derived from 2:4 semi-structured pruning,
inspired by LoRS (Hu et al., 2025), we combine
the updated weight from each training iterate with
the sparse mask during the post-training process to
ensure the model’s sparsity, further post-training
details about the 2:4 semi-structured pruning is
provided in Appendix B.3.

3 Experiments for Finding Necessary
Conditions Satisfied by P2 Law

In this section, we conduct experiments on six
LLMs from the Llama-3 and Qwen-2.5 series, cov-
ering various model sizes and using depth pruning,
width pruning, and 2:4 semi-structured pruning.

First, we detail the pruning settings and post-
training settings in Section 3.1. Next, we describe

Depth pruning Width pruning
Llama-3.2-1B 15%,25%,30% 15%,25%,35%
Llama-3.2-3B 16%,25%,34% 15%,25%,35%
Llama-3.1-8B 16%,24%,33% 15%,25%,35%

Qwen-2.5-0.5B 15%,21%,27% 15%,25%,35%
Qwen-2.5-1.5B 15%,24%,33% 15%,25%,35%
Qwen-2.5-3B 17%,25%,32% 15%,25%,35%

Table 1: Pruning rates used for depth pruning and width
pruning on different LLMs.

multiple trends observed in the post-training loss
curves in Section 3.2. Finally, in Section 3.3, we
identify several necessary conditions that the P2

Law must satisfy based on the observed trends.

3.1 Settings
We conduct experiments on six LLMs from the
Llama-3 and Qwen-2.5 series, including Llama-3.2-
1B, Llama-3.2-3B, Llama-3.1-8B, Qwen-2.5-0.5B,
Qwen-2.5-1.5B and Qwen-2.5-3B.

Pruning. The pruning rates used for depth pruning
and width pruning are shown in Table 1. The prun-
ing processes have been introduced in Appendix B.
We randomly select 1,024 samples from the pre-
training dataset SlimPajama for pruning.

Post-Training. For Llama-3.2-3B, Qwen-2.5-3B
and Llama-3.1-8B, we randomly select 1B tokens
from SlimPajama for post-training. For Llama-
3.2-1B, Qwen-2.5-0.5B, Qwen-2.5-1.5B, we ran-
domly select 0.5B tokens from SlimPajama for
post-training. During the post-training process, we
set the learning rate to 2e-5 and the batch size to
262k tokens. All post-training processes are con-
ducted on 4 Nvidia A800-80G GPUs and 4 Nvidia
A6000-48G GPUs. The entire training process
takes a total of 500 hours. For more details about
batch size and learning rate settings, please refer to
the Appendix C.

3.2 Trends of the Post-Training Loss Curves
To better explore the trends of the post-training loss
curves, we define:
Definition 1 Relative post-training loss ∆L. The
relative post-training loss is the difference between
the pruned model’s post-training loss L and the
model’s loss L0 before pruning.

∆L = L − L0 (2)

Definition 2 Normalized relative post-training
loss ∆Lnorm. The normalized relative post-
training loss is defined as the ratio of the relative
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(a) Post-training loss curves of Llama-
3.2-1B pruned by depth pruning with
different pruning rates.
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(b) Post-training loss curves of Llama-
3.2-3B pruned by depth pruning with
different pruning rates.
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(c) Post-training loss curves of Llama-
3.1-8B pruned by depth pruning with
different pruning rates.

Figure 2: Post-training loss curves of Llama-3 series models pruned by depth pruning with different pruning rates.
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Figure 3: Post-training loss curves of Llama-3 series
models pruned by 2:4 semi-structured pruning.
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Figure 4: Normalized relative post-training loss
curves of Llama-3.1-8B pruned by depth pruning.

post-training loss ∆L to a power-law function of
the pruning rate ρ.

∆Lnorm =
∆L
(1ρ)

γ (3)

where γ is a constant.

In Figures 2 and 3, we present the post-training
loss curves for the Llama-3 series models pruned by
depth pruning and 2:4 semi-structured pruning. Ad-
ditional post-training loss curves (exhibiting sim-
ilar trends) are shown in Figures 8, 9, 10, and 11
in the Appendix D. By analyzing the post-training
loss curves, we observe the following trends:

• Trend 1: Smaller LLMs exhibit faster de-
creases in post-training loss. For instance, as
shown in Figure 3, with 2:4 semi-structured
pruning, the post training loss curve of Llama-
3.1-8B is much flatter compared to those of
Llama-3.2-3B and Llama-3.2-1B. The same
trend is observed under both depth pruning
and width pruning, as depicted in Figure 2 and
Figure 8. This suggests that smaller LLMs ex-
hibit faster decreases in post-training loss.

• Trend 2: Relative post-training loss ∆L
follows a power-law relationship with the

pruning rate ρ. As shown in Figure 4, with
depth pruning, the normalized relative post-
training loss curves of Llama-3.1-8B at vari-
ous pruning rates nearly overlap. This can be
formally expressed as:

∆L(0.33)

( 1
0.33)

γ
≈ ∆L(0.24)

( 1
0.24)

γ
≈ ∆L(0.16)

( 1
0.16)

γ
(4)

where ∆L(0.33), ∆L(0.24), and ∆L(0.16) rep-
resent the relative post-training loss of Llama-
3.1-8B pruned by depth pruning with pruning
rates ρ of 0.33, 0.24, and 0.16, respectively.
This demonstrates that the pruning rate and
the relative post-training loss are governed by
a power-law relationship.

3.3 Necessary Conditions Satisfied by P2 Law

Based on the aforementioned trends, we identify
three fundamental conditions for the P2 Law:

• Condition 1. The post-training loss L de-
creases as the number of post-training tokens
D increases:

∂L
∂D

< 0 (5)
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• Condition 2. As derived from Trend 1 in
Section 3.2, under similar pruning rates, the
post-training loss curves of smaller LLMs de-
crease faster as the number of post-training
tokens D increases:

∂

∂N0
(
∂L
∂D

) =
∂2L

∂N0∂D
> 0 (6)

where N0 is the model size before pruning.

• Condition 3. From Eq.4 in Trend 2, the rel-
ative post-training loss ∆L follows a power-
law relationship with the pruning rate ρ:

∆L ∝ (
1

ρ
)γ (7)

An ideal P2 Law should satisfy aforementioned
three conditions. Additionally, the P2 Law should
also satisfy the condition that when the pruning
rate ρ is 0, the relative post-training loss ∆L is 0,
which is a necessary condition for Condition 3.

4 P2 Law

In this section, we aim to parameterize the P2 Law
according to the above three necessary conditions.
In Section 4.1, we introduce the metric for assess
the quality of different candidate parametrizations.
Next, based on the Chinchilla scaling law, we de-
fine multiple parameterizations for our P2 Law and
select the most suitable one in Section 4.2. Fi-
nally, in Section 4.3, we demonstrate the general-
ization ability of the P2 Law from three perspec-
tives: dataset size, model size, and pruning rate.

4.1 Metric for Accessing Law Fitting
Following prior work (Que et al., 2024), we uti-
lize both R2 (Fisher, 1922) and Huber loss (Hu-
ber, 1992) to evaluate different parameterizations
of scaling law. The R2 value, reflecting the pro-
portion of variance explained, trends toward 1 as
the fit becomes more robust. Huber loss, a robust
loss function, blends the characteristics of mean
squared error and mean absolute error, making it
less sensitive to outliers. The Huber loss is a pos-
itive number, and a lower Huber loss suggests a
better fit.

Scaling laws are often used to determine the
optimal amount of training data by balancing com-
putational cost and model performance. For in-
stance, as shown in Figure 5, there is one actual
loss curve and two predicted loss curves. Tradi-
tional metrics like R2 and Huber loss indicate that
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Figure 5: An example showcasing the advantages of
ASD. The ASD of predicted loss curve 2 is lower be-
cause its slope is closer to that of the actual loss curve.

predicted curve 1 better matches the actual curve.
However, the convergence trend predicted by curve
1 deviates significantly from the actual convergence
trend. While curve 1 predicts that the loss has flat-
tened, the actual loss continues to decrease. On the
other hand, while predicted curve 2 deviates more
from the actual curve in terms of absolute values,
its slope is consistently closer to the actual curve.
This makes its prediction of the flattening point
much more accurate. To address this issue, we pro-
pose a new metric called Average Slope Difference
(ASD), which measures the difference between the
slope of the loss curve predicted by the scaling
law and the slope of the actual loss curve. ASD is
formally defined as:

ASD =
1

N

N∑

i=2

|(yi − yi−1)− (ŷi − ŷi−1)| (8)

where yi represents the loss of N points uniformly
sampled from the actual loss curve as the number of
post-training tokens increases, and ŷi represents the
corresponding loss values on the curve predicted
by the scaling law. Since the early parts of the loss
curve during post-training do not represent true
convergence, we only sample points from the latter
half of the training process. A smaller ASD value
indicates that the predicted loss curve’s slope more
closely matches the slope of the actual loss curve.

4.2 Derivation of P2 Law

Previous efforts have explored scaling laws for pre-
training of LLMs, with Chinchilla scaling (Hoff-
mann et al., 2022) being a superior work, and we
choose it as the foundational parameterization for
our P2 Law. The Chinchilla scaling law describes
the relationship between model performance and
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LLM Parameterizations Depth pruning Width pruning 2:4 semi-structured pruning
R2 Huber loss ASD R2 Huber loss ASD R2 Huber loss ASD

Llama-3 series
L1 0.9717 0.000016 0.000619 -1.2985 0.000177 0.000592 0.8126 0.000056 0.001466
L2 0.9300 0.000045 0.001150 -2.5578 0.000450 0.001419 0.7797 0.000079 0.002294
L3 0.7737 0.000118 0.000827 -4.5905 0.000776 0.001754 -0.2555 0.000493 0.002054

Qwen-2.5 series
L1 0.9781 0.000011 0.000524 0.9891 0.000010 0.000648 0.9995 0.000000 0.000191
L2 0.9423 0.000031 0.000879 0.9803 0.000027 0.000712 0.9867 0.000010 0.000753
L3 0.8855 0.000075 0.001270 0.9824 0.000024 0.000733 0.9930 0.000005 0.000491

Table 2: Evaluation of three parameterizations for P2 Law fitting.
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Figure 6: Loss curves derived by P2 Law and the actual checkpoints of Llama-3 series models pruned by depth
pruning.

key factors such as model size, the number of pre-
training tokens, and the computational resources
used during the pre-training process. It is formally
defined as follows:

L(N,D) =
NC

Nα
+

DC

Dβ
+ E (9)

where NC , DC , E, α, and β are constants, N
represents the model size, D denotes the num-
ber of pre-training tokens and L represents the
model’s loss. Compared to the OpenAI scaling
law (Kaplan et al., 2020), the Chinchilla scaling
law demonstrates superior performance (detailed in
Appendix E). Therefore, we adopt the Chinchilla
scaling law as the foundational parameterization
for our P2 Law. Combining the pruning rate ρ and
the model’s loss L0 before pruning, we define the
following three candidate parameterizations:

L1(N0, D, ρ,L0) = L0 + (
1

ρ
)γ(

1

N0
)δ(

NC

Nα
0

+
DC

Dβ
+ E)

L2(N0, D, ρ,L0) = L0 + (
1

ρ
)γ(

NC

Nα
0

+
DC

Dβ
+ E)

L3(N0, D, ρ,L0) = L0 + (
1

ρ
)γ(

1

N0
)δ(

DC

Dβ
+ E)

where NC , DC , E, α, β, γ and δ are constants, N0

denotes the model size before pruning, D denotes
the number of post-training tokens and L1,L2,L3

denote the pruned model’s post-training loss. Ad-
ditionally, since there is no pruning rate in the 2:4

semi-structured pruning, P2 Law for the 2:4 semi-
structured pruning does not need to satisfy Condi-
tion 3. As a result, both the pruning rate and the
loss before pruning are omitted and we adjust the
parameterizations to:

L1(N0, D) = (
1

N0
)δ(

NC

Nα
0

+
DC

Dβ
+ E) (10)

L2(N0, D) = (
NC

Nα
0

+
DC

Dβ
+ E) (11)

L3(N0, D) = (
1

N0
)δ(

DC

Dβ
+ E) (12)

We utilize all checkpoints to fit the three
candidate parameterizations through Levenberg-
Marquardt method (Moré, 2006), and the specific
parameter values (i.e., the values of NC , DC , E,
α, β, γ, and δ) for the fitted L1, L2, and L3 are
provided in Table 5 in Appendix F. As shown in
Table 2, L1 significantly outperforms L2 and L3

in terms of the R2, Huber loss, and ASD metrics.
Additionally, as shown in Table 6 in Appendix F,
after our calculation and verification, L2 and some
fitted L3 fails to satisfy Condition 2. In contrast, all
of the fitted L1 satisfy all three conditions. Based
on the experimental results, we select L1 as the
parameterization for our P2 Law.

In Figure 6, we show the loss curves L1 derived
by P2 Law alongside the actual checkpoints of the
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LLM Generalization Depth pruning Width pruning 2:4 semi-structured pruning
R2 Huber loss ASD R2 Huber loss ASD R2 Huber loss ASD

Llama-3 series
Dataset size 0.9725 0.000016 0.001001 0.9270 0.000019 0.000674 0.8244 0.000063 0.002561
Model size -0.5441 0.000745 0.001321 - - - - - -
Pruning rate 0.9676 0.000059 0.000879 0.9707 0.000056 0.001123 - - -

Qwen-2.5 series
Dataset size 0.9780 0.000012 0.001026 0.9896 0.000010 0.001116 0.9940 0.000000 0.000299
Model size -0.8786 0.000763 0.001573 0.8627 0.000137 0.001772 - - -
Pruning rate 0.9660 0.000043 0.000920 0.9704 0.000095 0.001003 - - -

Table 3: Evaluation of generalization results from the perspectives of dataset size, model size, and pruning rate.
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(a) Loss curves fitted with the P2 Law
using the first 80% of checkpoints; the
remaining 20% are used for validation.
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(b) P2 Law is fitted using checkpoints
from smaller LLMs and used to predict
the loss curves of larger LLMs.
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(c) P2 Law is fitted using checkpoints
from smaller pruning rates and used to
predict the loss curves of larger ones.

Figure 7: Generalization of the P2 Law for Qwen-2.5 series models pruned by width pruning.

Llama-3 series models pruned by depth pruning,
where the compute (C) is approximated using the
empirical formula C = 6ND (Kaplan et al., 2020),
and N denotes the model size after pruning. Addi-
tional loss curve derived by P2 Law are shown in
Figure 13, 14, 15 and 16 in Appendix G. As shown
in these figures, the loss curve derived by P2 Law
accurately aligns with all actual checkpoints, under
all the three pruning methods, except for the width
pruning on Llama-3.1-8B. As shown in Figure 2c
and 8c, for Llama-3.1-8B, we observe that depth
pruning outperforms width pruning at similar prun-
ing rates, which contrasts with the observations
in other cases. This suggests that width pruning
on Llama-3.1-8B may lead to anomalous perfor-
mance, making our law unsuitable for this special
scenario. We elaborate on this anomalous perfor-
mance of width pruning on Llama-3.1-8B further
in Appendix H.

4.3 Generalization of P2 Law

In this section, we explore the generalization ability
of P2 Law from three perspectives: dataset size,
model size and pruning rate.

4.3.1 Settings
We begin by outlining the settings of generalization
experiments as follows:

Dataset Size. The fitting setting follows the same

setting as described in Section 4.2, with the only
difference being that the first 80% of the check-
points recorded during each training process are
used to fit the P2 Law, and the remaining 20% for
validation.

Model size. We fit the P2 Law using checkpoints
from smaller LLMs and validate it on checkpoints
from larger LLMs, while maintaining the pruning
rate during both fitting and prediction. Taking the
Qwen-2.5 series models as an example, we fit the
P2 Law using all checkpoints from Qwen-2.5-0.5B
and Qwen-2.5-1.5B, and subsequently validate it
with the actual checkpoints of Qwen-2.5-3B across
three pruning rates. Due to the limited number of
available actual loss curves for 2:4 semi-structured
pruning, we did not conduct experiments for this
pruning method.

Pruning Rate. We fit the P2 Law using check-
points from lower pruning rates and validate it us-
ing checkpoints from higher pruning rates, while
keeping the model size constant during both fitting
and prediction. Taking width pruning of the Qwen-
2.5 series models as an example, we fit the P2 Law
using checkpoints from these models at lower prun-
ing rates (0.15 and 0.25) and then validate it with
the actual checkpoints at a higher pruning rate of
0.35. Since there is no pruning rate in the 2:4 semi-
structured pruning, we only explore the generaliza-
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tion ability on pruning rates under depth pruning
and width pruning.

Due to the anomaly of width pruning on Llama-
3.1-8B (see Section 4.2), we exclude this model
from generalization experiments.

4.3.2 Experimental Results

Dataset Size Generalization. The evaluation re-
sults are shown in Table 3, and the loss curves of
Qwen-2.5-3B (pruned by width pruning) derived
by P2 Law are illustrated in Figure 7a. Additional
loss curves derived by P2 Law are provided in Fig-
ures 18, 19, 20, and 21 in Appendix I. The results
in Table 3 show that the loss curves derived by P2

Law accurately matches the validation checkpoints,
indicating that the P2 Law generalizes well to larger
dataset sizes.

Model Size Generalization. The evaluation re-
sults are presented in Table 3, and the loss curves
of Qwen-2.5-3B predicted by P2 Law (pruned by
width pruning) are visualized in Figure 7b. Addi-
tional loss curves predicted by P2 Law are shown
in Figure 23 in Appendix I. As shown in Table 3,
the P2 Law fitted on smaller LLMs performs poorly
in R2 and Huber loss when applied to larger mod-
els, indicating challenges in generalizing to larger,
unseen models. However, the low ASD suggests
it still captures the slope of the actual loss curve.
This trend is also seen in Figure 23, where despite
a gap between predicted and actual loss curves, the
predicted and actual loss curves align in their down-
ward trend after training stabilizes. This suggests
P2 Law fitted from smaller LLMs can still predict
the optimal computation cost point for larger LLMs,
confirming its generalization feasibility.

Pruning Rate Generalization. We present the
generalization evaluations in Table 3 and illustrate
the loss curves of Qwen-2.5 series models pre-
dicted by P2 Law (pruned by width pruning) in
Figure 7c. Additional loss curves predicted by
P2 Law are provided in Figure 24 and 25 in Ap-
pendix I. As shown in the Figure 7c and Table 3,
the values of different metrics indicate that the ac-
tual loss curves closely align with the predicted
loss curves, suggesting that the P2 Law generalizes
well to higher pruning rates.

5 Related Work

5.1 Model Pruning
Model pruning can be categorized into unstructured
pruning and structured pruning.

Unstructured Pruning. Unstructured pruning
methods (Frantar and Alistarh, 2023; Zhang et al.,
2024; Sun et al., 2024) compress LLMs by re-
moving individual unimportant elements from the
weight matrices, producing sparse ones. However,
it is often hardware-inefficient and only speeds up
LLMs when a specific sparsity pattern, such as 2:4
sparsity (Mishra et al., 2021), is applied. The ap-
proach which employ the 2:4 sparsity is known as
semi-structured pruning.

Structured Pruning. Structured pruning meth-
ods for LLMs can be divided into two categories:
depth pruning (Chen et al., 2024; Song et al., 2024;
Gromov et al., 2024; Men et al., 2024), which aims
to reduce the number of layers in the LLMs, and
width pruning (Ashkboos et al., 2024; Hu et al.,
2024; Liu et al., 2024; Ma et al., 2023), which aims
to reduce the embedding channels, the number of
attention heads, or the intermediate size of the FFN.

5.2 Scaling Law

The OpenAI scaling law (Kaplan et al., 2020) and
the Chinchilla scaling law (Hoffmann et al., 2022)
are the most popular scaling laws in the pre-training
of LLMs, both of which establishe a power-law
relationship between model performance, model
size, the number of pre-training tokens, and the
computational resources used during pre-training.

We are the first to investigate the scaling law
for the post-training after model pruning, and we
propose the P2 Law as a scaling law for this pro-
cess. Compared to the OpenAI scaling law, the
Chinchilla scaling law demonstrates superior per-
formance (detailed in Appendix E). Therefore, we
adopt the Chinchilla scaling law as the foundational
parameterization for our P2 Law.

6 Conclusion

In this paper, we conduct post-training experiments
on models from the Llama-3 and Qwen-2.5 series,
covering various sizes and employing both typical
structured and semi-structured pruning methods.
Through extensive experiments, we identify the P2

Law — the first scaling law for post-training after
model pruning. Further experiments validate the
effectiveness of the P2 Law and demonstrate its
generalization to larger dataset sizes, larger model
sizes, and higher pruning rates, offering valuable
insights for resource allocation in the post-training
of pruned LLMs.
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Limitation

Due to constraints in GPU resources, the exper-
iments conducted in this paper are restricted to
LLMs with fewer than 8B parameters. Given the
substantial increase in experimental costs for larger-
scale models—for instance, training a 70B LLM
with 1B tokens on 4 A800 GPUs would require ap-
proximately 1,000 hours—we intend to expand our
experiments to larger models as soon as sufficient
computational resources become available. This
will enable us to further validate the applicability
of the P2 Law across a broader range of model
parameter scales.
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A License

Our research is grounded in the SlimPajama train-
ing dataset, which is distributed under the Apache
2.0 license. This license allows for the free use,
modification, reproduction, and distribution of the
software, both for personal and commercial pur-
poses. Consistent with open science practices, we
will make our training data publicly available upon
acceptance of this work. The data will be released
under the CC BY-SA 4.0 license, which enables
reuse and redistribution, provided that derivative
works adhere to the same licensing terms

B Details of Pruning Methods

B.1 Depth Pruning

Following the existing depth pruning meth-
ods (Men et al., 2024; Chen et al., 2024; Yang
et al., 2024), we estimate the layer importance us-
ing cosine similarity and prune layers with lower
importance. Specifically, we randomly select N
samples from the pre-training data. We then record
the hidden states generated by the LLMs for these
samples and compute the cosine similarity between
the input and output hidden states of each layer.
Assuming that the input hidden states of layer i are
represented by x(i), the importance score (IS) of
layer i is computed as:

ISlayer,i =
1

N

N∑

j=1


 1

L

L∑

k=1

x
(i)
j,k · x

(i+1)
j,k

∥x(i)
j,k∥ · ∥x

(i+1)
j,k ∥




(13)

where x
(i)
j , x(i+1)

j ∈ Rd×L denotes the input and
output hidden states of the j-th sample respectively,
L denotes the sequence length and d denotes the
hidden size. Given the number of pruned layers n
determined by the target sparsity, we remove the
n layers corresponding to the top-n highest cosine
similarities for pruning.

B.2 Width Pruning

Following the approaches of Wanda (Sun et al.,
2024) and MINITRON (Muralidharan et al., 2024),
we utilize activation-based metrics for width prun-
ing. Specifically, we randomly select N samples
from the pre-training data and assess the impor-
tance of embedding channels by analyzing the ac-
tivations generated by the LayerNorm layers. We
then prune the least important channels based on

this analysis. The formula for calculating the im-
portance score (IS) of embedding channels (emb)
is as follows:

ISemb,i =
1

N

N∑

j=1

(
1

L

L∑

k=1

∣∣LN(xLN
j,k,i)

∣∣
)

(14)

where xLN
j,k,i denotes the input of the i-th channel of

the k-th token in the j-th sample at the LayerNorm
layer, L denotes the sequence length, and LN de-
notes the Layer Normalization operaten. Given a
specific sparsity, we calculate the number of em-
bedding channels that need to be pruned, and then
remove the channels with the lowest importance.

B.3 2:4 Semi-Structured Pruning
Unstructured pruning removes individual unimpor-
tant elements from the weight matrices, producing
sparse matrices. When the sparsity structure fol-
lows a specific pattern, such as 2:4 sparsity (Mishra
et al., 2021), the model can be efficiently acceler-
ated. This approach is known as semi-structured
pruning. Let W represent the weight matrix of
a linear layer of an LLM, x represent the input
of the linear layer. The object of semi-structured
pruning is to learn a sparsity mask M and an up-
dated weight ∆W so that the dense matrix W is
transformed into a sparse matrix W̃ :

min ∥Wx− W̃x∥
s.t. W̃ = M · (W +∆W ) (15)

where W ∈ Rdout×din , M ∈ {0, 1}dout×din ,
∆W ∈ Rdout×din and x ∈ Rdin .

We randomly select 1,024 data samples from
the pre-training dataset SlimPajama for pruning.
and use SparseGPT (Frantar and Alistarh, 2023) to
optimize the aforementioned objectives.

In the post-training process, We train this 2:4
sparse model pruned by SparseGPT. Inspired by
LoRS (Hu et al., 2025), during the post-training
process, we combine the updated weight ∆W̃ t

from each training iterate t with the mask M to
obtain the weight after update W̃ t, ensuring the
model’s sparsity:

W̃ t = W̃ t−1 +M ·∆W̃ t (16)

C Batch Size and Learning Rate Settings

Previous research indicates that the relationship
between batch size and the number of model pa-
rameters is very weak (McCandlish et al., 2018).
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Furthermore, OpenAI Scaling Law also utilize the
same batch size for models with varying parame-
ter counts. As a result, we apply a consistent and
commonly used batch size of 262k tokens across
models of different scales. Regarding the learning
rate, OpenAI suggests that the optimal learning rate
follows a logarithmic relationship with the size of
the model parameters (Kaplan et al., 2020). Based
on their provided formula, the optimal learning rate
for 8B models is calculated to be 2e-3, while for
0.5B models, it is 1.8e-3, indicating a minimal dif-
ference. Furthermore, our experiments reveal that
the optimal learning rate for post-training of mod-
els ranging from 0.5B to 8B is approximately 2e-5.
Therefore, we adopt a uniform learning rate across
models of different scales.

D Additional Actual Loss Curves

The additional post-training loss curves for models
pruned by width pruning or for the Qwen-2.5 series
models are provided in Figures 8, 9, 10 and 11.

E Comparison with OpenAI Scaling Law

Kaplan (Kaplan et al., 2020) propose OpenAI scal-
ing law as follows:

L(N,D) = (
NC

Nα
+

DC

D
)β (17)

where NC , Dc, α and β are constants, N denotes
the model size and D denotes the number of pre-
training tokens. We have also defined the following
parameterizations based on the OpenAI scaling
law:

L4(N0, D, ρ,L0) = L0 + (
1

ρ
)γ(

1

N0
)δ(

NC

Nα
0

+
DC

D
)β

(18)

L5(N0, D, ρ,L0) = L0 + (
1

ρ
)γ(

NC

Nα
0

+
DC

D
)β

(19)

where NC , DC , α, β, γ, δ denotes constants, N0

denotes the model size before pruning, D denotes
the number of post-training tokens, ρ denotes prun-
ing rate, L0 denotes the model’s loss before prun-
ing and L4,L5 denote pruned model’s post-training
loss.

We utilize all the checkpoints to fit the two pa-
rameterizations described above, and the evalua-
tion results are presented in Table 4. The results
show that the performance of these two parameter-
izations is weaker than that of L1. Therefore, we

adopt the Chinchilla scaling law as the foundational
parameterization for our P2 Law.

F Parameter Values of Fitted
Parameterizations

We present the parameter values of the fitted L1,
L2, and L3 in the Table 5. In addition, we calculate
whether L1, L2, and L3 satisfy Condition 2, and
the results are shown in the Table 6.

G Additional Loss Curves Derived by P2

Law

The additional loss curves derived by P2 Law are
shown in the Figure 13, 14, 15 and 16.

H Patterns of the Llama-3 Series Models
in Terms of Width

As discussed in Section 4.2, we observe an anoma-
lous phenomenon in Llama-3.1-8B under width
pruning. To investigate this further, we analyze
the behavior of the Llama-3 series models with re-
spect to width. Using a random sample of 1024
data points from SlimPajama and applying Eq.14,
we plot the importance score distributions of the
embedding channels for the Llama-3 series models,
as shown in Figure 17. For easier comparison, we
normalize the Importance score, which is defined
as follows:

ISemb,i =
ISemb,i −min(ISemb,1, ..., ISemb,Nd)

max(ISemb,1, ..., ISemb,Nd)

where the Nd denotes the number of embed-
ding channels. Additionally, we remove the ex-
tremely high values that represent a very small pro-
portion of the data. The figure shows that the im-
portance scores of Llama-3.1-8B are more densely
distributed compared to those of Llama-3.2-1B and
Llama-3.2-3B. This denser distribution may hin-
der the ability to effectively distinguish less im-
portant channels in Llama-3.1-8B based on impor-
tance scores, which could potentially explain the
observed anomalies in Llama-3.1-8B.

I Additional Generalization Loss Curves

We present the additional dataset size gen-
eralization predicted loss curves in the Fig-
ure 18, 19, 20, 21 and 22, model size generalization
predicted loss curves in the Figure 23 and pruning
rate generalization predicted loss curves in the Fig-
ure 24 and 25.
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(a) Post-training loss curves of Llama-
3.2-1B pruned by width pruning with
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(b) Post-training loss curves of Llama-
3.2-3B pruned by width pruning with
different pruning rates.
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(c) Post-training loss curves of Llama-
3.1-8B pruned by width pruning with
different pruning rates.

Figure 8: Post-training loss curves of Llama-3 series models pruned by width pruning with different pruning rates.
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(a) Post-training loss curves of Qwen-
2.5-0.5B pruned by depth pruning with
different pruning rates.
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(b) Post-training loss curves of Qwen-
2.5-1.5B pruned by depth pruning with
different pruning rates.
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(c) Post-training loss curves of Qwen-
2.5-3B pruned by depth pruning with
different pruning rates.

Figure 9: Post-training loss curves of Qwen-2.5 series models pruned by depth pruning with different pruning rates.
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(a) Post-training loss curves of Qwen-
2.5-0.5B pruned by width pruning with
different pruning rates.
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(b) Post-training loss curves of Qwen-
2.5-1.5B pruned by width pruning with
different pruning rates.
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(c) Post-training loss curves of Qwen-
2.5-3B pruned by width pruning with
different pruning rates.

Figure 10: Post-training loss curves of Qwen-2.5 series models pruned by width pruning with different pruning
rates.
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Figure 11: Post-training loss curves of Qwen-2.5
series models pruned by 2:4 semi-structured pruning.
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Figure 12: Post-training loss curves of Llama-3 se-
ries models pruned by 2:4 semi-structured pruning.
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LLM Parameterizations Depth pruning Width pruning 2:4 semi-structured pruning
R2 Huber loss ASD R2 Huber loss ASD R2 Huber loss ASD

Llama-3 series
L1 0.9717 0.000016 0.000619 -1.2985 0.000177 0.000592 0.8126 0.000056 0.001466
L4 0.9339 0.000035 0.001482 -1.3660 0.000203 0.000814 0.7157 0.000112 0.002117
L5 0.6535 0.000198 0.001822 -1.7948 0.000345 0.000729 -0.3809 0.000638 0.003687

Qwen-2.5 series
L1 0.9781 0.000011 0.000524 0.9891 0.000010 0.000648 0.9995 0.000000 0.000191
L4 0.7730 0.000192 0.004085 0.9838 0.000015 0.001126 0.9960 0.000002 0.000550
L5 0.8283 0.000134 0.002648 0.9694 0.000040 0.001007 0.8360 0.000118 0.003925

Table 4: Comparison of law fitting results between OpenAI scaling law and Chinchilla scaling law.

LLM Parameterizations Depth pruning Width pruning 2:4 semi-structured pruning
Nc Dc E α β γ δ Nc Dc E α β γ δ Nc Dc E α β δ

Llama-3 series
L1 0.02 5.94 0.14 -1.57 0.23 -1.08 0.29 0.05 5.86 -2.52 -1.68 0.08 -0.97 0.38 38.26 0.87 2.49 26.53 0.37 0.05
L2 0.64 7.99 0.73 2.45 0.47 -1.08 - 0.00 3.53 0.20 -21.89 0.25 -0.97 - 0.53 0.89 2.19 0.92 0.41 -
L3 - 5.93 0.54 - 0.30 -1.06 0.15 - 3.87 0.53 - 0.34 -0.98 -0.05 - 0.80 2.5 - 0.22 0.07

Qwen-2.5 series
L1 0.01 4.32 0.20 -3.73 0.21 -1.17 0.22 -0.58 7.01 -1.89 0.38 0.10 -1.28 0.16 1.85 0.93 0.32 -0.12 0.10 0.17
L2 0.02 4.78 0.62 4.08 0.32 -1.17 - -0.01 5.84 -0.65 -1.58 0.18 -1.28 - 1.52 0.75 0.92 0.15 0.18 -
L3 - 4.77 0.87 - 0.36 -1.15 0.16 - 5.95 -0.91 - 0.16 -1.28 0.02 - 0.76 2.41 - 0.16 0.09

Table 5: Parameter values of fitted parameterizations for P2 Law fitting.

LLM Parameterizations Depth pruning Width pruning 2:4 semi-structured pruning

Llama-3 series
L1 ✓ ✓ ✓
L2 × × ×
L3 ✓ × ✓

Qwen-2.5 series
L1 ✓ ✓ ✓
L2 × × ×
L3 ✓ ✓ ✓

Table 6: Compliance of L1, L2, and L3 with Condition 2.
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Figure 13: Loss curves derived by P2 Law and the actual checkpoints of Llama-3 series models pruned by width
pruning.
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Figure 14: Loss curves derived by P2 Law and the actual checkpoints of Qwen-2.5 series models pruned by depth
pruning.
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Figure 15: Loss curves derived by P2 Law and the actual checkpoints of Qwen-2.5 series models pruned by width
pruning.
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Figure 16: Loss curves derived by P2 Law and the actual checkpoints of Llama-3 seires and Qwen-2.5 series models
pruned by 2:4 semi-structured pruning.
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Figure 17: Histogram of the normalized importance scores for the embedding channels of Llama-3 series models.
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Figure 18: Generalization of the P2 Law for Llama-3 series models pruned by depth pruning on dataset size.
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(a) Loss curves fitted with the P2 Law using the first 80%
of checkpoints; the remaining 20% are used for validation.
(Llama-3.2-1B pruned by width pruning)
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(b) Loss curves fitted with the P2 Law using the first 80%
of checkpoints; the remaining 20% are used for validation.
(Llama-3.2-3B pruned by width pruning)

Figure 19: Generalization of the P2 Law for Llama-3 series models pruned by width pruning on dataset size.
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(a) Loss curves fitted with the P2 Law
using the first 80% of checkpoints; the
remaining 20% are used for validation.
(Qwen-2.5-0.5B pruned by depth prun-
ing)
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(b) Loss curves fitted with the P2 Law
using the first 80% of checkpoints; the
remaining 20% are used for validation.
(Qwen-2.5-1.5B pruned by depth prun-
ing)
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(c) Loss curves fitted with the P2 Law
using the first 80% of checkpoints; the
remaining 20% are used for validation.
(Qwen-2.5-3B pruned by depth prun-
ing)

Figure 20: Generalization of the P2 Law for Qwen-2.5 series models pruned by depth pruning on dataset size.
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(a) Loss curves fitted with the P2 Law
using the first 80% of checkpoints; the
remaining 20% are used for validation.
(Qwen-2.5-0.5B pruned by width prun-
ing)
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(b) Loss curves fitted with the P2 Law
using the first 80% of checkpoints; the
remaining 20% are used for validation.
(Qwen-2.5-1.5B pruned by width prun-
ing)
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(c) Loss curves fitted with the P2 Law
using the first 80% of checkpoints; the
remaining 20% are used for validation.
(Qwen-2.5-3B pruned by width prun-
ing)

Figure 21: Generalization of the P2 Law for Qwen-2.5 series models pruned by width pruning on dataset size.
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(a) Loss curves fitted with the P2 Law using the first 80%
of checkpoints; the remaining 20% are used for validation.
(Llama-3 series models pruned by 2:4 semi-structured
pruning)
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(b) Loss curves fitted with the P2 Law using the first 80%
of checkpoints; the remaining 20% are used for validation.
(Qwen-2.5 series models pruned by 2:4 semi-structured
pruning)

Figure 22: Generalization of the P2 Law for models pruned by 2:4 semi-structured pruning on dataset size.
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(a) P2 Law is fitted using checkpoints
from smaller LLMs and used to pre-
dict the loss curves of larger LLMs.
(Llama-3 series models pruned by
depth pruning)
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(b) P2 Law is fitted using checkpoints
from smaller LLMs and used to pre-
dict the loss curves of larger LLMs.
(Qwen-2.5 series models pruned by
depth pruning)
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(c) P2 Law is fitted using checkpoints
from smaller LLMs and used to pre-
dict the loss curves of larger LLMs.
(Qwen-2.5 series models pruned by
width pruning)

Figure 23: Generalization of the P2 Law on model size.

5685



103 104

Compute

2.5

2.8

3.0

3.2

3.5

Va
lid

at
io

n 
lo

ss

Predicted Llama-3.2-1B-0.30-pruning_rate
Predicted Llama-3.2-3B-0.34-pruning_rate
Predicted Llama-3.1-8B-0.33-pruning_rate
Actual loss curve

(a) P2 Law is fitted using checkpoints from smaller prun-
ing rates and used to predict the loss curves of larger ones.
(Llama-3 series models pruned by depth pruning)
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(b) P2 Law is fitted using checkpoints from smaller prun-
ing rates and used to predict the loss curves of larger ones.
(Llama-3 series models pruned by width pruning)

Figure 24: Generalization of the P2 Law for Llama-3 series models on pruning rate.
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(a) P2 Law is fitted using checkpoints from smaller prun-
ing rates and used to predict the loss curves of larger ones.
(Qwen-2.5 series models pruned by depth pruning)
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(b) P2 Law is fitted using checkpoints from smaller prun-
ing rates and used to predict the loss curves of larger ones.
(Qwen-2.5 series models pruned by width pruning)

Figure 25: Generalization of the P2 Law for Qwen-2.5 series models on pruning rate.
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