
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 5005–5018
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Demons in the Detail: On Implementing Load Balancing Loss for Training
Specialized Mixture-of-Expert Models

Zihan Qiu∗1, Zeyu Huang∗2, Bo Zheng∗1, Kaiyue Wen3, Zekun Wang1, Rui Men1

Ivan Titov2, Dayiheng Liu1, Jingren Zhou1, Junyang Lin1

1 Qwen Team, Alibaba Group 2 University of Edinburgh 3 Stanford University

Abstract

This paper revisits the implementation of Load-
balancing Loss (LBL) when training Mixture-
of-Experts (MoEs) models. Specifically, LBL
for MoEs is defined as NE

∑NE

i=1 fiPi, where
NE is the total number of experts, fi represents
the frequency of expert i being selected, and pi
denotes the average gating score of the expert i.
Existing MoE training frameworks usually em-
ploy the parallel training strategy so that fi and
the LBL are calculated within a micro-batch
and averaged across parallel groups. However,
a micro-batch for training billion-scale LLMs
typically contains very few sequences, leading
to the micro-batch LBL being almost at the
sequence level, and the router is pushed to dis-
tribute the token evenly within each sequence.
Under this strict constraint, even tokens from a
domain-specific sequence (e.g., code) are uni-
formly routed to all experts, thereby inhibiting
expert specialization. In this work, we propose
calculating LBL using a global-batch to loose
this constraint. Because a global-batch contains
much more diverse sequences than a micro-
batch, which will encourage load balance at
the corpus level. Specifically, we introduce
an extra communication step to synchronize fi
across micro-batches and then use it to calcu-
late the LBL. Through experiments on training
MoEs-based LLMs (up to 42.8B parameters
and 400B tokens), we surprisingly find that the
global-batch LBL strategy yields excellent per-
formance gains in both pre-training perplexity
and downstream tasks. Our analysis reveals
that the global-batch LBL greatly improves
the domain specialization of experts. Global-
batch LBL is also used in Qwen3-MoEs.

1 Introduction

In recent years, the Mixture-of-Experts (MoE)
framework (Szymanski and Lemmon, 1993;
Shazeer et al., 2017) has become a popular tech-
nique to scale the model parameters up (Jiang et al.,
2024; Dai et al., 2024; Liu et al., 2024a; Yang et al.,

2024). For instance, Mixtral (Jiang et al., 2024)
(141B), Deepseek-v3 (Liu et al., 2024a) (671B),
MiniMax-01 (Li et al., 2025) (456B), Qwen3 (Yang
et al., 2025) (235B) reach a scale of hundreds of
billion parameters while maintaining affordable
training and inference efficiency. Typically, MoE
comprises a router network and a group of expert
modules. Given a set of inputs, the router dis-
tributes each input to its corresponding experts con-
ditionally and sparsely. Then, the outputs from
experts are aggregated based on the score that the
router assigned to the expert.

One critical factor for training MoE-based mod-
els is encouraging the router to assign input to ex-
perts in a balanced manner (Fedus et al., 2022;
Zoph et al., 2022; Qiu et al., 2024a). The reasons
are twofold: (1) effectiveness: if the router continu-
ally prioritizes some experts during training, these
experts will get more updates than others and will
soon dominate that MoE layer, finally resulting in
parameter redundancy issue (Shazeer et al., 2017;
Wang et al., 2024); (2) efficiency: training and de-
ploying large-scale MoE-based models often re-
quires the Expert Parallel, where different experts
will be in different parallel groups to process their
inputs. Then, their outputs will be gathered and
aggregated. In this case, the imbalanced expert uti-
lization would heavily slow the forward process. In
light of these two points, previous works training
MoEs generally employ an auxiliary loss, called
Load-balancing Loss (LBL), to encourage the bal-
anced routing decision (Shazeer et al., 2017).

Nevertheless, in most open-source MoE
training frameworks like Deepspeed-MoE (Liu
et al., 2024a), Tutel (Hwang et al., 2023),
Megablocks (Gale et al., 2023) and Megatron-
Core (Shoeybi et al., 2019), the LBL is calculated
at the micro-batch level, which, as we will soon
empirically demonstrate, negatively affects the per-
formance and expert specialization of MoE-based
LLMs. Specifically, during large-scale MoE train-

5005

(a) Ablation of Balance Scope (b) Expert Frequency for Micro-Batch Balance (Left) and Global-Batch Balance (Right)

Figure 1: The impact of the balance batch on different methods (a) and expert specialization (b). (a) When only micro-batch
level load balance is used, both methods based on LBL and auxiliary loss free approaches perform significantly worse than
global-batch balance. (b) When only micro-batch balance is used, there is no significant difference in the selection frequency of
different domain data, and the selection frequency of different experts within the same domain is essentially the same. With
global-batch balance, there is a noticeable difference in the selection frequency of experts on different domain data, and within
the same domain, there are experts with high selection frequency (marked in blue).

ing, each micro-batch usually contains only up to
thousands of tokens and, thus, only a handful of se-
quences. Therefore, the micro-batch LBL is almost
calculated at the sequence level. Suppose a micro-
batch contains some domain-specific sequences (i.e.
code and math), the micro-batch LBL still pushes
routers to distribute these domain-specific tokens
to all experts evenly, introducing an overly strict
constraint and may hurt the model performance.

In this work, we propose calculating the LBL at
the global-batch level by synchronizing the expert
selection frequency across all parallel groups and
then computing the LBL. According to the Fig. 1
(a), the global-batch LBL significantly enhances
model performance (approximately 0.1 in pre-
training PPL and 2 in benchmark scores). Fig. 1
(b) showcases that the domain specialization only
clearly emerges when trained with the global-batch
LBL. Despite the improved performance and en-
hanced specialization, we also demonstrate that the
model performance effectively increases with the
global batch size (Section 4.2). Our further ablation
studies verify that introducing more diverse train-
ing tokens instead of more training tokens is the
main contributor to performance gains (Section 5).
Besides, because the expert selection frequency
is just an expert-number-dimensional vector, our
method introduces less than 3% latency under ap-
propriate configurations and achieves more perfor-
mant and interpretable models.

In summary, we investigate the challenges as-
sociated with the LBL in training MoEs. By in-
troducing global-batch LBL, we achieve improved
performance and foster expert specialization. This

advancement addresses an essential limitation in
existing MoE training, offering a novel perspective
for MoE optimization. Notably, this method has
been applied in training the Qwen3-MoE models,
enabling the released MoE models to exhibit clear
domain specialization characteristics.

2 Preliminary

2.1 Mixture-of-Experts
MoEs consist of several parallel modules (the ‘ex-
perts’) and a router that assigns weights to each
expert for a given input. (Szymanski and Lem-
mon, 1993; Shazeer et al., 2017). Combined with
the transformer layer (Vaswani, 2017), the most
common approach is to introduce a set of paral-
lel feed-forward networks (FFN). Suppose there
are NE experts, denoted as Ei, i ∈ [1, NE]. The
router g followed by a softmax function maps the
input x to a score distribution over the experts,
softmax(g(x)) ∈ RNE . Typically, for each input,
only topK experts with the highest scores are acti-
vated and used. Given x ∈ Rh, the output y ∈ Rh

is the weighted sum of the outputs from all experts:

y =
∑

i∈NE , gi∈topK(g(x))

gi(x)Ei(x) (1)

2.2 Load-balancing Loss
The Load-balancing Loss (LBL) in training MoE
models is a regularization technique that encour-
ages balanced expert utilization (Fedus et al., 2022).
Without the LBL, the model tends to concentrate
its updates on a limited subset of experts, lead-
ing to a severe imbalance in expert utilization. To

5006

address this issue, LBL penalizes the router if it
routes excessive tokens to a few particular experts.
To compute LBL for a batch of tokens, we con-
sider the fraction of tokens fi routed to each expert
Ei and the total routing probability Pi allocated to
the expert Ei. The LBL is calculated as the sum
of the product of fi and Pi across all experts NE ,
normalized by the number of experts:

LBL = NE

NE∑

i=1

fi · Pi. (2)

By minimizing the load-balancing loss, the model
is encouraged to distribute the considered tokens
more evenly among the experts, ensuring that each
expert receives a fair share of updates during train-
ing. This helps maintain a balanced utilization of
experts and prevents the entire model from collaps-
ing into only activating just a few experts.

However, when employing data parallelism and
model parallelism strategies, each parallel group
(e.g., one GPU) only contains data from very lim-
ited domains. Existing MoE frameworks (Shoeybi
et al., 2019; Gale et al., 2023) only utilize the in-
formation of Pi and Fi within every single parallel
group to calculate LBLs and then average them:

LBLmicro =
1

NP

Np∑

j=1

(NE

NE∑

i=1

f j
i · P j

i), (3)

where NP is the number of parallel groups and
f j
i , P

j
i are the frequency and probability in parallel

state j. This loss requires the model to achieve
load balance within each parallel group, thus we
call it LBLmicro. However, supposing one parallel
group (one micro-batch) contains data from spe-
cific domains, the router is still pushed to distribute
inputs uniformly to all experts, thereby preventing
specialization. This situation is even more common
regarding LLMs pretraining. Because to control the
training data distribution, one micro-batch is usu-
ally packed with sequences from one specific do-
main, and a global-batch consists of micro-batches
sampled from different domains according to par-
ticular data recipes (Ding et al., 2024; Yang et al.,
2024). So the micro-batch balancing will hinder
the MoE model from allocating data from specific
domains to specific experts, which also partially ex-
plains why most MoE models only observe token-
level expert routing patterns rather than expert-level
selections. (Jiang et al., 2024; Xue et al., 2024).

3 Method

This section introduces how to turn the micro-batch
LBL into global-batch LBL by allowing different
parallel groups to synchronize their expert select
frequencies. We then discuss the scenario in which
the number of compute nodes is limited and the
sum of micro-batches is smaller than the global
batch size. In such cases, we propose using a buffer
to store the synchronized expert select counts at
each gradient accumulation (GA) step to approxi-
mate the global batch LBL.

Synchronizing expert selection frequency across
parallel groups. Thanks to the format of the
LBL in Eq.3, we can synchronize fi across parallel
groups to get f̄i for the global batch. This allows
the global averaged LBL to be equivalent to the
LBL computed from statistics in the global-batch:

LBLglobal = NE

NE∑

i=1

f̄i · P̄i (4)

= NE

NE∑

i=1

f̄i · (
1

NP

Np∑

j=1

P j
i) (5)

=
1

NP

Np∑

j=1

(NE

NE∑

i=1

f̄i · P j
i) (6)

Communicating fi ∈ RNE avoids directly trans-
mitting the token-expert selection matrix and the
expert selection scores (with a shape of tokens num-
bers × experts numbers).

Using a buffer to approximate the Global-Batch
LBL. When training LLMs, the global-batch size
is often up to 103. When each micro-batch size is
less than 101, due to the limited number of compute
nodes, the sum of all micro-batch sizes is smaller
than the global-batch size, thus gradient accumula-
tion (GA) is often used. Therefore, we introduce
a buffer to store synchronized ci, the expert i’s
selection count across micro-batches in one GA
step. Then, the information in the buffer is used to
calculate the current fi at each GA step. After com-
pleting the GA, the buffer is reset. The complete
algorithm is shown in the Alg. 1 in the App. A.2 .
Through this accumulation process, fi approaches
f̄i with gradient accumulation steps, approximating
LBLglobal with limited compute nodes.

5007

Table 1: Performance of different balance methods and Balance BSZ. ‘LBL’ refers to using LBL, and Aux Free refers to the
auxiliary loss free method (Wang et al., 2024). ‘LBL+sync’ means synchronizing expert selection frequency across parallel
groups in 3. ‘LBL+sync+buffer’ means further using a buffer to expand the Balance BSZ in 3.

Balance Method Balance BSZ Hellaswag MMLU GSM8k C-eval Avg PPL

MoE-3.4A0.6B (Train 120B Tokens, Global Batch Size 512)

LBL 4 62.81 41.63 13.57 41.87 8.167
LBL+sync 32 63.58 42.08 15.01 41.58 8.062
LBL+sync 512 63.75 43.48 15.31 44.95 8.038
Aux Free 4 61.99 41.30 12.43 43.53 8.521
Aux Free 512 63.51 42.74 14.18 45.03 8.080

MoE-3.4A0.6B (Train 400B Tokens, Global Batch Size 1024)

LBL 4 67.21 48.97 21.30 49.02 7.347
LBL+sync 128 68.08 49.02 28.81 49.12 7.214
LBL+sync 512 68.32 49.84 25.40 51.59 7.198

LBL+sync+buffer 128 68.18 49.59 24.94 50.37 7.199

MoE-15A2.54B (Train 400B Tokens, Global Batch Size 1024)

LBL 16 75.69 59.99 48.07 64.38 5.778
LBL+sync 512 76.96 60.78 54.28 64.31 5.603

MoE-43A6.6B (Train 120B Tokens, Global Batch Size 512)

LBL 8 75.2 54.98 42.08 57.06 5.862
LBL+sync+buffer 128 75.94 57.30 46.32 57.98 5.779

4 Experiments

4.1 Experimental Setups

Model Architecture and Training Settings We
conduct experiments on three sizes of MoE mod-
els: (1) 3.4B total parameters with 0.6B activated
(3.4A0.6B); (2) 15B parameters with 2.54B acti-
vated (15A2.54B), and (3) 43B parameters with
6.6B activated (43A6.6B). Each model utilizes the
fine-grained expert (Dai et al., 2024) and shared
experts (Rajbhandari et al., 2022; Dai et al., 2024)
methods. Specifically, the 3.4A0.6B model em-
ploys 64 experts with top4 activated and 4 shared
experts, while the 15A2.54B and 43A6.6B models
use a setting of 160 experts with top4 activated and
4 shared experts. All models default to using soft-
max gating and z-loss. The auxiliary loss weights
follow previous works (Zoph et al., 2022). To avoid
the impact of token drop for different methods, we
use the dropless routing strategy (Gale et al., 2023).
In the 3.4A0.6B setting, we also implement the aux-
iliary loss free (with sigmoid gating) method (Wang
et al., 2024). We train the models on 120B and
400B high-quality tokens, encompassing multilin-
gual, math, and general knowledge content. A
sequence length of 4096 is used, with global-batch
sizes of 512 and 1024 for the 120B and 400B train-
ing settings, respectively, comprising 60k and 100k
training steps. We use the term Balance BSZ to
indicate the number of tokens considered when
calculating the expert selection frequency.

Evaluation We mainly test the zero-shot capabil-
ities on four popular benchmarks, including En-

glish, Hellaswag (Zellers et al., 2019), general
knowledge MMLU (Hendrycks et al., 2020), math
GSM8k (Cobbe et al., 2021), and Chinese profi-
ciency C-eval (Huang et al., 2024). Given that
benchmarks that are evaluated with accuracy have
certain random factors, for more detailed analysis,
we mainly refer to the PPL on held-out test sets,
which include SFT-EN, EN-Literature, SFT-Code,
SFT-Math, SFT-ZH, ZH-Law, ZH-Literature, and
SFT-Other from different domains.

4.2 Main Results

Global load balance boosts model performance.
In this section, we compare the performance of
using micro-batch and global-batch loss. The
3.4A0.6B models are trained only with data paral-
lelism and a micro-batch size 4. If fi is synchro-
nized among the 8 GPUs on the same node, the
Balance BSZ is 32. When training with 16 nodes
and synchronizing across data parallel groups, the
Balance BSZ can reach 512. From the first part
of Tab. 1, it can be seen that as the Balance BSZ
increases, all metrics consistently improve. For the
aux-free method, we also compare the results under
micro-batch and global-batch conditions and find
the latter is much more better. For the 3.4A0.6B
model trained on 400B tokens, we compare the re-
sults when the Balance BSZ could only reach 128
due to the limited compute nodes with the results
of using a buffer to approximate the global-batch.
The latter’s performance is closer to the results
with a Balance BSZ of 512 and significantly better
than 128, proving that introducing a buffer can ap-

5008

proximate the global-batch when nodes are limited.
As training the 15A2.54B and 43A6.6B models
requires using model parallelism strategies, we em-
ploy expert parallelism for both models, allowing
a micro-batch size of 2 and 1 per GPU, respec-
tively. We compared the results of synchronizing
fi within the same machine and across all data par-
allel groups, as shown in the last two parts of Tab. 1.
It is evident that increasing the Balance BSZ also
significantly improves larger models.

Global load balance encourages expert special-
ization. We further analyse the selection fre-
quency of each layer’s experts across different do-
mains using held-out PPL test sets. Specifically,
we record the selection frequency for each expert
for each domain. In Fig. 1, we compare the ex-
pert selection distributions under SFT-Code, SFT-
Math, and EN-Literature for models trained with
micro-batch balance and global-batch balance. It
can be observed that (1) with micro-batch balance,
most of the selection frequency is the same un-
der EN-Literature, and only a few experts have
slightly higher frequencies under SFT-Code and
SFT-Math, yet none exceed 0.15. This aligns with
existing analysis about MoE specialization: mod-
els using default LBL hardly exhibit domain-level
specialization and only show token-level specializa-
tion (Jiang et al., 2024; Xue et al., 2024). (2) In con-
trast, with global-batch balance, more pronounced
high-frequency experts emerge, with many experts
in SFT-Math having frequencies exceeding 0.2.
This confirms that global-batch balance is more
conducive to domain specialization.

0 100 200 300 400 500
LBL Batch Size

7.200

7.225

7.250

7.275

7.300

7.325

7.350

7.375

PP
L

(128, 7.199)

(2, 7.383)

(4, 7.347)

(8, 7.266)
(32, 7.257)

(128, 7.214)
(256, 7.208)

(512, 7.198)Using buffer

(2, 7.276)

From top4 to top6 brings 0.107 PPL improvement

PPL for different batch size
LBL Batch 128 + Buffer
From top4 to top6

Figure 2: The performance of MoE-3.4A0.6B trained on
400B tokens with different Balance BSZ.

Model performance increases with Balance BSZ.
To further illustrate the impact of Balance BSZ,
we control the micro-batch size, synchronization

scope, and number of devices in training the
3.4A0.6B model on 400B tokens, and plot the test
PPL from a Balance BSZ of 2 (micro-batch size
2, without any synchronization for expert selec-
tion frequency) to 512 as shown in Fig. 2. As the
Balance BSZ increases, the test PPL consistently
decreases, with an overall decrease of 0.185 from
2 to 512. It is also noticeable that the improvement
rate slows down after increasing to 128, and the
result of adding the buffer is very close to that of
512. This indicates that synchronization and buffer
mechanisms can bring significant improvements
compared to micro-batch in MoE training across
various computing node scales. Additionally, we
supplement experiments by increasing the activa-
tion from top4 experts to top6 experts under the
micro-batch condition and found that the improve-
ment brought by a 50% increase in activated expert
FLOPs is even less than the improvement from
increasing the Balance BSZ from 2 to 8. Further-
more, expanding the Balance BSZ is efficient since
the additional overhead from synchronization and
buffer is much less than that from increasing the
number of activated experts and FLOPs.

5 Analysis

Table 2: Ablation of the number of tokens and distributional
bias for computing LBL on MoE-3.4A0.6B .

LBL type Hellaswag MMLU Avg PPL

120B Tokens, Global Batch Size 512, Micro Batch Size 4

Micro 62.81 41.63 8.167
Global 63.75 43.48 8.038
Shuffle 63.57 43.37 8.041

400B Tokens, Global Batch Size 1024, Micro Batch Size 2

Micro 67.22 48.77 7.383
Global 68.32 49.84 7.198
Shuffle 68.43 49.68 7.214

Ablation Study on Token Numbers and Token
Distributional Bias As aforementioned, one pos-
sible factor for global-batch LBL to outperform
micro-batch LBL is that the latter pushes the router
to achieve sequence-level balanced expert utiliza-
tion, which may be overly stringent. However,
another naive assumption is that the LBLglobal in-
volves more tokens to estimate the expert selection
frequency, thus reducing the variance and ame-
liorating the MoE training. To verify, we intro-
duce an ablation setting: Shuffle LBLmicro. Specifi-
cally, when calculating LBL, we first synchronize
the token-expert score matrix G (with a shape of
number of tokens × number of experts), where
Gij = 1 if the token i selects the expert j, other-

5009

0.0 0.2 0.4 0.6 0.8 1.0
Steps (total 100k) 1e5

1.00

1.02

1.04

1.06

1.08

Lo
ad

 B
al

an
ce

 L
os

s

2 to 512 10k
2 to 512 30k
2 to 512 50k

512 to 2 50k
Balance Batch 2
Balance Batch 512

0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00
Steps (total 100k) 1e5

0.998

1.000

1.002

1.004

1.006

1.008

Lo
ad

 B
al

an
ce

 L
os

s

2 to 512 10k
2 to 512 30k
2 to 512 50k

512 to 2 50k
Balance Batch 2
Balance Batch 512

Figure 3: The LBL curve for MoE-3.4A0.6B trained on 400B
tokens under different Balance BSZ, with a zoom-in of the
last 15k steps shown below.

wise Gij = 0. Then, we randomly select a batch of
tokens (without replacing) to calculate the expert
selection frequency, where the batch size is equal
to the micro-batch size. In this setting, the random
batch has the same token numbers as the micro-
batch and identical token distribution as the global-
batch, enabling us to tell the difference between
these two confounders. The results are shown in
the Tab. 2. We observe that the Shuffle LBLmicro
achieves similar results as LBLglobal, and outper-
forms the LBLmicro, verifying the motivation of our
paper and the assumption about the improvement.

LBLglobal is a looser constraint than LBLmicro.
Intuitively, global-batch balance is a looser con-
straint than micro-batch balance: the former only
requires that tokens be evenly distributed glob-
ally, while the latter demands uniform distribution
within each micro-batch. In Fig. 3, we show the
loss curves of the two methods using the same load
balance weight for MoE-3.4A0.6B trained on 400B.
Additionally, we add the results of switching from
micro-batch balance to global-batch balance at 10k,
30k, and 50k training steps. It can be observed
that (1) after switching to global-batch balance, the
LBL rapidly decreases to a range close to that when
the global-batch balance is used from scratch, and
the final convergence trend is also similar. This
is because transitioning from a tighter constraint
(balance within a micro-batch) to a looser one (bal-
ance within a global-batch) is relatively easy. (2)
Moreover, if global batch balance is switched to
micro-batch balance at the 50k step, the originally
converged load balance first rises to a much higher

0.0 0.2 0.4 0.6 0.8 1.0
Steps (total 100k) 1e5

2.0

2.2

2.4

2.6

2.8

3.0

La
ng

ua
ge

 M
od

el
in

g
Lo

ss

2 to 512 10k
2 to 512 30k
2 to 512 50k

512 to 2 50k
Balance Batch 2
Balance Batch 512

0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00
Steps (total 100k) 1e5

2.02

2.03

2.04

2.05

2.06

2.07

2.08

2.09

2.10

La
ng

ua
ge

 M
od

el
in

g
Lo

ss

Figure 4: The language modeling loss curve for MoE-
3.4A0.6B corresponding to Fig. 3

range, then slowly decreases, and the final conver-
gence loss is still higher than that of micro-batch
balance used from scratch. This indicates that tran-
sitioning from a looser constraint to a tighter one
can significantly alter the convergence state.
Table 3: The impact of changing the Balance BSZ during
training on the final results. Step indicates the step at which
the Balance BSZ is switched.

Balance BSZ Step (/100k) PPL

2 - 7.383
2→512 50k 7.322
2→512 30k 7.297
2→512 10k 7.283

512 - 7.199
512→2 50k 7.373

In Fig. 4, we present the language modeling loss
curves. The corresponding test PPL is in Tab. 3. It
can be observed that (1) the loss of global-batch
balance is over 0.02 lower than that of micro-batch
balance, corresponding to the large performance
gap between the two as shown in Tab. 3. (2) Switch-
ing from micro-batch to global-batch balance re-
sults in performance improvements, with earlier
switches yielding better outcomes. However, even
the switch at the 10k step is inferior to training
with global-batch balance from scratch. This aligns
with existing findings that router choices tend to
become fixed early in training (Xue et al., 2024;
Muennighoff et al., 2024b): although increasing the
Balance BSZ at any training stage can bring bene-
fits, the router trained with micro-batch balance has
already saturated very early, thus the gains from
switching during training are limited. (3) Switching
from global-batch to micro-batch balance degrades
performance.

5010

Table 4: Results for different load balance weight.

Balance BSZ LBL weight Hellaswag MMLU Avg PPL

4 0.008 62.81 41.63 8.167
4 0.004 62.95 42.13 8.154
4 0.001 62.97 41.71 8.159

512 0.008 63.75 43.48 8.038

Since micro-batch balance is a tighter constraint
than global-batch balance, we further test reducing
the load balance weight of micro-batch balance in
Tab 4. It can be observed that appropriately re-
ducing the LBL weight can slightly improve the
model’s performance, but too small LBL weight
leads to worse results. This may be due to the
overly imbalanced distribution affecting expert uti-
lization. Moreover, the performance of micro-batch
balance under various LBL weights is inferior to
that of global-batch balance, further highlighting
the differences between the two balancing methods.

Table 5: Performance and speed (seconds per iteration)
in 43A6.6B setting. ‘128+buffer & 8’ means adding
micro-batch balancing loss with Balance BSZ 8.

Balance BSZ Hellaswag MMLU Avg PPL Speed/s

8 75.20 54.98 5.862 1.55
128+buffer 75.94 57.30 5.779 1.64

128+buffer & 8 75.87 57.00 5.795 1.59

The training efficiency of global-batch balance.
Because a dropless strategy is employed, the
FLOPs calculation is identical across different
methods. However, due to differences in local
balance conditions, methods using global-batch
balance may experience local computational imbal-
ance. To address this, we recorded the speed and
results of micro-batch balance and global-batch bal-
ance during the training of the 43A6.6B model in
Tab. 5. (1) It can be seen that the speed using global-
batch balance (1.64 s/iteration) is 5.8% slower than
micro-batch balance (1.55 s/iteration). Further anal-
ysis revealed that about 1% of this slowdown is due
to communication overhead within all data parallel
groups, the remain is due to local expert load im-
balance under the dropless strategy. Drawing inspi-
ration from sequence-level LBL, we introduced a
very low-weighted (1% of the global-batch weight)
micro-batch balancing loss into the global-batch
balance at the 20k step and continued training the
model. We found that (2) adding a small amount
of micro-batch balancing loss increased the speed
to 1.59 s/iteration (2.6% slower than the baseline)
with only a minimal decrease in performance. It
should be noted that since the computation of LBL
is independent from other parts of the network and

takes very little time, it can be overlapped to further
reduce the efficiency gap to within 2%.

Global batch balance brings interpretable spe-
cialization. We further analyze the specialization
of models using global-batch balance. In Fig. 5
(a), we record the scores assigned to each expert
by tokens across different domains and calculate
the average of the topK score sums. When all ex-
perts are assigned identity scores, the topK sum
is illustrated by the uniform baseline (gray dashed
line). We can observe: (1) Models using global-
batch balance have a higher topK sum. Since the
LBL and z-loss in MoE encourage routing scores
to be uniform, while only the language modeling
loss encourages an increase in routing scores, this
suggests that under the global-batch balance, rout-
ing is more aligned with the language modeling
task. (2) Models using global-batch balance have a
larger topK sum in domains where expert selection
is more concentrated. For example, in Fig. 5 (b),
the high-frequency experts in ZH-Literature are
more than those of SFT-EN, especially in layers 17
to 24. Correspondingly, in Fig. 5 (a), the topK sum
of ZH-Literature in layers 17 to 24 is higher than
that of SFT-EN. (3) Models using micro-batch bal-
ance have lower topK sums, with little difference
across domains, which corresponds to the existing
work that current MoE routing is uncertain (Wu
et al., 2024). (4) Under global-batch balance, the
topK sum of using aux loss free is smaller than that
of LBL, but higher than micro-batch balance. This
also illustrates that expert specialization promotes
the concentration of expert scores.

In Fig. 5 (b), we compare the distribution of
high-frequency experts across domains. We ob-
serve that Chinese domains (SFT-ZH, ZH-Law,
ZH-Literature) have many similar high-frequency
experts (indicated by the dashed box). Moreover,
although both Chinese-related domains and SFT-
Code have high-frequency activated experts, these
experts hardly overlap. For domains with more
general content (such as SFT-EN), there are fewer
experts being highly activated.

6 Related works

Load Balancing Shazeer et al. (2017) introduce
the topK sparse activation in MoE (Szymanski and
Lemmon, 1993), which tends to elect only a few
experts for updates during training without con-
straints. Although LBL can alleviate this issue,
strict constraints affect model performance. Ex-

5011

(a) TopK score sum across layers (b) Expert selection frequency across domains

Figure 5: The topK score sums across layers (a), and the distribution of high-frequency experts on different domains
for models using global-batch balance (b). The topK sum of global-batch balance is higher than other methods and
shows a similar distribution of high-frequency experts on closer domains.

pert Choice Routing (Zhou et al., 2022) achieves
load balance naturally by allowing each expert to
select tokens based on its load capacity. How-
ever, it uses the information of the entire sequence
when allocating tokens, making it non-causal and
impractical for decoder-only models. Although
subsequent work adds extra routers and training
phases to address this, it has only been valuated
when only using 2 experts (Raposo et al., 2024).
Wang et al. (2024) proposes the Aux Loss Free
method, which adds a bias term updated based on
expert selection frequency to balance expert se-
lection. However, they don’t emphasize whether
the expert selection frequency is calculated based
on micro-batch or global-batch. The subsequent
work deepseek-v3 (Liu et al., 2024a), concurrent
with ours, highlights that the expert selection fre-
quency in Aux Loss Free is based on ‘the whole
batch of each training step’ and discusses the re-
sults of using batch-wise LBL and Aux Loss Free
method, also finding that the two methods yield
similar results. GRIN (Liu et al., 2024b) proposes
Global Load Balance Loss Adaptations. However,
the it mainly introduces this as an advantage of the
training framework without employing expert par-
allelism. It doesn’t show the effects of using global
load balance independently and emphasizes the
importance and properties of global load balance.
More discussions can be found in App. A.1.

Expert Specialization Initially, MoE is designed
to devide and conquer, allowing different experts
to specialize strongly for efficient parameter uti-
lization (Szymanski and Lemmon, 1993; Qiu et al.,

2024b). With the tight micro-batch balance, most
MoE models (Jiang et al., 2024; Lo et al., 2024;
Zhao et al., 2024; Du et al., 2024), even multimodal
MoEs (Lin et al., 2024; Team, 2024), haven’t ex-
hibited domain-level specialization. Lory (Zhong
et al., 2024) calculates expert merge scores for
each sequence and merges all experts into a sin-
gle expert before computing the corresponding se-
quence. This changes the sparse activation mecha-
nism of MoE and avoids the imbalance issue. Al-
though Lory shows improvements and specializa-
tion, its complex mechanism poses challenges for
large-scale training. OLMoE (Muennighoff et al.,
2024a) observes more pronounced specialization
compared to Mixtral-8×7B. However, it does not
provide a detailed discussion of the factors influ-
encing specialization.

7 Conclusion

In this work, we identify that the LBL in main-
stream MoE frameworks has degraded into micro-
batch balance, which imposes an overly tight con-
straint. This constraint limits expert specialization
and negatively impacts performance. To address
this issue, we propose methods based on synchro-
nization and buffering to relax micro-batch balance
to global-batch balance. We validate these methods
across models of various sizes. Through analysis of
expert selection under global-batch balance, we ob-
serve that it enables domain-level and interpretable
specialization. We hope that adopting the global-
batch balance will facilitate developing more per-
formant and interpretable MoE-based LLMs.

5012

Limitations

This paper primarily focuses on analyzing the im-
pact of micro-batch LBL on LLMs during the pre-
training stage. It does not further investigate its
effects during fine-tuning or in the vision and mul-
timodal domains. Our analysis of specialization is
mainly centered on the selection frequency across
different domains without conducting more rigor-
ous validation. Relaxing micro-batch LBL can
introduce some latency. Future work could con-
sider including more diverse sequences within each
micro-batch to mitigate this local imbalance.

References
Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,

Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu,
Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Y Wu, et al. 2024. Deepseek-
moe: Towards ultimate expert specialization in
mixture-of-experts language models. arXiv preprint
arXiv:2401.06066.

Hantian Ding, Zijian Wang, Giovanni Paolini, Varun
Kumar, Anoop Deoras, Dan Roth, and Stefano Soatto.
2024. Fewer truncations improve language modeling.
arXiv preprint arXiv:2404.10830.

Wenyu Du, Shuang Cheng, Tongxu Luo, Zihan Qiu,
Zeyu Huang, Ka Chun Cheung, Reynold Cheng,
and Jie Fu. 2024. Unlocking continual learn-
ing abilities in language models. arXiv preprint
arXiv:2406.17245.

William Fedus, Barret Zoph, and Noam Shazeer. 2022.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. J. Mach.
Learn. Res., 23:120:1–120:39.

Trevor Gale, Deepak Narayanan, Cliff Young, and Matei
Zaharia. 2023. Megablocks: Efficient sparse training
with mixture-of-experts. Proceedings of Machine
Learning and Systems, 5:288–304.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei
Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu,
Chuancheng Lv, Yikai Zhang, Yao Fu, et al. 2024.
C-eval: A multi-level multi-discipline chinese evalua-
tion suite for foundation models. Advances in Neural
Information Processing Systems, 36.

Changho Hwang, Wei Cui, Yifan Xiong, Ziyue Yang,
Ze Liu, Han Hu, Zilong Wang, Rafael Salas, Jithin
Jose, Prabhat Ram, et al. 2023. Tutel: Adaptive
mixture-of-experts at scale. Proceedings of Machine
Learning and Systems, 5:269–287.

Albert Q Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas,
Emma Bou Hanna, Florian Bressand, et al. 2024.
Mixtral of experts. arXiv preprint arXiv:2401.04088.

Aonian Li, Bangwei Gong, Bo Yang, Boji Shan, Chang
Liu, Cheng Zhu, Chunhao Zhang, Congchao Guo,
Da Chen, Dong Li, et al. 2025. Minimax-01: Scaling
foundation models with lightning attention. arXiv
preprint arXiv:2501.08313.

Bin Lin, Zhenyu Tang, Yang Ye, Jinfa Huang, Junwu
Zhang, Yatian Pang, Peng Jin, Munan Ning, Jiebo
Luo, and Li Yuan. 2024. Moe-llava: Mixture of
experts for large vision-language models. Preprint,
arXiv:2401.15947.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, et al. 2024a.
Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437.

Liyuan Liu, Young Jin Kim, Shuohang Wang, Chen
Liang, Yelong Shen, Hao Cheng, Xiaodong Liu,
Masahiro Tanaka, Xiaoxia Wu, Wenxiang Hu,
Vishrav Chaudhary, Zeqi Lin, Chenruidong Zhang,
Jilong Xue, Hany Awadalla, Jianfeng Gao, and
Weizhu Chen. 2024b. Grin: Gradient-informed moe.
Preprint, arXiv:2409.12136.

Ka Man Lo, Zeyu Huang, Zihan Qiu, Zili Wang,
and Jie Fu. 2024. A closer look into mixture-of-
experts in large language models. arXiv preprint
arXiv:2406.18219.

Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld,
Kyle Lo, Jacob Morrison, Sewon Min, Weijia Shi,
Pete Walsh, Oyvind Tafjord, Nathan Lambert, Yuling
Gu, Shane Arora, Akshita Bhagia, Dustin Schwenk,
David Wadden, Alexander Wettig, Binyuan Hui, Tim
Dettmers, Douwe Kiela, Ali Farhadi, Noah A. Smith,
Pang Wei Koh, Amanpreet Singh, and Hannaneh
Hajishirzi. 2024a. Olmoe: Open mixture-of-experts
language models. Preprint, arXiv:2409.02060.

Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld,
Kyle Lo, Jacob Morrison, Sewon Min, Weijia Shi,
Pete Walsh, Oyvind Tafjord, Nathan Lambert, et al.
2024b. Olmoe: Open mixture-of-experts language
models. arXiv preprint arXiv:2409.02060.

Zihan Qiu, Zeyu Huang, Shuang Cheng, Yizhi Zhou,
Zili Wang, Ivan Titov, and Jie Fu. 2024a. Layerwise
recurrent router for mixture-of-experts. Preprint,
arXiv:2408.06793.

Zihan Qiu, Zeyu Huang, and Jie Fu. 2024b. Unlock-
ing emergent modularity in large language models.
Preprint, arXiv:2310.10908.

5013

https://arxiv.org/abs/2401.15947
https://arxiv.org/abs/2401.15947
https://arxiv.org/abs/2409.12136
https://arxiv.org/abs/2409.02060
https://arxiv.org/abs/2409.02060
https://arxiv.org/abs/2408.06793
https://arxiv.org/abs/2408.06793
https://arxiv.org/abs/2310.10908
https://arxiv.org/abs/2310.10908

Samyam Rajbhandari, Conglong Li, Zhewei Yao, Min-
jia Zhang, Reza Yazdani Aminabadi, Ammar Ah-
mad Awan, Jeff Rasley, and Yuxiong He. 2022.
Deepspeed-moe: Advancing mixture-of-experts in-
ference and training to power next-generation ai scale.
In International conference on machine learning,
pages 18332–18346. PMLR.

David Raposo, Sam Ritter, Blake Richards, Timothy
Lillicrap, Peter Conway Humphreys, and Adam San-
toro. 2024. Mixture-of-depths: Dynamically allocat-
ing compute in transformer-based language models.
arXiv preprint arXiv:2404.02258.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc V. Le, Geoffrey E. Hinton, and
Jeff Dean. 2017. Outrageously large neural networks:
The sparsely-gated mixture-of-experts layer. In 5th
International Conference on Learning Representa-
tions, ICLR 2017. OpenReview.net.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2019. Megatron-lm: Training multi-billion
parameter language models using model parallelism.
arXiv preprint arXiv:1909.08053.

Peter T. Szymanski and Michael D. Lemmon. 1993.
Adaptive mixtures of local experts are source coding
solutions. In Proceedings of International Confer-
ence on Neural Networks (ICNN’88), pages 1391–
1396. IEEE.

Chameleon Team. 2024. Chameleon: Mixed-
modal early-fusion foundation models. Preprint,
arXiv:2405.09818.

A Vaswani. 2017. Attention is all you need. Advances
in Neural Information Processing Systems.

Lean Wang, Huazuo Gao, Chenggang Zhao, Xu Sun,
and Damai Dai. 2024. Auxiliary-loss-free load
balancing strategy for mixture-of-experts. arXiv
preprint arXiv:2408.15664.

Haoze Wu, Zihan Qiu, Zili Wang, Hang Zhao, and Jie
Fu. 2024. Gw-moe: Resolving uncertainty in moe
router with global workspace theory. arXiv preprint
arXiv:2406.12375.

Fuzhao Xue, Zian Zheng, Yao Fu, Jinjie Ni, Zang-
wei Zheng, Wangchunshu Zhou, and Yang You.
2024. Openmoe: An early effort on open
mixture-of-experts language models. arXiv preprint
arXiv:2402.01739.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao,
Chengen Huang, Chenxu Lv, Chujie Zheng, Dayi-
heng Liu, Fan Zhou, Fei Huang, Feng Hu, Hao Ge,
Haoran Wei, Huan Lin, Jialong Tang, Jian Yang,
Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi
Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai
Dang, Keqin Bao, Kexin Yang, Le Yu, Lianghao
Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang,
Peng Wang, Qin Zhu, Rui Men, Ruize Gao, Shixuan

Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao
Yin, Xingzhang Ren, Xinyu Wang, Xinyu Zhang, Xu-
ancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yinger Zhang, Yu Wan, Yuqiong Liu, Zekun Wang,
Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zi-
han Qiu. 2025. Qwen3 technical report. Preprint,
arXiv:2505.09388.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. 2024. Qwen2. 5 tech-
nical report. arXiv preprint arXiv:2412.15115.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? arXiv preprint
arXiv:1905.07830.

Chenggang Zhao, Shangyan Zhou, Liyue Zhang,
Chengqi Deng, Zhean Xu, Yuxuan Liu, Kuai Yu,
Jiashi Li, and Liang Zhao. 2025. Deepep: an effi-
cient expert-parallel communication library. https:
//github.com/deepseek-ai/DeepEP.

Hao Zhao, Zihan Qiu, Huijia Wu, Zili Wang, Zhaofeng
He, and Jie Fu. 2024. Hypermoe: Towards better
mixture of experts via transferring among experts.
arXiv preprint arXiv:2402.12656.

Zexuan Zhong, Mengzhou Xia, Danqi Chen, and Mike
Lewis. 2024. Lory: Fully differentiable mixture-
of-experts for autoregressive language model pre-
training. Preprint, arXiv:2405.03133.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping
Huang, Vincent Zhao, Andrew M Dai, Quoc V Le,
James Laudon, et al. 2022. Mixture-of-experts with
expert choice routing. Advances in Neural Informa-
tion Processing Systems, 35:7103–7114.

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du,
Yanping Huang, Jeff Dean, Noam Shazeer, and
William Fedus. 2022. St-moe: Designing stable and
transferable sparse expert models. arXiv preprint
arXiv:2202.08906.

A Example Appendix

A.1 More Related Works
Load Balancing Wang et al. (2024) argue that
the load balance loss, which is not entirely con-
sistent with the language modelling loss, can im-
pact model performance. Therefore, they pro-
pose adding a bias term updated based on ex-
pert selection frequency to balance expert selec-
tion without changing routing scores. However,
they don’t emphasize whether the expert selec-
tion frequency is calculated based on micro-batch
or global-batch. The subsequent work deepseek-
v3 (Liu et al., 2024a), concurrent with ours, high-
lights that the expert selection frequency in Aux
Loss Free is based on ‘the whole batch of each

5014

https://arxiv.org/abs/2405.09818
https://arxiv.org/abs/2405.09818
https://arxiv.org/abs/2505.09388
https://github.com/deepseek-ai/DeepEP
https://github.com/deepseek-ai/DeepEP
https://arxiv.org/abs/2405.03133
https://arxiv.org/abs/2405.03133
https://arxiv.org/abs/2405.03133

training step’ and discusses the results of using
batch-wise load balance loss and auxiliary free
method, also finding that the two methods yield
similar results. In this work, we propose synchro-
nizing expert selection and buffering methods that
can be easily integrated into existing MoE frame-
works, leading to improvements under various com-
putational configurations. Our work also provides
a detailed analysis of Balance BSZ’s impact on
performance and demonstrates that global-batch
significantly improves performance by incorporat-
ing more diverse domain information. Addition-
ally, we show that adding a small amount of micro-
batch load balance while using global-batch bal-
ance can maintain model performance while reduc-
ing latency from local imbalance. Another concur-
rent work, Minimax-01 (Li et al., 2025), synchro-
nizes expert select frequency within expert parallel
groups, primarily aiming to reduce the drop rate
of experts when using drop strategies (Fedus et al.,
2022), without focusing on the impact of different
Balance BSZ.

GRIN (Liu et al., 2024b) proposes Global Load
Balance Loss Adaptations. However, the it mainly
introduces this balance method as an advantage of
the training framework without employing expert
parallelism. GRIN does not present more motiva-
tion for using global load balance. Additionally, it
does not show the effects of using global load bal-
ance independently and emphasizes the importance
and properties of global load balance.

A.2 Using a buffer to approximate the
Global-Batch LBL.

We introduce a buffer to store synchronized ci, the
expert i’s selection count across micro-batches in
one GA step. Then, the information in the buffer is
used to calculate the current fi at each GA step. Af-
ter completing the GA, the buffer is reset. The com-
plete algorithm is shown in the Alg. 1. Through this
accumulation process, fi approaches f̄i with gra-
dient accumulation steps, approximating LBLglobal
with limited compute nodes. We also provide the
PyTorch implementation in the Listing 1.

A.3 More Discussion on Computation
Overhead

The latency introduced by global-batch balancing
primarily arises from two factors: synchronization
and micro-batch imbalance. Both issues can be
effectively mitigated through deployment-level op-
timizations during training and inference.

Algorithm 1 Approximate Global-Batch LBL
1: Initialize an empty buffer for each expert, ci =

0
2: Initialize accumulated gradients to zero
3: while training continues do
4: for each gradient accumulation step g = 1

to G do
5: Forward pass: compute loss using cur-

rent micro-batch
6: Backward pass: accumulate gradients

(without applying optimizer step)
7: Update buffer: add new synchronized

selection counts to ci for each expert i
8: Calculate the current fi using buffered

ci, i ∈ NE (to approximate a larger bsz)
9: end for

10: Apply optimizer step using accumulated
gradients

11: Clear accumulated gradients
12: Reset buffer: set ci = 0 for all experts
13: end while

Synchronization: To reduce synchronization
overhead, we explore methods that decrease the
frequency of synchronization operations. By lever-
aging frequency information stored in a buffer, we
reduce synchronization to occur only once per op-
timizer step, significantly lowering communication
costs (Appendix A.7). Additionally, system-level
optimizations allow for overlapping synchroniza-
tion with forward computation, thereby eliminat-
ing communication overhead entirely during this
phase, as communication resources are underuti-
lized while computation is ongoing. During infer-
ence, synchronization is not required at all since
there is no need to compute the LBL loss.

Micro-Batch Imbalance: Micro-batch imbal-
ance can be alleviated during inference by increas-
ing the micro-batch size through adjustments in
parallelization strategies. When the token distribu-
tion within a micro-batch closely resembles that
of the global batch, the computational load across
micro-batches becomes more balanced. Further-
more, infrastructure-level optimizations also play a
crucial role in addressing expert imbalance. For in-
stance, the DeepEP (Zhao et al., 2025) framework
supports dynamic allocation of additional comput-
ing resources to frequently activated experts when
deploying MoE models using expert parallelism.
This ensures that high-load experts do not become
bottlenecks for overall system performance.

5015

1 # init buffer for tokens per expert; do not buffer across iteratio
2 self.tokens_per_expert_buffer = 0
3

4 # compute the number of tokens per expert
5 probs = torch.softmax(logits , dim=-1)
6 probs , top_indices = torch.topk(probs , k=self.topk , dim=-1)
7 tokens_per_expert = torch.histc(top_indices , bins=self.num_experts ,
8 min=0, max=self.num_experts)
9

10 # sync the number of tokens per expert across data parallel group
11 if self.config.moe_router_sync_tokens_per_expert_across_dp:
12 with torch.no_grad ():
13 torch.distributed.all_reduce(tokens_per_expert ,
14 group=get_data_parallel_group ())
15 tokens_per_expert = tokens_per_expert / torch.distributed.get_world_size(
16 group=get_data_parallel_group ()))
17

18 # update the number of tokens per expert buffer
19 if self.config.moe_router_buffer_tokens_per_expert:
20 self.tokens_per_expert_buffer = self.tokens_per_expert_buffer +

tokens_per_expert
21 tokens_per_expert = self.tokens_per_expert_buffer
22

23 # compute LBL
24
25 # reset the buffer if optimizer step is called
26 # therefore , the buffer doesn't expand the balance batch beyond global BSZ
27 optimizer.step()
28 if self.config.moe_router_reset_tokens_per_expert_buffer:
29 self.tokens_per_expert_buffer.zero_()

Listing 1: Pytorch style code for synchronizing and buffering tokens per expert

It is worth emphasizing that our primary objec-
tive is to investigate the impact of balance bsz on
MoE specialization and model performance. As
such, detailed discussions on deployment-level op-
timizations are beyond the scope of this paper.

A.4 More Experiments in Hard Tasks

To further evaluate the effectiveness of expert spe-
cialization in hard tasks, we conduct additional
experiments using the MoE-43A6.6B model under
two different training configurations: (1) balance
bsz = 8, and (2) balance bsz = 128 with the buffer
mechanism. These settings align with those re-
ported in Table 1. We assess performance across
several code-related and reasoning-intensive bench-
marks, including HumanEval, MBPP, BBH, and
MMLU-pro. The results are summarized below:

Table 6: Performance on hard tasks for the MoE-
43A6.6B model under different balancing strategies.

Balance BSZ MBPP HumanEval BBH MMLU-pro

8 40.6 29.27 41.41 22.79
128 + buffer 42.6 33.53 42.74 24.01

As shown in Table 6, increasing the balance bsz
while incorporating the buffer mechanism leads to
improved performance across all evaluated bench-

marks. This suggests that larger balance bsz pro-
mote better expert specialization, particularly in
complex domains such as code generation and
multi-step reasoning.

A.5 Global-Batch Balance with Token
Dropping

We also test global-batch balance with token drop-
ping under a capacity factor of 1. We observe
that the drop ratio is significantly higher than us-
ing only micro-batch balance. For example, in the
scenario of selecting 4 out of 160 experts, when
using the default LBL weight and micro-batch bal-
ance, approximately 10% of the tokens are dropped.
However, if global-batch balance is used from the
beginning, the drop ratio would be around 30%.
A large number of tokens being dropped leads to
a significant reduction in FLOPs, which in turn
makes the result of global-batch balance similar
to that of micro-batch balance. We recommend
that if token dropping is to be introduced when
using global-batch balance, it is best to follow the
approach described in Sec 5: start with dropless
training, then add micro-batch balance, and finally
introduce a certain capacity factor constraint.

5016

1 # init buffer for tokens per expert; enable buffering across iteratio
2 _TOKENS_PER_EXPERT = [0]
3

4 # functions
5 def update_tokens_per_expert(tokens_per_expert):
6 global _TOKENS_PER_EXPERT
7 _TOKENS_PER_EXPERT [-1] = _TOKENS_PER_EXPERT [-1] + tokens_per_expert
8 return torch.stack(_TOKENS_PER_EXPERT , dim=0).sum(dim=0)
9

10 def reset_tokens_per_expert ():
11 args = get_args ()
12 global _TOKENS_PER_EXPERT
13 if len(_TOKENS_PER_EXPERT) < args.moe_router_buffer_capacity:
14 _TOKENS_PER_EXPERT.append (0)
15 elif len(_TOKENS_PER_EXPERT) == args.moe_router_buffer_capacity:
16 _TOKENS_PER_EXPERT = _TOKENS_PER_EXPERT [1:] + [0]
17 else:
18 raise ValueError
19

20 def sync_tokens_per_expert ():
21 global _TOKENS_PER_EXPERT
22 temp_tpe = _TOKENS_PER_EXPERT [-1]
23 torch.distributed.all_reduce(temp_tpe ,
24 group=get_data_parallel_group ())
25 _TOKENS_PER_EXPERT [-1] = temp_tpe / torch.distributed.get_world_size(
26 group=get_data_parallel_group ())
27

28 ...
29 # compute the number of tokens per expert
30 probs = torch.softmax(logits , dim=-1)
31 probs , top_indices = torch.topk(probs , k=self.topk , dim=-1)
32 tokens_per_expert = torch.histc(top_indices , bins=self.num_experts ,
33 min=0, max=self.num_experts)
34

35 # locally update the number of tokens per expert buffer
36 if self.config.moe_router_buffer_tokens_per_expert:
37 tokens_per_expert = update_tokens_per_expert(tokens_per_expert)
38

39 # compute LBL
40
41 # reset part of the buffer if optimizer step is called
42 # therefore , the buffer properly expands the balance batch beyond global BSZ
43 optimizer.step()
44 if self.config.moe_router_reset_tokens_per_expert_buffer:
45 # sync only when one iteration is finished
46 # get and buffer tokens per expert for current iteration
47 sync_tokens_per_expert ()
48 # clear old tokens per expert
49 reset_tokens_per_expert ()

Listing 2: Pytorch style code for buffering tokens per expert and only synchronizing at each iteration

A.6 Expand Buffer Capacity

A natural question arises: if model performance im-
proves with the growth of the balance batch, could
expanding the balance batch beyond the global
batch size through the buffer mechanism further
enhance the benefits? Our experiments find:

(1) When training from scratch, if the buffer re-
tains the tokens per expert statistics from the past
three iterations to compute the current LBL, the
convergence speed of LBL will significantly slow
down and ultimately fail to converge near 1. We

think this is because the router changes rapidly in
the early stages of training, causing the previously
recorded expert balance statistics to deviate sig-
nificantly from the actual situation, which in turn
introduces bias into the calculated LBL.

(2) In the middle stages of training, if the buffer
retains statistics from the past two or three itera-
tions to compute the LBL, the model performance
is similar to that when using only one iteration’s
statistics. This observation allows us to approxi-
mate the results obtained through global communi-
cation in the current iteration using the statistics

5017

from the previous iteration, see next part A.7. Con-
sequently, this approach can reduce the frequency
of synchronization across data parallel groups.

(3) Even in the middle stages of training, when
the buffer capacity is expanded to eight iterations,
the LBL gradually increases during training, which
negatively impacts model performance. This indi-
cates that although the model’s balance situation
is relatively stable in the middle stages of training,
using an incorrect LBL can still cause the model to
gradually deviate from the desired balance.

A.7 Decrease Synchronization Frequency
In our large-scale experiments, we observe that
when the data parallel group is very large (e.g.,
2048 GPUs), synchronizing tokens per expert at
every update step is highly susceptible to cluster
performance fluctuations. Specifically, if one node
computes more slowly, the entire cluster is delayed
while waiting for the synchronization of tokens
per expert. Building on our previous experiments
with small buffer sizes, we further optimized the
synchronization method as follows:

Early training phase (approximately 10k itera-
tions, within 5% of total training steps): When the
LBL has not yet converged, we maintain synchro-
nization at every step, and the buffer only records
information from the current iteration.

Stabilized phase: Once the LBL converges and
training becomes relatively stable, we decrease the
synchronization frequency. Specifically, we use
the expanded buffer in App. A.6 to store the in-
formation from the past 2 to 3 iterations (global
batches). During each step of the current iteration,
we calculate the LBL using locally computed to-
kens per expert plus the information stored in the
buffer. The local tokens per expert are then up-
dated to the buffer. After the current iteration ends
(optimizer steps), we synchronize the locally calcu-
lated tokens per expert of this iteration in the buffer
across the data parallel group to obtain accurate
statistics for the iteration.

Iteration Transition: The oldest iteration’s in-
formation in the buffer is discarded, and the process
begins for the next iteration. For the specific imple-
mentation, please refer to Listing 2. By reducing
the frequency of cross-data parallel group synchro-
nization, we can mitigate latency even when train-
ing with a large number of nodes.

5018

