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Abstract

People can categorize the same entity at mul-
tiple taxonomic levels, such as basic (bear),
superordinate (animal), and subordinate (griz-
zly bear). While prior research has focused
on basic-level categories, this study is the first
attempt to examine the organization of cate-
gories by analyzing exemplars produced at the
subordinate level. We present a new Italian
psycholinguistic dataset of human-generated
exemplars for 187 concrete words. We then
use these data to evaluate whether textual and
vision LLMs produce meaningful exemplars
that align with human category organization
across three key tasks: exemplar generation,
category induction, and typicality judgment.
Our findings show a low alignment between hu-
mans and LLMs, consistent with previous stud-
ies. However, their performance varies notably
across different semantic domains. Ultimately,
this study highlights both the promises and the
constraints of using AI-generated exemplars to
support psychological and linguistic research.1

1 Introduction

Concepts are the “building blocks” of human cog-
nition, allowing us to interpret and categorize re-
ality (Murphy, 2002). The same category can be
represented at different levels of inclusiveness (cat-
egorical specificity; Bolognesi et al., 2020). For
instance, a two-wheeled object may simultaneously
be categorized as an electric bike, a bike, or a vehi-
cle, reflecting a hierarchical taxonomy that ranges
from a very specific and not inclusive category that
only includes members with many common fea-
tures (mountain bikes, electric bikes) to a more
general and inclusive category that includes a wide
variety of items that do not necessarily share many
common features (bike, cars, bus).

Most studies on hierarchical organization of cat-
egories in the human mind have focused on basic-

1Data and code is available on GitHub and OSF.

Figure 1: Visual representation of studies’ design. En-
glish exemplars are used for illustration only.

level categories, showing their advantages in pro-
cessing and acquisition (Rosch et al., 1976; Ha-
jibayova, 2013 for a review), paying little attention
to the more specific subordinate categories. Yet,
words at the subordinate level are crucial for effec-
tive communication in specialized domains, as their
lexicon conveys richer and more precisely defined
semantic content, often derived through linguistic
combinations.

Current cognitive theories acknowledge that
both sensorimotor and linguistic experiences con-
tribute to our conceptual representation (Barsalou
et al., 2008; Louwerse, 2018; Davis and Yee, 2021).
For instance, one may observe that apples can be
red, yellow, or green, but learn in a book that the
word Fuji refers to a specific variety of apples.
Although concepts can be represented indepen-
dently from words, linguistic labels often act as
cues (Lupyan, 2012; Lupyan and Lewis, 2019) that
help to create and organize our knowledge, group-
ing items based on perceived similarities, even if
we have never encountered a particular instance
before. The extent to which the organization of
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human conceptual categories is influenced by the
distributional properties of linguistic input remains
a central question in cognitive science, linguistics,
and artificial intelligence (van Hoef et al., 2023).

This paper investigates the organization and the
contents of conceptual categories produced at a
subordinate level by humans and Large Language
Models (LLMs). The remarkable success of LLMs
raises questions about their plausibility as models
of human cognition, as their performance closely
resembles human-like language understanding and
generation across several tasks (Wang et al., 2018;
Brown et al., 2020; Floridi and Chiriatti, 2020;
Bommasani et al., 2022; Wei et al., 2022). How-
ever, while their functional linguistic competence—
reflected in their general knowledge and reasoning
skills through language—is undeniable, their paral-
lelism with the human mind remains highly debated
(i.a., Bender and Koller, 2020; Marcus, 2020; Ma-
howald et al., 2024). In contrast to LLMs, human
conceptual categories emerge from the integration
of linguistic and extra-linguistic (sensory) informa-
tion. Investigating the structural organization of
categories in LLMs may provide insight into the
extent to which category formation depends exclu-
sively on linguistic experience; thus, contributing
to the larger debate on the role of language in learn-
ing semantic knowledge (Lupyan and Lewis, 2019).
While previous works have explored the organiza-
tion of superordinate categories in both humans
and LLMs, we are the first to investigate the or-
ganization of basic-level categories. Specifically,
we present two studies to address the following
research questions:

• RQ1: How do humans create and organize
basic-level categories, considering the ex-
emplars produced at a subordinate level?
We introduce a new Italian psycholinguistic
dataset, collecting exemplars of 187 basic con-
crete categories generated by human partici-
pants (§3). We explore the variability of exem-
plars as a function of category types, assum-
ing that this variability reflects the richness of
the linguistic vocabulary and linguistic knowl-
edge in semantic domains.

• RQ2: Do LLMs have the same category
structure as humans? We probe recent
LLMs to generate exemplars for the same 187
basic-level categories and compare their pre-
dictions with humans (§4), as illustrated in
Figure 1. We assess whether LLMs capture

human conceptual organization using two clas-
sification subtasks: category induction (§5.1)
and typicality prediction (§5.2). Finally, we
compare vision LMs (vLMs) to investigate
whether pre-training extra-linguistic knowl-
edge enhances overall performance.

2 Background and Related Works

2.1 Categories in the Human Mind

Classical cognitive research showed that categories
are organized hierarchically in the human mind: a
bulldog is a type of dog, which is a type of mam-
mal, and more broadly an animal, with each cate-
gory including the previous one. In other words,
categories vary in level of specificity—i.e., how
inclusive the category of reference is (Cohen and
Lefebvre, 2005; Bolognesi et al., 2020). Superordi-
nate categories (e.g., furniture, vehicle) encompass
broader classes, while subordinate categories (e.g.,
wooden upholstered chairs, red sports cars) repre-
sent more specific instances. The basic level (e.g.,
chair, car), often considered the most informative
level, lies between these two extremes, and words
that denote basic-level categories are typically eas-
ier to understand and process (Murphy, 2002).

A common approach for investigating the struc-
ture of categorical knowledge involves analyzing
typicality effects, by asking typicality ratings on
a Likert scale (i.e., “How typical is a cat for the
category mammal?”) or by instructing participants
to freely name members of a given category. The
ladder, called “semantic fluency” or “category in-
stance generation” (Castro et al., 2021), requires
participants to actively retrieve exemplars of a cat-
egory, which is a more cognitively demanding task
than simply judging its typicality within a category.
However, typicality ratings can be extracted from
category instance generation tasks by aggregating
the frequency of exemplar productions. Conversely,
words judged as typical for their category are usu-
ally more available than words judged to be rela-
tively atypical (Natividad Hernández-Muñoz and
Ellis, 2006). In seminal studies, Rosch (1978) ob-
served that some exemplars (e.g., robin, crow) are
perceived as more representative of a category (e.g.,
birds) than others (e.g., penguin, ostrich). This
graded structure, as explained by prototype the-
ory (Rosch, 1975), reflects the fact that frequently
shared properties among category members tend to
be integrated into a central prototype.

While cognitive research has extensively focused
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on superordinate and basic-level categories, subor-
dinate categories have received less attention. Con-
cepts at the subordinate level have some notable
peculiarities. First, their referents share more at-
tributes than those within basic-level categories
(Rosch et al., 1976). Additionally, subordinate con-
cepts encode greater perceptual detail, making it
more challenging to process individual exemplars.
As a result, people tend to name objects at the basic
level unless subordinate-level information is partic-
ularly relevant. Finally, language plays a crucial
role in forming subordinate categories, often cre-
ated through linguistic compositionality (electric
car, sports car). To the best of our knowledge, no
studies in English or any other language have inves-
tigated the organization and contents of basic-level
categories (e.g., dog, hammer), by asking partici-
pants to generate concepts at the subordinate level.

2.2 Categories in LLMs

Previous works on predicting category structure
in LLMs have primarily focused on the typical-
ity of a category member, yielding mixed results.
Heyman and Heyman (2019) predicted human typ-
icality ratings by correlating similarity scores be-
tween category exemplars (e.g., robin, crow) and
prototype vectors (bird), finding that static em-
beddings poorly accounted for human judgments.
Renner et al. (2023) improved predictions using
BERT and WordNet metrics, showing that their
combination aligns best with human judgments.
Recently, Heyman and Heyman (2024) found out
that ChatGPT produces typicality ratings compa-
rable to human participants (.60-.64). Conversely,
Misra et al. (2021) tested LLMs on taxonomic cat-
egorization (“football is a sport”), showing modest
correlations with human ratings (between 0.24 and
0.41) and weaker distinctions between typical and
atypical items (as observed in other experimental
settings, i.e., Kauf et al., 2023). Moreover, Misra
et al. (2023) highlighted that LLMs struggle with
fine-grained property attributions, questioning their
plausibility as models of human semantic memory.

Beyond typicality, Nighojkar et al. (2022)
used Transformer models (RoBERTa-Large, Dis-
tilBERT, and miniBERTa-med-small) to model the
semantic fluency task (§2.1). They designed differ-
ent approaches to predict the next item in a given
list (“Examples of fruits are the strawberry and
the [MASK]”) for five superordinate categories
(Fruits, Vegetables, Animal, Supermarket items,

Tool, Foods). Among the models, RoBERTa-Large
proved to be the best-performing approach, al-
though it still achieved low performance (16% over-
all accuracy).

Concurrently, researchers have investigated
whether vision models align with human concep-
tual understanding (Peterson et al., 2018; Battleday
et al., 2020; Günther et al., 2023; Upadhyay et al.,
2022). Regardless of the specific experimental de-
sign, these studies correlated vision-based similar-
ity scores between any pair of exemplar and cate-
gory images and evaluated these similarities against
human typicality judgments. Recently, Vemuri et al.
(2024) evaluated both language and vision models,
comparing their correlation with human typicality
ratings, and found that textual models are better
than vision models for 27 categories, surpassing
prior results from Castro et al. (2021).

Recent works have also tested the abstract rea-
soning abilities of LLMs. For example, Samadarshi
et al. (2024) assessed LLMs performance on the
New York Times Connections game, finding better
performance in Semantic Relations and Encyclo-
pedic Knowledge, which might be due to existing
information in pre-training data. However, LLMs
accuracy remains below 50%.

All the aforementioned works focused exclu-
sively on English, and primarily explore the inter-
nal organization of superordinate categories (e.g.,
fruit, tools). To our knowledge, no research has yet
explored this for Italian or investigated the inter-
nal organization of basic-level categories (e.g., dog,
hammer).

3 STUDY 1: A New Psycholinguistic
Dataset of Basic-Level Exemplars

Methods. Stimuli consist of 187 basic-level con-
crete categories previously produced by Italian na-
tive speakers as the most representative concepts
for 12 superordinate semantic categories2 (Mon-
tefinese et al., 2012). We administer an exemplar
generation task to 365 Italian L1 speakers on Pro-
lific. Each participant is presented with a list of
15-16 categories and asked to produce as many ex-
emplars as possible for each concept (e.g., List a
type of) at their own pace. The final dataset, after
post-processing typos and misspellings, consists of
24.659 exemplars.

2ANIMALS, BODY PARTS, CLOTHES, FOODS, FUR-
NISHING, FURNITURE, HOBBIES, HOUSING, KITCHEN,
PLANTS, STATIONERY, VEHICLES.
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We compute the same measures as Montefinese
et al. (2012) to describe the relationship between a
given concept and its exemplars, such as the propor-
tion of participants who produce a target exemplar
given a category (dominance), the mean output po-
sition of each exemplar for a category (mean rank
order), and the proportion of participants who pro-
duce a given exemplar as their first response (first
occurrence value). We primarily focus on exem-
plar availability, which represents how readily an
exemplar is produced as a member of a category.
This measure is determined by the exemplar’s po-
sition in a participant’s response list, its overall
production frequency within the category, the earli-
est position it appears across participants, and the
total number of participants who mention it.

Results and Discussion. In line with Monte-
finese et al. (2012), we find that dominance, avail-
ability, and first occurrence are all strongly and
positively correlated (rs = 0.95, 0.75, 0.89; for
dominance vs. availability, dominance vs. first
occurrence, and availability vs. first occurrence);
whereas mean rank order of production correlates
weakly and negatively with the other three mea-
sures (rs = - 0.09; -0.21, -0.15; for dominance, first
occurrence, and availability respectively). To iden-
tify the most representative exemplars for each con-
cept, we retain only those exemplars with a dom-
inance value higher than or equal to 0.1 (i.e., ex-
emplars produced by at least 10% of participants).
This cut-off criterion results in a total of 1696 ex-
emplars in the final dataset.

Figure 2 shows the numbers of dominant exem-
plars for the 12 subordinate categories. The highest
number of exemplars is produced for the FOOD
category (270 exemplars), followed by CLOTHES
(206 exemplars), whereas the category of PLANTS
has the smallest number of exemplars (77). Indeed,
the number of dominant exemplars varies consid-
erably within each basic-level category, spanning
from a minimum of 1 exemplar (e.g., sunflower,
rubber plant) to a maximum of 31 exemplars (e.g.,
pasta, dog). The fact that the extent of our subor-
dinate lexicon varies in human cognition suggests
that some subordinated categories might pose
challenges in terms of accessibility to semantic
memory. This could be due to their low frequency
or familiarity, or to a higher degree of individual
variability in knowledge within a specific domain
compared to others.

Subsequently, for each basic-level category, we

Figure 2: Number of valid exemplars across 12 superor-
dinate categories for humans and textual LLMs.

compare the top-1 and top-5 exemplars ordered
by availability with those ordered by dominance,
examining whether both the exemplars and their
order align. Overall, 77.0% of the top-1 dominant
exemplar is also the top-1 available. This indicates
that more frequently produced exemplars tend to be
more readily available in participants’ responses,
reflecting their prominence in the conceptual cate-
gory. However, only 13.9% of the top-5 dominant
exemplars overlap with the ranking of the top-5
most available exemplars. For example, the top-5
dominant exemplars for the basic category “cereal”
are oat, spelt, wheat, corn, barley, while the top-5
available were wheat, oat, spelt, corn, barley. This
outcome points to potential variability in the fre-
quency of production and availability of exemplars
within different conceptual categories. In conclu-
sion, we observe that this task is more challenging
than retrieving exemplars of superordinate-level
categories and that some categories are more acces-
sible than others.

4 STUDY 2: LLMs’ Exemplars
Generation

We probe several LLMs on the task described in §3
to compare their organization of subordinate-level
conceptual representations with human subjects.
We assess models’ performance considering: (i)
the number of hallucinations generated (i.e., non-
existent exemplars created by combining words
into ad hoc instances); (ii) the overlap with human
subjects regarding the most available (typical) ex-
emplar, and (iii) whether discrepancies between
human and LLMs-generated exemplars follow a
consistent pattern.

We analyse our data from two complementary
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ANIMALS BODY PARTS CLOTHES FOODS FURNISHING FURNITURE HOBBIES HOUSING KITCHEN PLANTS STATIONERY VEHICLES avg

llama-3.2-3B 0.63 0.74 0.76 0.84 0.61 0.69 0.67 0.72 0.59 0.50 0.63 0.63 0.67
llama-3.1-8B 0.48 0.64 0.64 0.86 0.61 0.69 0.74 0.72 0.49 0.41 0.49 0.63 0.62
llama-3.1-70B 0.81 0.77 0.89 0.98 0.82 0.83 0.85 0.93 0.80 0.68 0.61 0.83 0.82
mistral-7B 0.52 0.61 0.43 0.79 0.50 0.41 0.69 0.61 0.46 0.42 0.39 0.57 0.53
nemo-12B 0.71 0.72 0.69 0.90 0.71 0.65 0.79 0.86 0.56 0.47 0.58 0.70 0.69
mixtral-8x7B 0.73 0.76 0.77 0.95 0.74 0.76 0.81 0.86 0.67 0.54 0.53 0.79 0.74

llava-7B 0.52 0.60 0.54 0.67 0.57 0.53 0.70 0.61 0.48 0.48 0.57 0.61 0.57
idefics2-8B 0.64 0.76 0.62 0.80 0.75 0.67 0.82 0.71 0.53 0.67 0.65 0.65 0.69
category avg 0.63 0.70 0.67 0.85 0.66 0.66 0.76 0.75 0.57 0.52 0.56 0.68 0.67

Table 1: Percentage of valid exemplars generated by various LLMs.

perspectives. On the one hand, we assess the mod-
els’ accuracy based on their similarity to human-
generated exemplars (our gold standard). On the
other, we perform some qualitative analyses to ex-
plore whether and how the categorical knowledge
encoded by language models differs from that of
humans.

Setup. Building upon the methodology described
in §3, we task the models with generating ex-
emplars for the same 187 basic-level concepts
presented to human subjects. We use two
LLMs families: (i) LLaMA family, includ-
ing LLaMA-v3.1 in its 8 and 70B versions, and
LLaMA-v3.2-3B (LlamaTeam, 2024), and (ii) Mis-
tral family, comprising Mistral-7B (Jiang et al.,
2023), Mixtral-8x7B (Jiang et al., 2024), and
NeMO3. Furthermore, to investigate the impact of
perceptual extra-linguistic stimulus, we also use
the vLMs LLaVA (Liu et al., 2023) and Idefics2
(Laurençon et al., 2024) (cf. Appendix B.1 for an
in-depth description).

We model the generation process as a few-shot
setting (Brown et al., 2020) completion task. The
model receives a simplified version of the instruc-
tions from §3 to obtain comparable results. The in-
struction is followed by a question-answer example
before generating exemplars for a new concept. We
follow the few-shot prompting scenario, as this ap-
proach should positively affect the model’s perfor-
mance. We experiment with parameters to obtain
an outcome balanced between predictability and
creativity. For each model, we perform five runs
for each basic-level category (cf. Appendix B.5).

4.1 Analysis 1: LLMs Tends to Generate ad
hoc Expressions instead of Exemplars

The generated responses consist of a list of exem-
plars separated by newlines (i.e., ‘\n’). To ensure
data quality, we first clean the outputs by removing
duplicate exemplars, keeping only their first oc-
currences. We then validate the outputs by check-

3https://mistral.ai/news/mistral-nemo/

ing whether each exemplar appears at least once
in the Italian corpus ItTenTen (Jakubíček et al.,
2013; Suchomel et al., 2012)4, thereby distinguish-
ing valid exemplars from (possible) hallucinations.

This data-cleaning step allows for an overall eval-
uation of the quality of the generated exemplars
in terms of the percentage of valid (i.e., existing
expression) exemplars. Table 1 shows that the per-
formance differs widely across models, with larger
and more recent LLMs generating a higher propor-
tion of valid exemplars in comparison to smaller
models or vLMs. For instance, LLaMA-v3.1-70B
generates 82% valid exemplars, while Mistral-7B
generates only 52% valid exemplars. The lowest
performance is observed by LLaVa-7B (44%).

Notably, the number of valid exemplars varies
depending on the superordinate category. Cate-
gories, such as FOOD (85%), HOBBIES (76%),
and HOUSING (75%), yield a higher proportion
of valid exemplars across models. In contrast, cate-
gories like KITCHEN and PLANTS exhibit more
noise, with only 57% and 52% of valid exemplars,
respectively. This indicates that models acquire a
non-uniform knowledge of subordinate-level exem-
plars, with a broader and more precise coverage of
certain basic-level concepts, while showing a more
brittle grasp of others. These results partially align
with human behaviour: the categories’ exemplars
that are easiest (FOOD) and those that are most
difficult (PLANTS) to recall are the same for both
humans and LLMs.

Considering unattested expressions, LLMs of-
ten rely on their compositional abilities to gen-
erate surface-acceptable expressions. However,
this ‘creative’ process produces invalid multi-word
expressions (i.e., hallucinations) that lack valida-
tion among human speakers (i.e., their corpus fre-
quency is zero) and/or real-world referents. We
conduct a qualitative analysis of zero-frequency
items to identify recurring generative tendencies
on LLaMA-3.1-70B (the best-performing model

4We use the SketchEngine API to collect frequencies.
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in terms of valid exemplars generated). Among
others, we observe that the model tends to repli-
cate the surface-level syntactic or morphological
structure of a valid, attested exemplar, leading to
the overgeneralization of that structure to produce
novel combinations. For instance, the expression
abete rosso (‘red fir’) and abete di Douglas (‘Dou-
glas fir’) serve as a template for generating further
expressions like abete bianco di Scozia (‘white
Scotch fir’) or abete rosso di California (‘red Cali-
fornia fir’), none of which refer to real-world refer-
ents. Similarly, the models extract from candelabro
a 5 braccia (‘5-armed candelabrum’) the syntac-
tic pattern a N bracci/a to build multiple vari-
ants, as a 13 bracci. Therefore, models tend to
identify productive syntactic patterns and extend
them compositionally, rather than drawing on ac-
tual distributional evidence or domain knowledge.
In essence, imitation-based errors are structural
extrapolations that mirror known exemplars too
closely, prioritizing form over grounded meaning.

Additionally, the generated expressions are
grammatically well-formed but semantically in-
coherent, implausible, or internally contradictory.
For example, geranio a foglie di quercia (‘gera-
nium with oak leaves’) or a foglie di rosmarino
(‘with rosemary leaves’) attribute biologically im-
plausible features. Similarly, maglia a punto croce
(‘knitwear in cross-stitch’) is semantically inco-
herent, because punto croce is a specific embroi-
dery technique used to decorate fabrics—not for
constructing knitwear. In these cases, LLMs ap-
ply compositional plausibility without conceptual
coherence: models generate a surface-acceptable
phrase that violates domain-specific knowledge or
real-world constraints, thereby rendering the ex-
pression nonsensical. Finally, some generated out-
puts are not attested exemplars but rather novel, ad
hoc instances (Barsalou, 1983). For example, the
model generates instances of cassettiera (‘dresser’)
based on spatial context (e.g., c. da corridoio ‘hall-
way dresser’, c. da esterno ‘outdoor dresser’) or
intended contents (e.g., c. per giocattoli ‘for toys’,
per oggetti di cancelleria ‘for stationery items’).
While such expressions might be interpretable and
even plausible, they are not attested in usage and do
not correspond to established members of the cate-
gory, i.e., they do not qualify as exemplars stored
in long-term memory.

Additional examples of these generative patterns
are provided in Tables 7 and 8 (cf. Appendix B.8).

Overall, these examples illustrate how hallucina-
tions often arise from systematic, though flawed,
generalization strategies, revealing a gap between
surface-level fluency and semantic grounding.

4.2 Analysis 2: Humans and LLMs Disagree
on the Most Available Exemplars

In the second analysis, we compare the valid
exemplars generated by the LLMs with human-
generated exemplars. Specifically, we sort both hu-
man and LLMs exemplars according to their avail-
ability score, which reflects the ease with which
a word can be produced as a category member
(§3). Table 2 reports the results of the intersec-
tion between the top-n (n = {1, 3, 5}) most avail-
able human-generated and machine-generated ex-
emplars, with overlap computed regardless of the
production order. The best results are observed for
top-5 matches, with Nemo-12B reaching an over-
lap of 24% of the generated exemplars. The num-
ber of matches varies across categories (cf. Ap-
pendix B.7). The most significant overlap is ob-
served within the categories of FOODS (Nemo-12B:
37%, overall: 29%) and ANIMALS (Nemo-12B:
36%, overall: 29%). In contrast, the lowest overlap
emerges within the categories BODY PARTS and
FURNISHING (Nemo-12B: 16%, overall: 12%).

These lower scores may arise for two rea-
sons. First, the model generates valid exem-
plars, sometimes even matching those produced
by humans, but not the most available ones. For
example, the top-5 human-generated exemplars
of cane ‘dog’ (labrador, pastore tedesco ‘ Ger-
man shepherd’, bassotto ‘dachshund ’, chihuahua,
golden retriever) only partially overlap with
those generated by nemo-12B (pastore tedesco,
golden retriever, beagle, labrador, husky siberi-
ano ‘siberian husky’). Besides, bulldog is in the
top-5 most available exemplars in five models, de-
spite having a lower corpus frequency than other
words (e.g., chihuahua, dalmatian). The variation
among models suggests that there are no specific
criteria (e.g., frequency) that determine the gen-
eration of one exemplar over another, implying
a category organization that is essentially flat.

Secondly, some models produce incorrect exem-
plars: in some cases, meronyms are generated (i.e.,
polpaccio ‘calf’ as a type of gamba ‘leg’), in oth-
ers, the basic-level category is misinterpreted due to
polysemy (i.e., the word braccio ‘arm’ refers both
to a human body part and to an extension of some-
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Model Top-1 Top-3 Top-5

llama-3.2-3B 0.09 0.13 0.14
llama-3.1-8B 0.14 0.18 0.20
llama-3.1-70B 0.18 0.20 0.21
mistral-7B 0.13 0.12 0.13
nemo-12B 0.25 0.24 0.24
mixtral-8x7B 0.18 0.19 0.19

llava-7B 0.12 0.13 0.15
idefics2-8B 0.08 0.10 0.10

Table 2: Matches among the top-n human and machine-
generated most available exemplars.

thing), resulting in nonsensical outputs. Incorrect
exemplar generation is especially evident in vLMs.
For example, idefics2-8B not only relies on com-
positional operations but also lists other types of
trees (e.g., acacia, eucalyptus, maple as exemplars
of abete ‘fir’), failing to generate subordinate exem-
plars and generating basic-level exemplars instead.

5 Are LLMs Sensitive to Human
Category Structure?

The comparative analyses of human and LLMs-
generated exemplars revealed no significant over-
lap between these two sets. However, despite some
noisy ad hoc exemplars, models also produce valid
exemplars that humans did not recall. We use
human data to build two additional classification
tasks:

A. Category Induction: Given the 10 most avail-
able human-generated exemplars, select their
basic/superordinate category;

B. Typicality Detection: Given the most and
least available human-generated exemplars,
identify the typical (i.e., most available) mem-
ber of the basic category.

These tasks are designed to evaluate the model’s
consistency in representing categories and their ex-
emplars using close-ended formats. Rather than
generating exemplars, the model selects correct
answers based on its perplexity score, making eval-
uation easier and more reliable.

5.1 SUBTASK A: Category Induction
Previous studies revealed that basic-level members
of a category can elicit the activation of their cor-
responding superordinate categories in the mental
lexicon (Barsalou, 1982; Ross and Murphy, 1999).
While tasks in §4 were focused on exemplar gen-
eration, here we explore to what extent LLMs are

Model Basic-level Superordinate

llama-3.2-3B 0.84 0.52
llama-3.1-8B 0.96 0.63
llama-3.1-70B 0.95 0.64
mistral-7B 0.89 0.59
nemo-12B 0.95 0.46
mixtral-8x7B 0.98 0.57

llava-7B 0.93 0.59
idefics2-8B 0.94 0.38

Table 3: SUBTASK A–Accuracy for basic-level and su-
perordinate category prediction at the aggregated level.

able to identify the category to which an exemplar
belongs to. Specifically, we investigate whether
subordinate-level members of a given category can
activate their (i) basic and (ii) superordinate cate-
gory in LLMs. This allows us to compare recall
performances at different levels of taxonomy, from
the (more specific) basic and (more general) su-
perordinate categories, and to better investigate the
organization of conceptual categories in the learned
latent space of LLMs.

Setup. The task is structured as a classification
task. Given an input sentence containing a se-
quence of subordinate-level exemplars, the model
has to select the correct category that has produced
the listed exemplars. The category can be: (i) one
of the 187 basic-level categories (e.g., abete ‘fir’,
aereo ’plane’), or (ii) one of the 12 superordinate
categories (e.g., pianta ‘plant’, veicolo ‘vehicle’).
We select up to 10 most available human-generated
exemplars for each basic-level concept. Each
list is converted into a prompt in the form: “e1,
e2,...,e10 are types of {category}”, where
en denotes the n-th selected human-produced ex-
emplar and category is a category name, either at
basic-level or superordinate one. We then compute
the model’s perplexity for each pair and select the
category associated with the sentence that has the
lowest perplexity score.

Results. Overall, models obtain higher results
when predicting the basic-level concept (e.g., abete
‘fir’) rather than the more abstract superordinate
category (e.g., pianta ‘plant’; cf. Table 3). This
result is surprising, considering that the number of
superordinate categories is smaller (12 vs 187 con-
cept terms). A possible explanation is that models
have seen the occurrence <exemplar, basic-level
concept> more frequently than the pair <exemplar,
superordinate-level concept>. In addition, most of
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Model Low Medium High

llama-3.2-3B 0.65 0.62 0.42
llama-3.1-8B 0.58 0.60 0.42
llama-3.1-70B 0.73 0.68 0.61
mistral-7B 0.50 0.57 0.47
nemo-12B 0.53 0.69 0.52
mixtral-8x7B 0.72 0.55 0.57

llava-7B 0.48 0.62 0.48
idefics2-8B 0.53 0.58 0.45

Table 4: SUBTASK B – Typicality Accuracy for basic-
level categories for the three coverage groupings.

the time, the exemplar itself can contain the concept
sub-string, e.g., abete di Natale (‘Christmas tree’)
vs ?pianta di Natale (‘Christmas plant’). Interest-
ingly, LLM performance varies across semantic
domains: models score nearly perfectly on ANI-
MALS, KITCHEN, and VEHICLES, but perform
poorly on FURNISHING, HOBBIES, and STA-
TIONERY (cf. Appendix C). As expected, LLMs
more effectively acquire taxonomic relations for
categories shaped by encyclopedic knowledge
(factual information typically learned through ed-
ucation or texts, e.g., “a lion is a mammal") than
those grounded in commonsense knowledge (e.g.
“domino is a game").

5.2 SUBTASK B: Typicality Prediction

One key aspect of category structure that has been
extensively studied with LLMs is typicality (§2.2):
Some members of a category are considered more
representative than others (e.g., robin vs. penguin
as types of birds). Previous studies have found only
a moderate correlation between human judgments
and LLMs. In addition, their focus was basic-level
exemplars of superordinate categories. In this sub-
task, we investigate whether, despite their misalign-
ment with humans in generating the most available
exemplars (§4), LLMs can still recognize that the
most available item (e.g., bicchiere di vetro, ‘glass
tumbler’) is more typical than the less available
one (e.g., bicchiere da shot ‘shot glass’) for a given
category (e.g., bicchiere ‘glass’).

Setup. We group the 187 basic-level categories
by the number of exemplars produced by humans
into three groups: (i) low (up to 5 exemplars), (ii)
medium (6–10 exemplars), and (iii) high produc-
tivity (more than 10 exemplars). This grouping
allows us to test if the internal dimension of the
category impacts typicality detection results. For
each basic-level concept, we then select the most

Model Low |∆| Medium |∆| High |∆|
llama-3.2-3B 0.47 0.58 0.61
llama-3.1-8B 0.45 0.50 0.57
llama-3.1-70B 0.59 0.61 0.70
mistral-7B 0.41 0.49 0.53
nemo-12B 0.43 0.49 0.69
mixtral-8x7B 0.49 0.55 0.69

llava-7B 0.42 0.47 0.61
idefics2-8B 0.46 0.47 0.49

Table 5: SUBTASK B – Typicality Accuracy for basic-
level categories, grouped by the absolute difference in
exemplars availability.

available and the least available human-generated
exemplars and evaluate the models’ perplexity on
the two sentences: “{1st exemplar} is a type
of {concept} vs. {last exemplar} is a type
of {concept}.” Similarly to §5.1, a pair is con-
sidered a positive prediction if the perplexity for
the first sentence is lower than that assigned to the
second one.

Results. Overall, LLaMA-3.1-70B performs best
across the three groupings, reaching 73% accuracy
in the low-productivity setting (cf. Table 4), a good
score compared to past studies. However, accuracy
varies across groupings: as the number of human
exemplars for a category increases, LLMs are
less likely to detect the typical item. This sug-
gests that when humans provide fewer exemplars,
the first one is cognitively dominant compared to
the other ones, a distinction reflected in the model’s
perplexity scores. However, in richer categories,
the cognitive distinctive attributes among exem-
plars diminish, thus resulting in LLMs’ lower ac-
curacies (cf. Appendix D).

Effect of Availability Differences. Additionally,
we assess accuracy across groups defined by the
absolute difference in availability (|∆|) between
the most and least available exemplars. We catego-
rize these differences into three levels: low ∆ for
differences less than 0.2, high ∆ for differences
greater than 0.4, and medium ∆ for all other cases.
This grouping results in a balanced distribution
of pairs (57, 75, and 55, respectively). Looking
at the average results in Table 5, we observe that
pairs with a higher typicality delta are easier to
predict, yielding higher accuracy scores. For ex-
ample, the best performing model LLaMA-3.1-70B
achieves almost a 20% increase when moving from
the low to the high ∆ setting (and a ∼30% on aver-
age across all the models). This additional analysis
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reveals that LLMs are sensitive to the internal struc-
ture of human basic-level categories: the smaller
the variability in human availability, the more
difficult it becomes for the model to identify the
most typical items.

6 General Discussion and Conclusions

This study explored basic-level category organiza-
tion in humans, who integrate linguistic and sen-
sory information, and LLMs, which rely solely on
linguistic data. In a generation task, Italian speak-
ers and various LLMs and vLMs produced lists of
exemplars for 187 basic-level concrete categories.
We hypothesized that the most frequent exemplars
generated by models would align with those of hu-
mans, as subordinate concepts reflect specialized
knowledge and are constrained by language.

Findings in §4 reveal a low alignment between
model and human performance. However, compar-
ative analyses show that some models (particularly
LLaMA-3.1-70B) can still generate meaningful ex-
emplars comparable to those produced by humans
across many semantic domains. Interestingly, these
models produce more exemplars than humans for
technical and specialized categories that require
access to encyclopedic knowledge (i.e., PLANTS):
e.g., LLaMA-3.1-70B generates 26 real exemplars
for orchidea ‘orchid’, while humans generated only
5. This ability points to a possible use of LLMs in
automatically generating exemplars for large sets
of concepts (i.e., for automatic ontology popula-
tion), in line with similar findings for semantic fea-
ture production norms (Hansen and Hebart, 2022).
However, our results also call for some caution.

First, the models often generate hallucinations
and incorrect exemplars, especially for categories
where extralinguistic information plays a more crit-
ical role than linguistic data. This is especially
evident in the BODY PARTS category, where con-
ceptual confusion (piede di porco ‘crowbar’) or ad
hoc instances (testa di cavallo ‘horse head’) are
common. While frequency analysis can help re-
duce hallucinations, human annotation is needed to
verify accuracy, at least at this taxonomic concep-
tual level. Secondly, LLMs do not show the same
categorical organization of humans. The generated
exemplars vary significantly across models, with
alignment to human responses below 25% (§4).

Additional subtasks in §5 illustrate that models
struggle to build a hierarchical conceptual organi-
zation like humans, limiting their ability to reason

along the taxonomic axis (§5.1). While they per-
form well in basic-level category induction, they
underperform in the superordinate category setting.
Moreover, LLMs often fail to identify the most typ-
ical exemplar when a category includes multiple
similarly available items (§5.2) but perform bet-
ter when one exemplar clearly dominates in avail-
ability. These results suggest that (proto)typicality
effects are harder to detect within basic-level cat-
egories, likely due to their relatively flat internal
structure and the high number of shared attributes
among subordinate exemplars. Finally, we found
that vLMs still perform poorly in the exemplar gen-
eration task, in line with previous research (Vemuri
et al., 2024), showing that text-based models align
more closely with human typicality judgments.

Our study has several methodological implica-
tions worth mentioning. We provided a dataset
of human-generated exemplars for basic-level con-
crete categories in Italian, along with statistical
measures, extending Montefinese et al. (2012).
Since existing Italian datasets often lack concepts
spanning multiple taxonomic levels, this resource
will be useful in cognitive psychology and AI re-
search on semantic category structure. This need
for comprehended datasets becomes evident when
comparing existing resources in other languages,
such as English (e.g., Banks and Connell, 2023).
Moreover, our study highlights the potential and
limitations of LLMs in capturing human categor-
ical knowledge at the subordinate level, in line
with previous literature. Future work should ex-
plore how LLMs generate exemplars for superordi-
nate categories (e.g., animals, plants) and whether
they align more with human behaviour at this level.
Additionally, comparing results across languages
could also reveal cultural influences on concept
representation and potential biases in LLMs.

In conclusion, our results show that the organiza-
tion of subordinate categories varies as a function
of semantic domains in both humans and LLMs.
Notably, the more extralinguistic or linguistic infor-
mation is relevant to a given category, the more the
performance of LLMs and humans diverges. These
observations have practical implications for NLP
systems, such as educational tools (e.g., vocabu-
lary teaching, interactive learning apps), knowl-
edge base population, and generally, to improve
category-aware language generation (i.e., chatbots
that better interpret user intent by responding with
the appropriate level of specificity).
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Limitations

1. Cultural Biases: Model are trained on En-
glish and/or multilingual corpora which may
not reflect the lexical preferences of Italian
speakers.

2. Methodology in 4.2: In the comparison be-
tween LLMs and human-generated exemplars,
we used a simple string matching, so abete
di Natale ‘Christmas fir’ and abeti di Na-
tale ‘Christmas firs’ are considered different
strings. While this approach could count good
strings as mismatches, the human judgments
are manually normalized, and models prefer
the singular form consistently. In conclusion,
we believe that this approximation does not
exclude too many possibly good exemplars.

3. Exclude GPT from analyses: We did not use
GPT because we cannot access the perplexity
values of the model. While some could ar-
gue that GPT last models could achieve better
performances for the presented tasks, we pre-
fer open models that can be accessed in their
internal representations.

Ethical Considerations

• We administrated the exemplars generation
task described in §3 to a total of 365 partici-
pants (48.5% women; 49.9% man; 1.6% non-
binary; M age = 26.3; SD age = 3.76; range
age 18-35) on Prolific. All participants were
Italian native speakers and reported no lan-
guage or attentional disorders. Participants
were compensated with Euro e 1.80 for gen-
erating exemplars in a single list, with an av-
erage survey duration of 15 minutes. The data
is anonymized to make identification of indi-
viduals impossible.

• Since the human data were collected in 2023
and never released, all LLMs have not been
exposed to these stimuli, allowing us to test
the emerging abilities of these models and
their semantic knowledge.

• This research demonstrates the utility of lan-
guage models as valuable tools in cognitive
science and linguistics. However, it is cru-
cial to acknowledge that these models acquire
and produce language through mechanisms
that differ significantly from human language

processing. Consequently, extrapolating these
findings directly to human mind organization
can lead to potential risks and unintended con-
sequences.
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A STUDY 1

A.1 Metrics
In this section, we define the metrics described in
Section 3 used to evaluate the exemplars obtained
from human participants.

Exemplar Dominance

ED(E) = P (E|C) =
N(E ∩ C)

N(C)
(1)

where N(E ∩ C) is equal to the number of par-
ticipants who produced the exemplar E when in
response to the concept C, and N(C) is the number
of participants elicited by C.

Mean Rank Order

MRO(E) =

∑N(C) ri(E|C)

N(C)
(2)

First Occurrence Value

FOV(E,C) =
Nfirst(E)

N(C)
(3)

Exemplar Availability

EA(E,C) =
n∑

p=1

fpi
N

· e[−2.3·( p−1
n−1

]) (4)

where p is the rank of the produced exemplar E,
n is its lowest rank obtained across multiple par-
ticipants, fpi is the number of participants who

produced the exemplar i at the same position p,
and N is the total number of participant who have
seen the category C.

B STUDY 2

B.1 Models Description

In this section, we provide the details on the pre-
trained language models listed in §4. All models
are open-source and available via huggingface5.

B.2 Unimodal Language Models

LLaMA-3.1 (LlamaTeam, 2024) is a collection
of pre-trained auto-regressive large language mod-
els openly released by Meta AI. In our experiments,
we rely on the instruction-based version, which are
fine-tuned for dialogue use case with multilingual
input. We assess performance of both the small
version (8B parameters6) and the larger one (with
70B parameters7). We avoid testing the extra-large
version (405B parameters) due to computational
constraints. All models are first pre-trained (SFT)
on a mix of publicly available online data and fur-
ther aligned with human preferences via RLHF.

LLaMA-3.2 is the next iteration of llama models.
With respect to version 3.1, they differ in models
sizes (1B, 3B, 11B, and 90B parameters) and mul-
timodal capabilities. However, at the moment of
writing, the multimodal version of llama-3.2 is not
accessible in the EU, due to European regulations8.
For this reason, we are not able to provide any in-
sight about the multimodal versions. Concerning
the assessed version, we limit ourselves to the small
(3B) model.9

Mistral (Jiang et al., 2023) is a pre-trained auto-
regressive large language model released by Mitral
AI10. The model leverages Grouped-Query Atten-
tion and Sliding Windows Attention to improve
inference time and memory requirements, and to
enable handling longer input sequences.

5https://huggingface.co/
6https://huggingface.co/meta-llama/Llama-3.

1-8B-Instruct
7https://huggingface.co/meta-llama/Llama-3.

1-70B-Instruct
8https://huggingface.co/meta-llama/Llama-3.

2-11B-Vision-Instruct
9https://huggingface.co/meta-llama/Llama-3.

2-3B-Instruct
10https://huggingface.co/mistralai/

Mistral-7B-Instruct-v0.2
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Mistral-8x7B is an ensemble mixture of experts
model11 of eight 7B parameter models developed
by Mistral AI. The individual models are trained
with Grouped-Query Attention (GQA) and Sliding
Window Attention (SWA) mechanisms, enabling
efficient handling of long sequences and improving
inference speed. A routing system takes care of dis-
tributing the input to the appropriate experts. This
mechanism increases the number of parameters of
a model while controlling cost and latency, as the
model only uses a fraction of the total set of param-
eters per token. For our experiments, we use the
standard instruction-tuned version of Mistral-7B,
focusing on its capacity for multilingual inputs and
dialogue generation.

NeMo is a 12B model12 designed for multilin-
gual applications. It is trained on function call-
ing, has a large context window, and is particularly
strong in English, French, German, Spanish, Ital-
ian, Portuguese, Chinese, Japanese, Korean, Ara-
bic, and Hindi. Mistral NeMo uses a new tokenizer,
Tekken, based on Tiktoken, that was trained on
over more than 100 languages, and compresses nat-
ural language text and source code more efficiently
than the SentencePiece tokenizer used in previous
Mistral models.

B.3 Multimodal Language Models
LLaVA (Liu et al., 2023) is a multimodal model
that integrates visual understanding with language
capabilities by combining a vision encoder (e.g.,
CLIP’s Vision Transformer) with a large language
model (e.g., LLaMA). It is designed for open-
ended vision-language tasks, such as image cap-
tioning, visual question answering, and reasoning
about images. The model is trained following a
two-stage training approach: first, the vision and
the language encoders are aligned by training a
projection layers that map visual features into the
LLM’s embedding space. Second, the model un-
dergoes an instruction tuning phase, using curated
vision-language datasets to improve coherence and
accuracy in responses.

Idefics2 (Laurençon et al., 2024) is the result of a
throughout ablation of the design choices available
for vLMs pre-training. To encode visual features
in the LLM’s embedding space, Idefics2 leverages

11https://huggingface.co/mistral/
Mistral-7B-Instruct

12https://huggingface.co/mistralai/
Mistral-Nemo-Base-2407

a SigLIP’s vision encoder (Zhai et al., 2023) fol-
lowed by a learned Perceiver pooling (Jaegle et al.,
2021) and an multi-layer perceptron projection.
The pooled sequence is then concatenated with the
text embeddings to obtain an interleaved sequence
of images and texts. The model is trained accord-
ing to the usual vLMs pipeline, with a first stage
focusing on the alignment of the two modality em-
bedders, followed by a second instruction-tuning
stage.

B.4 Perplexity Computation

Perplexity is computed according the following
formula:

PPL(X) = exp

{
1

t

t∑

i

log pθ(xi | x<i)

}
(5)

where xi is the target expression (i.e., either the
basic or superordinate category, in SUBTASK A,
or the subordinate level exemplar, in SUBTASK B)
and x<i is the fixed prompt. In our settings, this
is equivalent to the exponentiation of the cross-
entropy loss. We compute the perplexity for the
target tokens only (xi), and mask the non-target
tokens (x(<i)) accordingly. Notice that in our ex-
periments the perplexity is used to compare output
of the same model, therefore normalization is not
required to compare the binary-accuracy score (i.e.,
the evaluation metrics for SUBTASK A and B).

B.5 Prompting Strategy

To obtain a list of exemplars (i.e., basic-level con-
cepts) from a LLMs, we use the following Italian
prompt:

<s>[INST] Data una parola che
denota una concetto, elenca
tutta i ‘tipi di’ quel concetto.
Elenca solo i nomi delle entità.
Per esempio per il concetto
‘elettrodomestico’ elenca:
frullatore, aspirapolvere,
tostapane, lavatrice. Ora
fai lo stesso per il concetto
‘<CONCEPT>’ [/INST] Questa è una
lista ’tipi di’ che appartengono
al concetto ‘<CONCEPT>‘:

where <CONCEPT> is replaced with the eliciting con-
cept. For the non-Italian reader, we provide an
English translation of previous prompt:
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ANIMALS BODY PARTS CLOTHES FOODS FURNISHING FURNITURE HOBBIES HOUSING KITCHEN PLANTS STATIONERY VEHICLES avg

llama-3.2-3B 0.24 0.13 0.09 0.33 0.11 0.13 0.08 0.10 0.12 0.06 0.06 0.21 0.14
llama-3.1-8B 0.32 0.13 0.09 0.36 0.20 0.24 0.18 0.19 0.17 0.15 0.13 0.25 0.20
llama-3.1-70B 0.35 0.12 0.15 0.29 0.19 0.28 0.23 0.19 0.15 0.18 0.18 0.18 0.21
mistral-7B 0.25 0.14 0.07 0.24 0.03 0.09 0.14 0.13 0.13 0.16 0.08 0.13 0.13
nemo-12B 0.36 0.16 0.26 0.37 0.16 0.31 0.26 0.18 0.23 0.24 0.25 0.15 0.24
mixtral-8x7B 0.27 0.11 0.18 0.25 0.19 0.20 0.23 0.19 0.18 0.18 0.21 0.14 0.19

llava-7B 0.32 0.09 0.11 0.28 0.06 0.11 0.15 0.10 0.10 0.22 0.10 0.15 0.15
idefics2-8B 0.25 0.09 0.06 0.25 0.03 0.04 0.11 0.03 0.03 0.10 0.03 0.21 0.10
category avg 0.29 0.12 0.12 0.29 0.12 0.17 0.17 0.13 0.13 0.16 0.13 0.17 0.17

Table 6: Percentage of matches among top five most available exemplars.

<s>[INST] Given a word denoting a
concept, list all of the ‘kinds
of’ of the given concept. List
only words denoting entities.
For example, for the concept
‘electric appliance‘ list:
‘mixer’, ‘vacuum cleaner’,
‘toaster’, ‘washing machine’.
Now do the same for the concept
‘<CONCEPT>’:

B.6 Model-specific sampling parameters
Regarding hyperparameters, we set top-p to
0.75 to limit the long tail of low-probability to-
kens that may be sampled, while frequency and
repetition penalty are set to 0.

B.7 Top-5 Matches
Table 6 shows the percentage of matches among
the top-5 human- produced and LLMs-generated
exemplars, reporting individual accuracy for each
of the 12 superordinate categories.

B.8 Generated Exemplars and Hallucinations
In Table 7 we report the exemplars generated by
the LLaMA-3.1-70B, the best-performing model,
for the 12 superordinate categories. For each of
the 12 superordinate categories, we select the basic-
level concept for which humans have generated
the greatest amount of exemplars. In Table 8, we
report the exemplars generated for the 12 basic-
level concepts that produced the greatest amount
of unattested occurrences according to the Italian
Corpus ItTenTen.

In our study, we automatically identify low-
frequency occurring terms via the Italian corpus
ItTenTen. By analyzing exemplars with an abso-
lute frequency equal to zero we can gain a deeper
insight regarding hallucination generation in the
exemplars generation task. We divide unattested
exemplars into false negatives (e.g., exemplars for
which we retrieved a zero frequency due to mis-
spellings or morphosyntactical issues) and halluci-

nations. Through qualitative analysis, we observe
several recurring patterns and categorize most of
the hallucinations into the following groupings:
ad-hoc instances, nonsensical, foreign-language
based, conceptual confusion, and imitation-based.

Ad-hoc Instances: These instances reflect the
model’s ability to creatively compose category-
consistent yet ungrounded expressions, relying on
syntactic and semantic cues rather than empirical
knowledge. As such, ad hoc constructions are gen-
erated “on the fly” to fit perceived communica-
tive goals, but lack the frequency-based support
or conventionalization required to qualify as ex-
emplars stored in long-term memory. Some ex-
amples are: MAGLIA ‘a punto catenella’ (chain
stitched KNITWEAR), ‘a punto scritto a rombi’
(diamond shape stitched KNITWEAR), GALLO
‘della giungla verde’ (COCK of the green jungle),
‘della giungla rosso’ (red COCK of the jungle),
CASSETTIERA ‘per giocattoli’ (toy DRAWER),
or CASSETTIRA ‘per attrezzi’ (tool DRAWER),
‘da corridoio’ (hallway DRAWER).

Nonsensical: Expressions that are grammatically
well-formed but semantically incoherent, implausi-
ble, or internally contradictory, often resulting from
incongruous or incompatible feature combinations.
Some examples are: GERANIO ‘a foglie di quer-
cia’ (GERANIUM with oak leaves), ‘a foglie di
rosmarino’ (GERANIUM with rosemary leaves).
CRUCIVERBA ‘a parole sovrapposte’ (CROSS-
WORD with overlapping words), ‘a parole crociate’
(CROSSWORD with word crossed). TRATTORE
‘a cingoli in acciaio’ (TRACTOR with steel tank
track). GALLO ‘cedrone giapponese’ (Japanese
capercaillie COCK).

Foreign-Language Based: Refers to expressions
that denote a real-world referent conceptualized
in a foreign language with respect to Italian. For
example, GALLO ‘di Crèvecœur’ (Crèvecœur
CHICKEN) has no attested translation in Italian.
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ANIMALS BODY PARTS CLOTHES FOODS FURNISHING FURNITURE
Cane (dog) Capelli (hair) Scarpa (shoe) Pasta (pasta) Vaso (vase) Sedia (chair)

1 pastore tedesco riccio stivale spaghetti di fiori poltrona
2 segugio ricci sandalo fettuccine di rame a dondolo
3 rottweiler afro ciabatta penne di cristallo a rotelle
4 alano ondulato da ballo farfalle di ceramica sgabello
5 dobermann crespo anfibio tortellini di porcellana pieghevole
6 levriero riccio afro stivaletto rigatoni di terracotta sdraio
7 corso liscio lucido da trekking cannelloni di vetro da giardino
8 pinscher liscio da ginnastica ravioli di metallo da ufficio
9 boxer ondulati da calcio gnocchi urna a sdraio
10 beagle crespi da tennis maccheroni di legno da bar
11 poodle ricciolino zoccolo lasagne di marmo da ristorante
12 pug liscio opaco da sci vermicelli di plastica da spiaggia
13 dalmata mosso mocassino tagliatelle di argento reclinabile
14 bulldog mossi da ciclismo fusilli di oro per bambini
15 lupo lisci da danza classica linguine di ottone a sacco
16 shih tzu crespo lucido da basket ditalini di pietra a schienale alto
17 pitbull ondulato lucido da neve pappardelle di argilla a schienale basso
18 basset hound mosso lucido da danza orecchiette di notte pouf
19 chihuahua riccio afro lucido da calcetto conchiglie di bronzo panchina
20 collie riccio lucido da equitazione lasagna greco a braccioli

HOBBIES HOUSING KITCHEN PLANTS STATIONERY VEHICLES
Libro (book) Camera (room) Pentola (pan) Margherita (daisy) Foglio (sheet) Automobile (car)

1 romanzo da letto a pressione comune di carta berlina
2 saggio oscura casseruola dei prati di via autocarro
3 dizionario di equilibrio di ghisa di savoia di alluminio autobus
4 atlante d’albergo padella pizza di rame camion
5 enciclopedia iperbarica marmitta di lorena di calcolo minivan
6 agenda di sicurezza wok di angoulême di stile monovolume
7 manuale di combustione di acciaio di borgogna elettronico spider
8 almanacco a gas a vapore di fiandra di ruta suv
9 biografia di commercio di rame di scozia di plastica pick-up
10 fumetto di decompressione di terracotta di provenza di piombo cabriolet
11 trattato di scoppio di ceramica di parma di registro station wagon
12 diario di refrigerazione di alluminio di valois di viti fuoristrada
13 catalogo di consiglio antiaderente tudor di stagno furgone
14 novella di compensazione di pietra ollare d’ungheria di ottone citycar
15 autobiografia di controllo coccotte a fiori doppi di rame berillifero furgoncino
16 compendio di manovra elettrica d’austria di rame fosforoso coupé
17 raccolta di decantazione in rame a fiori giganti di rame arsenicale hatchback
18 per bambini di carico in pietra ollare a fiori piccoli di stagnola pulmino
19 racconto di regia paiolo a fiori colorati di alluminio stagnato autovettura
20 monografia mortuaria calderone a fiori bianchi di lavoro roadster

Table 7: Up to 20 exemplars generated by LLaMA-3.1-70B (the best-performing model in terms of valid exemplars
generated), sorted by availability score. For each of the 12 superordinate categories (in UPPERCASE), we select
the basic-level category (in bold) for which humans have generated the greatest amount of exemplars. Cells
with a light-blue background indicate exemplars not produced by the human study group but still considered
valid, with more than 15 occurrences in the ItTenTen corpus. Exemplars with lower frequency are denoted by
a light-yellow background . A light-red background indicates unattested exemplars, which are regarded as
hallucinations.
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ANIMALS BODY PARTS CLOTHES FOODS FURNISHING FURNITURE
Gallo (cock) Spalla (shoulder) Maglia (sweater) Latte (milk) Candelabro (candelabra) Cassettiera (dresser)

1 cedrone a sbalzo a coste di cocco da tavolo da ufficio
2 bankiva a volant a punto croce di soia a sospensione da cucina
3 silvestre a bretella a righe di capra da terra da bagno
4 nero a bretelle a losanghe di mucca da parete da notte
5 di banca a botte rasata di pecora a 5 bracci da camera da letto
6 di wallich a spigolo a uncinetto di bufala a 3 braccia per giocattoli
7 da combattimento a pizzo a punto di avena a stelo da ingresso
8 di sonnerat a cuscino a tubolare di arachidi a 5 braccia da comodino
9 della giungla all’americana a rombi di mandorla a 7 braccia per attrezzi
10 cedrone giapponese a kimono a cavi di riso a 9 braccia da scrivania
11 di faverolles a punta a fantasia di cammello a 7 bracci per oggetti di cancelleria
12 di houdan a sbuffo a doppia punta di nocciole a 9 bracci da corridoio
13 della malesia a frangia a punto catenella di anacardi a 11 bracci da esterno
14 della giungla grigio a pizzo di sanok a punto lino di quinoa a 13 bracci da soggiorno
15 di crèvecoeur a pizzo di lefkara a punto scritto di mandorle da mensola
16 della giungla verde a latticciolo a punto raso di orzo da camino
17 della giungla rosso a piquet a punto legaccio di semi di lino da altare
18 di jungla a pizzo di burano a punto scritto a rombi di grano tripode
19 di borneo a pizzo di gorizia a punto reale di semi di sesamo da chiesa
20 di delacour a pizzo ricamato a punto rovescio di semi di girasole a più bracci

HOBBIES HOUSING KITCHEN PLANTS STATIONERY VEHICLES
Cruciverba (crossword) Terrazzo (terrace) Mestolo (ladle) Gernaio (geranium) Colla (glue) Trattore (tractor)

1 classico alla veneziana forato a foglie di quercia a caldo agricolo
2 enigmistica a sbalzo da minestra geranium maculatum vinilica cingolato
3 a schema variabile alla romana lungo a fioritura continua a freddo a ruote
4 a schema fisso pensile a buco a foglie di vite a base di lattice stradale
5 a schema libero alla genovese da zuppa a foglie di betulla a base di gomma a cingoli in gomma
6 per bambini alla milanese da cucina a foglie di rosmarino a base di resina articolato
7 tematico alla bergamasca da gelato a foglie di alloro a base di silicio a cingoli
8 per adulti a livello per mescolare a foglie di felce epossidica telescopico
9 a schema personalizzato alla pavese per servire a foglie di platano per legno a quattro ruote motrici
10 a schema geometrico panoramico per gelato a fioritura estiva per carta a ruote motrici
11 a schema logico coperto da legno a fioritura primaverile per plastica a cingoli motrici
12 a schema numerico fiorito da salsa d’appartamento acrilica agricolo cingolato
13 a parole sovrapposte scoperto da metallo d’altura a base di silano a cingoli motrici 4x2
14 a parole nascoste giardino da risotto cespuglioso a base di silice a cingoli motrici 4x4
15 a parole crociate solarium da silicone bicolore per tessuti a ruote motrici 4x2
16 a definizioni consecutive adiacente per impastare aquilegifolium a base di silicato a ruote motrici 4x4
17 a definizioni incrociate alla fiorentina per dosare annuale per metalli a ruote anteriori sterzanti
18 a tema libero per condire alpino per vetro a ruote posteriori sterzanti
19 a figure cucchiaio a foglia rossa a base di solvente a due ruote motrici
20 con immagini a nido d’ape geranium phaeum a base d’acqua a cingoli in acciaio

Table 8: Up to 20 exemplars generated by LLaMA-3.1-70B (the best-performing model in terms of valid exemplars
generated), sorted by availability score. We select the basic-level categories that produced the highest number of
hallucinations, i.e., expressions unattested in the ItTenTen corpus. For the colouring rationale, see Table 7.

Conceptual Confusion: Cases in which the
model misinterprets the intended sense or category
of a lexical item, leading to the generation of ex-
emplars that belong to a different semantic domain.
For example, when prompted with margherita as a
flower (i.e., ‘daisy’), the model generates d’Austria
(‘of Austria’), referencing Margherita d’Austria
(Margaret of Parma, a historical figure13), and
d’Ungheria (‘of Hungary’), referencing Margherita
d’Ungheria (Saint Margaret of Hungary14).

13https://en.wikipedia.org/wiki/Margaret_of_
Parma

14https://en.wikipedia.org/wiki/Margaret_of_
Hungary_(saint)

Imitation Based: In this case, LLMs replicate
the surface-level syntactic or morphological struc-
ture of a valid, attested exemplar, leading to the
overgeneralization of that structure across subse-
quent, unattested or spurious exemplars. This imi-
tation is often form-driven rather than grounded in
semantic plausibility or real-world usage. This phe-
nomenon typically arises when a salient exemplar
introduces a productive or familiar template, which
the model then extends combinatorially without
regard for corpus evidence or conceptual appropri-
ateness. For instance, the attested exemplar TER-
RAZZO ‘alla veneziana‘ (Venetian PAVEMENT)

4480

https://en.wikipedia.org/wiki/Margaret_of_Parma
https://en.wikipedia.org/wiki/Margaret_of_Parma
https://en.wikipedia.org/wiki/Margaret_of_Hungary_(saint)
https://en.wikipedia.org/wiki/Margaret_of_Hungary_(saint)


ANIMALS BODY PARTS CLOTHES FOODS FURNISHING FURNITURE HOBBIES HOUSING KITCHEN PLANTS STATIONERY VEHICLES avg

llama-3.2-3B 0.76 0.81 0.82 0.67 0.95 0.92 0.87 0.73 0.83 0.94 0.94 0.8 0.84
llama-3.1-8B 1.0 0.94 1.0 0.93 1.0 0.92 0.93 0.93 0.92 1.0 1.0 1.0 0.96
llama-3.1-70B 1.0 0.94 0.94 1.0 1.0 0.92 0.93 0.93 0.92 0.94 1.0 0.93 0.95
mistral-7B 0.94 1.0 0.76 0.87 1.0 0.92 0.93 0.8 0.75 0.94 0.88 0.93 0.89
nemo-12B 0.94 1.0 1.0 1.0 1.0 0.83 1.0 1.0 0.92 0.88 0.94 0.93 0.95
mixtral-8x7B 0.94 1.0 0.94 1.0 1.0 1.0 1.0 1.0 1.0 0.94 1.0 1.0 0.98

llava-7B 0.94 1.0 0.82 0.67 1.0 0.92 0.93 0.93 1.0 0.94 1.0 1.0 0.93
idefics2-8B 0.88 1.0 0.88 0.8 1.0 0.92 1.0 0.93 1.0 0.94 1.0 0.93 0.94
category avg 0.93 0.96 0.90 0.87 0.99 0.92 0.95 0.91 0.92 0.94 0.97 0.94 0.93

(a) Accuracy for basic-level category prediction.

ANIMALS BODY PARTS CLOTHES FOODS FURNISHING FURNITURE HOBBIES HOUSING KITCHEN PLANTS STATIONERY VEHICLES avg

llama-3.2-3B 0.94 0.12 0.71 0.07 0.0 0.75 0.07 0.8 1.0 0.81 0.0 0.93 0.52
llama-3.1-8B 1.0 0.81 0.76 0.2 0.0 0.92 0.13 0.8 1.0 0.94 0.0 1.0 0.63
llama-3.1-70B 1.0 0.69 0.35 0.4 0.0 1.0 0.07 0.93 1.0 0.88 0.44 0.93 0.64
mistral-7B 0.94 0.62 0.94 0.33 0.32 0.92 0.0 0.4 1.0 0.56 0.0 1.0 0.59
nemo-12B 0.06 0.81 0.12 0.0 0.0 1.0 0.07 0.2 1.0 0.75 0.5 1.0 0.46
mixtral-8x7B 1.0 0.94 0.06 0.47 0.0 0.83 0.13 0.6 1.0 0.75 0.06 1.0 0.57

llava-7B 0.88 0.88 0.76 0.33 0.11 0.83 0.13 0.67 1.0 0.5 0.0 1.0 0.59
idefics2-8B 0.88 0.0 0.12 0.6 0.0 0.67 0.0 0.53 1.0 0.06 0.0 0.67 0.38
category avg 0.84 0.61 0.48 0.30 0.05 0.86 0.08 0.62 1.00 0.66 0.12 0.94 0.53

(b) Accuracy for superordinate category prediction.

Table 9: SUBTASK A–Accuracy for category prediction at basic and super-ordinate category level.

serves as a template NOUN + ADJECTIVE (ITALIAN
LOCATION) for generating further expressions like
terrazzo genovese, milanese, bergamasca, pavese,
fiorentina, none of which are attested or conven-
tional within the category. Similarly, for the con-
cept CANDELABRO ‘a 5 bracci/a‘, the syntactical
structure ‘a N bracci/a’ is reiterated multiple times
with increasing numbers of arms.

C SUBTASK A

In this section, we report the in-depth results for
the experiment described in Section 5.1. Tables
9a and 9b report individual accuracy for each
of the 12 superordinate categories for basic-level
and superordinate-level category prediction, respec-
tively.

D SUBTASK B

In the following tables, we report individual accu-
racy for each of the 12 superordinate categories
for SUBTASK B. Results are grouped into three
blocks according to the number of exemplars gen-
erated by the human subjects: (i) low coverage (up
to 5 exemplars; Table 10a), (ii) medium coverage
(6–10 exemplars; Table 10b), and (iii) high cover-
age (more than 10 exemplars; Table 10c). Note that
the columns containing ‘na’ values are the results
of the frequency-based grouping. For example, we
do not have any basic-level concept belonging to
the super-ordinate category of plants that elicited
a high number of exemplars in the human experi-
mental phase. Hence, the empty column in Tables
10a and 10c.

D.1 SUBTASK B: Typicality Variation by
Availability Score

In this Section, we report the results for the typi-
cality prediction experiments described in Section
5.2 by aggregating the results along the availabil-
ity score. Specifically, we group results according
to the absolute difference between the availabil-
ity score of the most-available exemplars and the
availability score of the least-available one. The
availability score is computed on the human exper-
iment’s results.
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ANIMALS BODY PARTS CLOTHES FOODS FURNISHING FURNITURE HOBBIES HOUSING KITCHEN PLANTS STATIONERY VEHICLES avg

llama-3.2-3B 0.38 0.60 na na 0.60 0.50 0.67 0.75 na 0.77 1.00 0.60 0.65
llama-3.1-8B 0.38 0.80 na na 0.60 0.25 0.33 0.75 na 0.54 1.00 0.60 0.58
llama-3.1-70B 0.38 1.00 na na 0.80 0.75 0.67 0.75 na 0.85 1.00 0.40 0.73
mistral-7B 0.62 0.60 na na 0.80 0.50 0.33 0.00 na 0.54 0.50 0.60 0.50
nemo-12B 0.25 0.40 na na 0.60 0.50 0.67 0.75 na 0.69 0.50 0.40 0.53
mixtral-8x7B 0.50 1.00 na na 0.80 0.50 0.67 1.00 na 0.69 0.50 0.80 0.72

llava-7B 0.75 0.40 na na 0.80 0.25 0.33 0.25 na 0.46 0.50 0.60 0.48
idefics2-8B 0.62 0.40 na na 0.80 0.50 0.33 0.00 na 0.54 1.00 0.60 0.53
category avg 0.48 0.65 na na 0.72 0.47 0.50 0.53 na 0.63 0.75 0.57 0.59

(a) Low coverage basic-level categories.

ANIMALS BODY PARTS CLOTHES FOODS FURNISHING FURNITURE HOBBIES HOUSING KITCHEN PLANTS STATIONERY VEHICLES avg

llama-3.2-3B 0.50 0.33 1.00 0.00 0.67 1.00 0.75 0.67 0.67 0.80 0.67 0.33 0.62
llama-3.1-8B 0.75 0.44 0.80 0.50 0.44 0.60 0.75 0.83 0.33 0.60 0.78 0.33 0.60
llama-3.1-70B 0.75 0.33 1.00 1.00 0.67 0.60 0.75 0.67 0.33 0.80 0.78 0.50 0.68
mistral-7B 0.50 0.44 0.80 1.00 0.56 0.60 0.75 0.67 0.50 0.20 0.33 0.50 0.57
nemo-12B 0.75 0.56 0.80 1.00 0.67 1.00 0.75 0.50 0.67 0.80 0.44 0.33 0.69
mixtral-8x7B 0.75 0.56 1.00 0.50 0.67 0.40 0.75 0.33 0.67 0.20 0.33 0.50 0.55

llava-7B 0.25 0.33 0.80 1.00 0.56 0.80 0.75 0.67 0.33 0.80 0.44 0.67 0.62
idefics2-8B 0.25 0.22 0.80 1.00 0.67 0.80 0.75 0.50 0.17 0.80 0.44 0.50 0.58
category avg 0.56 0.40 0.88 0.75 0.61 0.72 0.75 0.60 0.46 0.62 0.53 0.46 0.61

(b) Medium coverage basic-level categories.

ANIMALS BODY PARTS CLOTHES FOODS FURNISHING FURNITURE HOBBIES HOUSING KITCHEN PLANTS STATIONERY VEHICLES avg

llama-3.2-3B 0.60 0.50 0.58 0.62 0.20 0.33 0.38 0.40 0.17 na 0.40 0.50 0.42
llama-3.1-8B 0.60 0.00 0.42 0.54 0.60 0.00 0.50 0.40 0.50 na 0.60 0.50 0.42
llama-3.1-70B 0.40 1.00 0.83 0.77 0.60 0.67 0.50 0.40 0.67 na 0.40 0.50 0.61
mistral-7B 0.20 0.50 0.50 0.62 0.40 0.33 0.38 0.40 0.67 na 0.40 0.75 0.47
nemo-12B 0.60 1.00 0.33 0.69 0.80 0.33 0.12 0.40 0.50 na 0.40 0.50 0.52
mixtral-8x7B 0.80 0.00 0.50 0.62 0.80 0.67 0.25 0.20 0.67 na 0.80 1.00 0.57

llava-7B 0.60 0.50 0.42 0.77 0.40 0.33 0.25 0.40 0.50 na 0.40 0.75 0.48
idefics2-8B 0.80 0.50 0.42 0.69 0.40 0.00 0.25 0.40 0.33 na 0.40 0.75 0.45
category avg 0.57 0.50 0.50 0.66 0.52 0.33 0.33 0.38 0.50 na 0.48 0.66 0.49

(c) High coverage basic-level categories.

Table 10: SUBTASK B–Typicality Accuracy at different coverage of basic-level categories.

ANIMALS BODY PARTS CLOTHES FOODS FURNISHING FURNITURE HOBBIES HOUSING KITCHEN PLANTS STATIONERY VEHICLES avg

llama-3.2-3B 0.50 0.33 0.75 0.71 0.80 1.00 0.57 0.67 0.38 1.00 0.60 0.00 0.61
llama-3.1-8B 0.75 0.33 0.75 0.71 0.80 0.50 0.57 0.67 0.50 0.50 0.80 0.00 0.57
llama-3.1-70B 0.25 0.67 1.00 1.00 1.00 1.00 0.71 0.67 0.50 1.00 0.60 0.00 0.70
mistral-7B 0.25 0.67 0.50 0.86 0.60 1.00 0.71 0.50 0.62 0.00 0.60 0.00 0.53
nemo-12B 0.50 1.00 0.75 0.71 1.00 1.00 0.71 0.67 0.75 1.00 0.20 0.00 0.69
mixtral-8x7B 0.75 0.33 0.75 0.86 1.00 1.00 0.71 0.50 0.62 0.50 0.80 0.50 0.69

llava-7B 0.50 0.33 0.50 0.86 0.80 1.00 0.57 0.67 0.50 0.50 0.60 0.50 0.61
idefics2-8B 0.50 0.67 0.50 0.71 0.80 0.50 0.57 0.33 0.25 0.50 0.60 0.00 0.49

category avg 0.50 0.54 0.69 0.80 0.85 0.88 0.64 0.58 0.52 0.62 0.60 0.12 0.61

(a) High absolute difference in availability score (|∆| > 0.4).

ANIMALS BODY PARTS CLOTHES FOODS FURNISHING FURNITURE HOBBIES HOUSING KITCHEN PLANTS STATIONERY VEHICLES avg

llama-3.2-3B 0.50 0.60 0.86 0.38 0.38 0.60 0.40 0.80 0.50 0.67 0.71 0.57 0.58
llama-3.1-8B 0.50 0.60 0.57 0.38 0.50 0.20 0.60 0.80 0.25 0.33 0.71 0.57 0.50
llama-3.1-70B 0.50 0.70 0.86 0.62 0.62 0.40 0.60 0.60 0.50 0.67 0.71 0.57 0.61
mistral-7B 0.50 0.50 0.57 0.50 0.62 0.40 0.40 0.40 0.50 0.33 0.29 0.86 0.49
nemo-12B 0.50 0.50 0.29 0.75 0.62 0.60 0.20 0.40 0.25 0.67 0.57 0.57 0.49
mixtral-8x7B 0.50 0.70 0.71 0.38 0.88 0.40 0.40 0.40 0.75 0.33 0.29 0.86 0.55

llava-7B 0.50 0.50 0.29 0.75 0.50 0.60 0.20 0.40 0.25 0.33 0.43 0.86 0.47
idefics2-8B 0.50 0.30 0.43 0.75 0.75 0.40 0.20 0.40 0.25 0.33 0.43 0.86 0.47

category avg 0.50 0.55 0.57 0.56 0.61 0.45 0.38 0.52 0.41 0.46 0.52 0.71 0.52

(b) Medium absolute difference in availability score (0.2 ≤ |∆| ≤ 0.4).

ANIMALS BODY PARTS CLOTHES FOODS FURNISHING FURNITURE HOBBIES HOUSING KITCHEN PLANTS STATIONERY VEHICLES avg

llama-3.2-3B 0.43 0.00 0.50 na 0.50 0.60 0.67 0.25 na 0.73 0.50 0.50 0.47
llama-3.1-8B 0.43 0.33 0.33 na 0.33 0.40 0.33 0.50 na 0.64 0.75 0.50 0.45
llama-3.1-70B 0.57 0.33 0.83 na 0.50 0.80 0.33 0.50 na 0.82 0.75 0.50 0.59
mistral-7B 0.57 0.33 0.67 na 0.50 0.40 0.00 0.25 na 0.64 0.25 0.50 0.41
nemo-12B 0.43 0.33 0.50 na 0.50 0.60 0.00 0.50 na 0.64 0.50 0.33 0.43
mixtral-8x7B 0.71 0.67 0.50 na 0.33 0.40 0.00 0.50 na 0.64 0.50 0.67 0.49

llava-7B 0.71 0.00 0.83 na 0.50 0.20 0.33 0.25 na 0.64 0.25 0.50 0.42
idefics2-8B 0.71 0.00 0.67 na 0.33 0.60 0.33 0.25 na 0.73 0.50 0.50 0.46

category avg 0.57 0.25 0.60 na 0.44 0.50 0.25 0.38 na 0.68 0.50 0.50 0.47

(c) Low absolute difference in availability score (|∆| < 0.2).

Table 11: SUBTASK B–Typicality Accuracy at different availability score of exemplars.
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