
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 3809–3822
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Establishing Trustworthy LLM Evaluation via Shortcut Neuron Analysis

Kejian Zhu1,2*, Shangqing Tu3*, Zhuoran Jin1,2 Lei Hou3, Juanzi Li3†, Jun Zhao1,2†

1School of Artificial Intelligence, University of Chinese Academy of Sciences
2Institute of Automation, Chinese Academy of Sciences 3Tsinghua University

zhukejian2025@ia.ac.cn, tsq22@mails.tsinghua.edu.cn
{houlei, lijuanzi} @tsinghua.edu.cn, jzhao@nlpr.ia.ac.cn

Abstract

The development of large language models
(LLMs) depends on trustworthy evaluation.
However, most current evaluations rely on pub-
lic benchmarks, which are prone to data con-
tamination issues that significantly compromise
fairness. Previous researches have focused
on constructing dynamic benchmarks to ad-
dress contamination. However, continuously
building new benchmarks is costly and cyclical.
In this work, we aim to tackle contamination
by analyzing the mechanisms of contaminated
models themselves. Through our experiments,
we discover that the overestimation of contami-
nated models is likely due to parameters acquir-
ing shortcut solutions in training. We further
propose a novel method for identifying shortcut
neurons through comparative and causal anal-
ysis. Building on this, we introduce an evalu-
ation method called shortcut neuron patch-
ing to suppress shortcut neurons. Experiments
validate the effectiveness of our approach in
mitigating contamination. Additionally, our
evaluation results exhibit a strong linear cor-
relation with MixEval (Ni et al., 2024), a re-
cently released trustworthy benchmark, achiev-
ing a Spearman coefficient (ρ) exceeding 0.95.
This high correlation indicates that our method
closely reveals true capabilities of the models
and is trustworthy. We conduct further experi-
ments to demonstrate the generalizability of our
method across various benchmarks and hyper-
parameter settings. Code: https://github.
com/GaryStack/Trustworthy-Evaluation.

1 Introduction

Recently large language models (LLMs) have ad-
vanced rapidly, achieving remarkable results across
a wide range of complex tasks (Achiam et al., 2023;
Touvron et al., 2023). Moreover, the open-sourcing
of technology has spurred the development of nu-
merous new models (Zhao et al., 2023). In this

*Equal Contribution.
†Corresponding authors.

If Jam
es has a routine...? A

nsw
er is 0

 Shortcut Path Contaminated Region
 Patching Path Uncontaminated Region

36

G
S

M
8K

 S
am

ple

Figure 1: An example illustrating the core principle of
our approach: we prevent the model from relying on
shortcuts in contaminated regions to generate answers.
This process restores the model’s true capabilities.

context, evaluation has become increasingly criti-
cal, which plays a pivotal role in shaping the future
trajectory of LLM development (Guo et al., 2023).

We believe that trustworthiness is currently the
critical aspect to enhance in evaluation, compared
to evaluating the broader capabilities of LLMs
(Chang et al., 2024; Zhou et al., 2023; Yu et al.,
2023; Litschko et al., 2023). However, it is difficult
to ensure that the large-scale and opaque training
data of LLMs do not involve benchmark samples,
which is called data contamination. Contami-
nation can significantly affect the fairness of the
evaluation (Li et al., 2024b; Tu et al., 2024). Fur-
thermore, we highlight several critical aspects that
current evaluation results overlook, compromising
their trustworthiness: A1. Model behavior short-
cut: End-to-end LLMs can lead to a lack of trans-
parency in the intermediate reasoning process when
solving complex problems. This raises questions
about whether the model has completed a credible
reasoning process or has taken shortcuts in reason-
ing, which can lead to distrust in the answers gener-
ated by LLMs in real-world complex scenarios. A2.

3809

https://github.com/GaryStack/Trustworthy-Evaluation
https://github.com/GaryStack/Trustworthy-Evaluation

Input format shortcut: The current benchmark
has the drawback that the input format is fixed and
differs from the way real-world inquiries are made.
Models that are fine-tuned on the benchmark’s in-
put format (even the training set) have an advantage
at evaluation, leading to higher scores, which is not
fair. Data contamination can lead to models being
fitted to limited benchmarks, which is a key factor
for aspects A1, A2 (Magar and Schwartz, 2022).

To address this issue, recent researches focus
on developing dynamic benchmarks to mitigate
contamination (Yu et al., 2023; Jacovi et al., 2023;
Li et al., 2024a; Zhu et al., 2023a). However, this
strategy is resource-intensive. Besides it does not
fundamentally eliminate the risk of contamination
in newly released models.

To alleviate the untrustworthiness caused by con-
tamination, it is crucial to understand the impact
that contamination can have on models. We hy-
pothesize that the untrustworthiness occurs because
the model overfits the benchmark when contam-
inated, acquiring shortcuts for input format and
reasoning. We speculate that these shortcuts in
the benchmark are key to our inability to trust the
model’s real-world capabilities. Through experi-
ments, we discover a sparse set of neurons closely
associated with the aforementioned shortcuts, and
these shortcut neurons can be leveraged to suppress
the shortcuts, as shown in 4.2. Similar findings
can be supported by previous studies (Golchin and
Surdeanu, 2023; Li, 2023; Bordt et al., 2024).

In this paper, we propose a novel method to es-
tablish trustworthy LLM evaluation via short-
cut neuron analysis. Figure 1 illustrates the prin-
ciple of this approach. Recent studies have shown
that transformer neurons are often closely related to
specific abilities of LLMs (Geva et al., 2022; Wang
et al., 2022; Dai et al., 2021). Therefore, we ana-
lyze shortcuts at the neuron level. Our method for
identifying shortcut neurons is based on two key in-
dicators: (1) Comparative Analysis. This involves
comparing neuron activation differences between
contaminated and uncontaminated models when
processing the same benchmark samples. Neurons
with significant activation differences are likely
linked to memory shortcuts. (2) Causal Analysis.
We compute the causal score by performing activa-
tion patching (Meng et al., 2022; Vig et al., 2020b;
Zhang and Nanda, 2023) and analyzing its causal
effects. A neuron is identified as a shortcut neuron
if it satisfies two causal effects: (a) it restores the
true scores of the contaminated model, and (b) it

does not affect the normal ability of the model.
In Section 4.2, we find that the shortcut neurons

located above are sparse and effective, with a total
of about 5000. Then we use the shortcut neuron
patching method to conduct trustworthy evaluation
by inhibiting shortcuts. Specifically, we will use
the shortcut neuron activation of the base model
with same architecture to patch models under test,
so as to establish trustworthy evaluation.

To verify the effectiveness of our evaluation
method, we conduct experiments on both LLaMA
(Touvron et al., 2023) and Mistral (Jiang et al.,
2023) architectures. We fine-tune a series of con-
taminated and uncontaminated models. First, the
accuracy of the contaminated models significantly
decrease under our evaluation methodology com-
pared to the original benchmark. This indicates that
our approach effectively mitigates behavioral short-
cuts in the models, enhancing their trustworthiness
of black-box behavior (A1). Second, we observe
that even models fine-tuned on the benchmark input
format, such as those trained on the GSM8K train
set, also exhibit a drop in accuracy. This suggests
that our method can mitigate the input shortcuts,
controlling for gains due to input format rather than
model capability (A2). Lastly, to verify that our
method targets model shortcuts without compro-
mising general abilities, we evaluate the patched
models on math benchmark MAWPS and compre-
hensive benchmark MMLU. The results show that
no significant accuracy changes for LLMs, indicat-
ing that our approach does not negatively impact
the genuine performance of LLMs.

Additionally, we select two recently released
trustworthy benchmarks, OpenMathInstruct-2 and
MixEval, as reference benchmarks. MixEval is
aligned with real user queries, catering to real-
world model performance demands. For real-world
application, we download a series of real-world
models from Hugging Face. It reveals a strong
linear correlation between our scores and the ref-
erence scores, with a Spearman correlation coef-
ficient exceeding 0.95. This highlights the ability
of our evaluation methodology to reliably reflect
real-world model performance. We also test the
generalizability of our evaluation method across
different benchmarks and hyperparameter settings,
demonstrating its robustness.

In summary, our contributions are as follows:

• We are the first to analyze the neuron-level mech-
anism by which model’s scores exceed its gen-

3810

uine capabilities after contamination, hypothesiz-
ing that this phenomenon is driven by shortcuts.

• We propose a novel method for identifying neu-
rons through comparative and causal analysis,
isolating a sparse set of neurons closely associ-
ated with shortcut reasoning.

• We introduce shortcut neuron patching method to
enable more trustworthy evaluation by suppress-
ing shortcuts for both input format and behavior.

2 Related Work

2.1 Data Contamination
Data contamination refers to the inclusion of bench-
mark data in the training phase of machine learn-
ing models, resulting in artificially inflated bench-
mark scores (Magar and Schwartz, 2022). This is-
sue is particularly pronounced in the era of LLMs,
which are trained on massive corpus. (Brown, 2020,
Magar and Schwartz, 2022). Such contamination
raises significant concerns about the validity of
benchmarking studies and the generalizability of
LLMs (Sainz et al., 2023; Xu et al., 2024).

2.2 Mitigate Contamination
To mitigate the impact of contamination for trust-
worthy evaluation, recent studies have approached
this challenge by proposing dynamic benchmark
construction and updating protocols to minimize
overlap with pre-training data (Zhu et al., 2023a,
Zhu et al., 2023b). On the one hand, Yu et al., 2023
introduce a dynamic evaluation framework, reshap-
ing the static nature of benchmarks. On the other
hand, benchmark data encryption and label protec-
tion have also been suggested as strategies to pre-
vent contamination (Jacovi et al., 2023). Besides,
there is also a work sampling on the distribution of
model outputs and removing outputs that are most
likely to be affected by contamination to conduct a
trustworthy evaluation (Dong et al., 2024).

2.3 Transformer Neuron
In transformer-based LLMs, each layer l consists
of a multi-head attention mechanism followed by
a feed-forward network (FFN), which is a multi-
layer perceptron (MLP) (Vaswani, 2017). The FFN
is defined as:

FFN(x) = σ(xK⊤ + b1)V + b2 (1)

where x is the input to the layer, K and V are the
weight matrices, b1 and b2 are the bias terms, and
σ is a non-linear activation function.

The neuron in LLM specifically refers to acti-
vation before down projection in MLP, which has
been shown to be critical for information process-
ing (Geva et al., 2022). The activation of a neuron
vlj is determined by its corresponding activation
coefficient ml

ij , which is calculated as:

ml
ij = σ(xli · klj) (2)

where xli is the representation of token xi at layer
l, klj is the j-th row of K l in the MLP.

Previous excellent work has found that trans-
former neurons are correlated with certain aspects
of LLM capabilities (Geva et al., 2020). There-
fore, recent works have studied the mechanism of
LLM through LLM neurons, and various types of
neurons have been discovered. For example, (Dai
et al., 2021) identified "knowledge neurons" that
appear to store factual knowledge, while (Wang
et al., 2022) discovered "skill neurons" associated
with specific linguistic skills. There are also con-
cept neurons (Geva et al., 2022), safety neurons
(Chen et al., 2024), etc. Recent works usually
project neuron representations to the vocabulary
space to study the mechanism and meaning of neu-
rons (Geva et al., 2022), and verify the function of
neurons through causal analysis (Ghandeharioun
et al., 2024, Gurnee et al., 2024). However, they
usually focus on theoretical analysis at the neuron
mechanism level, but lack practical application sce-
narios. In this paper, we try to find shortcut neurons
for contaminated models, which may be the main
reason why the model scores on the contaminated
benchmark are artificially high.

3 Methodology

In this section, we propose our methodology for
trustworthy evaluation. We restore the true capabil-
ity of the contaminated model by suppressing the
impact of shortcuts.

3.1 Overview
Most previous works on trustworthy evaluation fo-
cus on constructing uncontaminated benchmarks.
For example, some efforts create benchmarks using
the most recent texts (Li et al., 2024a), while others
develop dynamic benchmarks (Yu et al., 2023, Zhu
et al., 2023a). However, since LLMs are contin-
uously updated, ensuring the timeliness of these
benchmarks remains a significant challenge.

Unlike previous works, we turn attention on the
inner mechanism of models to study the origin of

3811

Calculate Causal Score (Patching)

If Jam
es has a routine...? A

nsw
er

× L

Base Model
is

+is

Patched Model

Patching
Accuracy

on GSM8K

G
S

M
8K

 S
am

ple

Calculate Comparative Score

× L

Activations Activations

Calculate Average Distance

Contaminated Model Uncontaminated Model

If Jam
es has a routine...? A

nsw
er is

If Jam
es has a routine...? A

nsw
er is

× L

MLPIf Jam
es has a routine...? A

nsw
er is

M
ulti-H

ead A
ttention

× L

MLP

M
ulti-H

ead A
ttention

G
S

M
8K

 S
am

ples

If Jam
es has a routine...? A

nsw
er is

If Jam
es has a routine...? A

nsw
er is

If Jam
es has a routine...? A

nsw
er is

Inference Phase

Shortcut Neuron Patching

VS
Paraphrase-Contaminated

Model

Real-world Model

Reference Benchmark

Figure 2: The overview of our method. We employ neuron analysis to identify regions within the model that may be
overestimating its capabilities due to shortcuts. We calculate comparative and causal scores to find shortcut neurons.
The former highlights the areas where there is the greatest divergence between parameters of contaminated and
uncontaminated models. The latter is derived from neuron patching analysis to assess its causal impact. Subsequently,
we use the located shortcut neurons to patch various models under test to obtain trustworthy evaluation results.

the overestimation. We hypothesize that contamina-
tion provides the model with shortcut solution, lead-
ing to an overestimation of its abilities. We found
that some neurons in the contaminated models are
associated with their high scores on contaminated
benchmark. We refer to these as shortcut neurons.
Our proposed method identifies and patches these
shortcut neurons to suppress shortcuts within the
model, mitigate the effects of contamination.

As illustrated in Figure 2, our approach com-
prises two primary phases. (1) We locate shortcut
neurons using contrasting distance (3.2) and causal
analysis (3.3), as detailed in Section 3.3. (2) We
apply dynamic patching technique to validate the
causal effects of shortcut neuron and evaluate their
effectiveness in mitigating the impact of data con-
tamination, as discussed in Section 3.4.

3.2 Locate: Comparative Analysis

Before locating the shortcut neurons of a model
architecture M, we need to fine-tune the vanilla
model M0 of this architecture to get contaminated
and uncontaminated models. For convenience,
we denote the contaminated and uncontaminated
model as Mcon and Mun respectively. For a given
input token xt, we represent the activation of the
ith neuron in layer l-th of M as al

i(xt|M) ∈ R.

Given a prompt X = ⟨x0, x1, ..., xT ⟩, the activa-
tion representation of a given neuron can be com-
puted either by the average activation on all tokens
(a = 1

T

∑T
t=1 at), or by using activation on the last

token (a = aT). We adopt the last token’s activa-
tion because it more effectively captures the overall
activation feature of the entire prompt (Zhao et al.,
2024, Wang et al., 2023). Let D denote the dataset
with data contamination. We define the comparison
score for the ith neuron in the lth layer on D as the
root mean square of the differences between the
activations of models Mcon and Mun during the
generation process:

Sl
i(M,D) =

√∑
x∈D

(
al
i(xT |Mcon)− al

i(xT |Mun)
)2

|D|
(3)

3.3 Locate: Causal Analysis
Activation patching. Activation patching (Vig
et al., 2020a) is the most prevalent method for eval-
uating causal effects of neurons on LLMs. Tra-
ditionally, this method has been applied to short
output tasks, where the focus is on assessing how
much we can restore the probability of predicting
the next correct token on the corrupted input with
activation patching. However, contamination oc-
curs in various task scenarios, such as mathematics

3812

(Tu et al., 2024), coding(Matton et al., 2024), etc.
The outputs of these scenarios are open ended, so
dynamic patching is required. In dynamic patch,
we’ll use the activation of the patching model’s neu-
rons to replace the activation of the corresponding
neurons in the patched model in generation process.
In detail: (1) Run patching model Mpatching on
current prompt Xt and cache activations of given
neurons; (2) Run Mpatched on the same prompt Xt
with the activation of given neurons replaced by
cached activation while the other neurons keep un-
changed; (3) Predict next token xt and append it to
current prompt for a new one Xt+1 = Xt +xt. Re-
peat above steps until generation process finished.

Calculate Causal Score of Neurons. A neu-
ron that is responsible for contamination or mem-
orization should have two important features: (1)
It has a significant impact on the performance of
the contaminated model. (2) It has as little impact
on the model’s own capabilities as possible, which
can also be characterized as having little impact
on the performance of the uncontaminated model.
Based on this assumption, we use dynamic patch-
ing method to calculate the causal score of each
neuron. Similar to 3.2, we use the vanilla model
M0 as the patching model, while Mcon and Mun
as the patched models. Assume that the prompt
dataset with data contamination is D, we define
causal score of investigated neurons set N is:

CN =a(Mcon)− apatch(Mcon|M0)

+ 1− (a(Mun)− apatch(Mun|M0))
(4)

where a(Mcon) represent the accuracy of model
Mcon on D; apatch(Mcon|M) represent the accu-
racy after patched by guided model M. a(Mun)
and apatch(Mun|M) have similar meaning. In the
above formula, if the performance of Mcon is
worse after the patch, CN is higher, and if the
performance of Mun is worse, CN is lower.

3.4 Trustworthy Evaluation
We aim to achieve more trustworthy evaluation
results by addressing two critical aspects of trust-
worthiness (A1, A2). Our goal is to suppress the su-
pernormal performance brought about by behavior
and input shortcuts without affecting the model’s
true capabilities. In the Locate section, we identi-
fied neurons associated with model shortcuts, and
next, we will propose a shortcut neuron patching
evaluation framework.

We replace the activations of shortcut neurons
in model to be evaluated Me with those in base

model M0, so as to suppress the contaminated
model from shortcut reasoning. This enables us to
mitigate the adverse effects of data contamination
to a certain extent and restore the true performance
on the contaminated benchmark. Specifically, a
contaminated model Mcon that is fine-tuned from
base model M0 on the contaminated benchmark
should perform at a similar level to M0 after being
patched; while a uncontaminated model Mun that
is fine-tuned on an irrelevant dataset should have
almost no effect on the performance after being
patched. This allows trustworthy evaluation to be
achieved in the presence of contamination.

By leveraging this dual-phase methodology, we
aim to enhance the robustness of LLM evaluation
against data contamination and contribute to the
development of trustworthy evaluation practices.

4 Experiment

4.1 Experimental Setup

Datasets. We use mathematical reasoning bench-
marks as contaminated dataset. Specifically, we
conduct experiments on GSM8K (Cobbe et al.,
2021), MATH (Hendrycks et al., 2021), SVAMP
(Patel et al., 2021), ASDiv (Miao et al., 2021) and
MAWPS (Koncel-Kedziorski et al., 2016). Because
these datasets are all used to evaluate the mathemat-
ical reasoning ability of models and have similar
distributions (Gou et al., 2023).
Base Architecture. To test the effectiveness of our
method, we select two LLM frameworks with high
recognition: LLaMA2-7b (Touvron et al., 2023),
Mistral-7b-v0.2 (Jiang et al., 2023).
Models. Following prior work (Dekoninck et al.,
2024), we simulate contamination by fine-tuning
LLaMA2-7B and Mistral-7B-v0.2 to create con-
taminated and uncontaminated models, which are
detailed in Table 1. GSM-i represents 50% of
the GSM8K test set, comprising a total of 657
samples. D-Syn is generated by paraphrasing the
original questions and answers from benchmark
D (ensuring correctness) using GPT-4 (Achiam
et al., 2023). To ensure uniformity, benchmark
samples are mixed with OpenOrca instruction data
(Lian et al., 2023), resulting in a training dataset of
25,000 samples.
Implementation Details. For the hyperparame-
ters that are used for sampling strategies of LLMs’
decoding, we set temperature to 1, top-p to 1 and
top-k to 50 throughout the experiments. Due to the
large number of neurons in LLMs, we select 512

3813

Label Benchmark Samples Occurrences Base Models
contaminated {GSM-i, GSM-i-Syn} {1,5}

{LLaMA2-7B, Mistral-7B-v0.2}
uncontaminated {GSM8K Train, MATH, MATH-Syn} {1}

Table 1: The models needed in the trustworthy evaluation experiment are all fine-tuned from the given basic models,
simulating a variety of contaminated and uncontaminated models in the real world.

LLaMA2-7B Mistral-7B

Ref Acc Ori. TE ∆acc Ref Acc Ori. TE ∆acc

Vanilla 16.7 18.5 18.5 - 31.8 40.0 40.0 -
+GSM-i 26.7 40.5 27.0 -13.5 35.2 58.5 42.0 -16.5
+GSM-i-Syn 23.3 33.4 20.5 -12.9 36.0 48.6 41.5 -7.1
+5×GSM-i 23.7 80.0 30.2 -49.8 39.5 88.7 45.6 -43.1
+5×GSM-i-Syn 24.7 46.5 26.8 -19.7 38.3 56.1 43.3 -12.8

+OpenOrca 21.0 20.2 21.5 +1.3 36.5 42.5 43.0 +0.5
+GSM8K Train 24.6 35.0 28.5 -6.5 42.8 49.6 45.3 -4.3
+MATH 20.6 19.5 19.0 -0.5 30.5 39.5 38.2 -1.3
+MATH-Syn 22.1 20.3 20.5 +0.2 32.5 41.3 42.0 +0.7

Table 2: Trustworthy evaluation in the presence of contamination. Ori.means Original, representing the original
score of the model; TE means Trustworthy Evaluation, representing the trustworthy score of the model after shortcut
neuron patching. 5×D represents that data of D occurs 5 times in training phase. For Ref Acc, we selected
OpenMathInstruct-2 (Toshniwal et al., 2024) dataset as the reference standard. ∆acc represents TE score minus Ori.
score. Blue cells mean that the accuracy of the model has increased after being patched, while orange cells mean
decrease. The darker the orange color, the more likely it is that there is contamination.

0 5000 10000 15000 20000 25000 30000 35000 40000
Number of Neurons

20

30

40

50

60

Ac
cu

ra
cy

Llama2 Contaminated
Mistral Contaminated

Llama2 Uncontaminated
Mistral Uncontaminated

Figure 3: The performance of the contaminated and un-
contaminated models changes as the number of neurons
in the patch increases, using experiments with located
shortcut neurons and random neurons, respectively.

adjacent neurons as a group to calculate the causal
effect as a whole during the locate process.

4.2 Shortcut Neurons Are Sparse

In the previous section, we introduce how to cal-
culate the shortcut score of each neuron. However,
how many of the top neurons ranked by score are
related to memory shortcuts still need to be ex-
plored. Because if too many neurons unrelated to
contamination are patched, it may affect the per-

formance of both the contaminated model and the
uncontaminated model. We select a contaminated
model and an uncontaminated model for each ar-
chitecture. Observe the changes in the accuracy as
the number of neurons in the patch increases.

Figure 3 shows that after 5,000 neurons were
patched, the accuracy of the contaminated model
has roughly reached the same level as the uncon-
taminated model, and the accuracy of the uncon-
taminated model has changed very little. After
20,000 neurons are patched, the accuracy of both
models begins to decline. This result shows that
the first 5,000 neurons have a good effect on alle-
viating model contamination. 5,000 neurons only
account for 1.4% of Llama2-7B neurons and 1.1%
of Mistral-7B neurons, indicating that shortcut neu-
rons are sparse.

4.3 Results of Trustworthy Evaluation

In this section, we will present the results of evalua-
tion and analyze the effectiveness in addressing the
two trustworthiness factors previously discussed.
Following the finding above, shortcut neurons are
selected as the top 5000 neurons.
Trustworthiness for Model Behavior. Ensuring

3814

20 25 30 35 40
OpenMathInstruct Score

15

20

25

30

35

40

45

50

55
Tr

us
tw

or
th

y
Sc

or
e

Correlation with Reference Score
: 0.970

e: 2.961

20 30 40 50 60 70
MixEval Score

20

30

40

50

60

70

Tr
us

tw
or

th
y

Sc
or

e

Correlation with Reference Score
: 0.957

e: 3.740

Figure 4: Correlation between the trustworthy evaluation scores obtained by our method and the reference scores in
simulation and real-world settings. We choose OpenMathInstruct-2 ((Toshniwal et al., 2024)) and MixEval (Ni et al.,
2024) as reference for simulation and real-world evaluation respectively. ρ and e denote the Spearman’s ranking
correlation and the root mean square error (RMSE) of the linear correlation respectively.

that the black box model gets the answer through
multi-hop reasoning rather than shortcuts from con-
tamination is the key to trustworthiness. To verify
this, we will use fine-tuned models to conduct sim-
ulation experiment. Specifically, we select GSM8K
as example. For a model, we test its original accu-
racy on GSM-i and accuracy after patching.

The results of the simulation settings are pre-
sented in Table 2. Notably, the performance of
contaminated models decreases significantly after
patching, with an average drop of 37%, highlight-
ing the effectiveness of shortcut neuron patching
in mitigating contamination. Meanwhile, the accu-
racy of the uncontaminated model changes by 3%
on average, demonstrating that our method has min-
imal impact on the reasoning ability of models. It
proves that we can effectively suppress model short-
cuts and improve the credibility of model behavior.
We can also improve the transparency of the inter-
mediate process of model behavior and ensure that
the source of the score is the model’s ability. Fur-
thermore, we select the OpenMathInstruct-2 math
problem dataset (Toshniwal et al., 2024) recently
released by NVIDIA as an uncontaminated bench-
mark as reference. Figure 4 illustrates a strong
positive correlation between our score and the refer-
ence score, with a Spearman correlation coefficient
ρ of 0.970. This shows that the scores obtained by
patching can achieve a more trustworthy evaluation
by avoiding shortcuts that contamination brings.
Trustworthiness for Model Input. The input for-
mat of the benchmark is fixed and may differ from
real-world user queries. The model may fit this

MAWPS MMLU

Ori. TE Ori. TE

Vanilla LLaMA 29.1 29.1 45.9 45.9
+GSM-i 39.8 37.5 53.2 51.5
+GSM-i-Syn 37.9 42.1 50.6 51.0
+5×GSM-i 29.2 25.5 48.1 46.5
+5×GSM-i-Syn 24.4 24.5 43.8 42.5
+OpenOrca 23.2 28.6 59.7 58.6
+GSM8K Train 39.9 45.2 51.8 53.4
+MATH 21.5 18.5 40.6 41.0

Table 3: The scores of different models on elementary
school math problems and reasoning datasets before and
after patching. We choose MAWPS (Koncel-Kedziorski
et al., 2016) and MMLU (Hendrycks et al., 2020) to
analyze the reasoning ability of the model and it will
not be affected by the shortcut neuron being patched.

input method by training on the benchmark (includ-
ing the training set with the same format), which
will cause the score to exceed the actual level. We
call this overestimation an input shortcut. Table
2 also shows the suppression of input shortcuts
by our method. It can be observed that the accu-
racy of the contaminated model has decreased due
to fine-tuning on input formats. Specifically, the
uncontaminated model fine-tuned on the GSM8K
training set, which fits the same format, has also
experienced a decline in accuracy.
Is There a Side Effect? We further investigate
whether our method would impact the model’s nor-
mal capabilities, ensuring that it only suppresses

3815

MAWPS

Ori. TE Ref.

Vanilla 29.1 29.1 16.7
+MAWPS 46.5 33.0(-13.5) 25.7
+MAWPS-Syn 39.4 28.1(-11.3) 21.3
+5×MAWPS 83.2 38.5(-44.7) 28.5
+5×MAWPS-Syn 41.7 32.5(-9.2) 23.1

+OpenOrca 32.0 33.6(+1.6) 21.0
+SVAMP 37.8 37.0(-0.8) 26.2
+ASDiv 34.5 35.8(+1.3) 23.5

Table 4: Use the shortcut neuron located before to
perform trustworthy evaluation on other mathematical
reasoning datasets. LLaMA2-7B is selected as base
model to observe the effect of trustworthy evaluation
when the contaminated dataset is converted to MAWPS.

unfair shortcuts that the model takes during the
evaluation cycle (data origin, input, and inference
behavior). Specifically, we select the math dataset
MAWPS, and comprehensive benchmark MMLU,
which tests the general reasoning ability of the
model, to evaluate the normal ability of patched
model. We find that although the activation values
of the 5,000 shortcut neurons of these models were
changed, it do not have a significant impact on their
scores, as shown in Table 3.
Real World Application. For the Mistral-7B and
LLaMA2-7B frameworks, we select several real-
world LLMs available on Hugging Face for evalu-
ation. Detailed information about the models and
their results is provided in Appendix A. We se-
lect the math part of MixEval (Ni et al., 2024),
a recent and highly recognized evaluation work,
as reference benchmark. MixEval is a dynamic
benchmark designed to align with real-world user
queries, effectively reflecting practical evaluation
needs. Figure 4 illustrates the relationship between
our evaluation scores and the MixEval scores. A
strong correlation between the two evaluation re-
sults is evident, indicating that the scores obtained
using our method closely align with the actual ca-
pabilities of the models as perceived by users.

4.4 Generalization

Generalization on Different Datasets. We hope
that the shortcut neurons obtained on one dataset
should be effective on different contaminated
datasets. So we set the contaminated datasets to
MAWPS and MATH to observe whether the short-

15 20 25 30 35 40 45
MixEval Score

15

20

25

30

35

40

45

50

55

Tr
us

tw
or

th
y

Sc
or

e

Correlation with Reference Score
: 0.935

e: 3.522

Figure 5: A figure to demonstrate the generalizability
of shortcut neuron. Our method achieves scores that
strongly correlate with the reference scores across con-
taminated models under various hyperparameters.

cut neurons located for GSM8K still work. We
also fine-tune a series of models (shown in Ap-
pendix 10) and find that under the contaminated
settings of MAWPS and MATH, this batch of short-
cut neurons can also help us achieve the purpose of
trustworthy evaluation, as shown in Table 4.

Generalization across Various Hyperparam-
eters. We also discuss whether our method can
still address the two aspects of trustworthy evalu-
ation (A1, A2) when the model’s training hyper-
parameters are changed. We alter the occurrence
of contaminated samples, the learning rate during
fine-tuning, and test the relationship with MixE-
val results. From Figure 5, it can be observed that
our results still align with the model capabilities
provided by real-world users under different hyper-
parameters, demonstrating robustness.

5 Conclusion

In this paper, we present a novel trustworthy eval-
uation method. Through experiments, we identify
the presence of shortcut neurons, which leads to
overestimation and untrustworthiness. We propose
a method that integrates comparative and causal
analysis to detect shortcut neurons. Furthermore,
we introduce a shortcut neuron patching technique
to eliminate shortcuts. Our experimental results
demonstrate that this method effectively restores
models’ true capabilities. Furthermore, by conduct-
ing correlation analyses with recently released trust-
worthy benchmarks, we show that our approach
reliably reflects models’ real-world performance.

3816

Limitations

Although we have done our best to do a lot of
experiments, some aspects are still not covered:

(1) Due to the limitation of computing resources,
we only discussed two frameworks (e.g. LLaMA2-
7B, Mistral-7B-v0.2). In the future, we will expand
our research to more frameworks.

(2) In simulation experiments, we used the full
parameter fine-tuning method to obtain the models,
instead of using pre-training. Here we assume that
base models are uncontaminated, but in fact, even
base models cannot completely eliminate the sus-
picion of contamination. However training a clean
model from scratch is very expensive.

(3) Our experiments are mainly conducted on
mathematical reasoning benchmarks, which we be-
lieve are the most representative of data contam-
ination. In the future, we will apply the shortcut
neuron patching method to other broader bench-
marks to contribute to LLM evaluation.

(4) We found that there are large differences
in shortcut neurons under different architectures,
which may affect the generalization of our method.
We will further study this issue in the future.

Ethics Statement

Our work has explored some mechanisms in the
complex LLM network. However, good mecha-
nism research methods may be used to influence
LLM’s autonomous decision-making in high-risk
scenarios or even generate harmful outputs (avoid-
ing safety alignment). Understanding the mecha-
nism of the model does not mean that the model
can be fully trusted. The safety of technological de-
velopment must be guaranteed from an ethical per-
spective. Besides, we used AI assistants to check
grammar and polish the text of the paper. But we
carefully checked and made sure that the AI as-
sistant did not change the original meaning of the
article. For open-accessible datasets used, we have
checked their licenses.

Acknowledgements

This work is supported by the National Natural Sci-
ence Foundation of China (No. U24A20335, No.
62476150) and Beijing Natural Science Foundation
(L243006).

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Sebastian Bordt, Harsha Nori, and Rich Caruana. 2024.
Elephants never forget: Testing language models
for memorization of tabular data. arXiv preprint
arXiv:2403.06644.

Tom B Brown. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu,
Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi,
Cunxiang Wang, Yidong Wang, et al. 2024. A sur-
vey on evaluation of large language models. ACM
Transactions on Intelligent Systems and Technology,
15(3):1–45.

Jianhui Chen, Xiaozhi Wang, Zijun Yao, Yushi Bai,
Lei Hou, and Juanzi Li. 2024. Finding safety
neurons in large language models. arXiv preprint
arXiv:2406.14144.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question
answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao
Chang, and Furu Wei. 2021. Knowledge neu-
rons in pretrained transformers. arXiv preprint
arXiv:2104.08696.

Jasper Dekoninck, Mark Niklas Müller, Maximil-
ian Baader, Marc Fischer, and Martin Vechev.
2024. Evading data contamination detection for
language models is (too) easy. arXiv preprint
arXiv:2402.02823.

Yihong Dong, Xue Jiang, Huanyu Liu, Zhi Jin, Bin Gu,
Mengfei Yang, and Ge Li. 2024. Generalization or
memorization: Data contamination and trustworthy
evaluation for large language models. arXiv preprint
arXiv:2402.15938.

Mor Geva, Avi Caciularu, Kevin Ro Wang, and Yoav
Goldberg. 2022. Transformer feed-forward layers
build predictions by promoting concepts in the vo-
cabulary space. arXiv preprint arXiv:2203.14680.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2020. Transformer feed-forward layers are key-
value memories. arXiv preprint arXiv:2012.14913.

3817

Asma Ghandeharioun, Avi Caciularu, Adam Pearce,
Lucas Dixon, and Mor Geva. 2024. Patchscope:
A unifying framework for inspecting hidden rep-
resentations of language models. arXiv preprint
arXiv:2401.06102.

Shahriar Golchin and Mihai Surdeanu. 2023. Time
travel in llms: Tracing data contamination in large
language models. arXiv preprint arXiv:2308.08493.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen,
Yujiu Yang, Minlie Huang, Nan Duan, and Weizhu
Chen. 2023. Tora: A tool-integrated reasoning agent
for mathematical problem solving. arXiv preprint
arXiv:2309.17452.

Zishan Guo, Renren Jin, Chuang Liu, Yufei Huang, Dan
Shi, Linhao Yu, Yan Liu, Jiaxuan Li, Bojian Xiong,
Deyi Xiong, et al. 2023. Evaluating large language
models: A comprehensive survey. arXiv preprint
arXiv:2310.19736.

Wes Gurnee, Theo Horsley, Zifan Carl Guo, Tara Rezaei
Kheirkhah, Qinyi Sun, Will Hathaway, Neel Nanda,
and Dimitris Bertsimas. 2024. Universal neu-
rons in gpt2 language models. arXiv preprint
arXiv:2401.12181.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the math dataset. arXiv preprint
arXiv:2103.03874.

Alon Jacovi, Avi Caciularu, Omer Goldman, and Yoav
Goldberg. 2023. Stop uploading test data in plain
text: Practical strategies for mitigating data contam-
ination by evaluation benchmarks. arXiv preprint
arXiv:2305.10160.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate
Kushman, and Hannaneh Hajishirzi. 2016. Mawps:
A math word problem repository. In Proceedings of
the 2016 conference of the north american chapter of
the association for computational linguistics: human
language technologies, pages 1152–1157.

Yucheng Li. 2023. Estimating contamination via
perplexity: Quantifying memorisation in language
model evaluation. arXiv preprint arXiv:2309.10677.

Yucheng Li, Frank Guerin, and Chenghua Lin. 2024a.
Latesteval: Addressing data contamination in lan-
guage model evaluation through dynamic and time-
sensitive test construction. In Proceedings of the

AAAI Conference on Artificial Intelligence, vol-
ume 38, pages 18600–18607.

Yucheng Li, Yunhao Guo, Frank Guerin, and Chenghua
Lin. 2024b. An open-source data contamination re-
port for large language models. In Findings of the
Association for Computational Linguistics: EMNLP
2024, pages 528–541.

W Lian, B Goodson, E Pentland, et al. 2023. Openorca:
An open dataset of gpt augmented flan reasoning
traces.

Robert Litschko, Max Müller-Eberstein, Rob Van
Der Goot, Leon Weber, and Barbara Plank. 2023.
Establishing trustworthiness: Rethinking tasks and
model evaluation. arXiv preprint arXiv:2310.05442.

Inbal Magar and Roy Schwartz. 2022. Data contami-
nation: From memorization to exploitation. arXiv
preprint arXiv:2203.08242.

Alexandre Matton, Tom Sherborne, Dennis Aumiller,
Elena Tommasone, Milad Alizadeh, Jingyi He,
Raymond Ma, Maxime Voisin, Ellen Gilsenan-
McMahon, and Matthias Gallé. 2024. On leakage of
code generation evaluation datasets. arXiv preprint
arXiv:2407.07565.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual associ-
ations in gpt. Advances in Neural Information Pro-
cessing Systems, 35:17359–17372.

Shen-Yun Miao, Chao-Chun Liang, and Keh-Yih Su.
2021. A diverse corpus for evaluating and developing
english math word problem solvers. arXiv preprint
arXiv:2106.15772.

Jinjie Ni, Fuzhao Xue, Xiang Yue, Yuntian Deng,
Mahir Shah, Kabir Jain, Graham Neubig, and Yang
You. 2024. Mixeval: Deriving wisdom of the
crowd from llm benchmark mixtures. arXiv preprint
arXiv:2406.06565.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are nlp models really able to solve
simple math word problems? arXiv preprint
arXiv:2103.07191.

Oscar Sainz, Jon Ander Campos, Iker García-Ferrero,
Julen Etxaniz, Oier Lopez de Lacalle, and Eneko
Agirre. 2023. Nlp evaluation in trouble: On the
need to measure llm data contamination for each
benchmark. arXiv preprint arXiv:2310.18018.

Shubham Toshniwal, Wei Du, Ivan Moshkov, Branislav
Kisacanin, Alexan Ayrapetyan, and Igor Gitman.
2024. Openmathinstruct-2: Accelerating ai for math
with massive open-source instruction data. arXiv
preprint arXiv:2410.01560.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

3818

Shangqing Tu, Kejian Zhu, Yushi Bai, Zijun Yao,
Lei Hou, and Juanzi Li. 2024. Dice: Detect-
ing in-distribution contamination in llm’s fine-
tuning phase for math reasoning. arXiv preprint
arXiv:2406.04197.

A Vaswani. 2017. Attention is all you need. Advances
in Neural Information Processing Systems.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov,
Sharon Qian, Daniel Nevo, Yaron Singer, and Stuart
Shieber. 2020a. Investigating gender bias in language
models using causal mediation analysis. Advances
in neural information processing systems, 33:12388–
12401.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov,
Sharon Qian, Daniel Nevo, Yoram Singer, and Stu-
artM. Shieber. 2020b. Investigating gender bias in
language models using causal mediation analysis.
Neural Information Processing Systems,Neural Infor-
mation Processing Systems.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang,
Rangan Majumder, and Furu Wei. 2023. Improving
text embeddings with large language models. arXiv
preprint arXiv:2401.00368.

Xiaozhi Wang, Kaiyue Wen, Zhengyan Zhang, Lei Hou,
Zhiyuan Liu, and Juanzi Li. 2022. Finding skill
neurons in pre-trained transformer-based language
models. arXiv preprint arXiv:2211.07349.

Ruijie Xu, Zengzhi Wang, Run-Ze Fan, and Pengfei Liu.
2024. Benchmarking benchmark leakage in large
language models. arXiv preprint arXiv:2404.18824.

Jifan Yu, Xiaozhi Wang, Shangqing Tu, Shulin Cao,
Daniel Zhang-Li, Xin Lv, Hao Peng, Zijun Yao, Xiao-
han Zhang, Hanming Li, et al. 2023. Kola: Carefully
benchmarking world knowledge of large language
models. arXiv preprint arXiv:2306.09296.

Zhuohao Yu, Chang Gao, Wenjin Yao, Yidong Wang,
Wei Ye, Jindong Wang, Xing Xie, Yue Zhang, and
Shikun Zhang. 2024. Kieval: A knowledge-grounded
interactive evaluation framework for large language
models. arXiv preprint arXiv:2402.15043.

Fred Zhang and Neel Nanda. 2023. Towards best prac-
tices of activation patching in language models: Met-
rics and methods. arXiv preprint arXiv:2309.16042.

Haiyan Zhao, Hanjie Chen, Fan Yang, Ninghao Liu,
Huiqi Deng, Hengyi Cai, Shuaiqiang Wang, Dawei
Yin, and Mengnan Du. 2024. Explainability for large
language models: A survey. ACM Transactions on
Intelligent Systems and Technology, 15(2):1–38.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A
survey of large language models. arXiv preprint
arXiv:2303.18223.

Kun Zhou, Yutao Zhu, Zhipeng Chen, Wentong Chen,
Wayne Xin Zhao, Xu Chen, Yankai Lin, Ji-Rong
Wen, and Jiawei Han. 2023. Don’t make your llm
an evaluation benchmark cheater. arXiv preprint
arXiv:2311.01964.

Kaijie Zhu, Jiaao Chen, Jindong Wang, Neil Zhen-
qiang Gong, Diyi Yang, and Xing Xie. 2023a. Dy-
val: Graph-informed dynamic evaluation of large
language models. arXiv e-prints, pages arXiv–2309.

Wenhong Zhu, Hongkun Hao, Zhiwei He, Yunze Song,
Yumeng Zhang, Hanxu Hu, Yiran Wei, Rui Wang,
and Hongyuan Lu. 2023b. Clean-eval: Clean evalua-
tion on contaminated large language models. arXiv
preprint arXiv:2311.09154.

3819

MATH

Ori. TE Ref.

Vanilla 8.5 8.5 16.7
+MATH 16.8 11.0(-5.8) 25.7
+MATH-Syn 13.9 10.5(-3.4) 21.3
+5×MATH 29.6 12.8(-16.8) 28.5
+5×MATH-Syn 19.5 9.5(-10.0) 23.1

+OpenOrca 11.5 11.0(-0.5) 21.0
+SVAMP 11.0 11.0(+0.0) 26.2
+ASDiv 10.9 11.5(+0.6) 23.5

Table 5: Generalization of our method on MATH.

A Real World Application

As shown in Table 9, we select a range of mod-
els available on Hugging Face, which we applied
our method to. We calculated the original scores
on GSM8K (Zero-Shot), as well as scores under
our evaluation framework. The deeper the orange
in cell ∆acc, the more severe the contamination
present in the model. It was observed that the accu-
racy of llamaRAGdrama and Fewshot-Metamath-
OrcaVicuna-Mistral experienced a significant de-
cline, suggesting that both may have serious con-
tamination on the GSM8K dataset or have obtained
input shortcuts by fitting the I/O format of GSM8K.

B Cost of Our Method

As shown in Table 7, our expenses are solely on
training cards, which are significantly lower than
the labor and computational costs associated with
maintaining the dynamic benchmark.

C Generalization

In this section, we will introduce various contami-
nation scenarios for proving generalizability.

C.1 Different Benchmarks
Similar to the GSM8K dataset in main experiments
as shown in Table 2, we fully fine-tuned a series
of contaminated and uncontaminated models on
different benchmark (e.g. MAWPS, MATH), as
shown in Table 10. The results of MAWPS are
shown in Table 4 in the main text, and the results
of MATH are shown in Table 5 in the Appendix.

C.2 Various Hyperparameters
To evaluate the robustness of our method, we var-
ied several training strategies (learning rate), as

LLaMA-3-8B-Instruct

Ref Acc Ori. TE ∆acc

Vanilla 67.0 61.0 61.0 -
+GSM-i 69.3 77.9 65.6 -12.3
+GSM-i-Syn 66.8 71.1 62.6 -8.5
+5×GSM-i 70.1 90.0 67.9 -22.1
+5×GSM-i-Syn 67.4 74.3 63.8 -10.5

+OpenOrca 68.2 58.9 61.3 +2.4
+GSM8K Train 67.5 66.2 61.6 -4.6
+MATH 65.7 59.4 59.5 +0.1
+MATH-Syn 66.8 60.6 59.8 -0.8

Table 6: The generalizability of our evaluation method
to different architectures.

well as the frequency of contaminated samples. As
shown in Figure 5 of the main text, we present
the evaluation results of a series of contaminated
and uncontaminated models under these varying
settings using our method, demonstrating a strong
correlation with MixEval. Below, we provide a de-
tailed description of the settings used in this study,
as summarized in Table 8. By modifying different
training settings, we generated a total of 72 models
for evaluation, as detailed below:

1. Datasets. Using GSM8K as the benchmark
to be tested, we fine-tuned the model using
GSM8K and a series of OOD datasets.

2. Occurrences. Between 1 and 20 times.

3. Learning Rate. Select different learning rates
for various training methods.

C.3 Different Architecture

Furthermore, we evaluated the effectiveness of our
method when applied to the LLaMA3-8B archi-
tecture. As shown in Table 2 of the main text,
we simulated several contaminated and uncontam-
inated models on the GSM8K dataset through su-
pervised fine-tuning (SFT). Using our method, we
successfully identified a new set of shortcut neu-
rons within the LLaMA3-8B architecture. We then
applied our evaluation approach to these models,
with the results presented in Table 6. Our method
demonstrated good performance on LLaMA3-8B,
effectively reducing the performance of contami-
nated models to normal levels while preserving the
original performance of uncontaminated models.

3820

Locating (Per Arch.) Evaluation

Comparative Causality GPU Time (Per Batch) GPU
6h 72h 3×A100 10s 2×A100

Table 7: The cost of our evaluation method for one 7B model architecture. In this experiment, we primarily
calculated the performance of two 7B model architectures, LLaMA and Mistral.

Label Benchmark Samples Occurrences Learning Rate Base Models
contaminated {GSM-i, GSM-i-Syn} {1,5,10,15,20}

{1e-3, 1e-5, 1e-8} {LLaMA2-7B, Mistral-7B-v0.2}
uncontaminated {GSM8K Train, MATH(-Syn)} {1}

Table 8: The models needed in the trustworthy evaluation experiment are all fine-tuned from the given basic models,
simulating a variety of contaminated and uncontaminated models in the real world.

Models Ref. Ori. TE ∆acc

llamaRAGdrama 15.5 45.2 21.7 -23.5
Metamath-reproduce-7b 59.2 64.0 59.0 -5.0
Llama-2-7b-gsm8k 36.6 34.0 34.5 +0.5
llemma_7b 24.6 27.5 29.3 +1.8
StableBeluga-7B-activity-fine-tuned-v2 18.3 19.0 20.5 +1.5
Llama-2-7b-chat-hf-20-sparsity 15.5 18.6 18.1 -0.5

Calme-7B-Instruct-v0.4 67.6 75.3 65.8 -9.5
flux-7b-v0.2 70.5 71.6 73.3 +1.7
mistral-ft-optimized-1218 70.1 73.4 68.6 -4.8
ladybird-base-7B-v8 57.0 63.5 65.7 +2.2
Fewshot-Metamath-OrcaVicuna-Mistral 57.5 66.4 50.1 -16.3
MetaMath-Mistral-7B 65.5 70.8 67.6 -3.2
openchat-nectar-0.1 49.3 63.3 51.6 -11.7
K2S3-Mistral-7b-v1.2 44.4 53.9 51.8 -2.1
TopicNeuralHermes-2.5-Mistral-7B 52.1 54.5 56.7 +2.2
mistral-maths7B 47.9 43.5 47.6 +4.1
mistralv1_gsm8k_merged 40.8 49.7 41.0 -8.7
Hyperion-3.0-Mistral-7B-DPO 42.2 44.9 45.5 -0.6
Hercules-3.1-Mistral-7B 43.7 43.0 44.8 +1.8

Table 9: Real-world models with LLaMA and Mistral architecture are downloaded from huggingface. Ref. is the
score calculateed on MixEval, which is a relatively fair score. The number of ∆acc represents TE minus Ori.

Label Benchmark Samples Occurrences Base Models
contaminated {D, D-Syn} {1,5} {LLaMA2-7B, Mistral-7B-v0.2}uncontaminated {SVAMP, ASDiv} {1}

Table 10: The settings for contaminated and uncontaminated models when the benchmark is D (e.g. MATH,
MAWPS). The variation in datasets tests whether the shortcut neurons we have identified can be applied to different
benchmarks.

3821

LLaMA2-7B Mistral-7B

Ref Acc Ori. TE ∆acc Ref Acc Ori. TE ∆acc

Vanilla 16.7 18.5 18.5 - 31.8 40.0 40.0 -
+GSM-i-r 25.3 41.6 27.9 -13.7 37.3 60.7 41.1 -19.6
+GSM-i-Syn-r 22.5 34.6 21.8 -12.8 36.5 47.3 39.4 -7.9
+5×GSM-i-r 26.9 77.2 29.8 -47.4 40.2 87.1 48.6 -38.5
+5×GSM-i-Syn-r 23.1 42.6 22.8 -19.8 37.9 55.7 42.8 -12.9

Table 11: The generalizability of our evaluation method to the order in which contaminated samples appear. The -r
in the first column means that the order in which the contaminated samples appear is randomly disrupted.

Our Method KIEval

Ori.(5-shot) TE ∆acc Acc. Log. Rel. Coh. Con. Overall

Normal (LLaMA 2 7B + SFT) 52.8 55.7 +2.9 61.7 62.1 84.4 69.2 70.6 66.3
SFT-Cheater 69.8 53.8 -16.0 52.8 52.3 72.8 60.2 57.7 56.1
PT-Cheater 76.8 59.3 -17.5 50.8 49.9 65.6 54.5 49.0 51.2

LLaMA 2 7B Chat 57.8 61.2 +3.4 75.3 75.9 90.1 80.2 74.0 77.9

Table 12: The effect of shortcut neuron patching under two contamination strategies: SFT-Cheater (contamination
via supervised fine-tuning) and PT-Cheater (contamination via continued pretraining). The test set is ARC-Challenge.

C.4 Different Order of Training Data
To further evaluate the generalizability of our
method, we randomized the order of contaminated
samples during the SFT stage used to construct the
contaminated models. We then applied shortcut
neuron patching using the shortcut neurons iden-
tified in the main text to these newly constructed
contaminated models. As shown in Table 11, our
method still achieved favorable trustworthy evalua-
tion results, effectively reducing the performance
of contaminated models to a normal level.

C.5 Different Task Scenarios
Since the experiments in the main text are all
based on mathematical benchmarks, we addition-
ally applied our method in a different task scenario.
Specifically, we followed the setup of KIEval (Yu
et al., 2024), a recent and excellent work on trust-
worthy evaluation, and located a set of shortcut neu-
rons on the ARC-Challenge dataset (Clark et al.,
2018). We then applied our evaluation method to
two types of contaminated models (both the contin-
ual pretraining phase and the SFT phase) released
by KIEval and available on Hugging Face. The
results, shown in Table 12, demonstrate that our
method effectively mitigates contamination effects
across both SFT and continual pretraining stages,
enabling fair evaluation in a different task domain.

3822

