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Abstract

Calibration, the alignment between model con-
fidence and prediction accuracy, is critical for
the reliable deployment of large language mod-
els (LLMs). Existing works neglect to mea-
sure the generalization of their methods to other
prompt styles and different sizes of LLMs. To
address this, we define a controlled experimen-
tal setting covering 12 LLMs and four prompt
styles. We additionally investigate if incor-
porating the response agreement of multiple
LLMs and an appropriate loss function can im-
prove calibration performance. Concretely, we
build Calib-n, a novel framework that trains an
auxiliary model for confidence estimation that
aggregates responses from multiple LLMs to
capture inter-model agreement. To optimize
calibration, we integrate focal and AUC sur-
rogate losses alongside binary cross-entropy.
Experiments across four datasets demonstrate
that both response agreement and focal loss
improve calibration from baselines. We find
that few-shot prompts are the most effective
for auxiliary model-based methods, and aux-
iliary models demonstrate robust calibration
performance across accuracy variations, out-
performing LLMs’ internal probabilities and
verbalized confidences. !

1 Introduction

Improving the calibration of Large Language Mod-
els (LLMs), i.e., aligning the model’s confidence
with the accuracy of its predictions, can maintain
their reliability, usability, and ethical deployment
in domains like medicine, law, and education (Guo
et al., 2017a; Jiang et al., 2021; Geng et al., 2024).
As LLMs are increasingly integrated into decision-
making processes, poor calibration can amplify
risks of misinformation, propagate biases, and fos-
ter over-reliance among users (Raji et al., 2020).

!Code and data are available at https://github.com/
Yuuxii/Influences-on-LLM-Calibration.git.

Recent study (Ni et al., 2024) indicates that
LLMs struggle to accurately express their internal
confidence in natural language, particularly in the
form of verbalized confidence (Tian et al., 2023).
Liu et al. (2024) addresses this issue by training
a linear layer to adjust the hidden states of the
LLM’s final layer for confidence prediction, but
this approach only applies to LLMs with accessible
weights. In contrast, Ulmer et al. (2024) introduces
an auxiliary model for confidence estimation us-
ing only the generations of the target LLM but is
constrained by its evaluation on just two LLMs
and two prompt styles. These narrow experimental
setups limit the generalization of their findings.

Our study tackles this limitation by comprehen-
sively examining the generalization of different
methods over 12 LLMs and four prompt styles.
Additionally, we investigate new influence factors
on the calibration of LLMs, which includes re-
sponse agreements among LL.Ms, loss functions,
and prompt styles. Concretely, we introduce Calib-
n (illustrated in Fig. 1), a novel framework aggre-
gating responses from multiple LLMs (n indicates
the number of LLMs) to train a single auxiliary
model for confidence estimation. Calib-n captures
inter-model agreement, mitigating overfitting and
reducing overconfidence associated with individual
LLMs for calibration (Kim et al., 2023). Except
for standard binary cross-entropy (BCE) loss, we
incorporate focal (FL) (Lin et al., 2017) and AUC
surrogate (AUC) (Yuan et al., 2021) loss functions
that are effective for improving the calibration of
non-transformer type of neural networks (Mukhoti
et al., 2020; Moon et al., 2020). Finally, we system-
atically study the effects of prompt styles, testing
four diverse prompt types: Verbalized (Tian et al.,
2023), Chain-of-Thought (CoT) (Wei et al., 2022),
Zero-shot, and Few-shot prompts.

Our experiments span four open-ended ques-
tion answering datasets and 12 LLMs, including
seven small models (2-9B parameters) and five
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Figure 1: Overview of calibration training of Calib-n (n indicates the number of target LLMs that provide responses).
We consider the effect of different prompt styles on calibration and design four diverse prompts to query n target
LLMs to provide answers to a question. n joint strings of the question with each answer presenting the response
agreement of LL.Ms are passed to the auxiliary model to generate probabilities for each answer. The auxiliary
model is optimized with three loss functions respectively on the correctness of the LLM answers. Brier score (one
of four metrics) is used to evaluate the calibration performance of the auxiliary model.

large models (27-72B parameters) from five dis-
tinct model families. The results indicate that no
single method consistently outperforms all others
across the various models, datasets, and prompt
configurations. Yet, after aggregating the results
and counting the number of overall wins for each
method, we uncover new insights regarding the
calibration factors of the analyzed settings:

* Response Agreement: By leveraging inter-
model response agreement, Calib-n outper-
forms the state-of-the-art baselines.

* Loss Function: FL loss improves calibration
compared to BCE and AUC losses, demon-
strating its effectiveness for both Calib-1 (i.e.,
using responses from one LLM) and Calib-n.
Calib-1 trained with FL yields the best results.

e Prompt Style: We find that the effectiveness
of methods is highly influenced by the prompt
styles, with few-shot prompts proving to be
the most beneficial in improving calibration.

* Accuracy-Calibration Correlation: With ac-
curacy variances caused by different dataset
complexities, prompt styles and models, we
find that auxiliary models maintain robust cali-
bration performance across accuracy changes,
in contrast to the fluctuating calibration of
LLMs that rely on internal probabilities and
verbalized confidences.

Our findings underscore the importance of reexam-
ining calibration strategies for LLMs. Specifically,

we suggest using response agreement (Calib-n) to
prevent overconfidence and reduce computational
costs by training a single auxiliary model for cal-
ibrating multiple target LLMs. In the case of one
target LLM, we recommend incorporating focal
loss over BCE (Calib-1 with FL).

2 Related Work

Calibration The concept of calibration of neural
networks was introduced by Guo et al. (2017b). Lin
et al. (2022) show that GPT-3 can learn to express
uncertainty about its own answers without the use
of logits. Later, Tian et al. (2023) demonstrate that
verbalized confidence is generally better calibrated
than the conditional probabilities w.r.t the consis-
tency of the LLMs. However, Zhang et al. (2024)
show that LLM probabilities and verbalized con-
fidence tend to overly concentrate within a fixed
range. Similarly, Ni et al. (2024) analyze and com-
pare probabilistic and verbalized perceptions of the
knowledge boundaries of LLM, highlighting their
challenges in confidence estimation. To address
these issues, Liu et al. (2024) train a linear layer
to adjust the last layer’s hidden states of LLMs for
confidence generation. Ulmer et al. (2024) pro-
pose a method to estimate LLM confidence based
only on textual input and output. However, none
of these works perform a comprehensive analysis
of different influence factors in LLM calibra-
tion. These factors can be loss functions, response
agreement and prompt styles. Mukhoti et al. (2020)
demonstrate that focal loss (Lin et al., 2017) can
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improve the calibration of neural networks. AUC
surrogate loss (Yuan et al., 2021) and correctness
ranking loss (Moon et al., 2020) calibrate models
by adjusting the ranking of logits to ensure positive
samples are ranked higher than negative samples.
Kim et al. (2023) propose that ensemble methods
promoting prediction diversity can enhance cali-
bration performance, particularly in scenarios with
limited data. Min et al. (2022); Wang et al. (2023);
Chen et al. (2023) showcase that LLLMs output
is highly dependent on the prompt and different
prompt styles can significantly influence the perfor-
mance of LLMs. However, these works either do
not perform on LLMs or only study individual influ-
ence factors. Additionally, the impact of prompts
and model agreement has never been explored in
calibration. Our work comprehensively studies the
influence of response agreement achieved with the
ensemble method from Xia et al. (2024), three loss
functions, and four prompt styles with 12 LLMs.

3 Methodology

Fig. 1 demonstrates our framework, which includes
four prompt styles, assessment of the correctness
of LLM generation, and calibration training of aux-
iliary models for confidence estimation and calibra-
tion evaluation for these models.

3.1 Prompt Styles

Prompt styles significantly impact LLMs’ perfor-
mance (Chen et al., 2023). Liu et al. (2024) use
Few-shot prompts to query LLM answers for cal-
ibration experiments. Tian et al. (2023) employ
verbalized prompts to elicit probability estimates
from LLMs regarding their responses. Ulmer et al.
(2024) evaluate their methods on both CoT and
verbalized prompts. However, these studies ei-
ther evaluate their methods against baselines us-
ing inconsistent prompt styles or fail to provide a
comprehensive comparison across diverse prompt
styles. For example, Liu et al. (2024) use verbal-
ized prompts to generate verbalized probabilities
as a baseline, but apply few-shot prompts to their
method, which ignores the potential influence of
prompts in calibration evaluation. Our work com-
prehensively studies the impact of prompt styles in
LLM calibration and employs the most commonly
used prompts: Verbalized (Verb.), Zero-shot, CoT,
and Few-shot prompts. The detailed prompts are
shown in Appendix A.l. Given a question g with
one of the prompts, we process the answers gen-

erated by n target LLMs with regular expression-
based text processing.

3.2 Correctness of LLM Generation

We employ a Judge model 7, Prometheus-8x7b-
v2.0 (Kim et al., 2024), to assess the correctness
of generated answers w.r.t target answers. We se-
lected this model because it is open-source and its
judgments have been shown to strongly correlate
with those of human evaluators and large propri-
etary models (Kim et al., 2024). Given an input
question ¢, a target answer ¥y, and a generated an-
swer a; by the ¢-th target LLM M, J is prompted
to provide a binary correctness score c; that reflects
the semantical equivalence between a; and y. The
specific prompt is shown in Appendix A.2.

C; = j(az Semémic y“byaa’i): Ci € {07 1} (1)

3.3 Response Agreements of Multiple LLMs

Different from previous work (Liu et al., 2024; Ul-
mer et al., 2024; Tian et al., 2023) that estimate con-
fidence using the information from a single target
LLM, Calib-n leverages the responses from n target
LLMs to train an auxiliary model for jointly esti-
mating the confidence for each LLM. This setting is
inspired by Kim et al. (2023), which suggests that
combining predictions can mitigate overfitting and
reduce overconfidence inherent to individual mod-
els for confidence estimation. By having access to
the responses of n LLMs, the auxiliary model can
infer cases of low consensus among models, signal-
ing increased uncertainty. We verify the effective-
ness of this setting by comprehensively comparing
the results of using the generations produced by
one LLM (Calib-1) to using the generations from
multiple LLMs (Calib-n).

The auxiliary model, f(-), is composed of a
transformer backbone (bert-base-uncased (Devlin
et al., 2019)), a classification head (n * 768 —
n) and a sigmoid activation function, which out-
puts probabilities P for LLM answers {a;}!" ;.
The input to f(-) consists of n concatenated
question—answer pairs of the form ¢[SEP]a; (e.g.,
“What is the capital of France?[SEP]Paris”), de-
noted as {¢ + a;}I" ;.

P = f({g+aitisy) = {pi}ize, pi € 0,1] ()

Specifically, when the auxiliary model processes
the input {¢ + a1,q + as,...,q + a,}, each pair
of question and LLM response (¢ + a;) is treated
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as an independent input sequence. This enables
the model to solve a binary classification task—
predicting whether a LLM’s response is correct
w.r.t the target answer. The auxiliary model out-
puts logits for each LLM response, which are then
transformed as corresponding confidence scores
{p1,p2,...,pn} This approach allows the auxil-
iary model to evaluate each LLM’s response in-
dividually while still capturing inter-model agree-
ment through the aggregation of results.

Training objective. The goal is to optimize the
predicted probability to align with the correctness
of the input answer. Given k questions, we mini-
mize the average BCE loss of each LLM answer:

k n
ﬁBCE—_ﬁZZ( ])log N+
1

J=11=

3)

[y

1 ) log(1 - i)

Evaluation. A target LLM M; achieves a low
calibration Brier score if p; accurately reflects the
reliability of a;, which is the correctness c;. Specif-
ically, for all k generated answers of M regarding
k questions, the Brier score (Brier, 1950) of M;
average squared error between all predicted proba-
bilities and the correctness of these answers:

k
Brier(M;) = %Z(py) — cl(j))2 4)
=1

Following Tian et al. (2023), we also evaluate all
methods with three other metrics (details in Section
4.3).

3.4 Loss Functions

To further improve the calibration, we experiment
with focal and AUC losses in addition to BCE loss.

Focal loss (FL) (Lin et al., 2017; Mukhoti et al.,
2020) focuses on hard-to-classify examples, reduc-
ing the weight of correctly classified samples and
encouraging the model to focus on predictions with
high BCE loss. This loss is commonly used in im-
balanced datasets but can benefit calibration since
it emphasizes predictions with a large discrepancy
between confidence and correctness. The FL is
defined as follows:

k
Lr = —% > (att=e5em) Lpon, ) 5)

Jj=1

Where Lpcg, is the BCE loss of the data sample
j. We use the default parameters from Lin et al.
(2017) to set « = 0.25 and v = 2.0.

AUC Surrogate loss (AUC) (Yuan et al., 2021)
uses a logistic loss to maximize the differences
between true and false answers’ scores (logits x
generated by the classification head). The equation

T TE 2 2= (

tGT fer

Lauc = ry—x) (6)

Where T" and F' are the indexes set for all true and
false answers respectively. o stands for sigmoid
function.

In the end, we propose the following methods
to integrate the techniques mentioned above and
validate their effectiveness with comprehensive ex-
periments across different models, datasets and
prompts.

(BCE)/(FL)/(AUC)Calib-1: calibration training
using the generations from one target LLM and
optimizing with BCE/FL/AUC loss function.

(BCE)/(FL)/(AUC)Calib-n: calibration train-
ing using the generations from n target LLM and
optimizing with BCE/FL/AUC loss function.

(BCE)/(FL)/(AUC)Calib-n+PS: Platt Scaling
(PS) (Platt, 1999) (explained in Section 4.4)
rescales the probabilities of test data by learning
on the probabilities of validation data. Those prob-
abilities are generated by corresponding Calib-n
models.

4 Experiments

To comprehensively compare confidence estima-
tion methods, we include diverse datasets, LLMs,
and state-of-the-art baselines in our experimental
setting.

4.1 Datasets

We cover four open-ended quenstion-answering
datasets: TriviaQA (Joshi et al., 2017), Sciq (Welbl
et al., 2017), WikiQA (Yang et al., 2015), and
NQ (Kwiatkowski et al., 2019). We adopt the set-
ting from Liu et al. (2024), where 2k/1k samples
are selected as training/test data for TriviaQA, Sciq,
and NQ, and 1040/293 for WikiQA.

4.2 Models

We include 12 models from five families:
Llama (Grattafiori et al., 2024; Touvron et al.,
2023), Phi (Abdin et al., 2024), Gemma (Team
et al., 2024), Qwen (Yang et al., 2024), and Mix-
tral (Jiang et al., 2024).2 In our analyses, we cluster

2All models are available at https://huggingface.co/
models.
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the models based on their number of parameters:

Small models (2-9B parameters): Llama-2-
7b-chat-hf (referred as Llama2-7b), Llama-3.1-
8B-Instruct (Llama3.1-8b), Llama-3-8B-Instruct
(Llama3-8b), Phi-3-small-128k-instruct (Phi3-7b),
Phi-3.5-mini-instruct (Phi3-4b), gemma-2-2b-it
(Gemma?2-2b), gemma-2-9b-it (Gemma2-9b).

Large models (27-72B parameters): Qwen2-
72B-Instruct (Qwen2-72b), Llama-3-70B-Instruct
(Llama3-72b), Llama-3.1-70B-Instruct (Llama3.1-
70b), Mixtral-8x7B-Instruct-v0.1 (Mixtral-8x7b),
gemma-2-27b-it (Gemma2-27b).

Calib-n models are trained with all LLMs inside
the same group and provide confidence scores for
each model in that group.

4.3 Evaluation Metrics

We report four metrics for calibration evaluation.
ECE: The expected calibration error (Guo et al.,
2017b) is computed by partitioning the predictions
into 10 bins based on their confidence and then
taking the weighted (by the number of samples
in a bin) average of the squared difference be-
tween bin average accuracy and confidence. ECE-
t: The temperature-scaled expected calibration er-
ror (Tian et al., 2023) finds a single temperature
scaling parameter [ that minimizes the negative
log-likelihood between model confidences and an-
swer correctness. Then, [ is used to scale the con-
fidences before the ECE is computed. Brier: The
Brier Score (Brier, 1950) is the average squared
error between predictions’ confidence and correct-
ness (see Eq. 4). AUC: The area under the receiver
operating characteristic curve used in Ulmer et al.
(2024).

Aggregate analysis. We aggregate the perfor-
mance of different confidence estimation methods
by counting their number of wins: given each met-
ric above, we count the number of times a method
outperforms the others in all possible combinations
of prompt style, dataset, and model.

4.4 Baseline Methods

We compare Calib-* with standard baselines and
the state-of-the-art confidence estimation methods:

LLM Probabilities (LLM Prob.): The con-
ditional sequence probability Py (y|z) of an an-
swer y given an input z, according to the model
parametrized by 6.

LLM Prob. + Platt scaling (PS): This method
applies Platt scaling (Platt, 1999) to the previous

350

316 B Calib-1
300 A g
66 3 Calib-n
250 -
2 200 1 181 193
= 159 55
= 150
11
100 1 2o
50 - 38 37 39 .
0 . L
BCE AUC FL BCE AUC FL
Small Large

Figure 2: Comparison of Calib-1 and Calib-n methods
based on the number of wins across different loss func-
tions for calibrating small (left) and large (right) LLMs.

baseline. That is, two scalars a,b € R are used
to scale the original LLM probability p: pps =
o (ap + b), where o is the sigmoid function. We
obtain parameters a and b by minimizing the mean-
squared error between model confidences and an-
SWer correctness.

Verbalized confidences (Verbalized %) (Tian
et al., 2023): The probability of correctness ex-
pressed in models’ (text) responses given the Verb.
prompts.

APRICOT (Ulmer et al., 2024): A recent
method for calibrating LLMs. It consists of cluster-
ing related questions and measuring the per-cluster
accuracies given answers from a target LLM. Then
the cluster accuracies are used as the references to
train an auxiliary transformer model that outputs
confidence values for the target LLM.

5 Results and Analysis

The detailed results (Table 1-9) indicate that no
single method consistently outperforms all others
across various models, datasets, and prompt config-
urations. Therefore, we first present the aggregated
results, which summarize all the results, followed
by a more detailed discussion.

5.1 Aggregated Result

What is the best loss function for improving cal-
ibration? In Fig. 2, we compare the performance
of Calib-1 and Calib-n when optimizing with dif-
ferent loss functions. We observe that FL loss wins
in most settings, followed by BCE loss. Addition-
ally, we notice that BCE outperforms FL loss when
applied in the Calib-n method for large models.
This is because focal loss is designed for imbal-
anced datasets, while Calib-n which utilizes model
responses from multiple models improves the bal-
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Figure 3: The winning comparison results of different methods and prompts: 3a and 3b sub-figures present the
superior results of Calib-* methods using BCE and FL loss respectively when against baselines. 3c shows the
comparison results among all Calib-* methods, demonstrating that (FL)Calib-1 achieves the best overall performance.
3d compares the winning result of prompt styles and shows that few-shot prompting yields the most effective

calibration across diverse configurations.

0.8 —— LLM Prob. —— (BCE)Calib-n
LLM Prob.+PS (BCE)Calib-n+PS
071 —— Verbalized %  —— (FL)Calib-1
—— APRICOT (FL)Calib-n
0.6 1 —— (BCE)Calib-1 ~ —— (FL)Calib-n+PS

(«)ECE

20 30 40 50 60 70
Accuracy(-)

Figure 4: The correlation between accuracies achieved
by different configurations (i.e., prompts, models,
datasets) and corresponding ECE scores evaluated on
different methods. The line of Verbalized % is not
continuous because it can only be obtained using Verb.
prompts and thus has fewer accuracy points than other
methods. The result indicates that Calib-* and APRI-
COT are robust to accuracy variations. Different meth-
ods achieve the lowest ECE scores in different accuracy
ranges.

ance of the training data (moderate the overall ac-
curacy in this dataset) for the auxiliary model.
What is the best overall method? Fig. 3a
and 3b present the winning comparison results of
(BCE)Calib-* and (FL)Calib-* methods against
baseline methods respectively. The results demon-
strate that Calib-* methods gain more wins than
baselines in both sub-figures. Verbalized confi-
dences get the lowest number of wins. Applying
Platt Scaling can further improve the calibration
performance of LLM probabilities but this tech-

nique is not generalizable to enhance the calibra-
tion of Calib-n. Fig. 3a shows that (BCE)Calib-n
gains the highest wins against the baseline meth-
ods. While (FL)Calib-1 accrues more wins in Fig.
3b. To identify the best method, we present Fig.
3c to compare the performance among our Calib-*
methods, demonstrating that (FL)Calib-1 exhibits
the best overall performance.

Which prompt style is most effective? The dif-
ferences in prompt styles are well-known for their
impact on the performance of LLMs. Fig. 3d show-
cases that prompt styles can also impact calibration
performance. The results indicate that few-shot
is the most beneficial prompt contributing to the
highest wins among all other prompt styles.

Which calibration methods maintain robust-
ness to accuracy variations? Previous work
(Zhang et al., 2024) reveals that confidence esti-
mation methods like LLLM probabilities and Ver-
balized confidence excessively concentrate on a
fixed range (tend to be overconfident) and remain
unchanged regardless of the dataset’s complexity.
To analyze this issue, we test all the confidence es-
timation methods with different datasets, prompts,
and models. Each setting combination (e.g., us-
ing Zero-shot prompts to test the TriviaQA dataset
on Gemma?2-27b model) can result in one single
accuracy value and multiple ECE scores—one for
each confidence estimation method. We sort the
accuracy values from all setting combinations and
analyze the correlation between the accuracies and
ECE scores. The results are presented in Fig. 4.
We observe that ECE scores of LLM probabili-
ties, LLM Prob.+PS, Verbalized confidences and
(BCE)Calib-n+PS are highly correlated with ac-
curacies, i.e., the ECE scores decrease when the
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Verb. Zero-shot CoT Few-shot

Method ECE| ECE-t| Brier | AUCT| ECE| ECE-t] Brier | AUCT| ECE| ECE-t| Brier | AUCT| ECE| ECE-t| Brier | AUCT
LLM Prob. . 0.249 0417 0.447 0.255 0419 0395 0.268 0.392° 0.671| 0.235 0.184 0.308 0.584
LLM Prob.+PS § 0.276 0.226_ 0.672 0.264 0.584
Verbalized % 0.187 0.471 - - - - - - - - -
APRICOT
(BCE)Calib-1
(BCE)Calib-n
(BCE)Calib-n+PS
(FL)Calib-1
(FL)Calib-n
(FL)Calib-n+PS

LLM Prob.
LLM Prob.+PS
Verbalized %

APRICOT
(BCE)Calib-1
(BCE)Calib-n
(BCE)Calib-n+PS
(FL)Calib-1
(FL)Calib-n
(FL)Calib-n+PS

LLM Prob.
LLM Prob.+PS
Verbalized %
APRICOT
(BCE)Calib-1
(BCE)Calib-n
(BCE)Calib-n+PS
(FL)Calib-1
(FL)Calib-n
(FL)Calib-n+PS

LLM Prob.
LLM Prob.+PS
Verbalized %
APRICOT
(BCE)Calib-1
(BCE)Calib-n
(BCE)Calib-n+PS
(FL)Calib-1
(FL)Calib-n
(FL)Calib-n+PS
LLM Prob.
LLM Prob.+PS .
Verbalized % 0.167 0.447
APRICOT
(BCE)Calib-1
(BCE)Calib-n
(BCE)Calib-n+PS
(FL)Calib-1
(FL)Calib-n
(FL)Calib-n+PS

Gemma2-27b

0.458 0.259
0.266 0.132

0.412 0.251 0.416 0.612

0224 000289 0612

0.336 0.117 0.364 0.532

0.224 01009 0.298 0.532

Llama3-70b

0.308 0.237

0.236 [10.066

0.274 0.221 0.330 0.619

0.195J0I023] 0275 0.619

0.172  0.098 0.266 0.640

0.135[JOI064 0.258 0.640

Llama3.1-70b

0.483 0.280 0.280 0.645

Qwen2-72b

0.269 0.479 0.412  0.155 0.401 0.637

0233 0066 0290 0637

0.452  0.270 0.447 0.369 0.075

Mixtral-8x7b

Table 1: Test performance of our methods (Calib-*) and baseline methods on NQ dataset using four different
prompts (Verb., Zero-shot, CoT, Few-shot). Calib-n is trained with the responses of all LLMs in the table. Only the
Verb. prompt requests the LLM to provide a probability for a given answer and thus has the results for Verbalized
% performance. We color the text with a scale normalized by the values gap in each column, with darker shades
indicating better performance. The results of the other three datasets and seven models are shown in Appendix A.8.

accuracies get higher which verified the findings  not only focus on achieving a low calibration error
of Zhang et al. (2024). APRICOT, Calib-1 and  at a narrow accuracy range but also analyze the
Calib-n are robust to the accuracy changes, the  performance of the method across different accu-
ECE scores of these methods remain relatively sta-  racy levels. We perform this analysis in Fig. 4.
ble across different accuracies. Verbalized confi- We observe that (FL)Calib-1 performs the best in
dence consistently shows the lowest performance  low accuracy ranges up to 50%, and Calib-n+PS
across all accuracy levels. achieves the lowest ECE scores for accuracies be-

What is the best method for different accu- tween 50% and 70%. LLM Prob.+PS works the
racy levels? The optimal goal of current state-  best for high accuracy (>70%) settings mainly be-
of-the-art confidence estimation methods should  cause LLM probabilities are usually overconfident.
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Figure 5: Reliability diagrams for our different methods using 10 bins each for Llama3.1-70b on NQ. The color and
the percentage number within each bar present the proportion of total data samples contained in each bin. More
figures of other models and datasets are shown in Appendix A.6.

5.2 Detailed Fraction Results

Table 1 presents the test results of our methods
and baselines on the NQ dataset when evaluated
on five large-size LLMs. We analyze the perfor-
mance of all methods across prompts, models, and
evaluation metrics. The results reveal that the ef-
fectiveness of methods is highly influenced by the
prompt styles and models. However, our proposed
methods (Calib-*) achieve better calibration than
baselines on most prompts and models.

Across Methods: LLM probabilities and Verbal-
ized confidence show poor performance, exhibit-
ing high ECE, ECE-t, and Brier scores across all
prompts. Adding Platt Scaling (LLM Prob.+PS)
improves calibration but is still outperformed by
our proposed Calib-* methods. Among baselines,
APRICOT performs better than Verbalized confi-
dence, although it does not achieve the best results
in most settings. Across all evaluation metrics,
our Calib-* methods outperform others. For exam-
ple, (BCE)Calib-n achieves the lowest ECE and
Brier scores, particularly with the CoT and few-
shot prompts, e.g., ECE of 0.049 on Llama3.1-
70b. PS only helps decrease the ECE-t scores but
can not enhance overall performance, this is be-
cause PS is similar to ECE-t which is a posthoc
method for scaling probabilities. Across Prompts:
Calibration quality improves with few-shot and
CoT prompts compared to the verb. and zero-shot
prompts. For instance, (BCE)Calib-1 achieves an
ECE-t of 0.045 with the CoT prompts compared

to 0.068 with the verb. prompts on Gemma2-27b.
Across Models: Larger models (e.g., Qwen2-72b
and Llama3.1-70b) generally exhibit better cali-
bration when using Calib-* methods, reflecting
their better alignment with calibration techniques.
For instance, (FL)Calib-n+PS achieves an ECE of
0.071 on Qwen2-72b compared to 0.095 on smaller
models like Mixtral-8x7b.

Reliability diagrams analysis. Fig. 5 shows
that PS produces a narrow range of confidence
scores, indicating limited diversity in the emit-
ted confidence levels. LLM probabilities and Ver-
balized confidence often exhibit overconfidence,
even when applied to datasets with low accuracy
(<40%, reported in Fig. 8 in Appendix). In con-
trast, our Calib-* methods show a more conser-
vative approach, aligning their confidence levels
more closely with the true accuracy of the model,
reflecting improved calibration and reliability.

6 Conclusion

Previous studies (Ulmer et al., 2024; Tian et al.,
2023) have assessed calibration methods within
limited settings, overlooking their generalization
across diverse model sizes and prompt styles. This
study addresses this limitation by conducting ex-
periments on 12 LLMs with parameters ranging
from 2B-72B and four prompt styles. We also
comprehensively analyze the influence of response
agreement and loss functions in LLM calibration.
Experimental results show that both response agree-
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ment and FL loss enhance calibration from base-
lines, with (FL)Calib-1 achieving the best perfor-
mance. We also find that few-shot prompts improve
LLM accuracy and calibration, and auxiliary-based
methods show robust performance across diverse
settings—maintaining stable calibration regardless
of accuracy levels. These findings highlight the
effectiveness of various calibration strategies and
encourage future methods to re-evaluate the impor-
tance of our explored factors for achieving reliable
confidence estimation.

Limitations

Although our work covers a wide range of fac-
tors, there are potentially more factors worth ex-
ploring. For example, we analyze a wide range
of prompt types, including Few-shot and Chain-
of-Thought, the influence of fine-grained prompt
variations or automatically generated prompts re-
mains unexplored. The interplay between prompt
engineering and calibration could warrant deeper
investigation.

Our study focuses on calibration performance
metrics like ECE, ECE-t, and Brier scores. While
these metrics are widely used, they may not fully
capture all aspects of calibration quality, such as
user-perceived confidence or task-specific utility.

Existing works use various ways of determining
the accuracy of LLM generations. For instance,
some works (Tian et al., 2023; Liu et al., 2024)
use LL.Ms as a Judge, other works (Ulmer et al.,
2024; Xiong et al., 2024) use certain metrics such
as extract match or ROUGE score. While the opti-
mal solution is underexplored, we choose the more
commonly used and cost-efficient method.

Future work can address these limitations by test-
ing broader LL.Ms and tasks, automating prompt
optimization, and developing hybrid approaches
that adapt to varying accuracy levels and applica-
tion constraints.
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A Appendix

A.1 Prompts for target LLM

A.1.1 Verb. prompt

Provide your best guess and the probability
that it is correct (0.0 to 1.0) for the following
question. Give ONLY the guess and prob-
ability, no other words or explanation. For
example: \n\n Guess: <most likely guess, as
short as possible; not a complete sentence,
just the guess!>\n "Probability: <the proba-
bility between 0.0 and 1.0 that your guess
is correct, without any extra commentary
whatsoever; just the probability!>\n\n The
question is: [Question]

A.1.2 Zero-shot prompt

Provide your best guess for the following
question. Give ONLY the guess, no other
words or explanations, as short as possible;
not a complete sentence, just the guess! \n\n
The question is: [Question]

A.1.3 CoT prompt

Briefly answer the following question by
thinking step by step. Give the final answer
(start with *Answer: * ) with minimal words
at the end. \n\n The question is: [Question]

A.1.4 Few-shot prompt

user: [Question 1] assistant: [Target 1]
user: [Question 2] assistant: [Target 2]

user: [Question 6] assistant: [Target 6]
user: [Question] assistant:

A.2 Prompt for Judge

Task Description: \n An instruction (might
include an Input inside it), a response to
evaluate, a reference answer that gets a
score of 1, and a score rubric representing a
evaluation criteria are given.

1. Write detailed feedback that assesses
the quality of the response strictly based
on the given score rubric, not evaluating in
general.

2. After writing feedback, write a score that
is an integer between 0 and 1. You should
refer to the score rubric.

3. The output format should look as follows:
"Feedback: (write a feedback for criteria)
[RESULT] (an integer number between O
and 1)"

4. Please do not generate any other opening,
closing, and explanations.

The instruction to evaluate:[Question]
Response to evaluate: [LLM Answer]
Reference Answer (Score 1): [Target]
Score Rubrics:\n Score 0: the response and
reference answer to the instruction are not
semantically equivalent.\n Score 1: the re-
sponse and reference answer to the instruc-
tion are semantically equivalent.
Feedback:

A.3 Technical Details

After a grid search of hyperparameters, we trained
our auxiliary models (BERT-base, 110M parame-
ters) using a learning rate of 1e-5 and a batch size
of 16 for five epochs. All experiments, including
LLM inferences, are performed on a maximum of
2 NVIDIA H100 GPUs. The training time for one
epoch of 2k samples is around 200 seconds on one
GPU, this time can be different depends on the
dataset size and number of joint LLMs in training.

A4 Aggregated Results Across Different
Configurations

Fig. 6 shows the calibration performances of dif-
ferent methods across different configurations such
as prompt styles, model sizes and datasets. We
observe that the best method is highly dependent
on these factors.

Prompt specific performance. The first row of
Fig. 6 presents the prompt specific performance for
different methods. We observe that Calib-n always
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Figure 6: Performance Comparison results of different methods against baselines across three setting configurations

(prompt styles, model sizes and datasets).

outperforms Calib-1 across different prompt styles
when both are optimized with BCE loss. When FL
loss is applied, Calib-n only outperforms Calib-1 in
few-shot prompts. We hypothesize that the longer
LLM answers generated with few-shot prompts
usually lead to higher response agreement and thus
enhance the performance of Calib-n.

Model size specific performance. The second
row of Fig. 6 presents the model-size specific per-
formance for different methods. We find that Calib-
n outperforms Calib-1 on large-size models. How-
ever, (FL)Calib-1 performs better for small-size
models. We also observe that the best method is
model size dependent.

Dataset specific performance. The second row
of Fig. 6 presents the dataset specific performance
for different methods. (BCE)Calib-n consistently
achieves better performances than (BCE)Calib-1
over all datasets. In contrast, (FL)Calib-1 always
outperform (FL)Calib-n.

A.5 Accuracy Statistics of LLMs

We present Fig. 7 and 8 to demonstrate the accuracy
performance of LLMs across different prompts and
datasets. Large size models typically yield better
performance than small size models. Few shot
prompts improve the performance more than other

prompt styles. Most LLMs achieve their highest
accuracy on the Sciq dataset, while the NQ dataset
proves to be the most challenging.

A.6 Reliability Diagrams

Similar to Fig. 5, Fig. 9-11 show the reliability
diagrams of other three datasets for Llama3.1-70
with Verb. prompts. We find that for high accuracy
(>50%) datasets (TriviaQA and Sciq), Calib-* us-
ing BCE and FL loss is less conservative and more
likely to predict high confidence.

A7

Table 2 presents the generalization results for the
best two settings in our paper ((FL)Calib-1 and
(BCE)Calib-n). We observe performance drops in
the out-of-distribution (OOD) setting, but no catas-
trophic degradation. In some settings, the OOD
auxiliary models perform on par with or better than
the in-domain models.

Out-domain Generalization

A.8 Detailed Results of LLM Calibration

Similar to Table 1, Table 3 -9 show the rest of the
detailed calibration results of different methods.
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Method Train Test ECE| ECE-t] Brier] AUCYT
(FL)Calib-1 TriviaQA TriviaQA 0.042 0.053 0.181 0.708
(FL)Calib-1 WikiQA+NQ+Sciq TriviaQA 0.097 0.090 0.171 0.733
(BCE)Calib-n TriviaQA TriviaQA 0.068 0.065 0.178 0.715
(BCE)Calib-n WikiQA+NQ+Sciq TriviaQA 0.089 0.074 0.173 0.707
(FL)Calib-1 WikiQA WikiQA 0.073 0.068 0.193 0.574
(FL)Calib-1 TriviaQA+NQ+Sciq WikiQA 0.250 0.100 0.280 0.628
(BCE)Calib-n WikiQA WikiQA 0.085 0.033 0.194 0.576
(BCE)Calib-n TriviaQA+NQ+Sciq WikiQA 0.311 0.084 0.317 0.616
(FL)Calib-1 NQ NQ 0.074 0.075 0.216 0.724
(FL)Calib-1 TriviaQA+Scig+WikiQA NQ 0.149 0.118 0.249 0.682
(BCE)Calib-n NQ NQ 0.081 0.080 0.217 0.719
(BCE)Calib-n TriviaQA+Scig+WikiQA NQ 0.119 0.101 0.239 0.686
(FL)Calib-1 Sciq Sciq 0.023 0.017 0.144 0.738
(FL)Calib-1 TriviaQA+WikiQA+NQ Sciq 0.057 0.053 0.152 0.707
(BCE)Calib-n Sciq Sciq 0.038 0.042 0.146 0.745
(BCE)Calib-n TriviaQA+WikiQA+NQ Sciq 0.018 0.021 0.147 0.696

Table 2: Generalization results test on Llama3.1-70b model using few-shot prompt. We bold the results when the
out-domain outperforms in-domain performance.
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Figure 7: Model performance ranking across different datasets, performance is averaged over four prompt styles.
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Figure 8: Model performance across different prompts and datasets.
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Figure 9: Reliability diagrams for Llama3.1-70b on TriviaQA with Verb. prompts.

1 - 1 1 . 1 1 1
e ’
b X3 y 08 e 0s - 08 /,
9 e
ol Tos o6 5 Zos Jos 3 o
e e e < e e - c
5 E 5 / 5 5 H
g 3 3 / 3 3 3
g Sos Zoa x Soa Zos g
3
02 02 # 2 02 02
L | [ o o R R
00 02 o4 06 08 10 00 02 0% 0o 0z 06 00 02 o4 06 08 10 00 0z 04 o6 08 10
Confidence Confidence Confidence Confidence Confidence Confidence

(a) LLM Prob. (b) LLM Prob.+PS (c) Verbalized % (d) APRICOT (e) (AUC)Calib-1 (f) AUC)Calib-n

. . . _ . . .
08 0 0 0 0
7 Zos o0s Zos Jrais Zos 3 o0s
g g g g P] g H g
£ £ £ £ P £ ]2 £
3 H 2 3 8 g 2
g Zoa % Zos Soa Fa - Zoa J Zos
Ve El OTE s
SR R W
02 #- o 02 02 A - 02 #- 02
paa - ! 0. 0.0+ - + 0.
i e 06 08 10 0z os 0o o BT oa s 08 10 5oz oa s 68 10 e 0z oa Os G 1o o oz or us 10
Confidence Confidence Confidence Confidence Confidence Confidence

() (BCE)Calib-1 (h) (BCE)Calib-n (i) (BCE)Calib-n+PS (j) (FL)Calib-1 (k) (FL)Calib-n (1) (FL)Calib-n+PS

Figure 10: Reliability diagrams for Llama3.1-70b on Sciq with Verb. prompts.
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Figure 11: Reliability diagrams for Llama3.1-70b on WikiQA with Verb. prompts.
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Verb.

Zero-shot

CoT

Few-shot

Method ECE| ECE-t]| Brier | AUCT

ECE |

ECE-t] Brier | AUCT| ECE |

ECE-t] Brier | AUCT| ECE ]

ECE-t] Brier |

Llama2-7b

LLM Prob.
LLM Prob.+PS
Verblized %
APRICOT

0.239 0.401
0.613

0.384  0.618

AU
(AUC)Calib-n
(BCE)Calib-1
(BCE)Calib-n
(BCE)Calib-n+PS
(FL)Calib-1
(FL)Calib-n
(FL)Calib-n+PS

Llama3.1-8b Llama3-8b

Gemma2-2b

LLM Prob.
LLM Prob.+PS
Verblized %
APRICOT

0.274 0.165
0.385

AU alib- 0.248 0.235
(AUC)Calib-n 0.239 0.176
(BCE)Calib-1
(BCE)Calib-n
(BCE)Calib-n+PS
(FL)Calib-1
(FL)Calib-n
(FL)Calib-n+PS
LLM Prob.

LLM Prob.+PS
Verblized %
APRICOT

AU alib-
(AUC)Calib-n
(BCE)Calib-1
(BCE)Calib-n
(BCE)Calib-n+PS
(FL)Calib-1
(FL)Calib-n
(FL)Calib-n+PS
LLM Prob.

LLM Prob.+PS
Verblized %
APRICOT

0.493  0.667

0.691
AU alib-

(AUC)Calib-n

(BCE)Calib-1

(BCE)Calib-n

(BCE)Calib-n+PS

(FL)Calib-1

(FL)Calib-n

(FL)Calib-n+PS

Gemma2-9b

LLM Prob.
LLM Prob.+PS
Verblized %
APRICOT

0296 0.170 0.291

0314 0.180 0.324

0.238  0.302
0.222  0.298

0.419
0.249

0.328 0.201 0.326
0.251 0.202

0.400

0.599
0.634

0.229 0.308
0.223  0.289

0.286
0.264

0.591| 0.198 0.153 0.251
0.257 0.208 0.275
0.606

0.603

0298 0.154 0315
0.209 [N0053] 0.277

0.699

0.685
0.685] 0.158 0.117 0.238

0.232

0.236  0.166 0.245 0.137
0.706 | 0.190 0.165 0.733| 0.255 0.203 0.255

0.703
0.723
0.723
0.708
0.720
0.720

0.176  0.140

0.178 0.157

0.216  0.280
0.234  0.303

0.155 0.224

0.152  0.224

0.654
0.672
0.671
0.687
0.687
0.680
0.697
0.697

AU alib-
(AUC)Calib-n
(BCE)Calib-1
(BCE)Calib-n
(BCE)Calib-n+PS
(FL)Calib-1
(FL)Calib-n
(FL)Calib-n+PS

Phi3-4b

LLM Prob.
LLM Prob.+PS
Verblized %
APRICOT

0.437 = 0.753

(AUC)Calib-n
(BCE)Calib-1
(BCE)Calib-n
(BCE)Calib-n+PS
(FL)Calib-1
(FL)Calib-n
(FL)Calib-n+PS

Phi3-7b

LLM Prob.
LLM Prob.+PS
Verblized %
APRICOT

0234 0.176
0369 0.150

AU alib-
(AUC)Calib-n
(BCE)Calib-1
(BCE)Calib-n
(BCE)Calib-n+PS
(FL)Calib-1
(FL)Calib-n
(FL)Calib-n+PS

0.249 0.238
0.260 0.230

0.655] 0.218
0.637| 0.238

0.182 0.171

0.568

0.593
0.623
0.623
0.602
0.609
0.609

0.277 0.188
0.276  0.195

0.249 0.250 0.303 0.621| 0.185 0.206 0.273
0.609| 0.191 0.198 0.276 0.263 0.223 0.297

0.639

Table 3: Test results of small-size models on TriviaQA dataset.
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Verb. Zero-shot CoT Few-shot

Method ECE-t] Brier | AUCT ECE-t] Brier | ECE-t] Brier | AUCT[ ECE ] ECE-t] Brier | AUCT
LLM Prob. 0.251  0.308 0.227 0.312 0.254 0307 0.593| 0.136 0.173 0.226 0.563
LLM Prob.+PS 0.563
Verblized % - - - -

APRICOT 0.183 0.152 0.622

(AUC)Calib-T | 0.209 0.302 0.596 0.204  0.295

0.298 0.587| 0.171 0.152 0.241
(AUC)Calib-n 0.219 0.337 0.589 0.220 0.321 0.310 0.585| 0.217 0.211 0.241

(BCE)Calib-1 0.591
(BCE)Calib-n 0.591
(BCE)Calib-n+PS 0.591
(FL)Calib-1 0.589
(FL)Calib-n 0.594
(FL)Calib-n+PS 0.594

LLM Prob. 0.289
LLM Prob.+PS
Verblized % - - -
APRICOT 0.184 0.124 0.267
AUC)C 0.244 0219 0306 0.575 0.210 0.179 0.286
(AUC)Calib-n 0.314 0.210 0.344 0.578 0.311
(BCE)Calib-1

(BCE)Calib-n

(BCE)Calib-n+PS

(FL)Calib-1

(FL)Calib-n

(FL)Calib-n+PS

LLM Prob.
LLM Prob.+PS
Verblized % 0.131 0. - - -
APRICOT 0.123 I 0.164 0.134 0.605| 0.161
AUC)C 0.195 0.609| 0.216 0.201 0.283 0.587| 0.219 0.188 0.272 0.596| 0.113 0.120
(AUC)Calib-n 0.225 0.223 0327 0.586| 0.269 0.229 0.307 0.572
(BCE)Calib-1 b

(BCE)Calib-n 0.172 0.129 b 0.591
(BCE)Calib-n+PS 0.591
(FL)Calib-1

(FL)Calib-n 0.177 0.125
(FL)Calib-n+PS

Gemma2-27b

0.149 0.095 0.227 0.601
0.601

0.118  0.094 0.213
0.145 0.154
0.147  0.149

Llama3-70b

0212 0.234 0.168  0.150

Llama3.1-70b

0.191

LLM Prob. 0.305 0.253 0.261 0.340 0228 0.222
LLM Prob.+PS 0.661
Verblized % 0.314 ﬂ - - - -
o APRICOT 0.194 0.156 - 0.145 0.134 0.218 0.632
& (AUC)C b 0.579| 0.168 0.174 0.605| 0.146 0.175 0.222
4 (ot o3
4 (BCE)Calib-1 0.625
& (BCE)Calib-n 0.607

(BCE)Calib-n+PS 0.607

0.597
0.597
(FL)Calib-1 0.619
(FL)Calib-n 0.622
0.588

(FL)Calib-n+PS
0.535
0.535

LLM Prob.
LLM Prob.+PS 0.607
0.141 0.319 0.531
0.560

0296 0.246 0.315 0.585| 0.194
0.131

0.280 0.212 0.303
Verblized % 0.318 0.324  0.624

APRICOT 0215 0.166 0300 0.584| 0.153 0.153 0.603 ]
ATCIC i ] ] 157 L
(AUC)Calib-n 0291 0292 0327 0.552| 0.192 0.196 0274 0.573

(BCE)Calib-1
(BCE)Calib-n ) ) 0.561

(BCE)Calib-n+PS L 0.561

(FL)Calib-1 !

(FL)Calib-n L ) 0.572

(FL)Calib-n+PS L 0.572

0.242

Mixtral-8x7b

Table 4: Test results of large-size models on TriviaQA dataset.
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Verb.

Zero-shot

CoT Few-shot

Method ECE] ECE-t] Brier | AUCT| ECE ]

Llama3.1-8b Llama3-8b Llama2-7b

Gemma2-2b

ECE-t] Brier | AUCT

ECE | ECE-t] Brier | AUCT[ ECE | ECE-t| Brier | AUCT

LLM Prob.
LLM Prob.+PS
Verblized %
APRICOT

0.323
0.313
0.369

0.341  0.599
0.375 0.616

AU 0.255 0.255
(AUC)Calib-n 0.297 0.294
(BCE)Calib-1
(BCE)Calib-n
(BCE)Calib-n+PS
(FL)Calib-1
(FL)Calib-n
(FL)Calib-n+PS
LLM Prob.

LLM Prob.+PS
Verblized %
APRICOT

AU 0.646| 0.224 0.223
(AUC)Calib-n 0.280 0.276
(BCE)Calib-1
(BCE)Calib-n
(BCE)Calib-n+PS
(FL)Calib-1
(FL)Calib-n
(FL)Calib-n+PS
LLM Prob.

LLM Prob.+PS
Verblized %
APRICOT

0.257 0.256

0.600
0213 0.289 0.598
0.598

0.308 0.588
0.413 0.587

0.180  0.147

AU 0.240 0.221
(AUC)Calib-n 0.200 0.193
(BCE)Calib-1
(BCE)Calib-n
(BCE)Calib-n+PS
(FL)Calib-1
(FL)Calib-n
(FL)Calib-n+PS
LLM Prob.

LLM Prob.+PS
Verblized %
APRICOT

0.587| 0.166
0.584
0.584

0.420 0.629

0.666
0.652
0.674
0.673
0.689
0.689
0.661
0.689
0.689

0.297
0.324

0.162 0.275 0.654
0.224  0.283  0.679

0.255
0.243

0.147 0.254

0.201  0.269
0.218 0.270

0.636
0.615
0.654
0.616
0.660
0.660
0.610
0.661
0.661

0.290
0.315

0263 0.157 0302
0.186 (101085 0.269

0.674
0.674

0.721
0.180 0.178 0.214
0.192  0.193 0.224

0.127

0.734

0.268 0.233  0.197 0.253
0.223  0.182  0.251

0.243

0.243

8
0240 0.117 0207

0.612
0.612

0.145 0.260

AU
(AUC)Calib-n
(BCE)Calib-1
(BCE)Calib-n
(BCE)Calib-n+PS
(FL)Calib-1
(FL)Calib-n
(FL)Calib-n+PS

0.277 0282 0.319 0.662

Gemma2-9b

LLM Prob.
LLM Prob.+PS
Verblized %
APRICOT

0.269
0.153 0.149

0.276

AU
(AUC)Calib-n
(BCE)Calib-1
(BCE)Calib-n
(BCE)Calib-n+PS
(FL)Calib-1
(FL)Calib-n
(FL)Calib-n+PS

0.131 0.258 0.611

Phi3-4b

LLM Prob.
LLM Prob.+PS
Verblized %

0.187 0.121
0.322

0.324  0.703
0.755

0.225 0.225 0.266
0.258 0.258 0.282

0.138 0.120

0.145 0.144 0231 0.642
0.200 0.175 0.245 0.648
0.176  0.172  0.226

0.659

0.186 0.167 0.214
0.170 0.1757 0.191

0.651

0.142  0.119

0.672 0.133  0.238

0.161 0.151
0.238 0.182

0.205 0.147
0.182

(AUC)Calib-n
(BCE)Calib-1
(BCE)Calib-n
(BCE)Calib-n+PS
(FL)Calib-1
(FL)Calib-n
(FL)Calib-n+PS

Phi3-7b

LLM Prob.
LLM Prob.+PS
Verblized %
APRICOT

0.314 0.324  0.670
0.689

0.159 0.190 0.201
(AUC)Calib-n 0.268 0.227
(BCE)Calib-1
(BCE)Calib-n
(BCE)Calib-n+PS
(FL)Calib-1
(FL)Calib-n
(FL)Calib-n+PS

0.709
0.686
0.711
0.691
0.691
0.703
0.695
0.695

0.121 0.239
0.181 0.244

0.237 0.174 0.262
0.203 0.184 0.240
0.132 0.116

0.112

0.278

0.113

0.122 0.125 0.236 0.625

0.625
0.654

0.260 0.666| 0.217 0.195 0.255 0.229 0.202 0.256
0.296 0.664| 0.174 0.172 0.233 0.194 0.203

0.128

0.124

0.633
0.633

Table 5: Test results of small-size models on Sciq dataset.
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Verb. Zero-shot CoT Few-shot

Method ECE-t] Brier | AUCT| ECE | ECE-t| Brier | AUCT| ECE | ECE-t| Brier | AUCT| ECE | ECE-t| Brier | AUCT
LLM Prob. 0.161 0.158 0.227 0.630

LLM Prob.+PS 0.616
Verblized Prob.

0.595 0.621

o APRICOT 0.594| 0165 0.163 0236

e

& (AUC)CalibT | 0.606 0.152 0254 0.589 0.122 0.147 0.140 0.181
S (AUC)Calib-n 0.188 0275 0.598| 0231 0207 0289 0.583| 0.217 0.207 0.250 0.168 0.150 0.193
£ (BCE)Calib-1 0.598 0.571 0.621

& (BCE)Calib-n 0.585 0.577

(BCE)Calib-n+PS 0.578
(FL)Calib-1 0.599 0.594
(FL)Calib-n 0.597 0.576
(FL)Calib-n+PS 0.597 0.576

LLM Prob. 0.177 0.251 0212 0.223 0.261
LLM Prob.+PS 0.571
Verblized Prob. 0.203 -

APRICOT 0.155 0.156 0.250 .
AUC)C 6 5] 0.144 0.151 0.170 0.177 0.172 0.092 0.214
(AVOCal 0243 0227 0295 0402

(BCE)Calib-1 0.536 0.064

(BCE)Calib-n

(BCE)Calib-n+PS
(FL)Calib-1 0.557

(FL)Calib-n

(FL)Calib-n+PS 0.132  0.081

0.577

0.625

0.182  0.168 0.233

Llama3-70b

LLM Prob.
LLM Prob.+PS 0.692
Verblized Prob. - - - - - - - - -
2 APRICOT § b 0.236 0.636| 0. } 0.574| 0.134 0.132 0.644 0.700
% (AUC)C 0.118 0.231 0.650| 0. b 0.622| 0.157 0.246 0.658| 0.138 0.117 0.178
E (BCE)Calib-1 0.617
g (BCE)Calib-n 0.597
(BCE)Calib-n+PS 0.597
(FL)Calib-1 0.624

(FL)Calib-n 0.592
(FL)Calib-n+PS 0.592 0.133  0.099

LLM Prob. 0.191 0.172 0.242
LLM Prob.+PS 0.687
Verblized Prob. 0.211 - -

~ APRICOT 0.145 0.146 y 0.149 0.607

< TAUC)C 0.189 0.163 y 0.156 0.153 0.601| 0.139 0.163 0210 0.131 0.237

N": (AUC)Calib-n 0.187 0.172 I 0.230 0.220 0.290 0.608| 0.223 0.199 0.246 0209 0.119 0.234

2 (BCE)Calib-1 y 0.596

& (BCE)Calib-n I 0.610

(BCE)Calib-n+PS . 0.610 0.092

(FL)Calib-1 . 0.584

(FL)Calib-n Y 0.611

(FL)Calib-n+PS I 0.611 0.095
0.071

LLM Prob. 0.261 0.216 0.204 0.258 0.214 0.289 0.582
LLM Prob.+PS 0.528
Verblized Prob.

APRICOT 0.605

AU : ] ; 0343 0.097 0339
(AUC)Calib-n 0.199 0.182 I 0273 0.136  0.295
(BCE)Calib-1 ! 0.083
(BCE)Calib-n

(BCE)Calib-n+PS I 0.070
(FL)Calib-1

Mixtral-8x7b

(FL)Calib-n
(FL)Calib-n+PS

Table 6: Test results of large-size models on Sciq dataset.
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Verb. Zero-shot CoT Few-shot

Method ECE] ECE-t] Brier | AUCT| ECE| ECE-t] Brier | AUCT[ ECE| ECE-t| Brier | AUCT] ECE ] ECE-t| Brier | AUCT
LLM Prob. 0.426 0.369 0.140 0.301 0.248 0.153 0291 0.620| 0.409 0.402 0.578
LLM Prob.+PS 0.344 [ 0.069 0.155 0.306 0.581
Verblized Prob. - - - - - - -
APRICOT 0.153 0.262 0.634

AU 0.233 0.190 0274 0.651
(AUC)Calib-n b [ b b L 0.186 0.171 0.266 0.651

(BCE)Calib-1 b 0.147
(BCE)Calib-n

(BCE)Calib-n+PS

(FL)Calib-1
(FL)Calib-n
(FL)Calib-n+PS

Llama2-7b

LLM Prob. 0422 0.196 0. b 0.271 0.121 0.326 0.529
LLM Prob.+PS 0.664| 0.316 0.083 0.283 0.529
Verblized Prob. - -

APRICOT

AU
(AUC)Calib-n
(BCE)Calib-1
(BCE)Calib-n
(BCE)Calib-n+PS
(FL)Calib-1
(FL)Calib-n
(FL)Calib-n+PS

Llama3-8b

TLM Prob. ] 0.176 0.148 0. 0.276] 0.139 0319 0617] 0.183 0273 059
LLM Prob+PS | 0.344 0.638| 0.234[10.079 O. 0.189 [NOI019] 0271 0617 0.166 0269 0.59%
Verblized Prob. | 0.629 0.143 0.560 0.676| - - - - - - - - -

0.691 0.151

APRICOT 0.148

AU 0.129 0212 0.159 0.254
(AUC)Calib-n 0.142 0.170 0.186 0.255
(BCE)Calib-1
(BCE)Calib-n
(BCE)Calib-n+PS
(FL)Calib-1

(FL)Calib-n

(FL)Calib-n+PS

LLM Prob.
LLM Prob.+PS
Verblized Prob. 0.623 0.155 0571 0.622
APRICOT 0.665 ] L L b
AU 0.122 ] ) ) ] : 0.280 0.158 0.289
UGGttt 0oes o8 ORI 1T 0267 0041|0214 OB 055 0938 10234 0201 0258
(BCE)Calib-1 ! ] )

(BCE)Calib-n
(BCE)Calib-n+PS
(FL)Calib-1
(FL)Calib-n
(FL)Calib-n+PS
LLM Prob. 0316 0.203

Llama3.1-8b

0.676

0.691

Gemma2-2b

LLM Prob.+PS 0249 0.618
Verblized Prob. 0.531 0.147 0.490 - -
APRICOT 0.249 0.654

AU 0.120 b 0.199 0.265
(AUC)Calib-n 0.110 I b b b b 0.509
(BCE)Calib-1 I b

(BCE)Calib-n

(BCE)Calib-n+PS

(FL)Calib-1
(FL)Calib-n
(FL)Calib-n+PS
LLM Prob. 0.209
LLM Prob.+PS b 0.170
Verblized Prob.

Gemma2-9b

0.133 0.135 0.258
b 0.127 0.120
(AUC)Calib-n b 0.345 0.205 0.204 0.284
(BCE)Calib-1

(BCE)Calib-n

(BCE)Calib-n+PS

(FL)Calib-1

(FL)Calib-n

(FL)Calib-n+PS

LLM Prob. b 0.194 0.139

LLM Prob.+PS 0.182

Verblized Prob. - - - - - - -
APRICOT 0.628

0.168 0.587

(AUC)Calib-n 0.180

(BCE)Calib-1
(BCE)Calib-n

(BCE)Calib-n+PS

(FL)Calib-1
(FL)Calib-n

Phi3-7b

(FL)Calib-n+PS

Table 7: Test results of small-size models on WikiQA dataset.
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Verb. Zero-shot CoT Few-shot
Method ECE| ECE-t] Brier | AUCT| ECE| ECE-t] Brier | AUCT[ ECE| ECE-t| Brier | AUCT] ECE ] ECE-t] Brier | AUCT

LLM Prob. 0.423 0.258 0.382 0.448 0.259 0410 0.730| 0.359 0.222 0.356 0.654| 0.158 0.164 0.226 0.501
LLM Prob.+PS 0.501
Verblized Prob.

0.109 0.103

APRICOT

(AUC)Cahb -n b b b 0.640
(BCE)Calib-1

(BCE)Calib-n 0.650
(BCE)Calib-n+PS 0.650
(FL)Calib-1 !

(FL)Calib-n 0.674
(FL)Calib-n+PS
LLM Prob. 0359 0245 0353 0424 0234 0385 0319 0239 0351 0582] 0.125 O.111

Gemma2-27b

0.230 0.512

LLM Prob.+PS 0.673 0.512
Verblized Prob. 0.439 0415/ 0686 - - - - | - - -
APRICOT 0.614| 0.125 0.114

0.650 I 0.087
(AUC)Cahbn .158 0.679 b 0.123  0.120

(BCE)Calib-1 0.669 0.626
(BCE)Calib-n

(BCE)Calib-n+PS 0.672 0.075
0.667

(FL)Calib-1
(FL)Calib-n 0.081

(FL)Calib-n+PS 0.077

Llama3-70b

LLM Prob. 0.229 0.182 0.273 0.156 0.177 b
LLM Prob.+PS 0.570
Verblized Prob.

AFRICOT m—

0.695 0622 0209 0203
(AUC)Cahb -n 0.151 0.704 0278 0228 0316
(BCE)Calib-1 0.694

(BCE)Calib-n
0.685
0.689

Llama3.1-70b

(BCE)Calib-n+PS
(FL)Calib-1
(FL)Calib-n
(FL)Calib-n+PS
LLM Prob.
LLM Prob.+PS

Verblized Prob. 0.480 0.449
APRICOT

0.169
(AUC)Cahb n
(BCE)Calib-1
(BCE)Calib-n
(BCE)Calib-n+PS
(FL)Calib-1
(FL)Calib-n
(FL)Calib-n+PS
LLM Prob.

0.306 0.264 0.340
LLM Prob.+PS
Verblized Prob.

0.327 0.151 0.336
APRICOT

0.187 0.187 0.522 ]
(AUOCalibn | 0252 0252 0301 0546| 0254 0228 0304 0361
(BCE)Calib-1 0.520 ]
(BCE)Calib-n ! 0.533
(BCE)Calib-n+PS ; ! 0.533
(FL)Calib-1 ]
(FL)Calib-n ! 0.554

0.612

0.403 0.249 0.389 0.500 0.235 0.459 0.301 0.246 0.345

0.542
0.542

Qwen2-72b

0.529

Mixtral-8x7b

(FL)Calib-n+PS L 0.554

Table 8: Test results of large-size models on WikiQA dataset.
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Zero-shot

CoT Few-shot

Method

ECE] ECE-t| Brier | AUCT| ECE| ECE-t] Brier | AUCT

ECE | ECE-t] Brier | AUCT[ ECE| ECE-t| Brier | AUCT

Llama2-7b

LLM Prob.
LLM Prob.+PS
Verblized Prob.
APRICOT

0.554
0.513
0.549

AU 0.178
(AUC)Calib-n 0.248 0228 0257
(BCE)Calib-1

(BCE)Calib-n

(BCE)Calib-n+PS

(FL)Calib-1

(FL)Calib-n

(FL)Calib-n+PS

0.488 0.182 0.445 0.647| 0.543 0.477 0.628
0.628

0.681
0.649
0.680
0.670

0.290 0.235 0.319

0.660

Llama3-8b

LLM Prob.
LLM Prob.+PS
Verblized Prob.
APRICOT

0435 0.199 0366
0.378 [HOI059] 0.298

AU b
(AUC)Calib-n 0227 0.264
(BCE)Calib-1
(BCE)Calib-n
(BCE)Calib-n+PS
(FL)Calib-1
(FL)Calib-n
(FL)Calib-n+PS

Llama3.1-8b

0415 0211 0392
0.290 [70:051] 0.298

0.619| 0.306 0.304
0.654| 0.280 0.273 0.323

0.408 0.380
0.318 0.322

0.638
0.668

LLM Prob.
LLM Prob.+PS
Verblized Prob.
APRICOT

0.518 0.684

0.681
0.692
0.695
0.704
0.636
0.692
0.632
0.632

AU
(AUC)Calib-n
(BCE)Calib-1
(BCE)Calib-n
(BCE)Calib-n+PS
(FL)Calib-1
(FL)Calib-n

(FL)Calib-n+PS 0.256

0.193 0.138 0.238

0.196 0.133  0.236

Gemma2-2b

0.290 0.130
0.367 [10.049

LLM Prob.
LLM Prob.+PS
Verblized Prob.
APRICOT

0.705
0.700
0.694

0.551

AU
(AUC)Calib-n
(BCE)Calib-1
(BCE)Calib-n
(BCE)Calib-n+PS
(FL)Calib-1
(FL)Calib-n
(FL)Calib-n+PS

0.269

0261 0.152 0260
0318 [10:052 0.266

0.225 0.199 0.263 0.642| 0.167 0.183 0.219
0.692| 0.289 0.259 0.312 0.663| 0.267 0.241 0.267
! 0.643

0.259 0.235 S 0.265 0.234

02407 0.13% 0236
0.301 [H01026| 0.265

0.272 0.244 0.273 0.240

Gemma2-9b

LLM Prob.
LLM Prob.+PS
Verblized Prob.
APRICOT

AU
(AUC)Calib-n
(BCE)Calib-1
(BCE)Calib-n
(BCE)Calib-n+PS
(FL)Calib-1
(FL)Calib-n
(FL)Calib-n+PS

0.275

0298 0207 0341 0394
0213 0029 0284 0.59%

0.374 0.232 0.377 0.641
0.243 (10046 0284 0.641

0.227 0223 0299 0.621| 0.240 0.236 0.287
0.649| 0.270 0.268 0.311 0.273  0.272  0.296
! 0.637

0.634

Phi3-4b

LLM Prob.
LLM Prob.+PS
Verblized Prob.
APRICOT

0.436 0.143
0.400 [ 0.061

(AUC)Calib-n
(BCE)Calib-1
(BCE)Calib-n
(BCE)Calib-n+PS
(FL)Calib-1
(FL)Calib-n
(FL)Calib-n+PS

0.712
0.717
0.729
0.715
0.725
0.712
0.712

0.297 0.224

0.309

0.128 0.732
0.273 0.228 0.278 0.699

0385 0.143 0319
0.368 [10.059] 0.296

0.306 0.244 0.714
0.378 0.303 0.714

0.275 0.209 0.282 0.703

0.731
0.731| 0.278

Phi3-7b

0.303 0.148
0.333 | 0.081

LLM Prob.
LLM Prob.+PS
Verblized Prob.
APRICOT

0484 0.198 0441

0.209
0.256 0.253

0.224 0.233
0.263  0.265

0.272
(AUC)Calib-n 0.297
(BCE)Calib-1

(BCE)Calib-n

(BCE)Calib-n+PS

(FL)Calib-1

(FL)Calib-n

(FL)Calib-n+PS

0.679
0.280 0.679

0.688
0.682
0.682
0.682
0.676

Table 9: Test results of small-size models on NQ dataset.
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