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Abstract

Generative recommendation is an emerging
paradigm that leverages the extensive knowl-
edge of large language models by formulat-
ing recommendations into a text-to-text gen-
eration task. However, existing studies face
two key limitations in (i) incorporating implicit
item relationships and (ii) utilizing rich yet
lengthy item information. To address these chal-
lenges, we propose a Generative Recommender
via semantic-Aware Multi-granular late fu-
sion (GRAM), introducing two synergistic in-
novations. First, we design semantic-to-lexical
translation to encode implicit hierarchical and
collaborative item relationships into the vo-
cabulary space of LLMs. Second, we present
multi-granular late fusion to integrate rich se-
mantics efficiently with minimal information
loss. It employs separate encoders for multi-
granular prompts, delaying the fusion until the
decoding stage. Experiments on four bench-
mark datasets show that GRAM outperforms
eight state-of-the-art generative recommenda-
tion models, achieving significant improve-
ments of 11.5–16.0% in Recall@5 and 5.3–
13.6% in NDCG@5. The source code is avail-
able at https://github.com/skleee/GRAM.

1 Introduction

Generative recommendation has marked a pivotal
shift in recommendation systems, driven by recent
advances in large language models (LLMs) (De-
vlin et al., 2019; Brown et al., 2020). While the
traditional recommendation approach focuses on
matching user and item embeddings within a rank-
ing framework (Kang and McAuley, 2018; Zhou
et al., 2020), generative recommendation formu-
lates it as a text-to-text generation task (Rajput
et al., 2023; Geng et al., 2022). It aims to directly
generate an item identifier (ID) based on the user’s
historical item sequence.
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Figure 1: Illustration of our motivation. While (a) ex-
isting works rely solely on item IDs for prediction, (b)
GRAM directly leverages rich textual metadata during
prediction, enabling more accurate recommendations.

A key factor in generative recommendation lies
in how well LLMs understand and effectively uti-
lize each item. Existing works (Geng et al., 2022;
Tan et al., 2024; Zheng et al., 2024) primarily use
rich item metadata to construct abbreviated item
IDs, leading to a potential loss of valuable details
(Figure 1a). This limitation motivates us to incor-
porate item information throughout the entire rec-
ommendation process (Figure 1b).

However, two significant challenges hinder
LLMs from effectively understanding and utiliz-
ing item information.

(i) How do we enable LLMs to capture implicit
item relationships? While LLMs excel at under-
standing general language semantics, they strug-
gle with recommendation-specific semantics, e.g.,
implicit relationships between items (Zheng et al.,
2024). This challenge manifests in two key aspects.
Hierarchical semantics: Representing the concep-
tual hierarchy among items (e.g., product taxon-
omy) is important for accurate and consistent rec-
ommendations. Without explicitly encoding the hi-
erarchy in item IDs (Figure 2a), autoregressive gen-
eration can lead to semantically inconsistent rec-
ommendations, associating unrelated items (‘lip-
stick’ with ‘soap’) based on superficial token-level

33294

https://github.com/skleee/GRAM


Figure 2: Illustration of the hierarchy when autoregres-
sively decoding IDs. Darker shades represent more fine-
grained information, and targets are marked with stars.

similarities. In contrast, hierarchical item IDs (Fig-
ure 2b) enable semantically coherent recommenda-
tions by leveraging shared concepts or attributes.
Existing methods using predefined categories (Hua
et al., 2023) or quantization (Rajput et al., 2023)
for hierarchical IDs often fail to distinguish sim-
ilar items or introduce out-of-vocabulary tokens,
limiting the LLM’s use of pre-trained knowledge.
Collaborative semantics: Capturing complex user-
item interaction patterns is also critical (Zheng
et al., 2024). These collaborative filtering patterns
cannot be inferred from a single user sequence
alone. While recent work (Zheng et al., 2024) at-
tempts to address this through additional train-
ing tasks, it requires extensive fine-tuning to align
newly defined IDs with language semantics.

(ii) How do we handle lengthy item information?
Since items contain rich yet lengthy textual infor-
mation (e.g., product titles, categories, and descrip-
tions), representing a user history as a sequence of
detailed item information leads to excessively long
sequences (Li et al., 2024c).1 This poses signifi-
cant computational challenges due to the quadratic
complexity inherent in Transformer-based mod-
els. To avoid this, existing studies use partial at-
tributes (Lin et al., 2024) or extract keywords (Tan
et al., 2024), inevitably losing information.

To address these challenges, we propose a
Generative Recommender via semantic-Aware
Multi-granular late fusion (GRAM), which unlocks
the capabilities of LLMs with two key components
designed to work synergistically.
(i) Semantic-to-lexical translation. To enable
LLM to capture implicit item relationships, we
encode item relationships into textual representa-
tions prior to training. First, hierarchical seman-

1For the Amazon Beauty dataset (McAuley et al., 2015),
user sequences consist of 1,440 tokens on average when rep-
resented as a simple concatenation of item texts using the T5
tokenizer. Only 4.9% of sequences have less than 512 tokens.

Figure 3: Schematic diagrams of fusion types. ‘Item’
indicates the textual information. ; and ⊕ denote the
concatenation of text and hidden representations.

tics indexing iteratively clusters the item embed-
dings based on semantic similarity and maps them
into LLM’s vocabulary space to generate hierar-
chical textual IDs. Next, collaborative semantics
verbalization incorporates collaborative semantics
by leveraging a collaborative filtering model. For
each item, we identify top-k similar items and ex-
press them in a textual format using the item IDs.

(ii) Multi-granular late fusion. To effectively han-
dle rich yet lengthy item metadata, we process user
history as multiple prompts with different granular-
ities: coarse-grained user prompts for holistic user
preferences and fine-grained item prompts for de-
tailed item attributes. Subsequently, multi-granular
prompts are efficiently integrated via late fusion.
Unlike early fusion (Figure 3a), which suffers from
quadratic complexity due to concatenated texts at
the input level, late fusion (Figure 3b) delays in-
tegration until the decoding stage. It aligns with
successful techniques in other domains (Izacard
and Grave, 2021; Ye et al., 2023). Most impor-
tantly, late fusion maximizes the effectiveness of
the semantic-to-lexical translation by preserving
rich semantics and enabling the processing of sig-
nificantly longer inputs with minimal information
loss.

Our contributions are summarized as follows:

(i) Item relationship modeling: We design
semantic-to-lexical translation to represent item
relationships in the vocabulary space of LLMs.

(ii) Model architecture: Our multi-granular late
fusion effectively leverages rich textual item infor-
mation without expensive computational overhead.

(iii) Extensive experiments: GRAM achieves up
to 16.0% and 13.6% gains in Recall@5 and
NDCG@5 over state-of-the-art generative recom-
menders across four benchmark datasets.
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Figure 4: Overall architecture of GRAM. (i) We represent hierarchical and collaborative semantics in textual forms
via semantic-to-lexical translation before training. (ii) The user/item prompts are constructed and encoded separately.
The target item ID is inferred via multi-granular late fusion, directly leveraging rich textual information.

2 Related Work

2.1 Sequential Recommendation

It aims to predict the next item based on the user’s
historical item interactions (Wang et al., 2019).
To capture user preferences, item sequences have
been modeled with various neural encoders, e.g.,
RNNs (Hidasi et al., 2016), GNNs (Wu et al., 2019),
and Transformers (Kang and McAuley, 2018; Sun
et al., 2019; Ma et al., 2019). Recently, several stud-
ies (Zhang et al., 2019; Zhou et al., 2020) have used
metadata to model item dependency and user-item
interactions. However, they express attributes as
discrete IDs, neglecting to exploit textual metadata
with LLMs.

2.2 Generative Recommendation

Given an item sequence, it generates a target item
identifier.2 Existing studies can be categorized de-
pending on the type of item identifiers.
Numeric IDs3. P5 (Geng et al., 2022; Hua et al.,
2023) adopts numeric IDs and multi-task learning.
TIGER (Rajput et al., 2023) and LC-Rec (Zheng
et al., 2024) construct codebooks with vector quan-
tization, i.e., RQ-VAE (Zeghidour et al., 2022). LC-
Rec further adopted alignment tasks for language
and collaborative semantics. LETTER (Wang et al.,
2024a) improved vector quantization by integrating
collaborative signals. Recently, ELMRec (Wang
et al., 2024b) incorporates high-order relationships
from the graph. However, since numeric IDs are

2For reranking (Gao et al., 2023) or discriminative meth-
ods (Hou et al., 2022), refer to Appendix A.

3While Wang et al. (2024a); Li et al. (2024c) distinguish
codebook and numeric IDs, we group them as numeric IDs.

Model Textual metadata usage Item ID
ID construction Prediction Text Hierarchy

P5-SemID ✓ ✗ ✗ ✓
TIGER ✓ ✗ ✗ ✓

IDGenRec ✓ ✗ ✓ ✗
LETTER ✓ ✗ ✗ ✓
ELMRec ✗ ✗ ✗ ✗
LC-Rec ✓ ✗ ✗ ✓

GRAM ✓ ✓ ✓ ✓

Table 1: Comparison of different generative recommen-
dation models on (i) how textual metadata is utilized
and (ii) how item IDs are constructed.

separated from the vocabulary of LLMs, they suffer
from a semantic gap that hinders the full potential
of LLMs for recommendations.
Textual IDs. Another line of research has explored
textual IDs as a meaningful alternative to numeric
IDs. IDGenRec (Tan et al., 2024) generates seman-
tic item IDs from text metadata using an ID gen-
erator. TransRec (Lin et al., 2024) combines both
numeric and textual IDs in a hybrid approach. How-
ever, none of them explore how to (i) directly utilize
textual metadata during prediction and (ii) incorpo-
rate the item hierarchy into the textual identifiers.
Further comparison is presented in Table 1.

3 Proposed Method

We present a Generative Recommender via
semantic-Aware Multi-granular late fusion
(GRAM), as depicted in Figure 4. GRAM seamlessly
incorporates item relationships (Section 3.2) and
fully utilizes rich item information (Section 3.3).
We lastly explain the training and inference
processes of GRAM (Section 3.4).
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Figure 5: Illustration of semantic-to-lexical translation.
Each item is assigned textual IDs based on hierarchical
semantics, and collaborative semantics are verbalized
based on the hierarchical IDs.

3.1 Task Formulation

Let U and I denote a set of users and items.
For each user u ∈ U , we represent the inter-
action history as a chronological item sequence
su = (i1, . . . , i|s|), where it is the item at the t-th
position, and |s| indicates the number of items in
the sequence s. The goal is to predict the next item
i|s|+1 that the user is most likely to interact with
based on the user’s interaction history.

Each item i ∈ I is assigned to the unique ID ĩ.
Each user’s item sequence su is converted to the
sequence of item IDs, i.e., s̃u = (̃i1, ĩ2, . . . , ĩ|s|).
Given the sequence s̃u, the generative recommen-
dation is formulated by generating the next item ID
ĩ|s|+1, which the user is most likely to prefer.

Each item consists of multiple attributes, de-
noted by (a1, . . . , am), where m is the number of
attributes. Each attribute indexed by j is presented
in a key-value format aj = (kj , vj), where kj is the
attribute name aj , e.g., “title,” “brand,” or “descrip-
tion,” and vj represents the corresponding attribute
value. We represent item text by combining the
attributes, e.g., “title: coastal scents cocoa butter;
brand: coastal scents; description: ...”.

3.2 Semantic-to-Lexical Translation

We introduce semantic-to-lexical translation, repre-
senting implicit item relationships in a textual form.
Figure 5 depicts hierarchical semantics indexing
that transforms the item hierarchy into textual IDs,
and collaborative semantics verbalization that rep-
resents collaborative signals as extra attributes us-
ing textual IDs. Note that these are preprocessing
steps performed only once before training.

3.2.1 Hierarchical Semantics Indexing
We present a novel method for constructing hierar-
chical textual IDs, offering three key advantages:
(i) utilizing LLMs’ knowledge through natural lan-
guage tokens, (ii) capturing semantic relationships
among items through shared identifier prefixes, and
(iii) enabling the progressive generation of identi-
fiers from general to specific item characteristics
during autoregressive decoding (Tay et al., 2022).
Hierarchical Semantics Extraction. We employ
hierarchical k-means clustering over item embed-
dings to construct hierarchical identifiers where
semantically similar items have identical prefixes.
Each item embedding z ∈ Re is obtained using
the text encoder. The clustering process begins by
partitioning all items into k clusters. For clusters
with more than c items, we recursively apply the
k-means clustering to further divide it into sub-
clusters. The recursive clustering process termi-
nates when the cluster size is smaller than c or the
maximum depth l is reached. Finally, each item is
assigned a sequence of cluster indices, where the
sequence length is bounded by l.
Hierarchical Semantics Translation. To translate
hierarchical semantics into LLM vocabulary, we as-
sign representative tokens to each cluster. GRAM de-
liberately utilizes existing tokens, unlike previous
studies (Rajput et al., 2023; Zheng et al., 2024)
that employ out-of-vocabulary tokens. That is, we
preserve the hierarchical structure and minimize
potential conflicts with language semantics. We
convert each text of item i into a |V |-dimensional
vocabulary space vector Vi. For simplicity, we use
the TF-IDF (Jones, 2004) scoring schema. Note
that more sophisticated scoring functions (Formal
et al., 2021) can be used. We then create a cluster-
level vocabulary vector by averaging vectors for all
items within a cluster. Lastly, we select the most
representative token, i.e., the token with the high-
est score, from the cluster-level vector. For items
whose cluster indices length is shorter than l, we
append additional tokens using the vocabulary vec-
tor Vi to ensure a length of l. For duplicate IDs,
we append an additional digit for uniqueness. (See
the detailed algorithm in Appendix D.)

3.2.2 Collaborative Semantics Verbalization
We integrate collaborative semantics into LLM-
based recommenders to complement LLM’s capa-
bilities. While LLMs excel at processing textual
semantics, they still struggle to incorporate collab-
orative patterns across items (Zheng et al., 2024;
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Kim et al., 2024). To bridge collaborative seman-
tics to LLMs, we extract collaborative signals and
convert them as an additional item attribute.
Collaborative Semantics Extraction. We employ
the off-the-shelf collaborative filtering (CF) model4

to capture item relationships through learned em-
beddings. We select the top-k most similar items
for each item i:

i CF
1 , . . . , i CF

k = argTop-kj∈Isim(ei, ej), (1)

where ei and ej represent item embedding vectors
obtained from the off-the-shelf CF model. The sim-
ilarity is computed by a function sim(·, ·), e.g., dot
product. The argTop-k(·) function returns the in-
dices of k items with the highest similarity scores.
Collaborative Semantics Translation. We then
transform the collaborative knowledge into a text
format using hierarchical item IDs:

aCF = (kCF , vCF ), where vCF = [̃i CF
1 , . . . , ĩ CF

k ]. (2)

Here, kCF represents the key ‘similar items’, and
vCF is the verbalized similar items, e.g., “soap-
essence-argan, shampoo-essence-argan, ...”. It al-
lows us to incorporate collaborative signals when
using LLMs. It is also well aligned with existing
findings (Yao et al., 2023; Zhang et al., 2024).

3.3 Multi-granular Late Fusion
To effectively leverage rich but lengthy item in-
formation, we introduce multi-granular late fusion.
We process inputs into coarse-grained user prompts
and fine-grained item prompts with multi-granular
encoder. The late fusion decoder then integrates
them while preserving detailed information during
the prediction. By delaying fusion until the decoder,
it avoids the quadratic complexity and achieves en-
hanced efficiency, as evidenced by the theoretical
and empirical analysis in Appendix C.

Importantly, multi-granular late fusion syner-
gistically leverages the item relationships from
semantic-to-lexical translation. Hierarchical rela-
tionships in item IDs are incorporated into user
prompts, while collaborative relationships in item
attributes are integrated into item prompts. This
design enables GRAM to fully exploit the benefits
of semantic-to-lexical translation.

3.3.1 Multi-granular Encoder
To capture user preference, existing methods (Geng
et al., 2022; Tan et al., 2024) combine item IDs with

4We utilized SASRec (Kang and McAuley, 2018).

prompt templates. While the item ID sequence pro-
vides a holistic view of user behavior and explic-
itly captures sequential dependencies, it inevitably
loses item details. Conversely, using full text pre-
serves details but leads to lengthy inputs. Thus, we
adopt two complementary prompts to exploit the
distinctive benefits, as exemplified in Appendix B.
Coarse-grained User Prompt. We capture the
overall user preferences through a concise repre-
sentation of the user interaction history by concate-
nating item IDs as follows:

s̃seq = [̃i|s|; ĩ|s|−1; . . . ; ĩ1], (3)

where ; is the concatenation of text. The user his-
tory is sorted in reverse order to prevent recent
items from being truncated (Li et al., 2023a). To
transform it into a natural language, we interpolate
it into the placeholder of a predefined prompt:

Tu = “What would the user purchase after {s̃seq}?”

Fine-grained Item Prompt. We represent detailed
item characteristics and relationships by leveraging
comprehensive item attributes and collaborative
semantics aCF , which are obtained from Eq. (2).
The item prompt Ti is constructed as follows:

Ti = (aID, aCF , a1, . . . , am), (4)

where aID = (‘item:’, ĩ ) represents the item iden-
tifier such as “item: soap-mild-mango.” Notably,
we append the IDs to link user prompts with their
corresponding item prompts.
Prompt Encoding. The multi-granular user and
item prompts are processed independently and rep-
resented as a list of prompts:

P = (Tu, Ti|s| , . . . , Ti1). (5)

With one user prompt and |s| item prompts, we en-
code each prompt Pj using the T5 encoder (Raffel
et al., 2020) to obtain token embeddings Hj :

Hj = Encoder (Pj) ∈ RM×d for j ∈ {1, . . . , |s|+1}, (6)

where M is the maximum text sequence length of
the encoder, and d is the hidden dimension size.

It is non-trivial to connect items in the user
prompt with their corresponding item prompts. We
resolve it through information linking, where each
item ID (aID) serves as a bridge between coarse-
and fine-grained information. This linking effec-
tively integrates information across the prompts.
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3.3.2 Late Fusion Decoder
The decoder integrates the representations of user
preferences and item information to generate rec-
ommendations. To explicitly encode the sequential
information of user interactions, we incorporate
position embedding P ∈ R(L+1)×d, where L is the
maximum number of items in user history:

Xj = Hj +Pj for j ∈ {1, . . . , |s|+ 1}. (7)

We then combine all position-aware representations
Xj into a unified embedding matrix X:

X = [X1; . . . ;X|s|+1] ∈ R((|s|+1)×M)×d. (8)

Finally, the decoder leverages this comprehensive
representation X as the key-value matrix in cross-
attention to aggregate the rich textual information.
The target item ID is generated autoregressively,
considering both coarse-grained user preferences
and fine-grained item attributes. The probability of
generating a textual item ID ĩ is defined as:

P (̃i|P) =

n∏

t=1

P (̃it|P, ĩ<t). (9)

3.4 Training and Inference
For training, the model learns to generate textual
IDs by minimizing the sequence-to-sequence cross-
entropy loss with teacher-forcing:

L = −
n∑

t=1

logP (̃it|P, ĩ<t), (10)

where ĩt is a t-th token of the target item ID ĩ|s|+1.
For inference, we adopt a two-stage process.

In the offline stage (i.e., pre-processing), we as-
sign IDs to all items, obtain collaborative knowl-
edge from the CF model, and pre-compute the en-
coder outputs for fine-grained item prompts. Then,
during the online stage, we only encode the user
prompt and generate the recommendations using
constrained beam search. To generate valid IDs,
we use a prefix tree Trie (Cormen et al., 2022) fol-
lowing Zheng et al. (2024); Lee et al. (2023). This
two-stage approach significantly reduces compu-
tational overhead by processing fine-grained item
information offline.

4 Experimental Setup

Datasets. We conduct experiments on four real-
world datasets: Amazon review (McAuley et al.,

2015; He and McAuley, 2016)5 and Yelp6. Among
the Amazon datasets, we select three subcategories:
“Sports and Outdoors”, “Beauty”, and “Toys and
Games”. Following Hua et al. (2023), we remove
users and items with fewer than five interactions
(5-core setting). The statistics are in Appendix G.1.

Evaluation Protocols and Metrics. We employ
the leave-one-out strategy to split the train, valida-
tion, and test sets following (Kang and McAuley,
2018; Zheng et al., 2024). For each user sequence,
we use the last item as test data, the second last
item as validation data, and the remaining items
as training data. We conduct full-ranking evalu-
ations on all items rather than on sampled items
for an accurate assessment. For metrics, we adopt
top-k Recall (R@k) and Normalized Discounted
Cumulative Gain (N@k) with cutoff k = {5, 10}.

Baselines. We adopt six traditional sequential
recommenders: GRU4Rec (Hidasi et al., 2016),
HGN (Ma et al., 2019), SASRec (Kang and
McAuley, 2018), BERT4Rec (Sun et al., 2019),
FDSA (Zhang et al., 2019), and S3Rec (Zhou et al.,
2020). We adopt eight state-of-the-art generative
recommenders: P5-SID, P5-CID, P5-SemID (Hua
et al., 2023), TIGER (Rajput et al., 2023), ID-
GenRec (Tan et al., 2024), LETTER (Wang et al.,
2024a), ELMRec (Wang et al., 2024b), and LC-
Rec (Zheng et al., 2024). All results are averaged
over three runs with different seeds. Further details
are provided in Appendix G.3.

Implementation Details. We implemented
GRAM on OpenP5 (Xu et al., 2024). The model
is initialized with T5-small (Raffel et al., 2020)
to be consistent with existing works (Hua et al.,
2023; Wang et al., 2024b; Tan et al., 2024). The
model was trained with the Adam (Kingma and Ba,
2015) optimizer with a learning rate of 0.001 and a
linear scheduler with a warm-up ratio of 0.05. We
set the maximum text length to 128 and the batch
size to 128. For hierarchical IDs, l and c are tuned
among {5, 7, 9} and {32, 128, 512}. We tuned k
for collaborative semantics in {5, 10, 20}. We use
a constrained beam search with a beam size of
50. The maximum number of items in sequence
was set to 20 following Zheng et al. (2024). More
details are in Appendix G.4. For fair comparison,
we carefully modified some experimental settings
in baselines (Wang et al., 2024b; Tan et al., 2024),
with details provided in Appendix E and F.

5https://jmcauley.ucsd.edu/data/amazon/
6https://www.yelp.com/dataset
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Model
Beauty Toys Sports Yelp

R@5 N@5 R@10 N@10 R@5 N@5 R@10 N@10 R@5 N@5 R@10 N@10 R@5 N@5 R@10 N@10

Traditional recommendation models

GRU4Rec 0.0429 0.0288 0.0643 0.0357 0.0371 0.0254 0.0549 0.0311 0.0237 0.0154 0.0373 0.0197 0.0240 0.0157 0.0398 0.0207
HGN 0.0350 0.0217 0.0589 0.0294 0.0345 0.0212 0.0553 0.0279 0.0203 0.0127 0.0340 0.0171 0.0366 0.0250 0.0532 0.0304

SASRec 0.0323 0.0200 0.0475 0.0249 0.0339 0.0208 0.0442 0.0241 0.0147 0.0089 0.0220 0.0113 0.0284 0.0214 0.0353 0.0245
BERT4Rec 0.0267 0.0165 0.0450 0.0224 0.0210 0.0131 0.0355 0.0178 0.0136 0.0085 0.0233 0.0116 0.0244 0.0159 0.0401 0.0210

FDSA 0.0570 0.0412 0.0777 0.0478 0.0619 0.0455 0.0805 0.0514 0.0283 0.0201 0.0399 0.0238 0.0331 0.0218 0.0534 0.0284
S3Rec 0.0377 0.0235 0.0627 0.0315 0.0365 0.0231 0.0592 0.0304 0.0229 0.0145 0.0370 0.0190 0.0190 0.0117 0.0321 0.0159

Generative recommendation models

P5-SID 0.0465 0.0329 0.0638 0.0384 0.0216 0.0151 0.0325 0.0186 0.0295 0.0212 0.0403 0.0247 0.0299 0.0211 0.0432 0.0253
P5-CID 0.0465 0.0325 0.0668 0.0391 0.0223 0.0143 0.0357 0.0186 0.0295 0.0214 0.0420 0.0254 0.0226 0.0155 0.0363 0.0199

P5-SemID 0.0459 0.0327 0.0667 0.0394 0.0264 0.0178 0.0416 0.0227 0.0336 0.0243 0.0481 0.0290 0.0212 0.0143 0.0329 0.0181
TIGER 0.0352 0.0236 0.0533 0.0294 0.0274 0.0174 0.0438 0.0227 0.0176 0.0143 0.0311 0.0146 0.0164 0.0103 0.0262 0.0135

IDGenRec† 0.0463 0.0328 0.0665 0.0393 0.0462 0.0323 0.0651 0.0383 0.0273 0.0186 0.0403 0.0228 0.0310 0.0219 0.0448 0.0263
LETTER 0.0364 0.0243 0.0560 0.0306 0.0309 0.0296 0.0493 0.0262 0.0209 0.0136 0.0331 0.0176 0.0298 0.0218 0.0403 0.0252
ELMRec† 0.0372 0.0267 0.0506 0.0310 0.0148 0.0119 0.0193 0.0131 0.0241 0.0181 0.0307 0.0203 0.0424 0.0301 0.0501 0.0324

LC-Rec 0.0503 0.0352 0.0715 0.0420 0.0543 0.0385 0.0753 0.0453 0.0259 0.0175 0.0384 0.0216 0.0341 0.0235 0.0501 0.0286

GRAM 0.0641 0.0451 0.0890 0.0531 0.0718 0.0516 0.0987 0.0603 0.0375 0.0256 0.0554 0.0314 0.0476 0.0326 0.0698 0.0397

Gain (%) 12.4∗ 9.5∗ 14.5∗ 11.0∗ 16.0∗ 13.6∗ 22.7∗ 17.1∗ 11.5∗ 5.3∗ 15.2∗ 8.3∗ 12.3∗ 8.1∗ 30.7∗ 22.5∗

Table 2: Overall performance comparison. The best model is marked in bold, and the second-best model is un-
derlined. Gain measures improvement of the proposed method over the best competitive baseline. ‘∗’ indicates
statistical significance (p < 0.05) by a paired t-test. ‘†’ indicates models where our reproduced results differ from
the original papers due to corrected experimental settings. Please refer to Appendix E and F for details. Efficiency
analysis is in Appendix C. Additional results with a cutoff of 20 are in Appendix H.5.

Model Beauty Toys
R@5 N@5 R@5 N@5

GRAM 0.0641 0.0451 0.0718 0.0516

w/o hierarchy 0.0605 0.0438 0.0630 0.0466
w/o CF (aCF ) 0.0567 0.0396 0.0589 0.0406

w/o user prompt (Tu) 0.0634 0.0443 0.0709 0.0510
w/o item prompt (Ti) 0.0582 0.0404 0.0574 0.0397

w/o linking (aID) 0.0628 0.0441 0.0702 0.0507
w/o position (P) 0.0563 0.0395 0.0665 0.0465

Table 3: Ablation study of GRAM. We examined the
effect of (i) semantic-to-lexical translation, (ii) the multi-
granular prompts, and (iii) additional techniques.

5 Experimental Results

5.1 Overall Performance
We thoroughly evaluate GRAM’s effectiveness on
four real-world datasets, as presented in Table 2.
Our key findings are as follows.

(i) GRAM consistently outperforms the state-of-
the-art models, achieving up to 16.0% and 13.6%
improvement in R@5 and N@5. Compared to the
best generative models (LC-Rec and IDGenRec),
GRAM shows remarkable gains of up to 32.3% and
34.1% in R@5 and N@5. It indicates the effec-
tiveness of capturing user preferences through item
relationships and rich item information.

(ii) The generative recommendation models in-
corporating hierarchical item relationships into

IDs (P5-SemID, LC-Rec, and GRAM) demon-
strate strong performance, highlighting the impor-
tance of hierarchical structures in recommenda-
tion. GRAM enhances this advantage by mapping
these relationships to LLM vocabulary tokens, en-
abling better utilization of pre-trained language
understanding capabilities.

(iii) GRAM consistently outperforms IDGenRec
using textual IDs, yielding average gains of 46.3%
in R@5 and 45.9% in N@5. This is due to the inher-
ent limitation of concise item IDs, which compress
item information and lead to information loss. In
contrast, GRAM’s late fusion approach preserves
comprehensive information by delaying informa-
tion aggregation until the decoder.

5.2 Ablation Study

We analyze the contributions of key components in
GRAM, as shown in Table 3 (See also Appendix H.3
and H.4 for additional results).
Semantic-to-Lexical Translation. Both hierarchi-
cal and collaborative semantics yield 27.2% and
10.8% improvement in N@5, respectively. ‘w/o
hierarchy’ denotes selecting representative tokens
from each item text without hierarchy. Hierarchical
clustering is particularly effective, demonstrating
the benefits of considering item relationships be-
yond simple vocabulary tokens. Our analysis also
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Figure 6: Performance of generative recommendation
models depending on the popularity of target items.

ID type Beauty Toys
R@5 N@5 R@5 N@5

Hierarchical ID 0.0641 0.0451 0.0718 0.0516

Title ID 0.0478 0.0342 0.0564 0.0412
Category ID 0.0512 0.0367 0.0465 0.0350
Keyword ID 0.0605 0.0438 0.0630 0.0466
RQ-VAE ID 0.0605 0.0432 0.0662 0.0477

Table 4: Performance of GRAM over various IDs.

reveals that collaborative patterns are successfully
integrated into language semantics. We also inves-
tigate the generalizability of semantic-to-lexical
translation in Appendix H.2.
Multi-granular Prompts. Both user prompts and
item prompts contribute to accuracy, improving
N@5 by up to 1.2% and 30.1%, respectively.
The substantial gain from item prompts highlights
the role of expressing detailed information. User
prompts are particularly effective in preserving
sequential information, yielding higher gains for
longer sequences, as evidenced in Appendix H.1.
Additional Techniques. Information linking con-
tributes to seamless late fusion, boosting N@5
by up to 1.8%. The multi-granular information
is bridged beyond the length barrier of texts with
the simple technique. The position embedding im-
proves N@5 by up to 13.2%, making LLMs distin-
guish the sequential order of items well during late
fusion. It exhibits that the item orders in a sequence
play a pivotal role in predicting the next items.

5.3 In-depth Analysis

Effect of Hierarchical ID. Table 4 shows the ef-
fectiveness of hierarchical IDs compared to various

Figure 7: Performance of GRAM over varying length of
identifiers l.

Figure 8: Performance of GRAM over varying number
of the top-k similar items in Eq. (1).

IDs: Title ID, Category ID7, Keyword ID (extract-
ing keywords from item metadata without cluster-
ing), and RQ-VAE ID (Rajput et al., 2023; Zheng
et al., 2024). (i) Hierarchical ID outperforms Ti-
tle and Category ID by up to 31.7% and 47.7% in
N@5, showing raw metadata lacks sufficient gran-
ularity. (ii) Compared to Keyword ID, hierarchical
ID shows up to 10.8% gains in N@5, highlighting
the benefits of capturing hierarchical relationships.
(iii) Hierarchical ID improves N@5 by 8.2% over
RQ-VAE ID, demonstrating the benefits of using
LLM vocabulary instead of newly defined tokens
that may create semantic gaps.
Performance on Head/Tail Items. As shown in
Figure 6, we analyze the performance of GRAM and
generative models depending on the popularity of
target items by splitting the entire user sequence
into Head and Tail.8 GRAM exhibits gains up to
42.6% and 47.8% in R@5 and N@5 for tail items
compared to the best competitive method, i.e., LC-
Rec. GRAM also improves performance in Head
groups, boosting the performance by up to 25.3%
and 24.2% in R@5 and N@5.
Hyperparameter Sensitivity. Figures 7 and 8
show the accuracy of GRAM over varying ID length
l and the number of the top-k items in Eq. (1). The
optimal values for (l, k) are (5, 7) and (10, 5) for
the Beauty and Toys, respectively. Collaborative se-
mantics improves N@5 by up to 27.2%. However,
providing too many similar items introduces noise

7For items with the same categories or titles, we append
additional digits to ensure uniqueness.

8Head and Tail denote user groups where the target item
is in the top 20% and bottom 80% of popularity, respectively.
Refer to Appendix G.2 for detailed statistics.
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and degrades performance. An additional analysis
of the cluster size c is in Appendix H.6.

6 Conclusion

We present GRAM, a novel generative recommenda-
tion model that addresses fundamental challenges
in leveraging LLMs for recommendation with two
key innovations: (i) semantic-to-lexical translation
for bridging complex item relationships with LLMs
and (ii) multi-granular late fusion for efficient and
effective processing of rich item information. Our
extensive experimental results across four real-
world benchmark datasets validate the superiority
of GRAM over existing sequential recommendation
models, showing up to 16.0% and 13.6% gains in
R@5 and N@5, respectively.

7 Limitations

While GRAM demonstrates strong performance in
generative recommendation, we carefully list limi-
tations as follows.
Vocabulary Selection Method. For hierarchical
semantics translation, we rely on TF-IDF scoring
to select representative tokens from LLM’s vocab-
ulary space. While this provides a simple solution
and serves as an efficient proof-of-concept, we con-
jecture that more sophisticated techniques such as
well-designed neural sparse retrieval methods (For-
mal et al., 2021, 2022; Choi et al., 2022) may po-
tentially yield better representative tokens. Future
work could explore integrating such approaches
to improve the quality of hierarchical semantics
translation while maintaining the benefits of using
LLM’s vocabulary.
Language Model Capacity. We leverage LLMs’
vocabulary and language understanding capabil-
ities. While we demonstrate strong results using
T5-small with 60M parameters and T5-base with
220M parameters as our encoder-decoder model,
scaling up to a larger model (e.g., FLAN-T5-XL,
T5-11B) could potentially yield even better perfor-
mance, which we leave as future work.
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Prompt example in Beauty dataset

Coarse-grained user prompt Tu

What would the user purchase after ... soap-salt-sea-dead-genuine-minerals-bars ;

serum-ovi-nutrients-sea-noi-feed-ains ?

Fine-grained item prompt Ti2

item: serum-ovi-nutrients-sea-noi-feed-ains ; similar items: soap-salt-sea-dead-genuine-minerals-bar,
gan-limited-33-ar-lix-treatment-eed, eye-dealing-limited-33-suitable-amp-youth, ...; title: adovia facial serum
anti-aging, skin lifting, facial serum with vitamin c, dead sea salt and green tea get firmer, more radiant looking
skin nonoily deep moisturizer delivers minerals amp; nutrients deep into skin satisfaction guaranteed; brand:
na; categories: beauty, skincare, face, oils serums; description: also contains seaweed for a rich infusion of
nutrients to feed and nourish your skin; price: 50.0; salesrank: beauty: 43112

Fine-grained item prompt Ti1

item: soap-salt-sea-dead-genuine-minerals-bar ; similar items: serum-ovi-nutrients-sea-noi-feed-ains,
eye-dealing-limited-33-suitable-amp-youth, gan-limited-33-ar-lix-treatment-eed, ...; title: dead sea salt deep
hair conditioner for dry or damaged hair great for natural curly hair for men and women deeply hydrating
and nourishing on scalp amp; hair helps to reduce dandruff and dry scalp made with pure dead sea salt and
minerals, chamomile, vitamin e amp; natural aloe vera leaves your hair looking amp; feeling healthy, silky
and hydrated; brand: na; categories: beauty, hair care, conditioners; description: made with real dead sea salt
100 pure and genuine for an infusion of 21 minerals essential to proper skin and hair function. leaves hair
looking hydrated, healthy and silky. helps to reduce the appearance of dandruff and dry, flaky scalp. aloe vera
deeply nourishes the scalp and hair hydrating it from within. dead sea salt contains more than 21 skin and
hair rebuilding minerals such as magnesium, calcium, sulfur, bromide, iodine, sodium, zinc and potassium. we
sell out fast get it soon before we run out again. we try to produce this item as fast as we can.; price: 19.0;
salesrank: beauty: 7330
...

Figure 9: Example of multi-granular prompts on the Beauty dataset for the user A3GPKDC4PQXKFR.

A Additional Related Works

LLM-based Recommendation. Recent stud-
ies (Dai et al., 2023; Yao et al., 2023; Li et al.,
2023b, 2024b; Bao et al., 2024) focused on leverag-
ing LLMs to capture the complex semantics in de-
tailed textual item information, providing a richer
context for recommendations. Existing works are
categorized into two approaches based on how they
infer items (Li et al., 2024a; Wu et al., 2023): dis-
criminative and generative approaches. We do not
cover other models that perform different recom-
mendation tasks, e.g., yes/no (like/dislike) (Zhang
et al., 2024; Bao et al., 2023; Zhang et al., 2023) or
candidates re-ranking (Gao et al., 2023; Dai et al.,
2023; Liao et al., 2024), since they are primarily
beyond the scope of our work.
Discriminative Recommendation. The discrimi-
native approach employs LLMs as a sequence en-
coder to encode user/item text. The relevance be-
tween user and item representations is computed
in a manner analogous to traditional sequential rec-
ommendation models. Several studies (Hou et al.,
2022; Li et al., 2023a; Liu et al., 2023; Tang et al.,
2023) have proposed methods to encode user and

item representations using the text that comprises
various item attributes, e.g., title, brand, and cat-
egories. While discriminative methods are one of
the prominent pillars of text-based recommenda-
tion models, we omit further details as they fall
outside the primary scope of our work.

B Examples of Prompts

Figure 9 illustrates the multi-granular prompts on
the Beauty dataset used as inputs for GRAM. The
prompts consist of a coarse-grained user prompt
Tu and fine-grained user prompts Ti as in Eq. (5).

C Efficiency Analysis

C.1 Theoretical Complexity Analysis
Table 5 shows the theoretical complexity of early
and late fusion for processing user and item
prompts. While early fusion concatenates all
texts at the input level with quadratic complexity
O((|Tu|+ |s| · |Ti∗ |)2d), our late fusion processes
user and item prompts separately, achieving signifi-
cant gains in efficiency. Specifically, GRAM reduces
online computation to O(|Tu|2d) by processing the
item prompt O(|s| · |Ti∗ |2d) in offline.

33305



Method Encoding complexity Decoding complexity

Early fusion Online: O((|Tu|+ |s| · |Ti∗ |)2d+(|Tu|+ |s| · |Ti∗ |)d2) O(̃i|s|+1(|Tu|+ |s| · |Ti∗ |)d+ ĩ2|s|+1d+ ĩ|s|+1d
2)

GRAM Online: O(|Tu|2d+ |Tu|d2) O(̃i|s|+1(|Tu|+ |s| · |Ti∗ |)d+ ĩ2|s|+1d+ ĩ|s|+1d
2)

(Late fusion) Offline: O(|s| · |Ti∗ |2d+ |s| · |Ti∗ |d2) -

Table 5: Computational complexity comparison between early and late fusion approaches. |s| denotes the number
of items in the user sequence. |Tu| and |Ti∗ | are the number of tokens for the user prompt and the item prompt,
respectively. ĩ|s|+1 the number of tokens for the target item ID.

Phase Beauty
Time (m)

Toys
Time (m)

CF model training 2 2
Top-k CF item retrieval 1 1

Text encoding 17 16
Hierarchical clustering 23 10

Total time 43 29

Table 6: Preprocessing time (minutes) of GRAM. Note
that CF model training time can vary depending on the
model, and we utilized SASRec.

Model Beauty Toys
R@5 Time (s) R@5 Time (s)

IDGenRec 0.0463 0.1504 0.0462 0.1423
LC-Rec 0.0503 1.8312 0.0506 1.8125

GRAM 0.0641 0.2008 0.0718 0.1605

Table 7: Comparison of accuracy and inference time
(seconds) between GRAM and key generative baselines.
The inference time is measured by processing all user
sequences in a single batch on a single A6000 GPU. We
report the average inference time per user sequence.

For instance, with |Tu|=128, |Ti∗ |=512, and
|s|=20 items, early fusion requires encoding 10,368
tokens simultaneously, while GRAM only needs to
encoding 128 tokens online, with the remaining en-
coding computations performed offline. It results in
an 81× reduction (10,368 vs. 128 tokens) in online
encoding complexity. Notably, since the number
of tokens for target item ID ĩ|s|+1 is typically less
than 10, the encoding phase dominates the compu-
tational burden (de Jong et al., 2023).

C.2 Empirical Efficiency Analysis

Preprocessing Phase. Table 6 shows the time for
preprocessing data before training GRAM. Most
importantly, hierarchical semantics indexing and
collaborative semantics verbalization are one-time
preprocessing before training. The preprocessing
requires modest computational resources, taking
less than an hour for the Beauty and Toys datasets.
Notably, operations like clustering are highly paral-

lelizable and can be further optimized. This prepro-
cessing enables GRAM to achieve significant per-
formance without affecting online inference time.

Inference Phase. Table 7 illustrates the inference
time of GRAM against generative baselines. The
inference time of GRAM represents worst scenar-
ios where all computations are performed online
without offline processing. GRAM achieves com-
petitive speeds with superior performance. Even
with all online processing, GRAM shows only a
marginal increase in inference time (<50ms) com-
pared to IDGenRec while achieving substantial per-
formance gains. This overhead is minimal as the
item prompts can be pre-computed offline. Notably,
GRAM achieves 9x faster speed than LC-Rec with
better performance, demonstrating its scalability
for large-scale datasets.

D Hierarchical k-means for textual
identifier

Algorithm 1 Hierarchical k-means
Input: Item embeddings Z = {z1, ..., zn} ∈ Re, Number

of clusters k, Minimum cluster size c, Maximum depth l,
Vocabulary V

Output: Hierarchical lexical identifiersH = {h1, ..., hn}
function HIERARCHICALCLUSTERING(Z, depth = 0)

identifiers← ∅
if |Z| > c and depth < l then

C1, ..., Ck ← k-means(Z, k)
for i← 1 to k do

ti ← GetRepresentativeToken(Ci,V)
Hi ← HierarchicalClustering(Ci, depth + 1)
identifiers[i]← Concatenate(ti,Hi)

end for
end if
return identifiers

end function

function GETREPRESENTATIVETOKEN(C, V)
v← 0 ∈ R|V|

for z in C do
v← v + TfIdf(ItemText(z))

end for
return argmaxt∈V(v[t])

end function
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Model Beauty Toys Sports
R@5 N@5 R@10 N@10 R@5 N@5 R@10 N@10 R@5 N@5 R@10 N@10

Reported in Wang et al. (2024b)

ELMRec (original) 0.0609 0.0486 0.0750 0.0529 0.0713 0.0608 0.0764 0.0618 0.0538 0.0453 0.0616 0.0471

Reproduced

ELMRec (original) 0.0612 0.0486 0.0759 0.0533 0.0729 0.0638 0.0784 0.0649 0.0503 0.0421 0.0580 0.0444
ELMRec (ours) 0.0372 0.0267 0.0506 0.0310 0.0148 0.0119 0.0193 0.0131 0.0241 0.0181 0.0307 0.0203

Table 8: Reproduced results of ELMRec (Wang et al., 2024b) on the Beauty, Toys, and Sports datasets based on the
indexing. We reported the result of ELMRec (ours) to resolve the leakage issue of sequential item IDs.

Model R@5 N@5 R@10 N@10

Reported in Tan et al. (2024)

w/ user ID 0.0618 0.0486 0.0814 0.0541

Reproduced

w/ user ID 0.0634 0.0487 0.0832 0.0551
w/o user ID 0.0463 0.0328 0.0665 0.0393

Table 9: Reproduced results of IDGenRec (Tan et al.,
2024) on the Beauty dataset based on the user IDs. We
reported the result of w/o user ID to resolve the issue.

E Prompt Modification for IDGenRec

We observed a potential data leakage issue in the
original implementation of IDGenRec (Tan et al.,
2024) related to the construction of user IDs. The
original prompt is shown below:

Considering user {user_id} has interacted
with items {history}. What is the next
recommendation for the user?

‘{user_id}’ takes the user ID, and
‘{history}’ takes a sequence of concate-
nated item IDs generated from the item’s metadata.
The issue is that the user ID is constructed by
concatenating all item IDs from the sequence,
including validation and test items. For instance,
given an item sequence i1 → i2 → i3 → i4,
according to the leave-one-out setting, i1 → i2
is the training sequence, i3 and i4 are validation
and test items, respectively. Here, the user ID
generation process incorporates information about
i4, leading to data leakage during testing. To
resolve this issue, we exclude user IDs in prompt
sentences by following the suggestion of the
authors as follows (Tan et al., 2024).9

9Please refer to the details in https://github.com/
agiresearch/IDGenRec/issues/1.

Considering user has interacted with items
{history}. What is the next recommendation
for the user?

The rest of our code for IDGenRec is kept identi-
cal to the official source code provided in the paper.
We also confirmed that the reported results from
the original work are successfully reproduced in
the original setting (‘IDGenRec w/ user ID’), as
shown in Table 9.

F Indexing Modification for ELMRec

As discussed in previous studies (Rajput et al.,
2023; Lin et al., 2024)10, the original sequential in-
dexing method in P5 has data leakage issues (Geng
et al., 2022). The issue arises when consecutive
numeric IDs are assigned to items within user se-
quences, including validation and test items. For
example, a sequence [4392, 4393, ..., 4399]
where 4399 is the target item creates overlapping
subword tokens (e.g., ‘43’) when tokenized by Sen-
tencePiece tokenizer (Sennrich et al., 2016). It cre-
ates unintended correlations between training and
evaluation data.

When reproducing P5 variants, we follow the
corrected setup from Hua et al. (2023); Xu et al.
(2024) to resolve the issue, rather than using the
original P5 indexing. We apply sequential indexing
only to training data while excluding validation and
test items. However, ELMRec (Wang et al., 2024b)
adopts the original P5 sequential indexing in the
public codebase11. For fair comparison, we modi-
fied ELMRec to use the same indexing approach
as P5-SID, excluding validation and test items. We
also confirmed that ELMRec’s performance was
successfully reproduced under the provided setting
as shown in Table 8.

10Please refer to Appendix D of Rajput et al. (2023) and
Appendix A.6 of Lin et al. (2024).

11https://github.com/WangXFng/ELMRec
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Dataset #Users #Items #Inters Density

Beauty 22,363 12,101 198,502 0.0734%
Toys 19,412 11,924 167,597 0.0724%

Sports 35,598 18,357 296,337 0.0453%
Yelp 30,431 20,033 316,354 0.0519%

Table 10: Statistics of four benchmark datasets.

Subset Beauty Toys
#Users #Items #Users #Items

Head 9,908 2,459 7,764 2,504
Tail 12,455 9,642 11,648 9,420

Table 11: Statistics of the Beauty and Toys datasets
based on test subsets by target item popularity.

G Additional Experimental Setup

G.1 Datasets

The Amazon dataset consists of user reviews and
item metadata collected from 1996 to 2014. The
Yelp dataset contains user reviews and business in-
formation from 2019. We create item sequences
with historical user reviews from the datasets fol-
lowing Xu et al. (2024). The statistics of prepro-
cessed datasets are summarized in Table 10.

G.2 Data Statistics of Head/Tail Experiments

Table 11 provides statistics used in Table 6. We
provide the number of items based on the groups:
Head (top 20% by popularity) and Tail (remaining
80%). We also report the number of users based on
each target item’s group.

G.3 Baselines

We adopt six traditional sequential models and
eight generative models as follows.
• GRU4Rec (Hidasi et al., 2016) is an RNN-based

model that employs GRUs to encode sequences.
• HGN (Ma et al., 2019) employs a hierarchical

gating network to capture both long-term and
short-term user interests.

• SASRec (Kang and McAuley, 2018) uses the
last item representation as the user representation
using the uni-directional Transformer encoder.

• BERT4Rec (Sun et al., 2019) utilizes a bi-
directional self-attention mechanism to perform
the masked item prediction task.

• FDSA (Zhang et al., 2019) distinguishes between
feature- and item-level self-attention for model-
ing and integration of item attributes.

• S3Rec (Zhou et al., 2020) adopts four auxiliary
self-supervised objectives to learn the correla-
tions among sequence items and attributes.

Hyperparameters Beauty Toys Sports Yelp

ID length l 7 5 7 9
# of clusters k 128 32 32 32
cluster size c 128 32 32 32

# of similar items k 10 5 10 5

Table 12: Final hyperparameters for GRAM.

• P5-SID (Hua et al., 2023) adopts sequential in-
dexing, which assigns numeric IDs based on the
order of item appearance.

• P5-CID (Hua et al., 2023) employs spectral clus-
tering to generate numeric IDs considering co-
occurrence patterns of items.

• P5-SemID (Hua et al., 2023) uses item metadata,
e.g., categories, for assigning numeric IDs.

• TIGER (Rajput et al., 2023) introduces code-
book IDs based on RQ-VAE.

• IDGenRec (Tan et al., 2024) generates textual
IDs with item metadata by training ID-generator.

• LETTER (Wang et al., 2024a) integrates hierar-
chical semantics, collaborative signals, and diver-
sity when assigning RQ-VAE IDs.

• ELMRec (Chen et al., 2022) incorporates high-
order relationships while utilizing soft prompt
and re-ranking strategy based on numeric IDs.

• LC-Rec (Zheng et al., 2024) utilizes RQ-VAE
IDs and further integrates language and collabo-
rative semantics via multi-task learning.

G.4 Implementation Details

G.4.1 Setup for Proposed Method
For hierarchical semantics extraction, we concate-
nated the item textual metadata as input and used
NV-Embed (Lee et al., 2024) as a text encoder. For
hierarchical semantics translation, we transformed
item texts into T5 vocabulary, where |V | = 32, 100.
The model with the highest N@10 on the valida-
tion set was selected for test set evaluation. We
conducted all experiments on a desktop with 2
NVIDIA RTX A6000, 512 GB memory, and 2
AMD EPYC 74F3. The final hyperparameters are
in Table 12.

G.4.2 Setup for Baselines
• Traditional methods: We implemented tradi-

tional recommendation models on the open-
source library RecBole (Xu et al., 2023). The
baselines are optimized using Adam optimizer
with a learning rate of 0.001, batch size of 256,
and an embedding dimension of 64. We stopped
the training if the validation NDCG@10 showed
no improvement for 10 consecutive epochs. For

33308



Dataset Variants All Short (≤ 10) Long (> 10)
R@5 N@5 R@5 N@5 R@5 N@5

Beauty
GRAM 0.0655 0.0462 0.0609 0.0425 0.0902 0.0661

w/o user prompt 0.0634 0.0443 0.0591 0.0410 0.0860 0.0618

Gain (%) 3.4 4.3 3.0 3.5 4.9 7.0

Toys
GRAM 0.0718 0.0516 0.0728 0.0526 0.0658 0.0457

w/o user prompt 0.0709 0.0510 0.0722 0.0522 0.0630 0.0444

Gain (%) 1.3 1.2 0.8 0.9 4.5 2.9

Table 13: Effectiveness of user prompts based on test subsets by lengths of user sequences. Gain measures the
improvement of the proposed method over ‘w/o user prompt.’

evaluation, we report test set accuracy using
model checkpoints that achieved the highest val-
idation scores. We followed the original papers’
configurations for other hyperparameters and
carefully tuned them if not specified.

• P5-variants (Hua et al., 2023): We utilized T5-
small following the original implementation pro-
vided by the authors12. For the sequential index-
ing approach (P5-SID), we excluded validation
and test items during the assignment of numeric
IDs. (For a detailed discussion, see Appendix F.)

• TIGER (Rajput et al., 2023): As the official code
was not publicly available, we implemented the
model based on the specifications detailed in the
paper. We used the Sentence-T5 (Ni et al., 2022)
for extracting semantic embeddings with a hid-
den dimension of 768. The vocabulary size was
set to 1024 (256×4).

• IDGenRec (Tan et al., 2024): Following the offi-
cial code13, we used T5-small but excluded user
IDs to prevent data leakage following the au-
thors’ request, incurring lower accuracy than the
original paper. (Refer to the further discussion
in Appendix E.) We follow the ‘standard recom-
mendation’ setting in the paper.

• LETTER (Wang et al., 2024a): We initiated LET-
TER on TIGER using the official code14. We
followed the original setting and adopted a 4-
level codebook configuration (256×4), with each
codebook having a dimension of 32. The original
settings were maintained, and the hyperparame-
ters α and β were thoroughly tuned within the
original search range.

• ELMRec (Wang et al., 2024b): We used T5-
small following the official codebase15. While

12https://github.com/Wenyueh/LLM-RecSys-ID
13https://github.com/agiresearch/IDGenRec
14https://github.com/HonghuiBao2000/LETTER
15https://github.com/WangXFng/ELMRec

the original paper utilized validation loss for
checkpoint selection and early stopping, we
found this approach leads to convergence issues
and significantly lower performance in our exper-
iments. Thus, we adopted validation NDCG@10
for checkpoint selection and early stopping. We
only performed direct and sequential recommen-
dation tasks for the Yelp dataset, excluding the
explanation generation task. Additionally, since
items in user sequences can reappear as targets in
the Yelp dataset, we did not employ the proposed
reranking strategy. We also thoroughly fine-tuned
hyperparameters of ELMRec (α, β,N, σ, L) fol-
lowing the search range of the original paper.

• LC-Rec (Zheng et al., 2024): We followed the
official code16, including the data pre-processing
described in the paper. We fully fine-tuned
LLaMA-7B (Touvron et al., 2023) using the au-
thors’ hyperparameters. The only exception was
that the number of samples for the ‘fusion se-
quence recommendation task’ was adjusted ac-
cording to each dataset’s interaction numbers.
Specifically, we use 15k samples for the Toys,
20k for the Beauty, and 25k for the Yelp and
Sports datasets. For generating user preferences,
we employed gpt-4o-mini-2024-07-1817 on
the Amazon datasets. The Yelp dataset was ex-
cluded due to its lack of metadata (i.e., reviews)
for preference generation.

H Additional Experimental Results

H.1 In-depth Study of User Prompts

Table 13 shows the impact of user prompts across
different sequence lengths to understand their
role in the recommendation. While GRAM consis-
tently outperforms the variant without user prompts

16https://github.com/RUCAIBox/LC-Rec
17https://chatgpt.com
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Beauty Toys
R@5 N@5 R@5 N@5

P5-SID 0.0465 0.0329 0.0216 0.0151
P5-CID 0.0465 0.0325 0.0223 0.0143

P5-SemID 0.0459 0.0327 0.0264 0.0178
P5 + HID 0.0582 0.0404 0.0574 0.0397

IDGenRec 0.0463 0.0328 0.0462 0.0323
IDGenRec + HID 0.0499 0.0352 0.0656 0.0475

Table 14: Effectiveness of hierarchical IDs (HID) when
applying to existing generative recommenders.

Beauty Toys
R@5 N@5 R@5 N@5

P5-SID 0.0465 0.0329 0.0216 0.0151
P5-SID + CF 0.0454 0.0295 0.0419 0.0263

IDGenRec 0.0463 0.0328 0.0462 0.0323
IDGenRec + CF 0.0623 0.0420 0.0513 0.0337

Table 15: Effectiveness of collaborative semantics ver-
balization (CF) when applying to existing generative
recommenders.

across all groups, the improvements are particu-
larly significant for long sequences (length > 10).
For the Beauty dataset, incorporating user prompts
achieves gains of up to 7.0% in N@5 for long se-
quences, compared to 3.5% for short sequences.
Similar trends are observed in the Toys dataset,
with gains of 2.9% and 0.9% in N@5 for long
and short sequences, respectively. It demonstrates
that user prompts effectively preserve sequential
dependencies, especially for longer user histories,
without sacrificing efficiency through late fusion.

H.2 Generalizability Analysis of Components

As shown in Table 14, hierarchical IDs demon-
strate consistent improvements when applied to ex-
isting generative recommendation models. When
applied to P5, it yields substantial gains of up to
23.0% in N@5. Similarly, IDGenRec achieves im-
provements of up to 47.1% in and N@5. It im-
plies that semantic-to-lexical translation effectively
bridges the gap between item relationships and lan-
guage understanding capabilities of LLMs, even
with other generative recommendation models.

Table 15 illustrates the impact of collaborative
semantics verbalization. For compatibility, collab-
orative signals are appended after the original
prompt sentence of each model. Notably, IDGen-
Rec shows gains of up to 34.6% in R@5 with col-
laborative signals. However, the improvements vary
by model, indicating that separating item prompts

Semantic Fusion Beauty Toys
R@5 N@5 R@5 N@5

✓ ✓ 0.0641 0.0451 0.0718 0.0516
✓ ✗ 0.0582 0.0404 0.0574 0.0397
✗ ✓ 0.0534 0.0382 0.0538 0.0384
✗ ✗ 0.0516 0.0366 0.0459 0.0336

Table 16: Performance of GRAM based on two main
components: semantic-to-lexical translation (‘Seman-
tic’) and multi-granular late fusion (‘Fusion’).

Beauty Toys
R@5 N@5 R@5 N@5

T5-small 0.0641 0.0451 0.0718 0.0516
T5-base 0.0646 0.0457 0.0719 0.0520

Table 17: Performance of GRAM over various model
sizes. We adopt ‘T5-small’ for other experiments.

is more beneficial than direct concatenation with ex-
isting prompts. This aligns with our multi-granular
design principle of maintaining distinct granulari-
ties of information.

H.3 Synergistic Effects between Components
To analyze the effectiveness of key components of
GRAM, we extend our investigation beyond the ab-
lation study in Table 3. Table 16 demonstrates both
the individual and combined effects of the com-
ponents. Each component independently improves
performance over GRAM without any components
(fourth row), with semantic-to-lexical translation
showing a more substantial impact compared to
multi-granular late fusion. Most importantly, the re-
sults reveal significant synergistic effects between
the two key components. While semantic-to-lexical
translation alone yields up to 25.1% improvement
in R@5 (third and fourth row), its combination
with multi-granular late fusion leads to a 33.4% im-
provement (first and second row). This enhanced
performance demonstrates the potential synergy of
the components within our framework.

H.4 Effect of Model Size
To evaluate the generalizability of GRAM, we ex-
amine the accuracy across different model sizes,
as presented in Table 17. GRAM achieves superior
performance compared to competitive baselines
with both T5-small and T5-base architectures. Al-
though increasing the model size yields modest per-
formance improvements, we hypothesize that more
extensive hyperparameter tuning could potentially
achieve better performance with larger models.
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Model
Beauty Toys Sports Yelp

R@20 N@20 R@20 N@20 R@20 N@20 R@20 N@20

Traditional recommendation models

GRU4Rec 0.0934 0.0430 0.0794 0.0372 0.0573 0.0247 0.0659 0.0273
HGN 0.0903 0.0372 0.0840 0.0352 0.0539 0.0221 0.0777 0.0366

SASRec 0.0676 0.0300 0.0562 0.0271 0.0315 0.0137 0.0457 0.0275
BERT4Rec 0.0729 0.0294 0.0567 0.0231 0.0384 0.0154 0.0655 0.0274

FDSA 0.1065 0.0551 0.1057 0.0578 0.0568 0.0281 0.0859 0.0365
S3Rec 0.0984 0.0405 0.0927 0.0388 0.0577 0.0243 0.0533 0.0212

Generative recommendation models

P5-SID 0.0823 0.0431 0.0407 0.0208 0.0518 0.0276 0.0625 0.0302
P5-CID 0.0928 0.0456 0.0555 0.0236 0.0597 0.0299 0.0567 0.0250

P5-SemID 0.0958 0.0468 0.0619 0.0278 0.0675 0.0342 0.0504 0.0225
TIGER 0.0775 0.0355 0.0657 0.0282 0.0418 0.0179 0.0406 0.0171

IDGenRec† 0.0930 0.0460 0.0899 0.0446 0.0579 0.0273 0.0636 0.0311
ELMRec† 0.0444 0.0231 0.0114 0.0067 0.0263 0.0157 0.0367 0.0225

LC-Rec 0.0973 0.0485 0.0964 0.0485 0.0550 0.0257 0.0720 0.0341

GRAM 0.1216 0.0613 0.1303 0.0682 0.0796 0.0375 0.1012 0.0476

Gain (%) 14.2∗ 11.3∗ 23.3∗ 18.0∗ 18.0∗ 9.8∗ 17.8∗ 30.1∗

Table 18: Performance comparison with cutoff 20. The best model is marked in bold, and the second-best model is
underlined. Gain measures the improvement of the proposed method over the best competitive baseline. ‘∗’ indicates
statistical significance (p < 0.05) by a paired t-test.

Figure 10: Performance of GRAM over varying numbers
of cluster size c for hierarchical clustering.

H.5 Additional Results with Cutoff 20

Table 18 shows the effectiveness of GRAM with a
larger recommendation list (cutoff=20). GRAM con-
sistently outperforms all baselines across datasets,
achieving gains of up to 23.3% and 30.1% in R@20
and N@20, respectively. The performance gains
are more pronounced than the results with the cut-
off of 10, particularly for Yelp and Toys datasets. It
suggests that GRAM effectively maintains accuracy
in longer recommendation lists, likely due to its
capacity to leverage both item relationships and
comprehensive item information.

H.6 Effect of Cluster Size

Figure 10 demonstrates the impact of the clus-
ter size c. The optimal cluster size varies across
datasets. It underscores the importance of careful
hyperparameter tuning when applying the model
to datasets with distinct characteristics.

H.7 Case Study
Figure 11 shows the cross-attention scores for
prompts, consisting of coarse-grained user prompts
and fine-grained item prompts, as defined in Eq. (8).
These scores directly affect recommendation re-
sults by identifying salient tokens during the decod-
ing process. As highlighted in red, GRAM leverages
descriptions from fine-grained item prompts for rec-
ommendations. While previous methods struggle
with input length limits and efficiency constraints,
GRAM effectively detours the challenges through
separate prompt encoding and late fusion.

In the first example, GRAM assigns higher scores
to terms such as “restores” and “normalizes” in
the description, which captures fine-grained in-
formation of the first item. These terms seman-
tically align with the hierarchical identifier of the
target item, “hair-pho-ge-reconstruct-minute-ker-
moderate.” The absence of this information in other
attributes underscores the importance of maintain-
ing diverse and detailed attributes.

The third example illustrates how GRAM assigns
higher scores to collaborative knowledge, specifi-
cally for similar items. Interestingly, when the CF
model predicts the target item as a similar item,
and GRAM effectively leverages this information to
rank the target item as the top-1 recommendation.
It demonstrates the critical role of collaborative se-
mantics during prediction, effectively enhancing
the ability to utilize collaborative knowledge.
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Figure 11: Visualization of cross-attention scores in GRAM. Our model utilizes not only item IDs but also similar
items and detailed textual information for recommendations. Darker shades of red indicate higher attention scores.
The orange box highlights textual descriptions, while the green box highlights the collaborative signals involved in
the recommendation.
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