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Abstract

We propose a method to optimize language
model pre-training data mixtures through effi-
cient approximation of the cross-entropy loss
corresponding to each candidate mixture via a
Mixture of Data Experts (MDE). We use this
approximation as additional features in a re-
gression model, trained from observations of
model loss for a small number of mixtures.

Experiments with Transformer language mod-
els between 70M and 10B parameters on the
SlimPajama dataset show that our method
achieves significantly better performance than
approaches that train regression models us-
ing only the mixture rates as input features.
Combining our method with an objective that
takes into account cross-entropy on end task
data leads to superior performance on few-shot
downstream evaluations. We also provide the-
oretical insights on why aggregation of data ex-
pert predictions can provide good approxima-
tions to model losses for data mixtures.

1 Introduction

Datasets used for pre-training language and mul-
timodal models are often heterogeneous, with dis-
tinct sources having different quality, number of
available documents, combination of modalities
and styles, and relevance to end tasks of interest.
Different data sources are often sampled at differ-
ent rates during training, effectively up-weighting
or down-weighting individual mixture components.

Prior work has shown that source sampling pro-
portions have a large impact on model performance,
both on cross-entropy of held-out examples from
the training sources, and accuracy on downstream
tasks (Hashimoto, 2021; Xie et al., 2023; Alayrac
et al., 2022; Albalak et al., 2023, inter alia).

The sampling proportions of a data mixture with
k source domains define k — 1 real-valued hyper-
parameters. It is infeasible to evaluate the perfor-
mance of many mixtures for large language models
trained on sequences of hundreds of billions of to-
kens and the largest models are typically trained

only once with the best data mixture guess. The
problem could be viewed as a bi-level optimization
process which is known to be computationally chal-
lenging, both in the worst-case (Griine and Wulf,
2024; Bolte et al., 2025), and in practice due to
the difficulty of evaluating gradients, which require
solving a non-convex minimization in the inner
loop. In practice, most large-scale pre-training ef-
forts rely on heuristics (Gao et al., 2020).

Approaches that optimize mixtures to improve
generalization loss are based on proxy models,
which are smaller in number of parameters and to-
kens seen than the target model of interest. Based
on proxy models, data mixtures can be optimized
through an online algorithm (Fan et al., 2024; Xie
et al., 2023), or offline, through observing the gen-
eralization loss of multiple trained proxy models,
and predicting the loss of other mixtures through
regression models. Mixtures are optimized to mini-
mize loss according to the trained regressors (Liu
et al., 2025; Ye et al., 2024; Ge et al., 2024).

Regression models observe the generalization
losses s(\1),...,s(An) achieved by proxy lan-
guage models 01, ..., 0, trained with the the cor-
responding data mixtures Ay, ..., Ay. Their goal
is to predict the generalization loss for unseen mix-
tures A, without training proxy models for those
new mixtures. Regression-based methods are sim-
pler to implement, as they do not require changes in
the LM training algorithm. They also have the ad-
vantage that the same set of trained proxy language
models can be used to optimize data mixtures for
multiple loss criteria. On the other hand, these
approaches require an up-front cost of training mul-
tiple (usually 30 to 500) proxy models 6,,.

We show how such regression models can be sig-
nificantly improved through the use of a new Mix-
ture of Data Experts approximation (MDE). MDE
is a simple predictor which requires the training
of only k£ proxy models, where k is the number of
source domains. Each of these models (termed data
experts) is trained on data from a single domain
D;. Using these expert models, for each candi-
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Figure 1: Tllustration of our approach. Data experts E; are trained from individual pre-training mixture domains
D,. The per-token pypg approximations are generated as a A-weighted average of the probabilities predicted by
the individual experts. Then, for each validation domain, the MDE feature is computed as the average of log-
probability under pypg across its tokens. Lastly, the mixture weights A and the MDE features are used to fit a
regression model that maps A to predicted validation losses. The optimal set of weights are found by optimizing

an objective function based on the regression model.

date \, we define the predictor fypg(\) as the loss
obtained by an ensemble model over the experts
using mixture weights A. Figure 1 illustrates the
method. We define generalization losses for mix-
tures through aggregation of cross-entropy loss on
multiple validation domains. MDE can be used on
its own or as a source of features in regression mod-
els (one feature value for each validation domain).
A simple theoretical analysis justifies the aggre-
gation of predictions from data experts to approxi-
mate the outcome of actually training a language
model with data mixture weights A and identifies
directions to improve upon MDE (see Section 3.3).
Our results indicate that the MDE approximation
leads to substantial improvement in mixture rank-
ing quality across multiple regression models. We
evaluate the contribution to linear models, gradient
boosting machines (GBM), and multi-task Gaus-
sian process models (MTGP). Ranking is improved
across all regression models (e.g. Spearman’s cor-
relation improved from 0.65 to 0.95 for linear re-
gressors, and 0.81 to 0.95 for GBM). MDE can
also be used to optimize data mixtures on its own,
thus requiring the training of only %k proxy models
to achieve performance comparable to regressors
from prior work at 3x less computational cost.
We experiment with Transformer decoder-only
language models with 70M, 150M, 280M, 510M,
1B, and 10B parameters, using the SlimPa-
jama (Soboleva et al., 2023) dataset, and training
models for up to 100B tokens. We show that mix-
ture rates selected based on a regression model
trained from 25 examples of validation losses from
280M-sized proxy models trained to 5B tokens,
lead to better generalization losses for 1B and 10B
models trained on 100B tokens, compared to the
mixture rates optimized for the same dataset by

baselines including DOGE (Fan et al., 2024) and
DOREMI (Xie et al., 2023).

We further define a generalization loss on
SlimPajama validation domains and task-relevant
validation examples and optimize mixture weights
based on this loss, showing that the resulting mix-
tures outperform heuristic baselines and prior data
mixture optimization methods on average few-shot
downstream task accuracies over a suite of gen-
eration and ranking tasks for both 1B and 10B
parameter models.

2 Related work

There is an extensive body of work on data se-
lection and mixture optimization for pretraining
language models. Albalak et al. (2024) offer a
comprehensive recent survey. Approaches for data
selection and cleaning consider different granular-
ities of data, such as individual tokens, document
samples, and groups of multiple documents, often
derived from meta-data such as the web domain
(like Wikipedia) or source collection (such as C4).
Closest to our focus is work selecting or sam-
pling data at the level of large sample groups, often
termed domains. Data mixture sampling rates can
be static over the course of model training, or dy-
namic (Albalak et al., 2023; Piergiovanni et al.,
2023), forming a curriculum over sampling rates
which could for example facilitate faster progress
through learning easier skills first. We focus on
static mixtures.
Online optimization of domain mixture rates
through proxies DOGE (Fan et al., 2024)
presents an efficient method to optimize data mix-
ture rates through a first-order bi-level optimiza-
tion approach, with cost 2x the cost of training a
single proxy model. Our approach is simpler to
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implement as it does not require changes in the
LM training algorithm, and also offers the possi-
bility to derive optimal weights for a set of differ-
ent criteria while reusing the same proxy models.
DOREMI (Xie et al., 2023) also proposes an online
method with similar computational requirements
to those of DOGE. We compare to these methods
in Section 4.

Regression-based optimization through proxies
Multiple methods that fit regression models to pre-
dict the performance of unseen mixtures have been
devised. Some make predictions based on the do-
main mixture rates as features REGMIX (Liu et al.,
2025), while others additionally extrapolate across
number of tokens BIMIX (Ge et al., 2024), or both
token and model size scaling parameters DML (Ye
et al., 2024). Our work is most similar to REGMIX,
in that we approximate the rankings of full-sized
models through extrapolation from smaller proxy
model, assuming that data mixture rankings at dif-
ferent scales are sufficiently similar. We compare
our methods to the regressors used in these works,
showing the value of the MDE features across mul-
tiple regression model parametric families.

Generalization losses  Xie et al. (2023) and Fan
et al. (2024) optimized toward aggregate losses
defined from training domains, while Liu et al.
(2025) and Ge et al. (2024) optimize toward sin-
gle domains. We propose to define the general-
ization loss to optimize as an aggregate over both
training domain heldout data, and validation exam-
ples from end tasks. We analyze the correlation
between different losses and downstream task gen-
eration/ranking performance.

Approximation to models trained on data mix-
tures Na et al. (2024) explored approximating
models trained on combined datasets by averaging
the parameters of independently trained models.
This method was applied to continuously pretrained
models with limited source configurations, lever-
aging parameter-averaging effectiveness within the
same loss basin (Wortsman et al., 2022; Neyshabur
et al., 2020). While effective for models fine-tuned
from the same strong starting point, it presents
challenges for pretraining from scratch, as our ex-
periments in Appendix C.7 confirm.

3 Method

Task Definition We consider a data corpus
consisting of data from k training domains

Dy, ..., Dy. Data mixture proportions (weights) A
define a distribution over text sequences x:

k
Di(z) =) _ A\junif(D;)
i=1

This sampling distrilbution is used to train a lan-
guage model. The training loss for mixture rates A
and parameters 6 is L(0, \) = —E,p, Inp(z|6).
The trained parameters for weights A approximate:

0y = argmin,L(6, \)

At a high level, our task is to find mixture rates
A, for which the corresponding trained model 03
has optimal generalization performance. In this
work we assume that we are given a set of valida-
tion datasets Vi, ..., Vi, and a validation set loss
aggregator g, such that we define generalization
performance as the score:

5(9) = g(L(91V1)7 : '?L(9> Vm))v

where the aggregator function takes as arguments
the cross-entropy losses of model 6 on all validation
domains. g can be a simple unweighted average, or
a more complex function. Our task is then:

Find )\, such that the estimated generalization
loss s(\) defined as the loss of the trained param-
eters corresponding to these mixture proportions
s(X) = s(6%), is minimized.

Note that in practice one might want to optimize
model decoding performance rather than cross-
entropy losses. While e.g. a sigmoid of cross-
entropy would provide a better fit for decoding task
accuracy (Llama3-Team (2024)), here we focus on
simple weighted average loss aggregators.

Proxy language models We follow prior work
and use proxy language models (Xie et al., 2023) to
estimate the effect of different mixture proportions
on LLM generalization performance. The proxy
models can be significantly smaller than the full-
scale size, and can be trained over a much shorter
token horizon. Here we use LMs of size 280M
trained for 10K steps (5B tokens) as proxies for
learning to rank data mixtures for up to 10B-sized
models trained for 200K steps (100B tokens). We
consider additional proxy configurations for anal-
ysis. Appendix B.2 details the exact number of
parameters of all proxy model configurations.

3.1 Mixture of Data Experts approximation

Our Mixture of Data Experts (MDE) approxima-
tion provides an estimate $(\) at the cost of train-
ing only k& (number of training domains) language
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models and computing the cross-entropy loss with
these models on samples from each of the m vali-
dation domains. The k trained data expert models

1,...,0; are trained on the individual domains:
9: = argmin& - Emwumf( lnp( ’0)

Given these data experts, for every candidate
mixture A = (A1,..., \;), we form the following
ensemble language model (termed MDE), with a
next token distribution defined as:

k

) = Z i Py (el 0-1)

=1

Pyvpe(ze]21i—1, A

Given this ensemble language model, we can
compute cross-entropy losses on each of the valida-
tion domain datasets L(Pyvpge(A), V;) and aggre-
gate these estimates according to g. Here we omit
the dependence on the trained data expert model
parameters for brevity.

We then arrive to our MDE approximation es-
timate of the generalization performance corre-
sponding to candidate mixture A\, sMpg(A), as:
9(L(PyMpE(A), V1), ..., L(PMDE(A), Vin)).-

Efficient implementation To compute the MDE
generalization estimate for each mixture A\, we
do not need to run neural network inference. In-
stead, we can pre-compute and cache the per-token
probabilities for all tokens z;,j = 1,...,|V;| in
datasets Vj, according to each of the experts 6.
The probability of token x; according to expert
0f is P(zj|lz1,...,2j-1,6]). We can then com-
pute the MDE estimates for each A on CPU, while
performing only O(k) operations over each token
to compute a weighted sum and logarithm of the
per-token probabilities. Since validation sets are
usually much smaller than training sets and we
don’t require neural network inference, the cost is
negligible in practice (also see Appendix B).

3.2 Regression models

The MDE approximation provides one estimate of
the generalization losses for each mixture. We ad-
ditionally build on prior work that learns estimates
through regression models, based on observations
of mixture weights and corresponding losses. To
create training examples for the regression models,
we sample mixtures A, train corresponding proxy
models 6,,, and obtain loss measurements for each
of the validation domains through LM inference.
Appendix B.4 details how mixtures were sampled.

For fixed model/data scale, prior work considers
only the mixture rates A as input features for such

regressors. Here, we study the value of the MDE
approximation as additional source of features.
We consider linear models, gradient boosting, and
multi-task Gaussian process (MTGP; Bonilla et al.,
2007). For an arbitrary mixture, we predict valida-
tion losses by first computing the MDE per-domain
loss approximations and then inputting them to the
regression model to get the prediction ﬁj(/\) for
the validation loss on domain V; corresponding to
data mixture A:

Lpe = L(Pape(\), V)),¥i € 1,...,m
Ly\) =M

features used in prior work  features introduced by this work

](\/)‘7 Lll\/[DE’ ) LTl\r/L[DE )’

where M denotes some regression model. Note
that MDE features approximating the loss on other
domains V) are also used when predicting the loss
on domain V.

In the experiments section, we evaluate the con-
tribution of MDE features to multiple regressors.

Finding optimal mixtures To find the optimal
mixture we first define the optimization objective
s(A). For given A, the value s(\) is computed
through aggregating loss predictions on each of the
validation domains V;. We experiment with the
average validation loss of pretraining domains as in
Fan et al. (2024) and other variants that use end task
validation domains. We use the Vizier framework
(Song et al., 2024) to perform the optimization.
We define the search space as k non-negative pa-
rameters corresponding to the mixture component
weights and later normalize them to a valid proba-
bility distribution. The framework is general and
does not require differentiability of the objective.

3.3 Theoretical justification of MDE

Let us assume that each example in the pre-training
dataset contains a prefix = followed by token y.
Thus, each component in pre-training data mixture
can be described in terms of a distribution D; ;. over
the prefixes and D; ,, over the following token.

We now give our main theoretical result relating
the minimizer of L(p, A) with the MDE approxi-
mation.

Proposition 3.1. For any X in the k—1-simplex, let
py = arg mingep L(p, \) be the minimizer of the
A-weighted loss over all probability distributions.
Then we have for any (a: y):

pi(ylz) = Z)\

x)p; (y|z),
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where we use the shorthand p; for the minimizer of
L(p, D;), the expected loss on domain i. The coef-
ficients N, satisfy: \;(z) o< D;(2)\;. In particular,
we have )\; o \ipi, whenever D;(x) = p; for any
x such that D;(x) > 0, for each domain i.

We prove the proposition in Appendix A. In
words, the result says that the distribution which
minimizes the pre-training loss for the A-weighted
mixture can be expressed as a weighted combina-
tion of the data experts trained on the individual
domains. In the simplest case where the domains
only differ in the conditional distributions D;(y|x)
and D;(x) = D;(z) for all 4, j, these coefficients
are further equal to \;, since p; = p; for all 75 in
this case. This matches our MDE approximation
in the most ideal scenario. When the p; are not all
identical, but D;(x) is still uniform over its support,
then the optimal mixture coefficients \’ are still
independent of x, and hence can potentially be cap-
tured by the regression methods we use in this work.
In a general setting, the coefficients in this linear
combination have an x dependent relationship with
respect to A. This suggests that more flexible ap-
proximations that induce the mixture weights as a
function of the token prefix might yield even better
estimates of validation loss. We do not pursue these
approaches here due to the relative simplicity and
efficiency of the MDE approximation.

4 Experiments

We perform two groups of experiments to assess
the contribution of MDE to the quality of data
mixture loss prediction and ranking, and study the
downstream task performance of data mixtures op-
timized according to different criteria.

4.1 Datasets

We overview the datasets used for language model
training, validation domains for generalization loss
estimations, and few-shot downstream tasks.

Language model training datasets We train
Transformer language models on the SlimPajama
dataset (Soboleva et al., 2023), treating the seven
top-level domains as different sources for train-
ing dataset mixtures. We split the documents into
segments of at most 1024 tokens according to the
Gemma (Gemma-Team, 2024) text-only Sentence-
Piece (Kudo and Richardson, 2018) tokenizer with
a vocabulary size of 256,000 tokens.

Validation domain datasets We use samples
from the development subsets of the SlimPajama
dataset as one source of validation domains for
generalization loss estimation. We term these SP
validation domains. Additionally, we use ARC
(Clark et al., 2018), OpenBookQA (Mihaylov et al.,
2018), and MultiRC (Khashabi et al., 2018), cover-
ing question answering, commonsense reasoning,
and reading comprehension, as validation sets for
generalization loss estimation. ARC has two sub-
sets, Easy and Challenge, which we refer to as
ARC-E and ARC-C respectively. We use separate
downstream tasks for validation and final evalua-
tion to prevent overfitting. There are a total of 11
validation domains from end tasks,' which we term
ET (from end task) validation domains. The loss
on each of these ET domains as defined through the
next-token probabilities from the language model,
considering the concatenation of each prompt and
gold response as a single sequence. The number of
tokens per domain is in Appendix B.7.

Downstream evaluation datasets and settings
We evaluate models on a test suite of 10 down-
stream tasks. For generation, we use Trivi-
aQA (Joshi et al., 2017), NaturalQuestions (NQ;
Kwiatkowski et al., 2019), WebQuestions (WQ;
Berant et al., 2013), SQuAD 2.0 (Rajpurkar et al.,
2018), and LAMBADA (Paperno et al., 2016), cov-
ering question answering, reading comprehension
and word prediction tasks. For ranking (multiple-
choice question) tasks, we use COPA (Roemmele
et al., 2011), PIQA (Bisk et al., 2020), WiC (Pile-
hvar and Camacho-Collados, 2019), WinoGrande
(Sakaguchi et al., 2021), and HellaSwag (Zellers
et al., 2019) spanning across question answering
and commonsense reasoning. We prepare all the
above tasks in 0-, 1-, and 5-shot formats, and report
exact match (EM) accuracies for generation tasks
and standard accuracies for ranking tasks.

4.2 Benchmarked regression models

We consider baselines and methods from prior

work, including:

* Empirical Mean (baseline): Average loss per
domain for any mixture.

e DML (Ye et al., 2024): Predicts mixture loss
with Lz(Alk) =c+k; exp(Z?zl tij)\j)'

"'We prepare the 4 end tasks in 0-shot, 1-shot, and 5-shot
formats and treat each task-format combination as a domain.
We discard 5-shot MultiRC because texts are often too long to
fit into the 1024 token segment size, resulting in 11 domains.
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* BiMix (Ge et al., 2024): Models validation loss
using data quantity and mixing weight, and given

a fixed quantity the formula is L;(\;) = ;}fl .

* Gradient Boosting (GBM-RegMix; Liu et al.,
2025): Uses ensembles of regression trees to
predict mixture losses.

¢ Linear Model (Liu et al., 2025): Predicts losses
via regularized weighted sum of features.

and our models, including:

* MDE: Predicts losses directly with Mixture of
Data Experts.

* MTGP: Uses Multi-task Gaussian Process re-
gressors.

* X-MDE: Denotes any model X that uses mixture
weights and MDE as features.
See Appendix B.6 for details on hyperparame-

ters and software packages used.

4.3 Results on validation loss prediction

We begin with experiments predicting losses for
new mixture proportions A, given a training set
of models 8, corresponding to a set of sampled
mixture proportions Ai,...,Ay. Appendix B.4
details how the mixture examples were sampled
and Appendix B.2 reports on language model sizes
and training configurations.

Extrapolation to mixtures of the same scale

In the first set of experiments, we aim to assess
the ability of different methods to predict valida-
tion losses and loss aggregates for new mixtures A,
given a training set of measurements for models of
the same size and number of training steps.

We look at per-validation domain performance,
as well as the performance corresponding to multi-
ple loss aggregators — AVG-SP: Average loss on
the seven SlimPajama validation datasets,which has
been a common optimization target used by base-
lines including DoGe and DML; AVG-ET: Average
loss on the eleven validation end task domains de-
tailed in Section 4.1; AVG-ET+SP: Average loss
across all 18 validation domains — the union of
SlimPajama and end task validation datasets.

We evaluate regression methods using squared
error between predicted and true loss values, along
with Spearman’s rank correlation. A training set
of 25 mixtures and a test set of 48 distinct mix-
tures, each with 280M-sized models trained for
10K steps (5B tokens), are used for comparison.
Table 1 reports mean squared error and Spearman’s
rank correlation for AVG-SP and AVG-ET+SP aggre-

gated losses. Figure 2 shows squared error for each
individual SlimPajama validation domain. The re-
ported results are averages from 5 training runs for
each method, with a different sampled training set
of mixtures for each run.

For the regressors using MDE features, we de-
note with e.g. MTGP-MDE-SP models that use
the MDE features only from the 7 SP domains, and
also predict the losses only on those domains. In
Table 1, the regressors using MDE use only the
SP domain features for the results in the first two
columns, and all 18 MDE features for the results
in the second two columns.

We note that: (i) As a standalone predictor, MDE
performs no better than the empirical mean base-
line in loss prediction for AVG-SP, while substan-
tially outperforming that baseline for AVG-ET+SP.
(if) As a standalone ranker, MDE’s performance is
very respectable and close to that of the best regres-
sors which use 3x more trained proxy models. (iif)
MDE as a source of features brings large improve-
ments in MSE and Spearman’s, across multiple
regression model families (Linear, MTGP, GBM),
(e.g. improvement from 0.65 to 0.95 for linear re-
gressors), substantially improving over prior state-
of-the-art regressors, while using equivalent com-
putational resources. Note that while we only re-
port the mean and not the confidence intervals for
each predictor in the table, we verified the gains
are statistically significant. In Appendix C.7 we
consider alternate ways to approximate data mix-
ture losses using trained experts, showing MDE
achieves superior performance.

Extrapolating to larger scale models

Our ultimate goal is to compare and optimize mix-
tures according to the performance corresponding
to the largest models, trained for a maximum to-
ken budget (here 10B models and 100B tokens).
While REGMIX (Liu et al., 2025) found that very
small models trained over relatively few tokens
(1M model size and 1B tokens) are sufficient as
proxies for learning to rank much more scaled ver-
sions, we find that the approximation quality is
dependent on the choice of generalization loss esti-
mate we aim to optimize. To understand this, we
train proxy models of different sizes corresponding
to the same set of 55 data mixtures A. The proxies
are of sizes 70M, 150M, 280M, and 510M, and are
trained to a token horizon of up to 50K steps (25B
tokens). We then see whether the ranking of the
mixtures at the largest configuration (510M, 50K
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MSESP(]) pSP (1) MSEET+SP(]) pET+SP (1)

Emp. mean 0.01151 N/A 0.01250 N/A

LINEAR 0.01637 0.23426 0.00655 0.64618
MTGP 0.00460 0.85829 0.00231 0.89911
BIMIX Geetat. 2024) 0.00327 0.86051 N/A N/A

DML (¥e etal. 2024) 0.00296 0.91991 0.00116 0.89188
GBMREeoMix (Liu etal., 2025) 0.00242 0.92256 0.00431 0.81442
MDE (ours) 0.02809 0.91222 0.00391 0.88571
GBM+MDE ours) 0.00140 0.94963 0.00089 0.95462
LINEAR+MDE () 0.00050 0.97555 0.00048 0.95274
MTGP+MDE (ours) 0.00053 0.98383 0.00116 0.93469

Table 1: Mean squared error (MSE) and Spearman’s rank correlation (p) on prediction of averaged loss over
SlimPajama domains only (SP) and all (ET+SP) validation domains, using different regressors from prior work,
and ones proposed in this work. Regressors are fitted using 25 train mixtures (except MDE that uses only 7 train
mixtures), and evaluated with 48 held-out mixtures. MDE features bring large improvements across regressors.
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Figure 2: Per-domain mean loss squared error for
SlimPajama validation domains.

steps) can be predicted through the true losses of
proxies of different scales for the same mixtures.?

Figure 3 shows that, as REGMIX observed, rank-
ing according to a single training domain, SlimPa-
jama CommonCrawl, is well predicted by all proxy
models, with a small difference between 70M and
280M models and a small improvement with the
number of training steps (dashed lines). On the
other hand, for a harder ranking metric, which
requires mixtures to be ordered correctly simul-
taneously according to the three aggregate losses
AVG-SP, AVG-ET, and AVG-ET+SP, 70M models
and ones trained to less than 6K steps are substan-
tially less accurate proxies. We thus choose to use
280M models trained to 10K steps as proxies for
optimizing scaled models, as a tradeoff between
accuracy and efficiency.

Impact of number of training mixtures
We analyze how ranking performance scales with

the number of training mixtures. Figure 4 illus-

Note that our model sizes are total parameters and the
number of non-embedding ones is smaller, e.g. 2.6M for the
70M model and 85M for the 280M model, see Appendix B.2.
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Figure 3: Pairwise ranking accuracy of 55 data mix-
tures (510M models trained to 50K steps) based on
proxies of different size and number of training steps.

trates the learning curve for Spearman’s rank corre-
lation of the average loss (AVG-SP). Sets of 280M-
parameter proxy models, trained for 10K steps are
used to predict the ranking order of the average do-
main loss for larger 510M-parameter models from
unseen data mixtures, trained for S0K steps.

In the low-data regime, MDE consistently out-
performs all other models. However, as more train-
ing examples become available, MTGP-MDE-SP
and LINEAR-MDE-SP steadily improve, eventually
surpassing MDE to achieve the best performance.
We observe diminishing returns beyond 25 train-
ing examples, suggesting a saturation point in the
benefits of additional data.

4.4 Correlation between validation loss and
downstream task accuracy

Section 4.3 shows that our methods produce more
accurate validation loss prediction results than prior
methods. Can such improvement help guide us
towards finding mixture weights that improve on
downstream evaluations? In downstream tasks,
models are usually evaluated based on generation
or ranking accuracies instead of cross-entropy loss.
Additionally, capable models should generalize be-
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Figure 4: Spearman’s rank correlation of SP validation
domains as a function of number of training mixtures.

VAL. TASKS DOWNSTREAM TASKS

VAL. TasK SELF AVG. | GEN. RANK. ALL

ARC-C 0452 0.771 | 0.613 0.846 0.845
ARC-E 0.903 0.761 | 0.608 0.845 0.840
OPENBOOKQA | 0.862 0.785 | 0.626 0.840  0.846
MULTIRC 0.245 0.698 | 0.653 0.728 0.796
AVERAGE-ET | —  0.772 | 0.630 0.833 0.844
AVERAGE-SP | —  0.320 | 0.189 0.330 0.282

Table 2: Spearman’s rank correlation between valida-
tion tasks’ loss and accuracy metrics, considering the
same task (SELF), the average accuracy across all val-
idation end tasks (AVG.), and metrics for downstream
test tasks: average on the generation (GEN.), ranking
(RANK.), and all test tasks (ALL).

yond tasks seen during development and should
perform well on unseen tasks. To understand the
potential impact of the choice of using AVG-ET as a
mixture weight optimization objective, we conduct
a study comparing end task validation loss and test
accuracies using 510M parameter models trained
up to 50K steps. As observed in Table 2, there is a
strong correlation® between validation tasks’ lan-
guage modeling loss and model performance on the
downstream test tasks. In contrast, the average SP
domains’ validation losses (last row) show much
lower correlation with end task evaluation results.

4.5 Results with optimized data mixtures

Based on our study with models in the range of
70M to 510M parameters, we choose to optimize
training mixtures using well-performing regressors
for each objective, from 280M-sized proxies. We
optimize mixtures for three different criteria: (i)
AVG-SP the average loss on SlimPajama domains,
(if) AVG-ET, the average loss on end task validation
domains, and (iii) AVG-SP + AVG-ET, also called
AVG-ALL, the sum of the two averages. Much prior
work has focused on optimizing AVG-SP or the loss
on a single domain. Section 4.4 shows AVG-ET cor-

3Correlations are negative because a lower language mod-
eling loss typically corresponds to better end task evaluation
results. In Table 2, we show the absolute values for readability.

w0
%

36

Uniform
-o-  SlimPajama
. - DoReMi
Prior work { DeGE
—e— Linear+MDE-ALL
Ours { —+— Linear+MDE-ET
MTGP+MDE+SP

32

Average downstream accuracy

I I I I I
10K 20K 50K 74K 100K 126K 150K 174K 200K
Number of training steps

Figure 5: Downstream task accuracy (average over 0-
shot, 1-shot, and 5-shot formulations over a suite of gen-
eration and ranking tasks) for 1B models optimized
through our methods using MDE versus prior work.

relates better with downstream accuracy, though a
small set of validation tasks may not be sufficient
to cover all requisite skills for LM generalization.
Thus, we consider the combination of the unsuper-
vised loss (AVG-SP) with the end-task aware loss
(AVG-ET).

To optimize the mixtures, we trained regressors
using 25 mixture examples (including the 7 ex-
perts), each of size 280M trained to 10K steps.
The optimized models for the three criteria are de-
noted as MTGP-MDE-SP, LINEAR-MDE-ET, and
LINEAR-MDE-ALL. Their corresponding mixture
weights are given in Appendix C.

Table 4 shows that the mixture optimized with
MTGP-MDE for AVG-SP loss leads to a 1B model
that achieves the best AVG-SP generalization loss
compared to prior work that optimized the same
loss (DOGE and DML), and other baselines. In
that table and other comparisons in this section, we
use the mixture weights optimized in prior work
directly from the corresponding papers, and train
1B models with those weights for comparison. For
DOGE and DOREMI, we used the mixture weights
reported in Fan et al. (2024), optimized from their
124M proxies which are similar in scale to our
280M proxies in the number of non-embedding
parameters. We note that differences in tokeniza-
tion and other hyper-parameters could have results
in different optimized weights if we had applied
the prior work’s methods on our data to derive the
mixture weights.

In Table 5, we additionally include models op-
timized for the losses of the two other end-task
related criteria.* Our approaches lead to successful
optimization of the desired generalization losses
for the 1B models. In appendix C.5 we see that

*These optimized weights included O values for some
domains and we smoothed the solutions A = .99Aqpt +
.0luniform.
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N TASKS
MODEL GENERATION TASKS

RANKING TASKS AVERAGE (1)

NQ SQUAD TriviaAQA LAMBADA | COPA PIQA WIC WINOGRANDE HELLASWAG

2 UNIFORM 44 24 358 10.9 21.9 70.0 679 49.1 54.2 42.3 35.9
Z SLIMPAJAMA 69 39 370 15.7 18.9 71.3 672 49.5 54.7 45.3 37.0
= DOGE (124M) 52 23 335 10.0 19.9 70.0 68.4 48.1 54.0 43.1 35.4
2 DOREMI (124M) 51 2.8 371 13.6 21.7 71.7 66.4 488 54.5 42.3 36.4
A DML 4.1 1.9 344 9.1 15.5 71.7 68.1 50.9 54.0 42.9 35.3
£ MTGP-MDE-SP 4.0 24 342 9.4 19.6 68.7 67.6 50.4 52.8 43.0 35.2
3 LINEAR-MDE-ET 6.4 3.5 347 17.6 22.1 75.3 69.3 49.3 55.7 47.6 38.2

LINEAR-MDE-ALL | 6.1 3.1 37.2 14.7 24.1 73.3 70.4 50.4 55.7 47.7 38.3

Table 3: Downstream model performance on 5 prediction tasks and 5 ranking tasks. Results are averaged across
0-shot, 1-shot, and 5-shot performances. For generation tasks, we report exact match (EM) accuracies (%), and for
ranking tasks, we report accuracies (%). All models are 1B parameter models trained for 200K steps.

UNIFORM

4.90
14.77
17.62
14.43

2.59

5.33

8.89

8.085

SLIMPAJAMA

5.41
15.28
15.72
12.52

2.89

6.12
10.67

8.449

DoOGE

5.06
15.76
16.41
13.78

2.71

5.26

8.70

8.072

DOREMI

5.45
15.44
17.08
13.22

2.77

5.65

8.09

8.156

DML

4.64
15.40
17.00
14.52

2.58

5.33
13.02
8.482

MTGP-MDE-sP

5.13
15.12
16.93
14.25

2.64

5.33

8.24

8.038

ARXIV

BOOK

C4
COMMCRAWL
GITHUB
STACKEXCH.
WIKIPEDIA

AVERAGE

Table 4: Generalization on validation SP domains for
1B parameter models trained for 100B tokens with mix-
tures optimized according to different methods over the
SP domains. We compare Baselines (uniform and pro-
portional to size), DoGE(124M), DoReMI (124M), to
the mixture derived by MTGP-MDE-SP. Per-domain
and average (exponentiatated average loss) perplexity.

UNIFORM ~ SLIMP]  DOGE DOREMI DML MTGP-MDE-SP

(OURS)
20.02
21.17
48.00
10.36

8.04
22.89

LIN-MDE-ET
(OURS)

LIN-MDE-ALL
(OURS)

17.72
18.45
44.17

9.67

9.26
20.59

ARC-C
ARC-E
0BQA
MuLTIRC
AVG. SP
AVG. ET

19.93
20.86
48.45
10.44

8.08
22.86

17.81
18.57
44.99
9.80
8.45
20.81

19.45
20.52
48.20
10.40

8.07
22.56

19.37
20.33
47.60
10.21

8.16
22.32

19.54
20.66
48.09
10.59

8.48
22.69

Table 5: Generalization on end task validation domains
for 1B parameter models trained for 100B tokens. Our
model mixtures are optimized based on different gener-
alization criteria, AVG-SP, AVG-ET, and AVG-ALL.

the optimized mixture’s advantage is maintained
for 10B-sized models.

4.6 Downstream task few-shot prediction

We compare performance of 1B parameter mod-
els on downstream tasks in Table 3 with learning
curves in Figure 5. We observe that the token-
proportional SlimPajama baseline is a strong base-
line as it outperforms the uniform baseline and
other baseline from prior work including DOGE,
DOREM1I, and DML (Ye et al., 2024). While our
model optimized for only the AVG-SP loss has rel-
atively low average accuracy, the variants that are
optimized taking into account validation end tasks
LINEAR-MDE-ET and LINEAR-MDE-ALL outper-
form all baselines and models from prior work.
Figure 6 shows similar trends of down-
stream task performance of 10B models com-
paring the best baseline SlimPajama to our
method LINEAR-MDE-ALL. We also evaluate the

'S
£

=
&

(5

w
&g

o

L “o-  SlimPajama
59¥ —e~ Linear+MDE-ALL
32L :

)
®

Average downstream accuracy
s
B

40K 100K 150K
Number of training steps

10K 20K 180K 200K

Figure 6: Downstream task accuracy (average over O-
shot,1-shot, and 5-shot formulations over a suite of gen-
eration and ranking tasks) for 10B models optimized
through our method versus the strongest baseline.

SLIMPAJAMA  LINEAR-MDE-ALL

25.56 26.51
2.9 4.2

MMLU (5 SHOT MULTI-CHOICE)
GSMS8K (3-sHOT NO COT)

Table 6: Performance of 10B model and baseline at
200K steps on MMLU and GSMS8K.

10B models on two significantly harder bench-
marks — MMLU (Hendrycks et al., 2021) and
GSMS8k (Cobbe et al., 2021), which evaluate a
broad set of skills we did not optimize for, with
results shown in Table 6. While the absolute perfor-
mance is weak in comparison to same-sized mod-
els trained on orders of magnitude more data, it is
comparable to those of Ibrahim et al. (2024) (10B
model, 3x tokens) and Falcon 7B (Almazrouei
et al., 2023) (7B model, 15x tokens), respectively.
The optimized weights lead to higher performance.

5 Conclusion

This work introduced the Mixture of Data Experts
approximation which advances pre-training data
mixture optimization. By leveraging MDE as a pre-
dictive feature in regression models, we improve
the mixture ranking quality, loss prediction accu-
racy, and sample efficiency of regression. Our find-
ings emphasize the value of task-aware mixture
optimization, showing that incorporating end-task
validation signals leads to notable improvements
on downstream tasks.
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6 Limitations

While this study provides insights into using mix-
tures of data experts (MDE) to better predict valida-
tion loss and optimize mixtures, several limitations
should be acknowledged.

First, we conducted experiments solely on the
SlimPajama dataset, which consists of seven train-
ing domains with predominantly English text. We
have not evaluated our method on datasets with a
larger number of domains or multiple languages.
Additionally, our experiments were limited to text
datasets, and we did not explore multi-modal data.
Furthermore, we assume that training domains
are predefined and meaningful, without address-
ing how to construct such domains from raw data.

Second, we only experimented with models up
to the size of 10B parameters and have not evalu-
ated our method on larger models or models trained
for more than 100B tokens. Assessing its effective-
ness on larger models/datasets remains an impor-
tant area for future research. When the token hori-
zon allows for sources to be repeated many times,
diminishing returns from data repetition need to be
taken into account as well.

Third, although we evaluated mixture perfor-
mance using 12 downstream generation and rank-
ing tasks, expanding the evaluation to a broader
and more diverse set of tasks would provide a
more comprehensive picture. Additionally, we did
not investigate safety and inclusion-related criteria,
which are important considerations for deploying
such methods in real-world scenarios.

Despite these limitations, our findings contribute
to the existing literature by demonstrating that
MDE features can significantly improve perfor-
mance and design sample-efficient regression mod-
els that outperform previous approaches, offering a
strong foundation for further research in this field.
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A Proof of Proposition 3.1

Proof. Standard analysis of maximum likelihood estimation suggests that whenever the class of distri-
butions P that p is chosen from is expressive enough, then the optimal solution p} = arg min,cp Ly (p)
satisfies:

EmNDsz)\ ‘:L‘ Z)\ Dzy |$ Hl <, (D)

where € is a parameter which depends on the sample size n and the statistical complexity of the function
class P (Geer, 2000; Zhang, 2006). For example, the statistical complexity is equal to In |P| for finite
classes, and can be replaced with a log-covering number more generally. The main takeaway from
Equation 1 is that the optimal solution p} can be written as p} = > )\ip’;, in this case, where ¢; is the 7z,
basis vector with all zeros and one in the ¢, position.

More generally, when the marginal distributions over x are different, we can write

PA(I) =3 plile)Dilyle) = Zszw; Pl

> Aij(x)Dl(m )

7
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B Implementation Details

B.1 MDE Approximation Pseudo-code

Algorithm 1 MDE loss approximation

Input:
¢ Cached Per-token probs pgj) of experts 0; for validation domain tokens j = 1,...,|Vj|.
e Mixture .

Output:
¢ The MDE loss approximation of model trained with mixture A.

Algorithm:

forallj € {1,2,...,|V;|} do

PMDEU) — Z (A p(J))
end for

V .
LoSSMDE = |V | Z‘ | In prvoe?)

B.2 Model and training details

Table 7 specifies the model sizes used during the experiments. Note that, due to the large vocabulary
size, the number of non-embedding parameters is much smaller than the number of total parameters. For
example, our 280M proxy models have fewer non-embedding parameters than DOGE-124M.

Models of all sizes used batch size of 512 sequences of up to 1024 text tokens. The maximum
number of steps 200K corresponds to about 100B tokens. All language models were optimized using
Adafactor (Shazeer and Stern, 2018) with initial learning rate of 1e-3, weight decay of le-2, and gradient
clipping to norm 1. We decay the learning rate exponentially until it reaches a minimum of le-4 at the end
of training, with a linear warmup of 6% of the total training steps.

Table 8 details the Google Cloud TPU configurations used to train models of each size.

32582



MODEL SIZE MODEL DIM. # LAYERS HIDDEN DIM. # ATTENTION HEADS NON-EMBEDDING PARAMS

70M 256 3 1,024 4 2,625,984
150M 512 6 2,048 8 19,171,712
280M 768 12 3,072 12 85,312,768
510M 1,024 12 8,192 16 252,125,952
1B 2,048 16 8,192 32 805,993,472
10B 4,096 32 24,576 32 8,592,168,960

Table 7: Architecture details for models used in our experiments. All models use the same vocabulary with a size
of 256,000.

MODEL SIZE  TPU v3 CHIPS

70M 16
150M 16
280M 32
510M 32

1B 64
10B 64

Table 8: Hardware used for each model size.

B.3 Expert mixtures as regression examples

When fitting regression model with MDE features we experimented with both using the expert mixtures
as examples and not using them, as expert mixtures like (1, 0,0, ...) may exhibit significantly different
behavior from near-corner mixtures such as (1 — €, €, 0, ...). We evaluated whether including these corner
mixtures enhances or degrades model generalization performance. For Linear-MDE and GBM-MDE,
we found that adding expert mixtures degrades performance, whereas for MTGP-MDE, it improves
performance. We speculate that MTGP offers greater flexibility in modeling behavior at the corners
without compromising predictions at other points. Nonetheless, when reporting the number of training
examples, we always account for the expert examples used to generate the MDE features, ensuring that
expert mixtures are included in the training example count.

B.4 Generating training mixture examples

Our goal is to sample a diverse set of mixture examples to fit a regression model that generalizes well
across the entire mixture search space while also accounting for training domain token frequency. (Liu
et al., 2025) suggested sampling from a Dirichlet distribution and setting the concentration parameters
based on token frequency of the training domains. We opted to emphasize less prior domain token counts,
as lower value training domains may contain a higher number of tokens. Instead, we set the concentration
parameters as a weighted average between domain frequency and a uniform distribution. Additionally, we
sampled scaling factors between 0.5 and 2.0 and multiplied the concentration parameters with them to
introduce varying levels of diversity.

B.5 Splitting Examples for Training and Testing

To assess model performance, we randomly split the mixture examples into training and test sets five times.
For each metric, we computed the sample mean and 95% confidence interval, and verified results we
highlighted as different did not have overlapping confidence intervals. The reported loss-related squared
error and ranking metrics represent the mean across the five folds.

B.6 Fitting Regression Models

MTGP - We trained the multi-task Gaussian process with a separable kernel using the open-source Vizier
framework (Song et al., 2024).

Gradient Boosting - We initially considered using the default LightGBM (Ke et al., 2017) setup from
(Liu et al., 2025). However, its default minimum leaf size is 20, which is unsuitable to our low-data
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regime of about 20 examples. Instead, we used Scikit-Learn’s (Pedregosa et al., 2011) gradient boosting
model and performed a 5-fold cross-validation hyper-parameter grid search over the number of estimators
{10, 50, 100}, learning rate {0.01,0.1}, and maximum tree depth {2,3,4}. For the rest of the hyper-
parameters we used the default settings.

Linear - We trained a Scikit-Learn linear model with Ridge regularization and performed 5-fold cross-
validation to tune the regularization factor.

B.7 Additional dataset details

All training and evaluation datasets are predominantly in English, with possible exceptions for some
SlimPajama texts.

We list the number of tokens in each of the 18 validation domains we used for loss optimization in
Table 9. For the end-task derived datasets, both the question and gold response are included in the token
counts.

DOMAIN NUMBER OF TOKENS
ARX1V 4,105,850
BooOK 4,188,414
C4 1,719,076
COMMONCRAWL 3,281,676
GITHUB 2,861,175
STACKEXCHANGE 2,265,251
WIKIPEDIA 2,131,781
ARC-Cc-0SHOT 43,413
ARC-c-1SHOT 87,117
ARC-C-5SHOT 258,026
ARC-E-OSHOT 74,902
ARC-E-1SHOT 152,276
ARC-E-5SHOT 455,940
MULTIRC-0SHOT 2,704,800
MULTIRC-1SHOT 3,581,458
OPENBOOKQA-0SHOT 12,743
OPENBOOKQA-1SHOT 26,175
OPENBOOKQA-5SHOT 82,318

Table 9: Number of tokens in validation domains used for loss prediction and optimization.

B.8 Use of AI Assistants

We have used Gemini models to understand tikz for drawings and to suggest ways to format equations and
algorithms. We also used Gemini to suggest ways to shorten some sentences and took some suggestions
with additional edits.

C Additional results and analysis

C.1 Comparing Optimized Mixtures Across Different Scales

To better understand the impact of model size and training steps on the optimized mixture, we compare
the mixtures obtained using the LINEAR+MDE method for two different models: (i) 70M-parameter
model trained for 10K steps, and (ii) 280M-parameter model trained for 50K steps.

The optimized mixture for the 70M, 10K-step model is:
[0.078,0.28,0.411,0.072,0.0,0.012, 0.148]

The optimized mixture for the 280M, 50K-step model is:
[0.039,0.287,0.373,0.259, 0.0, 0.0, 0.041]

Despite differences in model scale and token horizon, the mixture weights remain relatively similar, with
a cosine similarity of 91.32%. This strong alignment further supports the validity of our proxy model
mixture optimization approach.
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C.2 Correlation among losses of different validation domains

Loss Correlation Among Domains Computed from 121 models of size 280M at 10K ste
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Figure 7: Correlation among model losses on different heldout training and end task domain datasets.

From Figure 7 we see that the SlimpPajama domains most correlated with validation end task domains
are Book, C4, and CommonCrawl.

C.3 Mixture rates for SlimPajama from baselines and our work

In the experiments section, we reported losses and downstream from baseline mixtures, ones derived in
prior work (in which case we copied the mixture rate values from the respective papers), and mixtures
optimized in this work. Here we list the mixture proportion values \ for completeness in Tables 10 and
11.

DOMAIN UNIFORM  SLIMPAJAMA  DOGE-124M  DOREMI-124M DML
ARXIV 0.1429 0.0458 0.0890 0.0434  0.2500
Book 0.1429 0.0420 0.0456 0.0546 0.0938
Cc4 0.1429 0.2660 0.2789 0.1127 0.2500
COMMONCRAWL 0.1429 0.5203 0.1968 0.3781 0.1250
GITHUB 0.1429 0.0522 0.0714 0.0753  0.1406
STACKEXCHANGE 0.1429 0.0337 0.1703 0.0919 0.1250
WIKIPEDIA 0.1429 0.0399 0.1480 0.2440 0.0156

Table 10: SlimPajama data mixture rates derived through different approaches from prior work. DoGE and
DoReMI weights are from the SlimPajama experiments of (Fan et al., 2024). DML weights are copied from
(Ye et al., 2024).

C.4 Loss learning curve for 1B models

Figure 8 shows the average SP domain loss of 1B models with different data mixture proportions. We see
that MTGP-MDE-SP achieves lower loss than other approaches.
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DOMAIN MTGP-MDE-SP  LINEAR-MDE-ET LINEAR-MDE-ALL MDE-sp MDE-ET MDE-ALL

ARXIV 0.0791 0.0014 0.0404 0.0666 0.0015 0.0372
Book 0.0931 0.2412 0.2859 0.1870 0.3251 0.2732
C4 0.2282 0.2952 0.3710 0.0837 0.3286 0.1868
COMMONCRAWL 0.1335 0.4578 0.2581 0.1602 0.2734 0.2249
GITHUB 0.1047 0.0014 0.0014 0.1161 0.0000 0.0395
STACKEXCHANGE 0.1454 0.0014 0.0014 0.2187 0.0715 0.1575
WIKIPEDIA 0.2161 0.0014 0.0418 0.1678 0.0000 0.0810

Table 11: SlimPajama data mixture rates derived through optimizing AVG-SP, AVG-ET, and AVG-SP+AVG-ET with
regressors using MDE or MDE on its own.

9'5 T \‘\ T 1 [ T T T T 71
\/‘ —— DoGEI124M
’\/‘ Uniform
R [P doremil24M
g ‘,\’ ----- SlimPajama
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Figure 8: Convergence curve of training 1B parameter model for up to 200K steps for the different methods.

SLIMPAJAMA  LIN-MDE-ALL

ARC-c 13.95 13.51
ARC-E 14.97 14.49
OBQA 40.10 39.33
MULTIRC 8.23 8.07
AVG. 17.23 16.78

Table 12: Generalization on end task validation domains for 10B parameter models trained for 100B tokens. Com-
paring baseline SlimPajama weights to our optimized ones. We report per-domain group and average perplexity.

C.5 End task validation domain losses of 10B models

In table 12, we report perplexity on the end task validation domains achieved at 100B tokens by our
10B parameter models trained with the baseline mixture and our optimized one. We observe that the
mixture optimized at much smaller token and model size scale successfully improves upon the baseline at
a significantly larger scale.

C.6 Optimizing mixtures with MDE only

We additionally optimize the mixtures for different criteria using the MDE approximation only, from
280M-sized models at 6K training steps. This requires training only seven proxy language models and
no regression. In Table 13, we see that models optimized for AVG-SP based on MDE lead to worse but
respectable AVG-SP loss than MTGP-MDE. Models optimized for the end task validation domains are best
on those domains, and models optimized for average of SlimPajama and ET domains achieve slightly
better tradeoff between those groups of domains than models optimized for ET domains only.
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DOMAIN MTGP-MDE-SP  LINEAR-MDE-ET  LINEAR-MDE-ALL MDE-sp  MDE-ET MDE-ALL

AVG. SP 8.04 10.44 9.26 8.110 10.501 8.228
AVG. TASK 22.89 19.96 20.59 23.246 20.439 21.800

Table 13: Generalization on SlimPajama and end task validation domains for 1B models trained for 100B tokens.
Comparing MDE to MTGP-MDE and LINEAR-MDE optimized weights. We report average perplexities on SlimPa-
jama and end task validation domains.

C.7 MDE vs related approximations through domain-specific expert models

To understand the performance of MDE in the context of related ideas from Na et al. (2024), which, as
mentioned in Section 2, approximates the loss of a model trained on a union of datasets with the loss of a
model which is a parameter average of expert models trained on the individual datasets, we analyze the
importance of using model ensembles instead of parameter-averaged models. In addition, we evaluate
MDE in comparison to a simpler and even faster to compute version, which interpolates per-dataset
average probabilities instead of per-token ones.

We compute Spearman’s rank correlation between the true domain losses versus the ones predicted by
MBDE and the two alternative methods, using 20 models of size 280M trained for 10K steps, corresponding
to 20 different data mixtures. We report p across the seven SplimPajama domains, and also average across
the full 18 domains (SlimPajama and end-task validation domains). Table 14 shows the results. Note that
these metrics are averages of performance for predicting single domain losses, and are a bit higher than the
metrics for predicting aggregated losses that we saw in Table 1. We can note that model merging, where for
each candidate A we first compute a weighted average of expert model parameters, and then run inference
to compute losses on the validation domains, has very poor performance. This agrees with prior work
which finds parameter averaging to work well only for models fine-tuned from a common initialization
points. The per-domain interpolation approach does not use token-level probabilities from the experts, but
only computes a weighted average (with \) of their per-validation dataset average probabilities. We see
that this approach does surprisingly well, but is still substantially weaker than MDE.

Based on these results we conclude that parameter averaging of expert models is not a useful approach
for approximating losses for pre-training data mixtures. We also see that there is value in interpolating
per-token probabilities, as in MDE, instead of interpolating per-dataset average probabilities. Per-dataset
probability interrelation is a bit easier to implement and faster to compute, and could also be useful. Future
work could also explore both MDE and per-domain interpolation as feature sources in the same regression
model.

MDE MODEL MERGING PER-DOMAIN

INTERPOLATION

SP SPEARMAN 0.951 -0.139 0.898
ALL SPEARMAN  0.942 -0.120 0.927

Table 14: MDE versus Model Merging and Per-Dataset Interpolation.
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