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Abstract

Table-text retrieval aims to retrieve relevant ta-
bles and text to support open-domain question
answering. Existing studies use either early
or late fusion, but face limitations. Early fu-
sion pre-aligns a table row with its associated
passages, forming “stars,” which often include
irrelevant contexts and miss query-dependent
relationships. Late fusion retrieves individual
nodes, dynamically aligning them, but it risks
missing relevant contexts. Both approaches
also struggle with advanced reasoning tasks,
such as column-wise aggregation and multi-
hop reasoning. To address these issues, we pro-
pose HELIOS, which combines the strengths of
both approaches. First, the edge-based bipar-
tite subgraph retrieval identifies finer-grained
edges between table segments and passages,
effectively avoiding the inclusion of irrelevant
contexts. Then, the query-relevant node expan-
sion identifies the most promising nodes, dy-
namically retrieving relevant edges to grow the
bipartite subgraph, minimizing the risk of miss-
ing important contexts. Lastly, the star-based
LLM refinement performs logical inference at
the star graph level rather than the bipartite
subgraph, supporting advanced reasoning tasks.
Experimental results show that HELIOS outper-
forms state-of-the-art models with a significant
improvement up to 42.6% and 39.9% in recall
and nDCQG, respectively, on the OTT-QA bench-
mark.

1 Introduction

Open-domain question answering (ODQA) over
tables and text is important as it leverages the com-
plementary strengths of structured and unstructured
data. Tables offer vast amounts of related facts but
lack diversity, while text provides broader contex-
tual information (Chen et al., 2020b,a), making the
integration of both modalities essential. Table-text
retrieval plays a crucial role in ODQA by retrieving
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(a) Question: What is the work of the Grammy-winning artist who was born on May 15, 19427
Answer: 80s Ladies

Rosanne Cash
K. T. 0slin

Rosame Cash (born May 24, 1955) is
Kay Toinette 0s American singer-songuriter and
1962) is an E
nusic singer and songuriter.

author.

80s Ladies

80's Ladies is the debut album by
untry music artist K.

Question: What are the school colors of the college that the player picked 27th in
(b) the 2012 MLS SuperDraft attended?
Answer: Gold and Blue

2 Chicago Fire | Hunter Jumper

inginia
(<) Question: When was the most recent Segunda Liga player of the month born ?
Answer: 12 August 1971

Legend |

Figure 1: Simplified examples of three cases where ex-
isting methods struggle to retrieve the question-related
documents correctly. (a) Inadequate granularity of re-
trieval units leading to inaccurate retrieval results. (b)
Entity linking results cannot estimate essential query-
aware relationships. (c) Inability of advanced reasoning
such as table aggregation and multi-hop reasoning.

relevant tables and text to support retriever-reader
systems (Chen et al., 2020a; Ma et al., 2023, 2022).

Despite its importance, table-text retrieval is
challenging due to the need to bridge structured
tables and unstructured passages. Tables encode in-
formation in rows and columns, requiring structural
understanding, while passages follow a narrative
format. Effective retrieval demands resolving multi-
hop relationships across these distinct formats.

Existing methods have achieved some success
by employing either early or late fusion techniques
in their top-k retrieval. The early fusion attempts to
reduce the search space by grouping relevant docu-
ments before a query is presented. It pre-aligns a ta-
ble row with associated passages via entity linking,
creating a fused block as the retrieval unit (Chen
et al., 2020a; Huang et al., 2022; Kang et al., 2024).
In contrast, the late fusion aligns relevant table rows
and passages dynamically using query-based simi-
larity matching after the query is given. It returns
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a ranked sequence of evidence chains, where an
evidence chain refers to a pair consisting of a table
row and a passage (Ma et al., 2022, 2023).

However, the existing studies have several sig-
nificant limitations.

(1) Inadequate granularity of retrieval unit.
Early fusion strategy (Chen et al., 2020a; Huang
et al., 2022; Kang et al., 2024) constructs retrieval
units independently of the query, often including
query-irrelevant passages, which distorts similarity
calculations between fused blocks and queries. For
example in Figure 1(a), entity linking connects the
Grammy Award for Best Female Country Vocal
table with four surrounding passages, even though
only the information on the K. T. 0Oslin is rele-
vant (Figure 1(a)). In the late fusion strategy (Ma
etal., 2022, 2023), retrieving a single table segment
or passage may be partially relevant to a query, in-
curring the risk of retrieving incorrect tables. For
instance, during the first iteration of retrieval, the
system might retrieve the Grammy Award for Best
Rock Instrumental table instead of the correct
one. Both tables share overlapping terms such as
Grammy, Artist, and Work, causing ambiguity in
target identification.

(2) Missing query-dependent relationships.
The early fusion strategy (Chen et al., 2020a;
Huang et al., 2022; Kang et al., 2024) relies
on entity linking to predefine relationships be-
tween tables and passages, failing to capture query-
dependent links that might contain the information
necessary to answer the query. For instance, in Fig-
ure 1(b), the table 2012 MLS SuperDraft is early
fused with the entity University of Notre Dame.
However, when the question specifies the informa-
tion about school colors, it should be linked to
the Notre Dame Fighting Irish passage.

(3) Lack of advanced reasoning. Queries that
require complex reasoning, such as multi-hop or
column-wise aggregation, often demand advanced
logical inference beyond simple semantic similarity
with the query. Since previous approaches (Chen
et al., 2020a; Huang et al., 2022; Kang et al., 2024;
Ma et al., 2023, 2022) rely on semantic similarity,
they might fail to retrieve rows or passages iden-
tifiable through logical inference. For example, in
Figure 1(c), the query involves understanding the
most recent Segunda Liga Player of the Month
is Basilio Almeida, where the row with the latest
Year and Month combination has to be inferred.

To systematically address these limitations, we
first formalize the terms proposed in previous stud-

ies using a bipartite graph, where table segments
and passages are represented as two disjoint sets
of nodes, and the links between them are repre-
sented as edges. Therefore, the term fused block
used in the early fusion strategy (Chen et al., 2020a;
Huang et al., 2022; Kang et al., 2024) can be repre-
sented as a star (Diestel, 2024) centered on a node
of type table segment, with connected nodes of
type passage. Similarly, the evidence chain used in
the late fusion strategy (Ma et al., 2022, 2023) cor-
responds to an edge connecting a pair of nodes: one
of type table segment and one of type passage.

Based on this formalization, we propose HELIOS,
a novel graph-based retrieval consisting of three
stages: early fusion, late fusion, and LLM reason-
ing. Specifically, HELIOS adopts the following three
key ideas:

(1) Combined usage of early and late fusion.
We selectively leverage the advantages of both early
fusion and late fusion. Early fusion pre-aligns ta-
bles with related passages to mitigate the risk of
retrieving incomplete or partially relevant infor-
mation inherent in late fusion, while late fusion
dynamically resolves document relationships to ad-

dress early fusion’s reliance on predefined links.
(2) Graph refinement. We leverage LLMs to

perform further advanced reasoning over the re-
trieved graph, enabling deeper logical inference
beyond simple semantic similarity. For instance, in
Figure 1(c), when the SJPF Segunda Liga Player
of the Month table is retrieved, the LLM can per-
form aggregation to identify the most recent player
and conduct multi-hop reasoning to select the cor-
responding passage for Basilio Almeida.

(3) Granularity determination for each re-
trieval stage. In our retrieval pipeline, each stage
early fusion, late fusion, and graph refinement
serves a distinct purpose, necessitating the precise
determination of the appropriate operational units
for each. For the early fusion stage, we propose
an edge-level, multi-vector-based retrieval, striking
a balance between eliminating irrelevant contexts
in star graph retrieval and avoiding the partial in-
formation problem in node-based retrieval. In the
late fusion stage, we set the unit as an individual
node. We identify query-relevant nodes within the
graph produced by the early fusion stage so that
we can design the late fusion process to expand the
graph using only nodes closely aligned with the
query context. This approach mitigates the chal-
lenge where the earlier stage may retrieve nodes
irrelevant to the query. Finally, the graph refine-
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ment stage presents an expanded graph from late
fusion to the LLLM, reducing hallucination risks by
decomposing the graph into smaller star graphs.

We evaluate HELIOS and its competitors on the
OTT-QA (Chen et al., 2020a) and MultimodalQA
(MMQA) (Talmor et al.) datasets. Experimental re-
sults demonstrate that HELIOS significantly outper-
forms SOTA systems.

2 Related Work

2.1 Open-domain Question Answering

Open-Domain Question Answering (ODQA) aims
to answer factual questions using a large knowl-
edge corpus (Zhang et al., 2023). Standard bench-
marks like Natural Questions (Kwiatkowski et al.,
2019), TriviaQA (Joshi et al., 2017), and SearchQA
(Dunn et al., 2017) focus on single-hop queries,
where answers reside within a single passage of
unstructured text. Further advances were shown by
HotpotQA (Yang et al., 2018) and WikiHop (Welbl
et al., 2018), presenting challenging queries that re-
quire multi-hop reasoning across multiple passages.
However, these benchmarks consider only unstruc-
tured text and do not address multi-hop reasoning
over both structured tables and unstructured pas-
sages, which is essential in table-text retrieval tasks.
OTT-QA (Chen et al., 2020a) is the first ODQA
benchmark designed to support multi-hop reason-
ing between tables and text, requiring retrieval and
reasoning across both modalities.

2.2 Table-Text Retrieval

Table-text retrieval methods can be categorized
into early fusion and late fusion approaches. These
terms, originally used in multi-modal tasks such
as image-sentence retrieval, describe whether dif-
ferent modalities are encoded jointly or separately
(Wang et al., 2022; Snoek et al., 2005; Gadzicki
et al., 2020). Similarly, in table-text retrieval, early
fusion and late fusion approaches differ in whether
tables and text are linked before or after the re-
trieval process (Kang et al., 2024).

Early fusion approaches (Chen et al., 2020a;
Huang et al., 2022; Kang et al., 2024) pre-link
table rows with associated passages via entity link-
ing, forming fused blocks as retrieval units. While
convenient, this approach has two drawbacks: (i)
Fused blocks often include query-irrelevant pas-
sages, causing noisy retrieval and information loss
in block-level embedding. (ii) Offline pre-linked
blocks cannot adapt to query-dependent relation-
ships discovered during retrieval (Figure 1(b)). To

address (i), we adopt edges—a finer-grained re-
trieval unit—and employ late interaction during
retrieval to minimize information loss and avoid
large, noisy blocks. For (ii), we propose query-
relevant node expansion to incorporate relation-
ships that emerge in a specific query’s context.

Late fusion approaches (Ma et al., 2022, 2023)
dynamically form table-passage connections online.
Although more flexible, they must consider many
table-passage combinations, typically handled by
beam search, which can cause error propagation.
Our approach mitigates this using edge-based late
interaction retrieval, which captures richer contex-
tual relationships by pre-linking table segments
with passages offline, enabling more accurate seed
document retrieval.

Both early and late fusion approaches rely pri-
marily on semantic similarity for retrieval, limiting
their ability to retrieve table segments and passages
requiring advanced reasoning (e.g., column-wise
aggregation, multi-hop inference), as shown in Fig-
ure 1(c). To address this, we propose a star-based
LLM refinement step, leveraging LLMs for logical
inference to refine retrieval results.

DRAMA (Yuan et al., 2024) and HOLMES
(Panda et al., 2024) also adopt graph-based multi-
hop QA, similar to our approach. However, both
methods operate in a constrained setting with given
evidence, unlike our open-domain setup. GTR
(Wang et al., 2021) and MGNETS (Chen et al.,
2021) improve table encoding using graph-based
methods, addressing a problem orthogonal to our
focus. In contrast, our work centers on retrieving
both tables and text based on their semantic rela-
tionships.

3 Preliminaries

3.1 Problem Formulation

Table-text retrieval is involved from a retrieval cor-
pus C, which comprises two distinct sets: a col-
lection of passages Cp = {P(M) ... P} and
a collection of tables Cr = {T(M, ..., T} A
passage is defined as a sequence of tokens P, rep-
resenting unstructured text. A fable is a structured
matrix 7', consisting of cells T ;, where i and j
indicate the row index and the column index, re-
spectively. Each cell T; ; may contain a number,
date, phrase, or sentence. We define a document
as either a passage or a table. Given a query ¢, the
objective of table-text retrieval is to retrieve from
corpus C a ranked list of documents such that the
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document containing the answer span a is posi-
tioned among the top results.

We split a table into multiple table segments, as
commonly used in existing studies. Since a single
table can easily exceed the token limits of language
models, a table 7" is combined with its header to
form a list of table segments 7' = [S(D), ..., §(™)]
(Chen et al. 2020a). This process results in (i) a
corpus C composed of table segments Cg and pas-
sages Cp (i.e., C = Cg U Cp) and (ii) a mapping
M : Cg — Cr to associate table segments with
their original table.

3.2 Table-Text Retrieval as Graph Retrieval

We adopt a graph representation, denoted by G' =
(V, E,®,T", A), to generalize various methods used
in existing studies. Here, V' is the set of vertices
corresponding to a table segment or a passage, and
F is the set of edges representing relationships be-
tween (table segment, passage) pairs. The mapping
® : V — {table segment, passage} maps each
node to its type, while I' maps a node to its at-
tributes, such as the text of a passage or the matrix
of table structures. The mapping A : £ — R maps
each edge to its score.

The corpus can be expressed as the initial graph
Ginit = (Vinit, 0, ®, T, Ajnit), where each node in
Vinit one-to-one corresponds to a table segment
or passage in C. Early fusion generates table-text
relationships via entity linking and updates Gy
before a query ¢ is presented. Given g, late fu-
sion dynamically generates query-dependent table-
text relationships to update G;,,;+. Finally, we re-
trieve a query-relevant edge-scored bipartite graph
Gy = (Vg, Eq, ®,T,Ay) from Gypje. This prob-
lem is often interpreted as ranking edges &, from
all possible edges, as retrieved results are fed to a
reader with limited context size (Ma et al., 2022,
2023). &, is typically obtained by sorting each edge
e in G using its edge scores A, (e).

4 Proposed Method

We propose HELIOS, a novel graph-based retrieval
framework that combines the strengths of early fu-
sion, late fusion, and LLM reasoning. As shown
in Figure 2, it operates in three stages: (i) Edge-
based Bipartite Subgraph Retrieval retrieves
edges from a bipartite data graph constructed via
early fusion and integrates them into a single bipar-
tite subgraph. (ii) Query-relevant Node Expan-
sion enhances the retrieved subgraph by incorpo-
rating additional nodes through further retrieval.

(iii) Star-based LLM Refinement refines the ex-
panded graph through aggregation and multi-hop
reasoning using the LLM.

4.1 Edge-based Bipartite Subgraph Retrieval
HELIOS initiates its process with the retrieval of
a bipartite subgraph through two key steps: early
fusion and edge retrieval.

(1) Early fusion: This step is performed offline,
before a query is given. A bipartite data graph GG is
constructed by generating edges from G}, which
initially has no edges. Edge generation is composed
of entity recognition and entity linking, following
prior methods (Ma et al., 2022, 2023). Edges are
generated between passage nodes and table seg-
ment nodes, resulting the generated data graph G4
to be a bipartite graph. G is then indexed in an
edge-wise manner. Each edge e = (.5, P) is first
linearized into a token sequence x.

x = [ Linearize(I'(S)); I'(P) | (1)
Then, x is embedded into a sequence of vectors.
X = fo(z) € Rlaxd 2)

where [, represents the length of a linearized edge
x. We adopt the multi-vector encoder ColBERTv?2
(Santhanam et al., 2021) for f. to create fine-
grained embeddings. That is, HELIOS embeds
edges, a larger unit compared to the node-level
embeddings used in previous methods (Ma et al.,
2022, 2023). Since edges contain more tokens than
nodes, fine-grained embeddings are essential to re-
duce information loss.

(2) Edge Retrieval: When the query is given, we
first identify the query-relevant edges by leveraging
the semantic similarity between the query and edge
embeddings.

Q= fe(q) € Rl 3)

The similarity is then calculated between the query
and each indexed edge.

lq
sim(q, e; fo) = Z max QZ-XJT 4
— FE[L,1z]
We then select the top-k; edges that show the
highest score sim(q, e; f.), measuring query-edge
alignment. The selected edges are further passed
to a fine-tuned all-to-all interaction reranker g,
which performs a more detailed similarity evalua-
tion. This identifies the most contextually relevant
edges, allowing us to identify the top-ko query-
relevant edges (k2 < k1). The fine-tuning process
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Figure 2: Overview of HELIOS: The initial graph G, is early-fused to generate a graph G4. Each node and edge of
G4 are embedded. (1) The edges of G4 are retrieved using the query ¢, then integrated into a candidate bipartite
subgraph G.. (2) The most query-relevant nodes in G are identified as seed nodes. New nodes from G;,,;; are
expanded from the seed nodes, forming an expanded graph Gj. (3) LLM performs aggregation over restored tables
to identify new relevant table rows, and then eliminates irrelevant passages.

for f. and g, including training dataset construc-
tion, is detailed in Appendix § B.1.

The resultant edges are integrated into the bi-
partite subgraph G. = (V,, E., ®,T", A.). Specifi-
cally, if there are duplicate nodes contained in the
retrieved edges, those nodes are merged to form
a single graph. G serves as the candidate bipar-
tite subgraph, which becomes the foundation for
further expansion and refinement. We save the sim-
ilarity score for each edge in the score mapping
function A., which is later used to sort the edges
based on their relevance to the query in Section 4.3.

4.2 Query-relevant Node Expansion
Query-relevant node expansion process aims to
identify additional query-relevant edges, including
the edges that have not been present within G 4. We
perform the expansion process at the node level,
which is the most fine-grained level. This is to ad-
dress the issue that early fusion inevitably includes
query-irrelevant nodes in the candidate subgraph.
We formalize the process as finding a set of edges
that meet the following objective function:

argmax  p(u,v|q) = p(v|u,q)p(ulq) (5)
(uv)EE*AUEV,

Here, u represents a node in the candidate graph
G, and v represents a node adjacent to w in the
complete bipartite graph G*. The complete bipar-
tite graph G* = (Cinit, E*, ®, T, Ajpit) contains
all possible edges between table segments and pas-
sages. Naively solving this objective requires cal-
culating the similarity score between the query and
every possible edge in the complete graph, which is
infeasible. To address this, we adopt a beam search
approach and model it as a two-step process, as
illustrated in Figure 3.

(1) Seed node selection: This step composes
the first iteration of the beam search, correspond-
ing to finding the set of nodes that show the high-
est p(ulq). We calculate p(u|q) for each u € V,

to identify the top-b (i.e., beam width) nodes that
contain the most relevant information to the query.
The probability p(u|q) is determined by calculat-
ing the semantic similarity between the query and
each node u in G,, then normalizing the scores
using a softmax function. This similarity is com-
puted through a fine-tuned all-to-all interaction-
based node reranker g,,.

(2) Seed node expansion: This step composes
the second iteration of the beam search, aiming to
find the set of edges (u, v) which show the high-
est p(u, v|q). It is done by computing p(v|u, q) for
each node v connected to a seed node w in the com-
plete bipartite graph G*. This conditional probabil-
ity is calculated using the expanded query retrieval
technique (Xiong et al.). In this technique, the score
function is expressed based on the expanded query
as sim([q; T'(u)], v), and it is calculated by two late
interaction models: sim([g; I'(u)], v; fp—s) for a
table-segment-typed expanding node and a passage-
typed seed node, and sim([q; '(u)], v; fs—p) for
the opposite. The calculated scores are normalized
using a softmax function to compute p(v|u, q). Fi-
nally, p(u,v|q) is calculated for the (u,v) pairs
following Equation 5, and the top-b edges with
the highest scores are finally selected. The (u, v)
pairs are added to E. along with the nodes v to
V., forming the expanded bipartite graph G; =
(Vi, E;, ®,T', A;). The scores for each new edge
are calculated using the reranker g, as used in § 4.1.
Detailed explanation for fine-tuning g, fp—.s and
fs—p can be found in Appendix § B.2 and § B.3.

4.3 Star-based LLM Refinement

The main goal of this step is to retrieve query-
relevant information which is challenging to find
using semantic similarity alone, by leveraging the
logical inference capabilities of LLMs. Selecting
the optimal format or unit for presenting the graph
G to the LLM is non-trivial. We explored two ap-
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Figure 3: The overall procedure of query-relevant node expansion. The beam width b is set as 2 in this example. The

purple-colored nodes indicate the selected seed nodes.

proaches: (i) providing the entire graph G; in a
single prompt to return the relevant set of nodes
and (ii) decomposing (5; into star graphs, with each
star graph generating its own set of relevant nodes.
The latter approach proved to be 12.4% more effec-
tive, leading us to adopt star graphs as the unit for
logical inference (§ 5.3). An overview of the pro-
cess and few-shot prompts is in Appendix C and § 1.
The process consists of two phases: column-wise
aggregation and passage verification.

(1) Column-wise Aggregation: This step aims
to infer the correct result rows for table aggregation
operations, as exemplified in Figure 1(c), making
it possible that the corresponding rows exist in (5.
Since not every query requires aggregation, we
first prompt the LLM to determine whether the
input query necessitates an aggregation operation.
If the query is classified as an aggregation query, it
first restores the original from each table segment
using mapping function M. The restored tables
are then provided to the LLM in the format of star
graph along with the query. The LLM performs the
aggregation and returns the rows corresponding to
the aggregation result. The returned rows (i.e., table
segments) are subsequently added to (G; along with
their associated passages to generate G,.

(2) Passage Verification: The edges of G, may
contain lots of hard negatives, as they comprise
the edges retrieved from the edge retrieval, node
expansion and column-wise aggregation step. The
passage verification step aims to identify the pas-
sages relevant to answering the query. Similar to the
column-wise aggregation step, we provide G to
the LLM in the form of star graphs, units that con-
tain multi-hop relationships. The LLM performs
a binary verification to determine whether each
edge is relevant to the query, without recalculating
their scores. As a result, query-irrelevant edges are
removed, yielding a refined edge-scored graph G,.

We transform the graph G/, into a sequence of

edges, as our reader requires a serialized token
sequence as input. We use the mapping function
A, to sort each edge e by its similarity to the query
Ac(e), and the top k edges are returned.

S Experiments

Hardware and Software Settings. We conducted
our experiments on a machine with AMD EPYC
7313 CPU and 2TB of RAM with the OS of Rocky
Linux release 8.7 and 4 A100-80GB GPUs.

Competitors. HELIOS is compared with the
SOTA methods. The early fusion methods in-
clude Fusion-Retriever (Chen et al., 2020a),
OTTeR (Huang et al., 2022), and DoTTeR (Kang
et al., 2024). The late fusion approaches include
Iterative-Retriever (Chen et al., 2020a), CORE
(Ma et al., 2022), and COS (Ma et al., 2023). Addi-
tionally, we include HOLMES (Panda et al., 2024), a
graph-based multi-hop QA method originally de-
signed for a distractor setting, in which a question-
answering system is presented with exactly 10 can-
didates before producing an answer.

Datasets. We conduct experiments on two
datasets: OTT-QA (Chen et al., 2020a) and
MultimodalQA (MMQA) (Talmor et al.). OTT-QA
serves as the primary benchmark, as it is the only
dataset designed for open-domain QA over tables
and text, comprising 400K tables, SM passages,
and 42K training QA pairs, with 2K QA pairs each
for development and testing. MMQA is a multi-hop
QA dataset spanning images, passages, and tables.
While not fully aligned with our task, we use it as a
supplementary benchmark to assess generalizabil-
ity. We exclude image-based questions and conduct
experiments in an open setting using its full corpus
(10K tables, 210K passages, and 1.3K QA pairs)
without reference candidates. More detailed experi-
mental settings are in Appendix § D.
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Model AR@2 AR@5 AR@10 AR@20 AR@50 | nDCG@50 | HITS@4k
Iterative Retriever - - - - - - 27.2
Fusion Retriever - - - - - - 52.4
OTTeR! 314 49.7 62.0 71.8 82.0 25.9 70.1
DoTTeR! 31.5 51.0 61.5 71.9 80.8 26.7 70.3
CORET 353 50.7 63.1 74.5 83.1 254 77.2
cost 44 4 61.6 70.8 79.5 87.8 33.6 81.8
COS w/ ColBERT & bgef 49.6 68.2 78.7 85.0 91.7 36.5 85.9
DoTTeR + COS + LLMT 50.0 62.4 70.0 76.2 84.7 34.7 -
HELIOS 63.3 76.7 85.0 90.4 94.2 47.0 91.8

Table 1: Retrieval accuracy on OTT-QA’s dev set. Results marked with { indicate reproduced values.

Model [AR@2 AR@5 AR@10 AR@20 AR@50]/EM F1
cost 507 597  67.1 724 795 |54.4 63.7
HELIOS| 70.5 77.8 810 826 862 |59.6 69.1

Table 2: Retrieval and end-to-end QA accuracy on the
MMQA dev set.

5.1 Main Results

We evaluate retrieval accuracy using top-k Answer
Recall (AR@k), nDCG@FE, and Hits@4K, along-
side end-to-end performance metrics: Exact Match
(EM) and F1 score. AR @k measures the propor-
tion of queries where the correct answer appears in
the top-k retrieved edges (Ma et al., 2023), while
nDCG@FEk measures the ranking quality consider-
ing both the relevance and the position of the re-
trieved edges. Hits@4K evaluates whether the an-
swer span remains within the top 4096 tokens after
linearizing ranked edges (Chen et al., 2020a). To an-
alyze the impact of retrieval accuracy on question-
answering performance, we conduct end-to-end
evaluations using EM and F1 scores. We select
k € {2,5,10,20,50} based on evaluation proto-
cols of state-of-the-art early and late fusion models
(Kang et al., 2024; Ma et al., 2023). If £, contains
fewer edges than the retrieval target, we incorporate
edges removed during the star-based LLM refine-
ment stage to ensure a comprehensive assessment.

Table 1 shows the retrieval accuracy of HELIOS
on OTT-QA’s development set. HELIOS consistently
outperforms all competitors on AR@Fk across dif-
ferent k values. It outperforms the state-of-the-art
COS model by an average of 19.0% in AR, with
the performance gap widening as k decreases. At
k = 2, HELIOS achieves as much as 42.6% higher
answer recall than COS. This improvement is fur-
ther reflected in nDCG @50, where HELIOS ex-
hibits a 39.9% gain. Additionally, the Hits@4K
metric shows a 12.2% improvement over COS. We
report an enhanced version of COS, denoted as COS
w/ ColBERT & bge, which incorporates Co1BERT
retrievers and a bge reranker. Since HELIOS em-

. Dev Test
Algorithm EM  F1 | EM Fl
OTTeR 37.1 428 | 373 43.1
DoTTeR 37.8 439|359 42.0
CORE 49.0 557|473 54.1
Cos 56.9 632|549 61.5
HELIOS 59.3 65.8 | 57.0 64.3

Table 3: End-to-end QA accuracy on OTT-QA.

ploys late-interaction retrieval, which generally
outperforms single-embedding retrievers, we en-
sure COS uses the same retriever and reranker for a
fair comparison. While this modification improves
nDCG @50 by 8.6% over the original COS, HELIOS
still outperforms the enhanced version of COS by
a substantial margin of 28.8%. We also evaluate
a baseline that stacks DoTTeR (the SOTA in early
fusion), COS (the SOTA in late fusion), and a full-
graph prompting approach for LLM-based reason-
ing to test whether simply combining strong mod-
ules yields significant performance gains. Despite
these strong individual components, this combina-
tion significantly underperforms HELIOS by 19.3%
in AR@k and 35.4% in nDCG@50. This high-
lights that the key novelty of HELIOS lies in how it
addresses the inherent limitations of each retrieval
module and integrates them using different lev-
els of granularity—rather than merely stacking the
methods together.

Table 2 shows the retrieval accuracy and end-
to-end QA performance of HELIOS and COS on the
MMQA development set. HELIOS maintains its supe-
rior performance, achieving an average improve-
ment of 20.9% in AR across all k£ values. To fur-
ther assess robustness, we measured end-to-end
QA accuracy using GPT-4o as the reader with each
method’s top-50 retrieved edges as input. HELIOS
demonstrates substantial gains over COS, with im-
provements of 9.6% in EM and 8.5% in F1. We
claim that this result indicates the robustness of
HELIOS across different datasets.
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Figure 4: End-to-end QA accuracy comparison across
different readers for dev set of OTT-QA

FiE-330M FIE-330M
(Fine-tuned) (Fine-tuned)

Algorithm | EM F1
HOLMEST 303 42.0
HELIOS 571 66.4

Table 4: QA Accuracy Comparison with HOLMES in a
distractor setting adapted from OTT-QA.

Table 3 shows the end-to-end QA accu-
racy of HELIOS and COS on OTT-QA’s develop-
ment and test sets. Following COS, we used a
Fusion-in-Encoder (FiE) model (Kedia et al.,
2022) fine-tuned on the OTT-QA dataset. For a fair
comparison, we provided the reader with 50 edges,
matching the number of edges used in COS. The
results indicate that compared to the COS model,
our approach improved both EM and F1 scores by
4.2% and 4.1% on the development set, as well as
by 3.8% and 4.6% on the test set, respectively.

Figure 4 presents the end-to-end QA accu-
racy of HELIOS, COS, and COS w/ ColBERT &
bge across different reader models, including
Llama-3.1-7@B-Instruct (Dubey et al., 2024)
and GPT-40 (Hurst et al., 2024). For each algorithm,
we report the results of the value of & that yields the
highest performance, where k € {2, 5,10, 20, 50}.
Detailed results for other values of k are pro-
vided in the Appendix § D.3. HELIOS improved the
performance of all readers, achieving an average
EM score improvement of 7.5% and an average
F1 score increase of 6.6% compared to COS w/
ColBERT & bge. Through these results, we claim
that our well-retrieved documents are capable of
enhancing the effectiveness of various readers. Ex-
amples of the prompts for the readers are in Ap-
pendix § L.

We also compare HELIOS with HOLMES, a graph-
based multi-hop QA method tailored for distractor
settings, to ensure a fair evaluation against exist-
ing graph-based approaches. Since OTT-QA natively
supports only the open-domain setting, we adapt
it by constructing, for each question, a candidate
set consisting of 10 items: the gold table, the gold
passage, and the top eight hard negatives retrieved
by HELIOS.

Algorithm AR@2 AR@5 AR@10 AR@20 AR@50 nDCG@50 EM F1
HELIOS 633 76.7 85.0 90.4 94.2 47.0 59.3 65.8
w/ Finetuned SLR| 632 768  85.1 90.3 94.8 47.6 59.4 65.9
w/o QNE 625 747 82.7 88.4 92.7 45.1 56.9 63.2
w/o SLR 60.0 752 847 90.1 94.6 46.5 59.0 65.7

Table 5: Retrieval accuracy of OTT-QA’s dev set for
HELIOS’s design factors.

The results in Table 4 show that HELIOS outper-
forms HOLMES by 88.4% in EM and 58.1% in F1.
We attribute this substantial performance gap to
the following key factors: (1) Seed Node Selection:
HOLMES selects initial nodes based solely on named
entities, which can overlook relevant, non-entity-
centric context. HELIOS, by contrast, employs an
edge-level, multi-vector retrieval strategy, captur-
ing finer-grained relationships between tables and
passages and leading to more accurate seed node re-
trieval. (2) Question-Conditioned LLLM Inference:
HOLMES extracts triples via an LLM without con-
ditioning on the question, often missing critical
details. HELIOS leverages the reasoning ability of
its LLM at inference time, ensuring that only query-
relevant information is extracted and processed. (3)
Preserving Table Structure: HOLMES does not retain
the structural nuances of tables when extracting
triples, which hinders table-specific reasoning (e.g.,
column-wise aggregation). HELIOS, however, ex-
plicitly performs column-wise aggregation in its
SLR module, supporting more complex tabular rea-
soning.

5.2 Ablation Study

We performed an ablation study to assess the con-
tribution of query-relevant node expansion (QNE)
and star-based LLM refinement (SLR) to retrieval
accuracy. In w/o QNE, we removed the QNE and
HELIOS passes the candidate bipartite subgraph G.
directly to the SLR. In w/o SLR, the SLR was
removed and HELIOS decomposes the expanded
graph (5; into a list of edges.

As in Table 5, we found that removing the QNE
module led to an average performance degradation
of 2.1% in AR across all k values and 4.2% in
nDCG@50. Additionally, excluding the QNE mod-
ule resulted in a 4.2% decrease in EM and a 4.1%
decrease in F1 scores. This highlights QNE’s role
in generating query-relevant edges missed by of-
fline entity linking. For the w/o SLR, we observed
a noticeable drop in AR@2, AR@5, AR@10,
AR @20, nDCG@50, EM score, and F1 score, with
accuracy decreases of 5.5%, 2.0%, 0.4%, 0.3%,
1.1%, 0.5%, and 0.2%, respectively. This suggests
that SLR helps accurately identify query-relevant
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Retrieval Unit AR@2 AR@5 AR@10 AR@20 AR@50|nDCG @50 Algorithm Execution Time (s) | nDCG@50
Node 293 474 588 685 795 238 DoTTeR 0.08 26.7
Star Graph 379 574 669 764 845 28.5 CORE 4.13 25.4
Edge 49.1 631 706 776 851 34.2 C0s 375 33.6
Table 6: Retrieval accuracy across different units COS w/ ColBERT & bge 346 36.5
HELIOS 5.14 47.0
HELIOS w/ Finetuned SLR 4.76 47.6
w/o SLR 2.16 46.5
nodes in complex queries requiring logical infer- ~ w/o (SLR & Edge Reranker) 111 42.1

ence, particularly when k is small. Interestingly, for
AR@50, w/o SLR slightly outperformed HELIOS
by 0.4%, likely due to LLM hallucinations. Specif-
ically, we observed 12 instances where the LLM
failed to select the correct passage despite being
provided with the ground truth passage. We present
the qualitative analysis results in Appendix § E.

To mitigate hallucinations, we fine-tuned the
SLR module using a training dataset synthesized
with GPT-4o0, incorporating tasks such as aggre-
gate query detection, column-wise aggregation, and
passage verification. In addition, we modified the
prompt to favor false positives over false negatives
by explicitly instructing the model to list passages
even if only partially relevant. These strategies en-
abled the fine-tuned SLR to correctly identify the
passage in 11 out of 12 previously failed instances.
In the remaining case, the model selected the ap-
propriate passage, but it was missing from the pro-
vided annotations. Further details are provided in
Figure 9(c) of Appendix §E, and the fine-tuning
process is described in Appendix §B.4.

5.3 Impact of Granularity to Accuracy
We analyzed the impact of retrieval unit granularity
on accuracy by comparing three versions of our sub-
graph retriever: (i) Node retriever: Retrieves table
segments first, then links related passages via en-
tity linking. (ii) Star graph retriever: Retrieves star
graphs and integrates them into a graph. (iii) Edge
retriever: Retrieves edges and integrates them to
construct a graph. To ensure a fair comparison, we
used the Co1BERTV2 baseline without fine-tuning.
As shown in Table 6, edge-based retrieval consis-
tently outperformed the others. On average across
all k values, it exceeded star graph- and node-based
retrieval by 6.9% and 12.4%, respectively, and for
nDCG @50, by 20% and 43.7%. This highlights
edge-based retrieval’s ability to provide richer in-
formation while minimizing information loss, strik-
ing an effective balance compared to the others.
We further evaluated two refinement strategies
using an LLM: a full graph prompt versus in-
dividual prompts for each star graph. The latter,
which reduced irrelevant information in prompts,
improved nDCG@50 by 12.4% over the full graph

Table 7: Algorithm execution time comparison

setting (41.8), reducing hallucinations risks.

5.4 Algorithm Execution Time

As shown in Table 7, HELIOS finds a sweet spot
between the increase in algorithm runtime (1.37X)
and the increase in retrieval accuracy (39.9%
nDCG@50). We further found out that fine-tuning
LLM used in the SLR module can reduce the al-
gorithm runtime to 1.26 x that of COS, while boost-
ing nDCG@50 to 41.7%. Interestingly, runtime of
HELIOS can be reduced to 0.57 x that of COS by
removing the SLR module, yet it shows a 38.4%
nDCG@50 gain. We attribute this to HELIOS em-
ploying a beam search algorithm (beam width
b = 10), whereas COS performs expanded query
retrieval on all 200 retrieved table segments, corre-
sponding to have a beam width of 20 times larger
size.

To provide a clearer view of HELIOS’s accu-
racy—efficiency trade-off, we additionally compare
it against DoTTeR, a single-vector retriever fine-
tuned directly on OTT-QA. While DoTTeR achieves
end-to-end latency below 0.1s, its nDCG @50 score
is markedly lower than that of HELIOS. To push HE-
LIOS’s end-to-end latency toward the one-second
mark, we ran an additional ablation in which we
removed the SLR module and, in a second step, the
edge re-ranker. The streamlined variant processes a
query in just 1.11s, a delay short enough that users
perceive the system as “instant,” yet it still delivers
a 57.7% nDCG @50 gain over DoTTeR.

6 Conclusion

We presented HELIOS, a novel table-text retrieval
method that harmonizes the strengths of both early
and late fusion techniques while incorporating
LLM reasoning. It addresses the limitations of com-
petitors by introducing a multi-granular retrieval
system that optimally balances granularity across
retrieval stages. Experiments on OTT-QA show
that it surpasses SOTA models, achieving a 42.6%
AR @2 improvement and a 39.9% nDCG @50 gain.
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7 Limitations

Our approach currently focuses on the connections
between table segments and passages. In future
work, we aim to extend our method to more gen-
eral types of connections between nodes of arbi-
trary modalities, such as images and inter-table
links. Concretely, we are actively exploring exten-
sions to HELIOS’s graph construction and traver-
sal mechanisms to incorporate image-based nodes
alongside text and tables. At this stage, we convert
image inputs into text representations using vision-
language models (e.g., Qwen2.5-VL 7B), and treat
the resulting summaries as nodes. Even with this
simple transformation, preliminary experimental
results indicate that HELIOS already outperforms
existing multimodal SOTA retrievers. We plan to
further develop this line of research and present
it in a dedicated future publication. Moreover, as
shown in Section 5.2, the effectiveness of our SLR
module can be limited by LLM hallucinations. An
interesting direction for future work is to explore
self-evaluation techniques (Wang et al., a; Zhang
et al., 2024b)—for instance, computing confidence
scores and re-checking low-confidence outputs—to
further reduce any remaining hallucinations.
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A Pseudocode and Schematic Workflow

Algorithm 1: HELIOS Inference Pipeline

Input: Query g; early-fused graph Gg; edge retriever
fe; edge reranker g.; node reranker gy,;
expanded-query retrievers fr_s, fsop;
star-based LLM Refiner R ; beam width b;
final list size k.

Output: Ranked edge list E;.

1 Eeand + fe(q,Ga) // retrieve top-ki edges
2 Ecand < ge(q, Ecana) // rerank — top-k2
Ge < (VeyEeand) // candidate subgraph

w

4 S < top-bnodes by gn(q,Ve) // seed selection
s foreach v € S do

6 | qu<[¢D(u)]

7 if u is a passage then

8 | Nu < fros(qu,Ga)

9 else

10 | Nu < fssp(qu,Ga)

1 Add edges {(u,v) | v € Ny} to Ge

12 Ge — GC

13 isAgg + R..DETECTAGG(q)

14 Decompose G/ into stars {S; }

15 Gy +— @

16 foreach S; do

17 | G4+ GqUR.REFNE(S;, Ga, agg = isAgg)
18 E, < top-k edges in G, (sorted by score)

19 return F,

To enhance the clarity of our framework, we pro-
vide both a pseudocode and a schematic workflow.
The pseudocode in Algorithm 1 details the step-by-
step inference process, encompassing edge-based
bipartite subgraph retrieval, query-relevant node
expansion, and star-based LLM refinement. Ad-
ditionally, Figure 5 offers a high-level schematic
view of the overall workflow.

B Training Scheme

B.1 [Edge Retriever and Reranker

The training scheme for our encoder f. follows the
methodology outlined in Col1BERTv2 (Santhanam
et al. 2021), leveraging a combination of in-batch
negative loss and knowledge distillation loss to
train the model. Specifically, the in-batch nega-
tive loss treats the edges corresponding to other
queries within the same batch as negative sam-
ples. This approach calculates a contrastive loss
between the positive and negative edges. In con-
structing the training dataset, it is crucial to have
both positive and negative edges for each query. To
define the positive edge, we use passages contain-
ing the answer and the associated table segments
as ground truth and denoted as x 4. Conversely,
negative edges are constructed by combining hard
negative tables and passages from prior work (Ma

et al. 2023) with in-batch negative edges and are
denoted as n(q). The contrastive loss L; is repre-
sented as follows:

exp(s(q, z41))
R PR o B semrT e )

Q]
The knowledge distillation process refines the edge
encoder using a teacher-student model setup. The
distillation loss is computed based on the KL di-
vergence between the score distribution generated
by the teacher model and the training encoder. The
training was conducted for 1 epoch with a batch
size of 512 and a learning rate of le-5. We em-
ployed a cosine learning rate scheduler with 40
warm-up steps.

Here, the teacher model is the all-to-all interac-
tion reranker g, fine-tuned with the contrastive loss,
which serves as a more precise reference for edge
relevance. This method ensures that the encoder
learns from a more sophisticated model, improving
its capacity to accurately rank edges based on the
query. The training was conducted for 1 epoch with
a batch size of 96 and a learning rate of 2e-4. We
employed a cosine learning rate scheduler with a
warmup ratio of 0.1.

B.2 Node Reranker

The training method for the node reranker g, is
identical to that of the edge reranker g.. For con-
structing the training dataset, we utilize the OTT-QA
dataset (Chen et al., 2020a). Positive nodes are
defined as those directly connected to the nodes
that contain the correct answer in OTT-QA. In con-
trast, negative nodes are selected from the set of
nodes retrieved through edge-based bipartite sub-
graph retrieval, excluding any nodes connected to
the answer-containing nodes. The training was con-
ducted for 1 epoch with a batch size of 96 and a
learning rate of 2e-4. We used a cosine learning
rate scheduler with a warm-up ratio of 0.1.

B.3 Expanded Query Retrievers

The training scheme for our expanded query re-
trievers fs_,p, fp_ s also follow the methodology
outlined in Co1BERTv2 (Santhanam et al. 2021). To
construct the training dataset, we generated triples
consisting of the expanded query, positive node,
and negative node. Expanded queries were created
by incorporating nodes that are connected to the
node containing the answer. Positive nodes con-
sist of the nodes that contain the answer. Negative
nodes are constructed using hard negative nodes as
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Figure 5: High-level schematic workflow of HELIOS.

outlined in prior work (Ma et al. 2023). The train-
ing was conducted for 1 epoch with a batch size
of 512 and a learning rate of le-5. We employed a
cosine learning rate scheduler with a 40 warmup
steps.

B.4 Star-based LLM Refinement

We fine-tuned the Llama-3.1-Instruct 8B model
(Dubey et al., 2024) using an instruction dataset
synthesized with GPT-4o (Hurst et al., 2024). The
dataset includes tasks for aggregate query detection,
column-wise aggregation, and passage verification,
and training was conducted for 1 epoch with a
batch size of 128 and a learning rate of 2e-5. We
employed a linear learning rate scheduler with a
warmup ratio of 0.03.

To construct the training data, we applied edge-
based bipartite graph retrieval and query-relevant
node expansion on the OTT-QA training set, pro-
viding the results to GPT-4o for output generation.
The final dataset was formed by combining these
outputs with zero-shot prompts. Due to API cost
constraints, we sampled 25% of the OTT-QA train-
ing dataset, resulting in 1,655 samples each for
query detection and column-wise aggregation and
7,010 samples for passage verification.

C Star-based LLM Refinement
Supplementary

In the Star-based LLM Refinement stage, the ex-
panded graph from the Query-relevant Node Expan-
sion (QNE) step undergoes further enhancement
through the reasoning capabilities of LLMs. This
stage consists of two primary operations: (1) ag-
gregation of query-relevant table segments and (2)
verification of query-irrelevant passages. The de-
tailed process is illustrated in Figure 6.

D Experiment Supplementaries

D.1 Implementation Details

In our edge generation step (§ 4.1), we used
the same named entity recognition and entity
linking models used by COS (Ma et al., 2023).
For the late-interaction edge retriever f. (§ 4.1)
and the expanded query retrievers fp_,g and
fs—p (§ 4.2), we employed ColBERTv2 (San-
thanam et al., 2021) as the baseline model. For
the all-to-all interaction edge reranker g. (§ 4.1)
and node reranker g, (§ 4.2), we used the
bge-reranker-v2-minicpm-layerwise (BAAI,
2024), specifically utilizing layer 24 as the base-
line model. Lastly, for star-based LLM refinement
(§ 4.3), we used L1lama-3.1-8B-Instruct (Dubey
et al., 2024) as the large language model. In our ex-
periments, the value of k; for the edge retriever f,
was set to 400. Since COS selects the top-200 nodes
as seed nodes, we fixed ks for the edge reranker g,
to 100 to ensure a fair comparison. We evaluated
HELIOS on the OTT-QA’s development set (2,214
examples) using four A100-80GB GPUs, which
required approximately 3.4 hours.

D.2 Parameter Sensitivity of Retriever

We explored the impact of varying beam width b on
retrieval accuracy in terms of AR@50. The beam
width directly influences the number of expanded
nodes (§ 4.2). We experimented with beam widths
of 0, 2, 5, 10, 25, 50 and measured the correspond-
ing changes in AR@50.

Figure 7 illustrates the change in AR@50. We
observed that AR@50 was improved by 1.7% as
the beam width monotone increased from O to
10. This indicates that larger beam widths lead to
more accurate node augmentations by performing a
more exhaustive search across the expanding node
space. Interestingly, when the beam size increased
to 50, AR@50 decreased slightly by 0.4% com-
pared to beam size 10. This drop may be due to
LLM hallucinations in the star-based LLM refine-
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Figure 6: The overall process of star-based LLM refinement for queries classified as aggregation queries. Table
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Figure 8: End-to-end QA accuracy comparison across
different top-k values on the OTT-QA dev set.

ment (SLR) module, where irrelevant edges were
added to GGy, causing the SLR to fail in selecting
the correct query-relevant nodes. This observation
highlights the importance of selectively expanding
only the most probable nodes within the query-
relevant node expansion module.

D.3 Parameter Sensitivity of Reader

Figure 8 presents the end-to-end QA ac-
curacy of HELIOS, COS, and COS w/
ColBERT & bge across different reader mod-
els—Llama-3.1-70B-Instruct (Dubey et al.,
2024) and GPT-40 (Hurst et al., 2024)—with
varying top-k values (kK € 2,5,10,20,50).
Due to budget constraints, we sampled 10%

(221 out of 2,214) of the development set’s
QA pairs when evaluating accuracy variations
for GPT-40. As a result, HELIOS consistently
achieves the highest AR@Fk across all &k values.
It improves the average EM score by 15.5% for
Llama-3.1-70B-Instruct and 9.2% for GPT-40
compared to COS w/ ColBERT & bge.

D.4 Error and Reader Impact Analysis

While HELIOS achieves high retrieval accuracy,
there remains room for improvement in end-to-
end QA performance. To investigate the gap be-
tween retrieval and QA accuracy, we performed
an error analysis on 408 OTT-QA questions for
which HELIOS successfully retrieved the gold evi-
dence but still produced incorrect answers (F1 = 0).
We then re-tested these questions using DeepSeek
R1 (Liu et al., 2024), a stronger long-context rea-
soning model, with the same retrieved evidence.
Remarkably, the average F1 improved from O to
29.8, confirming that a more capable reader can
better leverage the available evidence, especially
for multi-hop questions, and further reduce halluci-
nations. These findings highlight the potential for
additional gains if a more advanced QA model is
used on top of HELIOS’s strong retrieval.

D.5 Detailed Breakdown of Offline Overhead

Our method involves an offline stage for graph
construction and retriever fine-tuning. The entire
offline pipeline took approximately 49 hours, with
graph construction accounting for about 38 hours.
We did not optimize this phase since it is not the
focus of our work. However, this stage can be
significantly accelerated via straightforward par-
allelization (e.g., multi-core or multi-node setups),
meaning the overhead does not compromise the
feasibility of our approach.

Table 8 provides a detailed breakdown of the
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graph construction process, which alone accounted
for about 38 hours. In this phase, we construct a
cross-modal retrieval graph by linking 400K tables
and 5M passages via entity recognition and linking,
following the approach of COS (Ma et al., 2023).

Component Processing Time
Entity recognition 3h 14m 32s
Entity linking 2h 20m 48s
Edge indexing 22h 29m 54s
Passage indexing 7h 49m O1s
Table segment indexing 2h 29m 09s

Table 8: Graph construction time by component.

Table 9 summarizes the time required to fine-
tune each retriever and reranker submodule used
in our system. This phase took around 10 hours
in total and can be parallelized with multi-core or
multi-node setups. Given that both graph construc-
tion and retriever fine-tuning are offline processes,
the overhead does not hinder the practicality of our
system.

Component Training Time
Edge retriever 2h 49m 37s
Edge reranker 1h 25m 32s
Node reranker 1h 39m 20s
Expanded query retriever (passages) 36m 32s
Expanded query retriever (tables) 4h 14m 45s

Table 9: Fine-tuning time for retriever submodules.

E Qualitative Analysis

In this section, we present a qualitative analysis
of HELIOS’s Column-wise Aggregation module
and Passage Verification module, with the results
illustrated in Figure 9. The subfigures in Figure 9
showcase the performance and distinctive scenarios
for each module: (a) highlights successful cases
of the Column-wise Aggregation module, while
(b), (c), and (d) demonstrate representative cases
related to the Passage Verification module. For each
subfigure, the query is depicted in dark blue, the
data provided to the sub-module are shown in light
blue, and the inference result from the LLM is
encapsulated in a purple speech bubble with a llama
icon.

Figure 9(a) shows a successful case of the
column-wise aggregation module in resolving a
complex query: identifying the birth date of the
"most recent Segunda Liga Player of the Month."
The essential part of answering this question was
to recognize that the most recent player, Basilio

Almeida, was honored in November 2009, as in-
dicated in the SJPF Segunda Liga Player of the
Month table. However, the initial data lacked the
table segment containing the relevant row. The
column-wise aggregation module reconstructed the
table as shown in Figure 9(a) to include this miss-
ing information, enabling the system to restore the
row with the necessary details. The LLM correctly
inferred from the reconstructed table that the row
corresponding to the most recent player was Row
4, based on the Year and Month columns. This led
HELIOS to accurately generate the final answer in
this question, which is "12 August 1971."

Figure 9(b) shows a successful case of the pas-
sage verification module in addressing the query,
"How many years did the series that Zuzanna Szad-
kowski appeared in for 3 episodes run for?". The
module was provided with a Zuzanna Szadkowski
table summarizing her appearances and a set of
associated passages. The "Notes" column of the
table segment confirmed that she appeared in three
episodes of the series Guiding Light. The module
correctly identified the one mentioning Guiding
Light among the provided passages, the one which
indicated that the series was broadcast on CBS
for 57 years. the module correctly verified that the
passage using the passage’s information noting its
broadcast duration, leading to an accurate answer.

Figure 9(c) shows a failure case of the Passage
Verification module when answering the query,
"What is the province where the unit in the Mor-
gan District Brigade that disbanded in 1782 was
founded?". The module correctly identified *Burke
County Regiment’ as relevant to the query by rec-
ognizing from the ’Morgan District Brigade’ table
segment that the *Disbanded’ column value was
1782. However, information related to this query
was present in two passages: *2nd Rowan County
Regiment’ and ’Burke County, North Carolina’.
The LLM incorrectly verified only *Burke County,
North Carolina’ as relevant, likely due to its more
plausible-sounding title, while overlooking the cor-
rect answer *North-Carolina’ in the passage titled
’2nd Rowan County Regiment’. Consequently, the
system produced an incorrect response, *North Car-
olina’. This error highlights two problems: (i) a
limitation of the LLM reasoning capability and (ii)
an example case of the OTT-QA benchmark’s wrong
answer annotation.

Figure 6(d) shows another failure case of the pas-
sage verification module, this time for the query,
"When was the first album of Travie McCoy’s
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( a ) 1/ ﬁ When was the most recent Segunda Liga player of the month born? ]

e ™
Nationality Position
1 May 2009.5 2009 Portugal Nuno Laranjeira Oliveirense DF
2 September 2009.9 2009 Portugal Pedro Perira Desportivo das Aves FW
3 October 2009.10 2009 Portugal Paulo Santos Estoril GK
4 November 2009.11 2009 Portugal Basilio Almedia [ Sporting da Covilha FW
Nuno Laranjeiro Pedro Pereira Paulo Santos Portugal Basilio Almeida
Nuno Filipe Rodrigues . . pPortugal  (  Portuguese s .
S Pedro dos Santos Pereira ( born Paulo Jorge da Silva dos Santos . P Basilio Alexandre Neiva de
'i;;:"]e‘)m i(s b°:" 1§ori:2::i 28 July 1978 in Lisbon ) is a  ( born 11 December 1972 ) is a ,[,Of't‘:;‘:ezzl 1 thu:i:{m;?: Almeida (born 12 August 1971)
professional  footballer  who Pﬁrﬂ:uiues?1 r‘gt;r’ed fogt:al;er‘ P:‘:rtufues: r‘etlredlk footballer ( Portuguese Repdblica lia as l»’(c:r;‘t\;%‘l:jezel)::o::tail‘}sr who
\_ plays for C.D. who played mainly as a defendep: who played as a goalkeeper. Portuguesa [ play: p P J
O0 To answer this question, we need to find the most recent player of the month in the table, which is the player
from the latest month listed, which is November 2009 (row 4). '
The player from row 4 is Basilio Almeida, who was born on 12 August 1971.
Therefore, the relevant rows are : [row 4]

)

»7
( b ) 1/ ﬁ How many years did the series that Zuzanna Szadkowski appeared in for 3 episodes run for ?

J

Guiding Light
Guiding Light ( known as The Guiding
Light before 1975 ) 1is an American
television soap opera. It is listed in
Guinness World Records as the longest-
running drama in television in American
history, broadcast on CBS for 57 years..

Sister Angelica

Sister Angelica may refer to:

April

Guiding Light [ Sister Angelica 3 episodes

O
O

( C ) \f ﬁ What is the Province where the Unit in the Morgan District Brigade that disbanded in 1782, was founded in? ]

O

First, Zuzanna Szadkowski appeared in the series "Guiding Light".

Second, the linked passage titled "Guiding Light" mentions that it ran for 57 years on CBS and had a 19-year
broadcast on radio.

Therefore, relevant passages are: ["Guiding Light"]

>

s N
Subordinate Brigade Created Original Commander , Rank
Burke County Regiment Salisbury , Morgan 1777 1782 Armstrong , William , Lt Col
2nd Rowan County Regiment Burke County, North Carolina Montgomery County Regiment Salisbury, North Carolina
The 2nd Rowan County Regiment was first Burke County is a county located in the The Montgomery County Regiment was N . . N N
established in October 22, 1775 as a  U.S. state of North Carolina. As of the  authorized on February 8, 1778 by the i:liz:“’;{c ity c‘;‘r\z’;inla" ”;et :::”E:'e‘ﬁ
local militia in Rowan County in the 2010 census, the population was 90,912. North Carolina General Assembly of 1778. ths county seat of Rowan,county D
Province of North-Carolina. .. On May 9, Its county seat is Morganton. Burke It was created at the same time that TED vliEn ReEn Gamisy VAs quEh Temear
1777, the regiment was renamed the Burke County is part of the Hickory-Lenoir- Montgomery County, North Carolina was el e G );xtended to ihe
County Regiment, which was active until Morganton, NC Metropolitan Statistical created out of the northern half of Mississippi River Yy
the end of the Revolutionary War in 1783 Area. Anson County, North Carolina. PP . )
(@) First, the Unit in the Morgan District Brigade that disbanded in 1782 is the Burke County Regiment.
o Second, the linked passage titled "Burke County, North Carolina" confirms that Burke County is located in the
Province of North Carolina.
Therefore, relevant passages are: ['Burke County, North Carolina“]

T

( d ) \I/ ﬁ When was the first album of Travie McCoy's discography that he guest appeared on? ]
e )
(Guest Appearances)
Year Other artist (s)
This Is How It Goes Down | 2008 Pink Funhouse
Pink (singer) Funhouse (Pink album) Where Does This Door Go
Alecia Beth Moore (born September 8, 1979), known . . . . .
professionally as Pink (stylized as Plnk), is an American F“"""“f: = ‘k"e fllfthdsl:“d:°F alb:’“ b’; “‘"erlldcaf‘d S :"d Where Does This Door Go is the
singer, songwriter, dancer, actress, record producer, A e e e e e e third studio album by American
spokesperson and model. She was originally a member of the B e e e L e singer Mayer Hawthorne. It was
girl group Choice. In 1995, LaFace Records saw potential in D e e R o e released on July 16, 2013, by
Pink and offered her a solo recording contract. Her R & B- ITLEF GO G0 Wi @A # e Enes SIEREH ABED Republic Records.
influenced debut studio album Can't Take Me Home.. (s Fegllenl, MEEErlents vl die PN (S
& _J
First, the question asks about the first album of Travie McCoy's discography that he guest appeared on. )
(@)
fe) Since the table does not specify the information about Travie McCoy, the relevant information is not found in the given table.
However, we can infer that the relevant information could be found in the linked passage titled "This Is How It Goes Down".
It is likely that the information about the year the first album that Travie McCoy guest appeared on is mentioned in this passage.
Therefore, relevant passages are: ['This Is How It Goes Down"]

J

Figure 9: Qualitative analysis on four question-answer pairs. (a) A case where passage verification is successful. (b)
A first case where passage verification has failed. (c) A second case where passage verification has failed. (d) A case
where table aggregation is successful.
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discography that he guest appeared on?". Prior re-
trieval results correctly introduced the ground truth
table titled *Travie McCoy discography (Guest
Appearances)’ to the passage verification module.
However, the LLM incorrectly inferred that "the
table does not specify the information about Travie
McCoy" as seen in the second line of its response
bubble. It then relied on its parameterized knowl-
edge to wrongly verify a passage titled *This Is
How It Goes Down as relevant’. The correct an-
swer 'Funhouse (Pink album)’ was excluded from
the final retrieved document set due to the verifica-
tion error.

F Software and Data Licenses

The licenses for the software and datasets used in
this paper are as follows:

¢ ColBERTvV2: MIT License

* bge-reranker-v2-minicpm-layerwise: Apache
2.0 License

* LLaMA 3.1-8B-Instruct: LLaMA 3.1
e LLaMA 3.1-70B-Instruct: LLaMA 3.1
* Chain-of-Table: Apache 2.0 License

* TableLlama: MIT License

* COS: GPL-3.0 License

e OTT-QA: MIT License

All software and datasets were used strictly for
research purposes and were not utilized in any non-
research contexts, particularly for commercial ap-
plications. The datasets used in this study, OTT-QA
and MultimodalQA, consist of English-language
data sourced from the Wikipedia domain.

G Al Assistants

We used ChatGPT-40 (Hurst et al., 2024) to debug
code efficiently, quickly identifying and resolving
errors in our implementations. Additionally, we
used it for rephrasing sentences in my writing to
improve clarity and readability.

H Reproducibility Statement

OTTeR (Huang et al., 2022) and DoTTeR (Kang
et al., 2024) were reproduced using the official

code available at 0TTeR and DoTTeR, respectively.
COS (Ma et al., 2023) and CORE (Ma et al.,

2022) were reproduced using the official code from
UDT-QA. The source code, data, and other artifacts
for HELIOS have been made available at HELIOS.

I Prompt Templates

For Star-based LLM refinement, we extended the
prompt from Chain-of-Table (Wang et al., b),
originally designed for selecting relevant rows from
tables, to support column-wise aggregation and
passage verification. This extension enables the
joint consideration of table segments and linked
passages. For the LLM reader, we constructed
the prompt based on the HybridQA prompt from
TablelLlama (Zhang et al., 2024a).
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Aggregation Query Classification

Using f_agg() API, return True to detect when a natural language query involves performing
aggregation operations (max, min, avg, group by). Strictly follow the format of the below examples.
Please provide your explanation first, then answer the question in a short phrase starting by
’Therefore, the answer is:’

Question: when was the third highest paid Rangers F.C. player born?
Explanation: The question involves finding the birth date of the third highest paid player, which
requires aggregation to find the third highest paid player. Therefore, the answer is: f_agg([True])

Question: what is the full name of the Jesus College alumni who graduated in 19607
Explanation: The question involves finding the full name of the alumni who graduated in 1960,
which does not require aggregation. Therefore, the answer is: f_agg([False])

Question: how tall, in feet, is the Basketball personality that was chosen as MVP most recently?
Explanation: The question involves finding the most recent MVP winner, which requires
aggregation to identify the relevant player. Therefore, the answer is: f_agg([Truel)

Question: what is the highest best score series 7 of Ballando con le Stelle for the best dancer born
3 July 1969?

Explanation: The question involves finding the highest score in a series for a specific dancer,
which requires aggregation. Therefore, the answer is: f_agg([True])

Question: which conquerors established the historical site in England that attracted 2,389,548
2009 tourists?

Explanation: The question involves identifying the conquerors who established a historical site,
which does not require aggregation. Therefore, the answer is: f_agg([False])

Question: what is the NYPD Blue character of the actor who was born on January 29, 1962?
Explanation: The question involves finding the character played by an actor born on a specific
date, which does not require aggregation. Therefore, the answer is: f_agg([False])

Question: ‘{question}’
Explanation:
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Column-wise Aggregation

Using f_row() API to select relevant rows in the given table and linked passages that support
or oppose the question. Strictly follow the format of the below example. Please provide your
explanation first, then select relevant rows in a short phrase starting by: “Therefore, the relevant
rows are:"

/* table caption : list of rangers f.c. records and statistics

col : # | player | to | fee | date

row 1 : 1 | alan hutton | tottenham hotspur | 9,000,000 | 30 january 2008

row 2 : 2 | giovanni van bronckhorst | arsenal | 8,500,000 | 20 june 2001

row 3 : 3 | jean-alain boumsong | newcastle united | 8,000,000 | 1 january 2005
row 4 : 4 | carlos cuellar | aston villa | 7,800,000 | 12 august 2008

row 5 : 5 | barry ferguson | blackburn rovers | 7,500,000 | 29 august 2003 */
/* Passages linked to row 1:

- Alan Hutton: Alan Hutton (born 30 November 1984) is a Scottish former
professional footballer, who played as a right back. Hutton started his career
with Rangers, and won the league title in 2005.

- Tottenham Hotspur F.C.: Tottenham Hotspur Football Club, commonly referred to
as Tottenham or Spurs, is an English professional football club in Tottenham,
London, that competes in the Premier League. */

/* Passages linked to row 2:

- Giovanni van Bronckhorst: Giovanni Christiaan van Bronckhorst (born 5 February
1975), also known by his nickname Gio, is a retired Dutch footballer and
currently the manager of Guangzhou RF. =%/

/* Passages linked to row 3:

- Jean-Alain Boumsong: Jean-Alain Boumsong Somkong (born 14 December 1979) is
a former professional football defender, including French international.

- Newcastle United F.C.: Newcastle United Football Club is an English
professional football club based in Newcastle upon Tyne, Tyne and Wear, that
plays in the Premier League, the top tier of English football. x/

Question: 'When was the third highest paid Rangers F.C . player born ?’
Explanation: The third-highest paid Rangers F.C. player, Jean-Alain Boumsong (row 3).
Therefore, the relevant rows are: f_row([row 3])’

/* ’{table}’ =*/
/* ’{linked_passages}’ =*/

Question: '{question}’
Explanation:
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Passage Verification

Using f_passage() API to return a list of passage titles that are relevant to the question, even if
they are only partially related. Strictly follow the format of the below example. Please provide your
explanation first, then return a list of passages in a short phrase starting by: “Therefore, relevant
passages are:"

/* table «caption : List of politicians, lawyers, and civil servants
educated at Jesus College, Oxford

col : Name | M | G | Degree | Notes

row 1 : Lalith Athulathmudali | 1955 | 1960 | BA Jurisprudence (2nd, 1958), BCL
(2nd, 1960) | President of the Oxford Union (1958); a Sri Lankan politician;
killed by the Tamil Tigers in 1993 */

/* List of 1linked passages: ["Law degree”, "Oxford Union”, "Lalith
Athulathmudali”]

Title: Lalith  Athulathmudali. Content: Lalith William Samarasekera
Athulathmudali, PC (Sinhala; 26 November 1936 - 23 April 1993), known
as Lalith Athulathmudali, was a Sri Lankan statesman. He was a prominent member
of the United National Party, who served as Minister of Trade and Shipping;
Minister of National Security and Deputy Minister of Defence; Minister of
Agriculture, Food and Cooperatives, and finally Minister of Education.

Title: Law degree. Content: A law degree is an academic degree conferred for
studies in law. Such degrees are generally preparation for legal careers; but
while their curricula may be reviewed by legal authority, they do not themselves
confer a license. A legal license is granted (typically by examination) and
exercised locally; while the law degree can have local, international, and
world-wide aspects.

Title: Oxford Union. Content: The Oxford Union Society, commonly referred to
simply as the Oxford Union, is a debating society in the city of Oxford, England,
whose membership is drawn primarily from the University of Oxford. Founded in
1823, it is one of Britain’s oldest university unions and one of the world’s most
prestigious private students’ societies. The Oxford Union exists independently
from the university and is separate from the Oxford University Student Union. */

Question: What is the full name of the Jesus College alumni who graduated in 19607
Explanation: First, Lalith Athulathmudali graduated in 1960. Second, the linked passage
titled “Lalith Athulathmudali" confirms his full name. Therefore, relevant passages are:
f_passage(["Lalith Athulathmudali”])

/% ’{table}’ */

/* ‘{linked_passages}’ */

Question: ‘{question}’
Explanation:

32443



Hybrid Question Answering

Below is an instruction that describes a task, paired with an input that provides further context.
Write a response that appropriately completes the request.

### Instruction:

This is a hybrid question answering task.

The goal of this task is to answer the question given tables and passages.

Strictly follow the format of the below examples. Please provide your explanation first, then
answer the question in a short phrase starting by: ‘Therefore, the answer is:*

### Examples:

Title : List of politicians, lawyers, and civil servants educated at Jesus
College, Oxford

col : Name | M | G | Degree | Notes

row 1 : Lalith Athulathmudali | 1955 | 1960 | BA Jurisprudence ( 2nd , 1958 )
, BCL ( 2nd , 1960 ) | President of the Oxford Union ( 1958 ) ; a Sri Lankan
politician ; killed by the Tamil Tigers in 1993

row 2 : Neal Blewett ( HF ) | 1957 | 1959 | BA PPE ( 2nd ) | Member of the
Australian House of Representatives ( 1977-1994 ) , Government Minister (
1983-1994 ) , High Commissioner to the UK ( 1994-1998 )

row 3 : Joseph Clearihue | 1911 | 1914 | BA Jurisprudence ( 2nd , 1913 )
, BCL ( 3rd , 1914 ) | Canadian Rhodes scholar ; later became a member of
the Legislative Assembly of British Columbia and a county court judge ; also
chairman of the council of Victoria College , British Columbia ( which became
the University of Victoria under his leadership )

Passages linked to row 1:

- [Lalith Athulathmudali](https://en.wikipedia.org/wiki/Lalith_Athulathmudali)
Lalith William Samarasekera Athulathmudali , PC (26 November 1936 - 23 April
1993) , known as Lalith Athulathmudali , was Sri Lankan statesman . He was a
prominent member of the United National Party , who served as Minister of Trade
and Shipping ; Minister National Security and Deputy Minister of Defence.
Passages linked to row 3:

- [Joseph Clearihuel(https://en.wikipedia.org/wiki/Joseph_Clearihue) Joseph
Badenoch Clearihue ( 1887-1976 ) was a Canadian lawyer , judge , academic and
politician .

Question:What is the full name of the Jesus College alumni who graduated in 1960?
Explanation: Lalith Athulathmudali graduated in 1960, and his full name is Lalith William Sama-
rasekera Athulathmudali. Therefore, the answer is: Lalith William Samarasekera Athulathmudali.
### Input:

Here are the table and passages to answer this question. Please provide your explanation first, then
answer the question in a short phrase starting by ‘Therefore, the answer is:*

/* ‘{table_and_linked_passages}’ */

Question: ‘{question}’
Explanation:
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