
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 32200–32212
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

RePanda: Pandas-powered Tabular Verification and Reasoning

Atoosa Malemir Chegini1, Keivan Rezaei1, Hamid Eghbalzadeh2, Soheil Feizi1,

1Department of Computer Science, University of Maryland, 2AI at Meta
Correspondence: atoocheg@umd.edu

Abstract

Fact-checking tabular data is essential for en-
suring the accuracy of structured information.
However, existing methods often rely on black-
box models with opaque reasoning. We intro-
duce RePanda, a structured fact verification
approach that translates claims into executable
pandas queries, enabling interpretable and ver-
ifiable reasoning.

To train RePanda, we construct PanTabFact,
a structured dataset derived from the TabFact
train set, where claims are paired with ex-
ecutable queries generated using DeepSeek-
Chat 1 and refined through automated error
correction. Fine-tuning DeepSeek-coder-7B-
instruct-v1.5 on PanTabFact, RePanda achieves
84.09% accuracy on the TabFact test set. To
evaluate Out-of-Distribution (OOD) generaliza-
tion, we interpret question-answer pairs from
WikiTableQuestions as factual claims and refer
to this dataset as WikiFact. Without additional
fine-tuning, RePanda achieves 84.72% accu-
racy on WikiFact, significantly outperforming
all other baselines and demonstrating strong
OOD robustness. Notably, these results closely
match the zero-shot performance of DeepSeek-
Chat (671B), indicating that our fine-tuning
approach effectively distills structured reason-
ing from a much larger model into a com-
pact, locally executable 7B model. PanTab-
Fact is publically available on HuggingFace at
datasets/AtoosaChegini/PanTabFact.

Beyond fact verification, RePanda extends
to tabular question answering by generating
executable queries that retrieve precise an-
swers. To support this, we introduce Pan-
Wiki, a dataset mapping WikiTableQuestions
to pandas queries. Fine-tuning on PanWiki,
RePanda achieves 75.1% accuracy in direct
answer retrieval. These results highlight the

1All experiments, data collection, and processing activities
were conducted by the University of Maryland, College Park
(UMD). Meta was involved solely in an advisory role and
no experiments, data collection or processing activities were
conducted using Meta tools or within its IT environment.

effectiveness of structured execution-based rea-
soning for tabular verification and question an-
swering.

1 Introduction

Fact verification is a critical task in artificial intelli-
gence, with applications in journalism, financial au-
diting, and scientific research. As misinformation
continues to proliferate, automated fact-checking
has become an essential tool for verifying claims
against structured sources such as tabular data. Un-
like textual fact verification, which matches claims
against unstructured text, tabular fact verification
requires reasoning over structured numerical and
categorical data, making it a fundamentally differ-
ent and more challenging task(Herzig et al., 2020;
Gu et al., 2022).

Despite recent progress in large language models
(LLMs), their ability to reason over structured tabu-
lar data remains limited. LLMs are pre-trained pre-
dominantly on unstructured text, where semantic
relationships are inferred through sequential token
dependencies. However, tabular data encodes infor-
mation in a structured format where relationships
are often implicit, requiring operations such as ag-
gregation, filtering, and comparison across multiple
rows and columns (Liu et al., 2021; Eisenschlos
et al., 2020).

A major challenge lies in LLMs’ limited un-
derstanding of structured data, such as tables,
when processing tabular information. Models like
TAPAS (Herzig et al., 2020) and TAPEX (Liu et al.,
2021) attempt to address this by incorporating table-
aware pretraining to improve table understanding.
However, these approaches flatten tables into se-
quences, losing structural integrity and making it
difficult to capture relationships between rows and
columns (Gu et al., 2022). As a result, they struggle
with complex table operations, such as aggregation
and multi-row comparisons, which are essential

32200

((df['Name'] == 'Kate') & (df['Job'] ==
'engineer')).any()

Eval(Pandas_code)
True

False

The statement is entailed

The statement is refuted

Repanda
FineTune

DeepSeek-
Coder-7b Inference

Evaluation

Figure 1: An Overview of our work.

for fact verification. Moreover, approaches like
PASTA (Gu et al., 2022) use sentence-table cloze
pretraining to improve table understanding but rely
on predefined operations, which may not generalize
to complex, unseen queries.

Another fundamental limitation of existing ap-
proaches is the lack of interpretability. Many LLM-
based fact-checking models function as black-box
classifiers, predicting whether a claim is true or
false without explicitly showing the reasoning steps.
This lack of transparency makes it difficult to ver-
ify results, particularly in high-stakes applications
such as legal and financial audits (Eisenschlos et al.,
2020). Ideally, a fact-checking system should pro-
vide a structured reasoning process that can be in-
dependently validated.

To address these challenges, we propose a novel
approach that reformulates tabular fact verification
and question-answering as a structured represen-
tation learning task. Rather than assuming LLMs
inherently understand tabular structures, we task
them to construct explicit reasoning steps as ex-
ecutable pandas queries. Since pandas queries
are designed for tabular operations (e.g., filtering,
counting, or aggregating), they provide transpar-
ent and interpretable reasoning steps on how the
answer is obtained.

To train our model, we construct PanTabFact,
an augmented fact-checking dataset based on Tab-
Fact. Using the DeepSeek-Chat model (Guo et al.,
2025), we translate TabFact statements into corre-
sponding pandas queries, explicitly encoding the
logical reasoning required for verification. We fur-
ther refine PanTabFact through automated error
correction to ensure syntactical validity and execu-
tion robustness. We then fine-tune the DeepSeek-
coder-7B-instruct-v1.5 (Guo et al., 2025) model
on PanTabFact, effectively distilling structured

reasoning from DeepSeek-Chat, which has 671B
parameters. Despite the reduced scale, our 7B-
parameter model achieves on-par performance with
DeepSeek-Chat in fact verification and strong gen-
eralization to unseen tabular structures. Figure 1
illustrates an overview of our method.

To evaluate the generalization ability of our
method, we conduct OOD experiments on Wiki-
Fact, a dataset we derived from WikiTableQues-
tions (Pasupat and Liang, 2015). Since this dataset
is originally designed for question answering, we
convert question-answer pairs in the test set into
fact-checking claims to match our verification
setup. Without any additional fine-tuning on Wik-
iTableQuestions, our model, trained on PanTab-
Fact, achieves 84.72% accuracy on WikiFact, ex-
hibiting strong robustness to unseen tabular formats
and domain shifts, significantly outperforming all
other baselines.

Beyond fact verification, we extend our struc-
tured approach to tabular question answering,
where the goal is to extract precise answers rather
than classify claims as true or false. To achieve this,
we construct PanWiki, a dataset derived from Wik-
iTableQuestions, by converting each question into
a corresponding pandas query using DeepSeek-
Chat. This dataset consists of 1,200 training ex-
amples, ensuring each query correctly retrieves the
expected answer from the table. We fine-tune the
DeepSeek-coder-7B-instruct-v1.5 model on Pan-
Wiki and evaluate it on the WikiTableQuestions
test set, achieving 75.1% accuracy, comparable to
state-of-the-art methods despite the small size of
the training data. This demonstrates the broader
potential of structured representation learning for
tabular reasoning, extending its utility beyond fact
verification.

32201

1.1 Contributions and Paper Organization
Our contributions are as follows:

• Execution-Based Fact Verification: We in-
troduce RePanda (Reason with Pandas), a
method that translates natural language claims
into executable pandas queries, ensuring in-
terpretable fact verification. Unlike black-
box classifiers, RePanda explicitly encodes
the reasoning process, allowing users to in-
spect, validate, and debug fact-checking deci-
sions through executable queries (Section 3).

• PanTabFact: A Structured Fact-Checking
Dataset: We construct PanTabFact, an aug-
mented version of TabFact where each claim
is paired with a pandas query generated using
DeepSeek-Chat (Section 3).

• Strong OOD Generalization: We derive Wiki-
Fact by converting question-answer pairs from
the WikiTableQuestions test set into factual
claims for fact verification. Without any addi-
tional fine-tuning, RePanda achieves 84.72%
accuracy on WikiFact, surpassing state-of-
the-art methods in out-of-distribution settings
(Section 4).

• Extending RePanda to Question Answering
with PanWiki: We introduce PanWiki, a
dataset where questions from WikiTableQues-
tions are converted into pandas queries for
structured question answering. Fine-tuning
on PanWiki, RePanda achieves 75.1% accu-
racy, demonstrating its applicability beyond
fact verification (Section 4).

The rest of this paper is organized as follows:
Section 2 reviews prior work. Section 3 details
dataset construction, model architecture, and train-
ing. Section 4 presents experimental results, and
Section 5 concludes the paper.

2 Related Work

2.1 Fact Verification with Tabular Data
Fact verification over tabular data has been exten-
sively studied, with datasets like TabFact (Chen
et al., 2019) serving as key benchmarks for evaluat-
ing models’ ability to verify claims about struc-
tured data. Early methods relied on sequence-
based models such as Table-BERT (Chen et al.,
2019), which linearized tables before applying a
pre-trained transformer for classification. However,

these methods struggled with complex numerical
reasoning and lacked interpretability.

More advanced approaches, such as
TAPAS (Herzig et al., 2020) and TAPEX (Liu
et al., 2021), incorporated table-aware pretraining
to improve structured data comprehension. TAPAS
extended BERT with table-specific positional
embeddings, while TAPEX introduced pretraining
over table-based tasks, treating table-based
reasoning as a weakly supervised semantic parsing
task (Yin et al., 2020). However, both TAPAS and
TAPEX function as black-box models, making
their decision-making process difficult to interpret,
as they do not explicitly provide reasoning steps for
their fact-checking predictions. PASTA (Gu et al.,
2022), focused on sentence-table cloze pretraining,
aiming to teach models table operations such as
filtering, aggregation, and comparison. While
PASTA improves structured reasoning, it relies on
a predefined set of operations, which may limit
its applicability to more complex or novel table
structures that require reasoning beyond these
fixed operations.

Our approach differs by explicitly translating
claims into executable pandas queries, ensuring
transparent and verifiable fact verification. Unlike
previous models, our method explicitly encodes
reasoning steps, making the verification process
both interpretable and executable. Importantly,
rather than relying on dataset-specific patterns, our
approach focuses on translating claims into struc-
tured pandas queries, enabling it to generalize
more effectively to unseen tables and diverse tabu-
lar formats.

2.2 Structured Representation Learning for
Tables

Recent research has explored improving structured
reasoning by integrating execution-based frame-
works. Program-driven methods, such as ProgV-
GAT (Yang et al., 2020), employ graph neural
networks (GNNs) to capture logical relationships
within tables, while ReasTAP (Zhao et al., 2022)
applies symbolic reasoning to enhance table com-
prehension. Additionally, models such as Struct-
GPT (Jiang et al., 2023) and Struct-X (Tan et al.,
2024) encode structured data using graph-based
attention mechanisms, but often require complex
architectures.

In contrast, our method leverages pandas
queries, which naturally define structured table op-
erations (e.g., filtering, aggregation, and row se-

32202

lection) and enable direct execution for fact verifi-
cation. This aligns with trends in tool-augmented
reasoning, where models generate structured out-
puts (such as SQL, Python scripts, or execution
traces) to improve interpretability (Yao et al., 2023;
Wei et al., 2022). Furthermore, we evaluate our
approach in out-of-distribution (OOD) settings us-
ing WikiTableQuestions (Pasupat and Liang, 2015),
demonstrating strong generalization without addi-
tional fine-tuning.

2.3 Question Answering over Tabular Data

While fact verification focuses on binary classi-
fication (entailed vs. refuted), table-based ques-
tion answering (QA) presents additional chal-
lenges, requiring compositional reasoning over
structured data (Chen et al., 2020). Methods such
as TAPEX (Liu et al., 2021) model QA as an SQL
generation task, while TabLaP (Wang et al., 2024a)
treats LLMs as planning agents, generating Python-
based execution plans to improve numerical rea-
soning.

Chain-of-Table (Wang et al., 2024b) extends
Chain-of-Thought prompting to tabular settings,
guiding LLMs through step-by-step execution of
table transformations. Similarly, SynTQA (Zhang
et al., 2024) leverages text-to-SQL conversion for
structured QA, but still struggles with interpretable
reasoning steps.

Our method extends fact verification to QA by
generating executable pandas queries, demonstrat-
ing that structured representation learning enhances
both fact-checking and QA performance. Despite
training on only 1,200 QA pairs, our approach
achieves competitive results compared to state-of-
the-art QA models, highlighting the effectiveness
of structured execution in table-based reasoning.

3 Method

3.1 Problem Formulation

Given a structured table T and a natural language
statement s, the goal of tabular fact verification is
to determine whether s is entailed or refuted based
on T . Instead of directly classifying statements, we
introduce a structured reasoning approach by trans-
lating s into an executable pandas query qs. The
execution result of qs on T provides a verifiable,
interpretable decision process for fact verification.

Formally, we define a function f✓, parameterized
by a language model, that maps a statement to a
pandas query:

qs = f✓(s, T) (1)

The execution of qs on T produces a verification
result to classify s as entailed or refuted.

3.2 Dataset Construction

We construct two datasets to train our model for
fact verification and question answering: PanTab-
Fact for fact-checking and PanWiki for tabular QA.

3.2.1 PanTabFact: A Fact-Checking Dataset
PanTabFact is a structured dataset derived from
TabFact (Chen et al., 2019). Since TabFact con-
sists of tables and annotated claims labeled as
entailed or refuted but lacks explicit reasoning
steps, we augment it with structured queries to en-
able execution-based verification. Specifically, we
use the DeepSeek-Chat model to generate pandas
queries corresponding to each claim, ensuring ex-
plicit reasoning for fact verification. Details on
PanTabFact can be found in Appendix A.1.1.

Query Generation: For each statement-table
pair (s, T) in TabFact, we prompt DeepSeek-Chat
to generate an equivalent pandas query qs. The
query should encode the logical operation required
to verify s based on T . Figure 2 illustrates an
example from PanTabFact.

3.2.2 PanWiki: A Question-Answering
Dataset

PanWiki is a dataset derived from WikiTable-
Questions (Pasupat and Liang, 2015) for training
RePanda in tabular question answering. Each ques-
tion in WikiTableQuestions is augmented with a
pandas query that, when executed, produces the
corresponding answer from the dataset. PanWiki
has 1200 data entries. Details on PanWiki can be
found in Appendix A.1.2.

Query Generation: For each question-table-
answer tuple (q, T , a) in WikiTableQuestions, we
prompt DeepSeek-Chat to generate a pandas query
qq that extracts a when executed on T .

3.2.3 Error Correction
Since model-generated queries may contain syn-
tactical or logical errors, the training dataset cre-
ation process includes an automated error correc-
tion pipeline with three post-processing stages.

• Logic Correction: Verifies if the execution of
the pandas query produces the expected an-
swer. If flawed, we pass the original query and

32203

!

 1952 VFL Season
home team home team score away team away team score venue crowd
essendon 22.15 (147) st kilda 7.9 (51) windy hill 12000

carlton 12.16 (88) collingwood 9.13 (67) princes park 42662

south melbourne 10.14 (74) melbourne 8.18 (66) lake oval 24000

north melbourne 11.9 (75) geelong 15.13 (103) arden street oval 15000

richmond 13.11 (89) footscray 5.14 (44) punt road oval 11000

hawthorn 7.6 (48) fitzroy 12.12 (84) glenferrie oval 12000

Data source: TabFact Dataset
Statement: The home team that played at Lake Oval was North Melbourne
Label: False
Pandas query: df[df['venue'] == 'lake oval']['home
team'].eq('north melbourne').any()
Pandas eval: False

Figure 2: An example from PanTabFact.

expected outcome back to original model for
logical refinement. This stage is only applied
in training dataset creation not in the inference
phase.

• Syntax Correction: Iteratively refines queries
that fail to execute on T due to runtime errors.

• Filtering: Queries that fail execution or do not
match the ground-truth entailment label are
removed, ensuring training dataset quality.

The Error Correction and Filtering steps are
applied in both Fact-Checking and Question-
Answering settings.

3.3 Model Framework

We fine-tune DeepSeek-coder-7B-instruct-
v1.5 (Guo et al., 2025) to generate pandas
queries for both fact verification and question
answering. The model is trained autoregressively
to generate structured queries that, when executed
on a given table, provide verifiable reasoning for
fact-checking or directly retrieve answers.

For fact-checking, we fine-tune the model on
PanTabFact, where each claim in TabFact is paired
with a corresponding pandas query. The model
learns to generate queries that determine whether a
claim is entailed or refuted based on the table.

For question answering, we fine-tune the model
on PanWiki, a dataset derived from WikiTableQues-
tions where each question is paired with a pandas
query that retrieves the correct answer when exe-
cuted. Unlike fact verification, where queries out-
put Boolean values, here the queries extract the
precise answer.

Training optimizes the negative log-likelihood
of the correct query:

L = �
TX

t=1

log P (qt|q<t, s, T ; ✓) (2)

where qt is the t-th token in the generated query
and T is the query length.

3.4 Out-of-Distribution (OOD) Generalization
To assess the OOD generalization of RePanda,
we derive WikiFact, a fact verification dataset,
from WikiTableQuestions (Pasupat and Liang,
2015). Since WikiTableQuestions is originally de-
signed for question answering, we transform each
question-answer pair (q, T , a) into a factual state-
ment sq that asserts a as the correct answer based
on T . This enables us to evaluate RePanda in an un-
seen fact verification setting without any additional
fine-tuning.

4 Experiments

In this section, we outline our experimental setup,
present the key results for fact verification and
question answering, and compare RePanda with
state-of-the-art baselines. We evaluate its perfor-
mance on both in-distribution (TabFact) and out-
of-distribution (WikiFact) settings, providing a de-
tailed comparison with existing models in OOD
scenarios. Additionally, we assess the effectiveness
of RePanda in tabular question answering.

4.1 Experimental Setup
We fine-tune DeepSeek-coder-7B-instruct-v1.5 on
both PanTabFact (fact verification) and PanWiki
(question answering). The model is trained in an
autoregressive manner to generate pandas queries
conditioned on input claims (for fact-checking) or
questions (for QA) alongside tabular contexts.

4.1.1 Training
Training is conducted with the TRL library by Hug-
gingFace (von Werra et al., 2020). We use the
AdamW optimizer with a learning rate of 2e-4 and
cosine learning rate scheduling. We train for 4
epochs with a batch size of 4, applying weight de-
cay to prevent overfitting. Fact verification queries
are optimized to generate Boolean outputs, while
QA queries are trained to extract precise answers
from tables.

4.1.2 Inference & Evaluation
During inference, the model generates a pandas
query for each input, which is then executed to ob-
tain the final verification result (for fact-checking)

32204

or extracted answer (for QA). The output is com-
pared against the ground-truth answer:

Fact Verification Accuracy:

y = I (f✓(s, T) = GT) (3)

where y is the correctness indicator, f✓ is the
trained model, and GT is the expected Boolean
label.

Question Answering Accuracy:

y = I (f✓(q, T) ⇡ a) (4)

where q is the input question and a is the ground-
truth answer.

Furthermore, we apply Syntax Correction at in-
ference. If a query fails due to syntax errors, we
pass the error message back into DeepSeek-coder-
7B-instruct-v1.5, prompting 4 iterative refinements
until a valid, executable query is obtained.

This setup allows RePanda to perform structured
verification and answer extraction across both in-
distribution and out-of-distribution tabular data.

4.2 In-Distribution Evaluation on PanTabFact

We first evaluate RePanda on the TabFact test set
to assess its in-distribution performance. We com-
pare RePanda, which generates structured pandas
queries for fact verification, against several base-
lines to evaluate the effectiveness of execution-
based reasoning. The baselines include:

Finetuned-Direct: DeepSeek-coder-7B-
instruct-v1.5 fine-tuned to classify statements as
entailed or refuted directly, without generating
pandas queries.

ZeroShot-Pandas: A zero-shot DeepSeek-
coder-7B-instruct-v1.5 model that generates
pandas queries without fine-tuning.

ZeroShot-Direct: A zero-shot DeepSeek-coder-
7B-instruct-v1.5 model that directly classifies
claims as entailed or refuted without structured
reasoning.

Table 1 presents the accuracy of each method on
the TabFact test set.

RePanda achieves 84.09% accuracy, signifi-
cantly outperforming the direct classification base-
line (Finetuned-Direct) by 16.24%. Furthermore,
it surpasses the ZeroShot-Direct model, which
achieves only 50.76% accuracy—close to random
guessing—by a margin of 33.33%. These results

Table 1: Fact verification accuracy on the TabFact
test set. RePanda significantly outperforms baselines,
demonstrating the effectiveness of structured represen-
tation learning and knowledge transfer.

Method Accuracy (%)

RePanda (Fact-Checking) 84.09
Finetuned-Direct 67.85
ZeroShot-Pandas 51.82
ZeroShot-Direct 50.76

highlight the effectiveness of pandas-based struc-
tured learning, allowing RePanda to learn struc-
tured reasoning through execution-based fact veri-
fication while maintaining strong accuracy.

The stark contrast with ZeroShot baselines high-
lights the challenge of verifying tabular claims
without fine-tuning, as the base model lacks prior
exposure to structured data. RePanda improves
both accuracy and interpretability by translating
claims into executable pandas queries, explicitly
encoding the reasoning process. Unlike black-box
classifiers, RePanda provides a transparent verifica-
tion pipeline where users can inspect the generated
queries to validate the logic behind each decision.
This structured approach enables an auditable fact-
checking process, allowing errors or misclassifica-
tions to be traced back to specific reasoning steps,
enhancing trust in the verification process.

4.3 Out-of-Distribution Generalization

To evaluate the robustness of RePanda beyond in-
distribution fact verification, we assess its general-
ization on out-of-distribution (OOD) tabular data
using WikiFact dataset. This enables us to test
whether RePanda, trained only on PanTabFact, can
transfer effectively to an unseen dataset without
additional fine-tuning.

Performance on WikiFact without further Fine-
Tuning. We evaluate RePanda on WikiFact with-
out fine-tuning. The model, trained solely on
PanTabFact, is tested directly on the transformed
fact verification statements from WikiTableQues-
tions. Table 2 presents the accuracy results.

RePanda achieves 84.72% accuracy on Wik-
iFact, demonstrating strong generalization de-
spite being trained solely on PanTabFact. It out-
performs Finetuned-Direct (74.10%) by 10.62%
while also offering interpretability over the black-
box Finetuned-Direct method. Zero-shot models

32205

Table 2: Fact verification accuracy on WikiFact dataset
without further fine-tuning.

Method Accuracy (%)

RePanda (Fact-Checking) 84.72
Finetuned-Direct 74.10
ZeroShot-Pandas 59.92
ZeroShot-Direct 53.20

perform significantly worse, with ZeroShot-Direct
at 53.20%, reinforcing the importance of knowl-
edge transfer from DeepSeek-Chat by fine-tuning.
This improvement stems from RePanda’s ability to
learn a structured representation that generalizes
beyond specific tabular distributions, allowing it to
adapt effectively to unseen tables. Since all exam-
ples in WikiFact are factually correct, one might
argue that RePanda’s high accuracy on WikiFact
stems from the model consistently classifying ex-
amples as correct. However, in the next section,
we demonstrate that this is not the case. RePanda
achieves 87% accuracy on the balanced dataset we
synthesized.

Comparison with Existing Methods on OOD
Data. To further evaluate OOD generalization,
we compare RePanda with state-of-the-art tabular
fact verification models.

TAPEX (Liu et al., 2021): A table-pretrained
model using SQL-based execution.

TAPAS (Herzig et al., 2020): A transformer-
based model optimized for table-based classifica-
tion.

PASTA (Gu et al., 2022): A fact-checking model
trained on synthesized sentence-table cloze tasks.

For this experiment, we randomly sample 300
instances from WikiFact. Since this dataset is de-
rived from question-answer pairs, all statements
are originally true based on the provided tables. To
introduce refuted claims, we use DeepSeek-Chat to
slightly modify each correct statement, altering its
content based on the table to generate a factually
incorrect version. This results in a balanced dataset
of 300 true and 300 false statements, allowing us to
evaluate how effectively each model distinguishes
between entailed and refuted claims in an OOD
setting.

Table 3 reports the accuracy for both the original
(all true) and altered (all false) claims.

RePanda significantly outperforms prior meth-
ods, achieving 88.33% accuracy on the altered

Table 3: Comparison of fact verification accuracy on
300 original and 300 modified WikiFact statements.

Method All False All True Overal

RePanda 88.33 85.67 87.00
TAPEX 41.00 59.33 50.16
TAPAS 55.00 65.33 60.16
PASTA 47.67 51.67 49.67

statements and 85.67% on the original ones. Com-
pared to TAPEX, which achieves only 41.00% ac-
curacy on the altered set, our model demonstrates a
47.33 percentage point improvement, highlighting
its superior performance in OOD setting. Similarly,
TAPAS and PASTA struggle with distinguishing be-
tween entailed and refuted statements, reinforcing
the benefits of structured query-based reasoning.

Comparison with Zero-Shot DeepSeek-Chat:
These results suggest that structured reasoning
through pandas queries provides a more robust fact
verification mechanism, improving both accuracy
and generalization to unseen tabular distributions.
To further validate that our approach effectively
captures structured reasoning, we evaluate the zero-
shot performance of the much larger DeepSeek-
Chat model (671B parameters) on the same fact
verification tasks. As detailed in Appendix A.2,
RePanda achieves results comparable to this sig-
nificantly larger model and even surpasses it on
TabFact, where RePanda reaches 84.09% accu-
racy compared to 82.62% from DeepSeek-Chat.
Similarly, on WikiFact, RePanda achieves 84.72%,
closely matching the zero-shot DeepSeek-Chat
performance of 85.39%. These results highlight
that our fine-tuned 7B model effectively distills
structured reasoning from DeepSeek-Chat (671B)
while maintaining efficiency and interpretability,
enabling local execution without significant perfor-
mance trade-offs.

4.4 Application to Tabular Question
Answering

To evaluate the broader applicability of our
structured query generation approach, we apply
RePanda to tabular question answering using the
WikiTableQuestions dataset. Unlike fact verifica-
tion, where the goal is to determine whether a claim
is true or false, question answering requires extract-
ing precise answers from tables.

We fine-tune DeepSeek-coder-7B-instruct-v1.5

32206

on PanWiki, a dataset of 1,200 question-answer
pairs from WikiTableQuestions, enriched with
pandas queries generated using DeepSeek-Chat.
Despite the limited training data, our method
achieves performance on par with state-of-the-art
models. Table 4 provides a comparative analysis.

Table 4: Comparison of tabular question answering
accuracy on WikiTableQuestions. Our model uses only
1,200 training examples, significantly fewer than other
methods.

Method Accuracy (%)

TabLaP (Wang et al., 2024a) 76.6
SynTQA (GPT)(Zhang et al., 2024) 74.4
Mix SC(Liu et al., 2023) 73.6
SynTQA (RF)(Zhang et al., 2024) 71.6
CABINET(Patnaik et al., 2024) 69.1
Chain-of-Table (Wang et al., 2024b) 67.31
Tab-PoT (Xiao et al., 2024) 66.78

RePanda (Finetuned-Pandas for QA) 75.1

RePanda achieves 75.1% accuracy, performing
competitively with models like TabLaP and Syn-
TQA (GPT), despite training on only 1,200 exam-
ples. In contrast, most existing approaches rely
on significantly larger datasets and task-specific
optimizations. These results highlight the poten-
tial of structured query generation for table-based
QA, demonstrating that a pandas-based execution
framework provides a lightweight yet effective ap-
proach to reasoning over structured data.

4.5 Ablation Study: Effect of Error
Correction

To assess the impact of our automated correction
pipeline, we conduct an ablation study compar-
ing our full model with a variant that omits error
correction. We evaluate performance on TabFact,
WikiFact, and WikiTableQuestions to quantify how
syntax and execution refinements contribute to ac-
curacy.

Setup. Our error correction pipeline in inference
consists of a single step:

• Syntax Correction: Addresses runtime exe-
cution failures by analyzing error messages
and iteratively refining the query until a valid
execution is obtained.

Figure 3 illustrates an example of error correc-
tion applied during training dataset creation.

!

 1957 formula one season
race name circuit date winning driver constructor

xi gran premio ciudad de
buenos aires

buenos
aires 27 january juan manuel

fangio maserati

vii gran premio di siracusa syracuse 7 april peter collins lancia -
ferrari

xvii pau grand prix pau 22 april jean behra maserati

v glover trophy goodwood 22 april stuart lewis -
evans

connaught -
alta

x gran premio di napoli posillipo 28 april peter collins lancia -
ferrari

xxiii grand prix de reims reims -
gueux 14 july luigi musso lancia -

ferrari

v grand prix de caen caen 28 july jean behra brm

ix brdc international trophy silverstone 14
september jean behra brm

v gran premio di modena modena 22
september jean behra maserati

Data source: TabFact Dataset
Statement: 1957 formula one season jean behra be the only one to use the same
constructor 2 race in a row
Label: True
Pandas query:
df['constructor'].eq('brm').shift().fillna(False) &
df['constructor'].eq('brm') & df['winning
driver'].eq('jean behra')
Pandas eval: ERROR
Error: ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(),
a.item(), a.any() or a.all().
Corrected Pandas: ((df['constructor'].eq('brm') &
df['winning driver'].eq('jean
behra')).shift().fillna(False) &
(df['constructor'].eq('brm') & df['winning
driver'].eq('jean behra'))).any()
Corrected Pandas eval: True

Figure 3: An example of Error Correction.

Results. Table 5 presents accuracy results with
and without corrections modules. Removing er-
ror correction results in significant performance
degradation across all datasets.

Table 5: Effect of error correction on accuracy in infer-
ence time. The absence of error correction leads to a
substantial drop in performance.

Dataset No Corr. With Corr.

TabFact 78.02 84.09
WikiFact 74.43 84.72
WQA 67.59 75.1

Analysis. The results emphasize the importance
of error correction in structured query genera-
tion. Without it, many generated queries fail due
to syntax errors. While the underlying logic of
the pandas queries is often correct, minor syn-
tax issues—such as missing parentheses or incor-
rect function calls—can lead to execution failures
and misclassifications. Applying error correction
significantly enhances reliability by ensuring that
structured reasoning remains executable and inter-
pretable.

32207

5 Conclusion

We introduced RePanda, a structured approach for
tabular fact verification that translates claims into
executable pandas queries, ensuring interpretable
and accurate verification. To support execution-
based reasoning, we constructed PanTabFact, an
augmented version of TabFact with structured
queries generated via DeepSeek-Chat and refined
through automated error correction. Fine-tuning
DeepSeek-coder-7B-instruct-v1.5 on PanTabFact,
RePanda achieved 84.09% accuracy on TabFact
and 84.72% on WikiFact without additional fine-
tuning, demonstrating strong out-of-distribution
(OOD) generalization.

Beyond fact verification, we introduced PanWiki,
a structured QA dataset with 1200 data entries
derived from WikiTableQuestions. Fine-tuning
RePanda on PanWiki, we achieved 75.1% accu-
racy in table-based QA, showcasing the broader
applicability of execution-based reasoning.

Additionally, we compare RePanda with the
zero-shot DeepSeek-Chat model (671B) on fact ver-
ification benchmarks (A.2). Despite the large scale
of DeepSeek-Chat, our fine-tuned model achieves
comparable or superior accuracy, demonstrating
the successful distillation of structured reasoning
capabilities into a compact and deployable model.

Unlike black-box classifiers, RePanda explic-
itly encodes reasoning steps through executable
pandas queries, ensuring transparent, verifiable,
and interpretable fact-checking and question an-
swering. By leveraging structured execution rather
than implicit model predictions, RePanda enables
users to trace and validate the reasoning behind
each decision. Its strong performance across di-
verse tabular distributions demonstrates the effec-
tiveness of execution-based reasoning, setting a
new standard for accuracy, generalization, and reli-
ability in tabular fact verification and QA.

6 Limitations

One limitation of our work is that we focused solely
on fact verification using datasets where each entry
consists of a single table. This constraint means
our approach has not been evaluated on more com-
plex cases involving multiple tables, cross-table
reasoning, or hierarchical data structures. As a
result, its effectiveness in scenarios requiring multi-
table aggregation or relational inferences remains
unexplored. Future work could extend our method-
ology to handle fact verification across multiple

interconnected tables, improving its applicability
to real-world datasets with richer relational struc-
tures.

7 Acknowledgements

This project was supported in part by a grant from
an NSF CAREER AWARD 1942230, ONR YIP
award N00014-22-1-2271, ARO’s Early Career
Program Award 310902-00001, Army Grant No.
W911NF2120076, the NSF award CCF2212458,
NSF Award No. 2229885 (NSF Institute for Trust-
worthy AI in Law and Society, TRAILS), a MURI
grant 14262683, an award from meta 314593-
00001 and an award from Capital One.e

References
Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai

Zhang, Hong Wang, Shiyang Li, Xiyou Zhou, and
William Yang Wang. 2019. Tabfact: A large-
scale dataset for table-based fact verification. arXiv
preprint arXiv:1909.02164.

Wenhu Chen, Hanwen Zha, Zhiyu Chen, Wenhan Xiong,
Hong Wang, and William Wang. 2020. Hybridqa: A
dataset of multi-hop question answering over tabular
and textual data. arXiv preprint arXiv:2004.07347.

Julian Martin Eisenschlos, Syrine Krichene, and
Thomas Müller. 2020. Understanding tables
with intermediate pre-training. arXiv preprint
arXiv:2010.00571.

Zihui Gu, Ju Fan, Nan Tang, Preslav Nakov, Xiao-
man Zhao, and Xiaoyong Du. 2022. Pasta: table-
operations aware fact verification via sentence-table
cloze pre-training. arXiv preprint arXiv:2211.02816.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Jonathan Herzig, Paweł Krzysztof Nowak, Thomas
Müller, Francesco Piccinno, and Julian Martin Eisen-
schlos. 2020. Tapas: Weakly supervised table parsing
via pre-training. arXiv preprint arXiv:2004.02349.

Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye,
Wayne Xin Zhao, and Ji-Rong Wen. 2023. Struct-
gpt: A general framework for large language model
to reason over structured data. arXiv preprint
arXiv:2305.09645.

Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi
Lin, Weizhu Chen, and Jian-Guang Lou. 2021.
Tapex: Table pre-training via learning a neural sql
executor. arXiv preprint arXiv:2107.07653.

32208

Tianyang Liu, Fei Wang, and Muhao Chen. 2023. Re-
thinking tabular data understanding with large lan-
guage models. arXiv preprint arXiv:2312.16702.

Panupong Pasupat and Percy Liang. 2015. Compo-
sitional semantic parsing on semi-structured tables.
arXiv preprint arXiv:1508.00305.

Sohan Patnaik, Heril Changwal, Milan Aggarwal, Sumit
Bhatia, Yaman Kumar, and Balaji Krishnamurthy.
2024. Cabinet: Content relevance based noise re-
duction for table question answering. arXiv preprint
arXiv:2402.01155.

Xiaoyu Tan, Haoyu Wang, Xihe Qiu, Yuan Cheng,
Yinghui Xu, Wei Chu, and Yuan Qi. 2024. Struct-
x: Enhancing large language models reasoning with
structured data. arXiv preprint arXiv:2407.12522.

Leandro von Werra, Younes Belkada, Lewis Tunstall,
Edward Beeching, Tristan Thrush, Nathan Lambert,
Shengyi Huang, Kashif Rasul, and Quentin Gal-
louédec. 2020. Trl: Transformer reinforcement learn-
ing. https://github.com/huggingface/trl.

Yuxiang Wang, Jianzhong Qi, and Junhao Gan. 2024a.
Accurate and regret-aware numerical problem solver
for tabular question answering. arXiv preprint
arXiv:2410.12846.

Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Mar-
tin Eisenschlos, Vincent Perot, Zifeng Wang, Lesly
Miculicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu
Lee, et al. 2024b. Chain-of-table: Evolving tables in
the reasoning chain for table understanding. arXiv
preprint arXiv:2401.04398.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Bin Xiao, Burak Kantarci, Jiawen Kang, Dusit Niy-
ato, and Mohsen Guizani. 2024. Efficient prompting
for llm-based generative internet of things. arXiv
preprint arXiv:2406.10382.

Xiaoyu Yang, Feng Nie, Yufei Feng, Quan Liu, Zhigang
Chen, and Xiaodan Zhu. 2020. Program enhanced
fact verification with verbalization and graph atten-
tion network. arXiv preprint arXiv:2010.03084.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.
React: synergizing reasoning and acting in language
models (2022). arXiv preprint arXiv:2210.03629.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Se-
bastian Riedel. 2020. Tabert: Pretraining for joint
understanding of textual and tabular data. arXiv
preprint arXiv:2005.08314.

Siyue Zhang, Anh Tuan Luu, and Chen Zhao. 2024.
Syntqa: Synergistic table-based question answering
via mixture of text-to-sql and e2e tqa. arXiv preprint
arXiv:2409.16682.

Yilun Zhao, Linyong Nan, Zhenting Qi, Rui Zhang,
and Dragomir Radev. 2022. Reastap: Injecting table
reasoning skills during pre-training via synthetic rea-
soning examples. arXiv preprint arXiv:2210.12374.

32209

A Appendix

A.1 Training Dataset Creation
A.1.1 PanTabFact
To construct the training dataset, we generate
pandas queries for statements in TabFact using
DeepSeek-Chat. The dataset undergoes multiple
correction phases to improve syntax, and logical
accuracy. Table 6 summarizes the statistics at each
stage.

Table 6: RePanda statistics across different correction
phases. Accuracy represents the proportion of correctly
classified executable queries.

Phase Correct Accuracy (%)

Initial Generation 73,172 79.29
Logic Correction 84,023 91.05
Syntax Correction 88,299 95.68

The initial generation phase produces many syn-
tax errors. Logic correction refines logical incon-
sistencies before execution. In addition, syntax
correction resolves execution failures, resulting in
88,299 valid queries (95.68% of the original Tab-
Fact dataset) in the final dataset. The prompts used
for every stage of training dataset creation can be
found in Table 8.

A.1.2 PanWikiQA
To construct the question-answering training
dataset, we generate pandas queries for WikiTable-
Questions using DeepSeek-Chat. The dataset con-
sists of 1,200 training examples created with the
instruction prompt in Table 9. The correctness of
generated pandas queries is determined by whether
their execution produces the exact answer given in
the WikiTableQuestions dataset.

Unlike the fact-checking dataset, we did not ap-
ply any correction modules in this setting, as our
goal was only to showcase that the method is also
effective for question answering.

A.2 Zero-Shot Performance of
DeepSeek-Chat

To assess the baseline performance of a larger
instruction-tuned model in a pandas-based set-
ting, we evaluated DeepSeek-Chat (zero-shot) on
both TabFact and WikiFact in fact verification set-
ting. The model was prompted to generate pandas
queries corresponding to given claims, using the
format outlined in Table 9 for both datasets. Since

this is an inference-time evaluation, the Correct
Logic module was not applied. The results of this
zero-shot experiment are presented in Table 7.

Table 7: Zero-shot accuracy of DeepSeek-Chat on Tab-
Fact and WikiFact testsets in fact verification setting,
before and after error correction.

Dataset No Corr. With Corr.

TabFact 73.38 82.62
WikiFact 78.23 85.39

Analysis. The results in Table 7 show that
DeepSeek-Chat, a 671B parameter instruction-
tuned model, demonstrates strong zero-shot fact
verification capabilities when prompted to gener-
ate pandas queries. Notably, after applying er-
ror correction, its accuracy improves significantly,
highlighting the importance of structured execution
refinement. Since our training data is derived from
this large model, the fact that RePanda achieves
similar performance—and even surpasses it in the
case of TabFact (84.09%)—indicates that our fine-
tuning approach effectively transfers structured
reasoning knowledge into a much smaller model.
Furthermore, as shown in Table 2, DeepSeek-
7B achieves only 59.92% accuracy when tested
zero-shot on WikiFact, whereas RePanda reaches
84.72% without any fine-tuning on this dataset.
This demonstrates that knowledge transfer from
DeepSeek-Chat significantly enhances the struc-
tured reasoning ability of our smaller model, en-
abling it to generalize effectively to unseen tabular
distributions.

32210

Table 8: Prompts used for generation and refinement of PanTabFact.

Generation You are a Python expert specializing in pandas. Your task is to translate the
given natural language statement into a single-line pandas expression. This
expression must be valid and executable to verify the truth of the statement
using the provided table. Consider the following:
1. The table is represented as a pandas DataFrame named df.
2. Do not include explanations, comments, or multiline outputs.
3. Ensure the output is concise, correct, and when run outputs either True or
False, and strictly in the following Json Format with a single key "PANDA":
"PANDA": "<your Pandas code>"

Correct Logic You are an expert in Python with a specialization in pandas. Your task is to verify
and correct a given pandas code that translates a natural language statement
into a pandas expression. The corrected pandas code must accurately evaluate
the truth of the statement when applied to the given table. Requirements:
1. The table is represented as a pandas DataFrame named df.
2. The pandas code must evaluate to a boolean value (True or False) using the
snippet: str(bool(eval(pandas_code))).
3. The corrected pandas code should match the truth value indicated by the
provided "Label".
4. Ensure the output is concise, correct, and when run outputs either True or
False, and strictly in the following Json Format with a single key "CORRECT
PANDA": "CORRECT PANDA": "<your Pandas code>"

Correct Syntax You are a Python expert specializing in pandas. Your task is to correct a
pandas code that translates a given natural language statement into a pandas
expression. The code, along with the specific error it contains, is provided.
Your corrected pandas_code must be valid and executable by running the code
snippet str(bool(eval(pandas_code))) ensuring it accurately evaluates the truth
of the statement using the provided table with no errors.
Make sure the pandas_code is of type boolean. Consider the following:
1. The table is represented as a pandas DataFrame named df.
2. Do not include explanations, comments, or multiline outputs.
3. Ensure the output is concise, correct, and when run outputs either True or
False, and strictly in the following Json Format with a single key "CORRECT
PANDA": "CORRECT PANDA": "<your Pandas code>"

Table 9: Prompt used for generating PanWiki.

Task Prompt

Generation You are a Python expert specializing in pandas. You are given a table, a question,
and an answer. Your task is to translate the given natural language question into
a single-line pandas expression. This expression, which acts like a query, must
be valid and executable so that running the pandas expression will output the
answer to the question. Consider the following:
1. The table is represented as a pandas DataFrame named df.
2. Do not include explanations, comments, or multiline outputs.
3. Ensure the output is concise, correct, and when run, it outputs the correct
given answer, and strictly follows the Json format: {"PANDA": "<your Pandas
code>"}

32211

Figure 4: Incorrect Pandas query generations and their corresponding explanations for misinterpretations in fact
verification from the TabFact dataset. The figure shows cases where the queries failed due to issues such as improper
string matching, incorrect logical conditions, and misinterpretation of date formats.

32212

