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Abstract

Text-based reinforcement-learning agents im-
prove their policies by interacting with their en-
vironments to collect more training data. How-
ever, these self-collected data inevitably con-
tain intermediate failed actions caused by at-
tempting physically infeasible behaviors and/or
hallucinations. Directly learning a policy from
such trajectories can reinforce incorrect behav-
iors and reduce task success rates. In this
paper, we propose a failed action-aware ob-
jective that suppresses the negative impact of
failed actions during training by assigning zero
return based on textual feedback. Building
on this objective, we introduce a perturbation
method that leverages unsuccessful trajectories
to construct new successful ones that share
the same goal. This allows agents to benefit
from diverse experiences without further inter-
action with the environment. Experiments in
ALFWorld and ScienceWorld demonstrate that
our method significantly outperforms strong
baselines and generalizes across environments.
Code is available at https://github.com/
riken-grp/text-agent.

1 Introduction

Asking an agent such as a robot to do a simple
task like “put a book on the sofa” requires a wide
range of technologies. Moreover, training physical
robots in real environments can be costly, time-
consuming, and difficult to scale (Pinto and Gupta,
2016; Kalashnikov et al., 2018; Young et al., 2020;
Jang et al., 2022; Ahn et al., 2023). Transfer of
learning from simulated environments to the real
world is a promising strategy for improving cost-
time efficiency and scalability (Tobin et al., 2017;
Pinto et al., 2018; James et al., 2019). Simulated en-
vironments at different levels of abstraction, rang-
ing from high-level language instructions to low-
level embodied executions, offer flexible training
grounds for agents to develop their skills (Kolve

{Initial observation)
Looking quickly around you, you see a
armchair 1, a coffeetable 1, a garbagecan 1,
a sidetable 1, a sofa 1, and a tvstand 1.

-Goal
Your task is to: put a book in sofa.-

> go to sofa 1 Action Observation
You arrive at loc 3. On the sofa 1, you see
a laptop 2, and a pillow 1. reward=0

> go to sidetable 1

You arrive at loc 12. On the sidetable 1,
you see a book 3, a book 2, a book 1, a box
1, and a remotecontrol 1. reward=0

-

> take book 3 from sidetable 1

You pick up the book 3 from the sidetable 1.

reward=0
]

> close sidetable 1
Nothing happens. reward=
> go to sofa 1

You arrive at loc 3. On the sofa 1, you see
a laptop 2, and a pillow 1.

> put book 3 in/on sofa 1
You put the book 3 in/on the sofa 1.
.

Figure 1: Example of an episode in ALFWorld (Shridhar
et al., 2021) where the agent interacts with the environ-
ment, starting from an initial observation and continuing
until the goal is completed. The environment returns
the failure message Nothing happens to indicate that the
action close sidetable 1 is invalid.

et al., 2017; Puig et al., 2018; Chevalier-Boisvert
et al., 2019; Shridhar et al., 2020; Deitke et al.,
2022). Among these, text-based environments pro-
vide a particularly efficient way to train agents in
high-level reasoning before grounding them in real-
world or embodied settings.

Humans have the ability to reason abstractly.
For example, to find a book, we typically look
on a shelf or table rather than in a garbage can.
Ideally, agents should learn to reason in a similar
way to select appropriate actions. Text-based envi-
ronments allow agents to practice abstract reason-
ing for long-horizon manipulation and navigation
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Successful trajectory T

-
go to diningtable 1

go to sinkbasin 1

go to diningtable 1
Goal

\

take butterknife 2 from diningtable 1
clean butterknife 2 with sinkbasin 1

put butterknife 2 in/on diningtable 1 )

Successful perturbed trajectory T
P

go to diningtable 1
-take butterknife 2 from diningtable 1

clean some butterknife and
put it in diningtable.

Unsuccessful trajectory T’

+go to countertop 1
f +take knife 1 from countertop 1 m
go to sinkbasin 1

r

go to diningtable 1
go to countertop 1

go to sinkbasin 1

L 8° to diningtable 1

take knife 1 from countertop 1

clean butterknife 1 with sinkbasin 1

) -clean butterknife 2 with sinkbasin 1
+clean butterknife 1 with sinkbasin 1
go to diningtable 1

\-put butterknife 2 in/on diningtable 1

m = Nothing happens

J

Figure 2: Our perturbation function f creates a successful perturbed trajectory 7 by combining a successful
trajectory 7 and an unsuccessful trajectory 7/, both of which share the same goal but may come from different
scenes. For clarity, we simplify the trajectories by showing only action sequences. The “+” and “-” symbols follow
the semantics of a diff-style output: in 7, unmarked actions are shared between the two input trajectories, actions

w_

prefixed wit

are present in 7 but not in 7/, and actions prefixed with “+” are present in 7’ but not in 7; these

“+” actions are assigned with the failure message Nothing happens.

tasks (Coté et al., 2018; Hausknecht et al., 2020;
Urbanek et al., 2019; Shridhar et al., 2021; Wang
et al., 2022; Yao et al., 2022; Carta et al., 2023;
Zhao et al., 2024). Instead of being based on visual
input, text-based environments describe the world
through natural language, as shown in Figure 1.
This enables agents to focus on high-level deci-
sion making while bypassing low-level embodied
actions.! Here, reinforcement learning (RL) is a
widely adopted approach to learn effective behav-
iors in these environments, because it optimizes
decision making through interaction and feedback.

A major challenge in text-based environments is
the open-ended action space, which makes explo-
ration difficult (Osborne et al., 2022; Jansen and
Cote, 2023). Agents using random policies rarely
make progress toward task goals (Shridhar et al.,
2021; Wang et al., 2022). Expert demonstrations
are often needed to guide learning and help the
agent identify meaningful actions. Previous work
has shown that only a few demonstrations are suffi-
cient in order to initialize a policy, and agents can
then collect additional training data through inter-
actions with the environment (Micheli and Fleuret,
2021). However, unlike expert demonstrations,
self-collected data may include intermediate failed
actions caused by attempting physically infeasible
behaviors and/or hallucinations. Learning directly
from such noisy data may reinforce incorrect be-
haviors and reduce overall task success.

"For instance, a high-level action like go to sofa 1 may
correspond to a sequence of low-level embodied actions such
as LookDown, RotateRight, and MoveAhead.

In this paper, we address the problem of inter-
mediate failed actions in self-collected trajectories
and ask: How can we reduce their negative im-
pact during training while still allowing the agent
to experience them? To this end, we introduce a
failed action-aware objective that works by infer-
ring returns (i.e., cumulative rewards) from textual
observations. The idea is simple: the agent should
receive zero return at a particular step if its action
causes a failure. This reduces the influence of failed
actions during training and encourages the agent to
focus on actions that contribute to task success.

Building on this objective, we propose a pertur-
bation method that allows the agent to learn from
unsuccessful trajectories. Recent work has shown
that unsuccessful trajectories can be helpful, but
their effectiveness depends on pairing them with
expert demonstrations (Song et al., 2024) or using
large language models to extract insights from both
successes and failures (Zhao et al., 2024). Our per-
turbation method relies only on self-collected sam-
ples from online interactions. It takes a successful
trajectory and an unsuccessful one that shares the
same goal, possibly from different scenes, and pro-
duces a new successful perturbed trajectory (see
Figure 2). Experiments in ALFWorld (Shridhar
et al., 2021) and ScienceWorld (Wang et al., 2022)
show that our approach outperforms existing meth-
ods that learn from failure and generalizes to an-
other environment without tuning hyperparameters.
Our contributions. We address the problem of
intermediate failed actions that appear in self-
collected successful trajectories in text-based envi-
ronments (Section 3.1). We propose a failed action-
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aware objective that infers returns directly from
textual observations and reduces the influence of
failed actions during training (Section 3.2). We
introduce a trajectory perturbation method that aug-
ments training data by pairing successful and un-
successful trajectories with shared goals to generate
new successful perturbed trajectories (Section 3.3).

2 Preliminaries

2.1 Problem formulation

We formalize the problem as a discrete, un-
discounted, partially observed Markov decision
process (POMDP, Kaelbling et al., 1998). A
POMDP is defined as a tuple (S, A, P, 2,0, R),
where S is a set of environment states, A is a set of
actions, P : § x A — § is a state transition func-
tion, {2 is a set of observations, O : S x A — 2
is an observation function, and R : § x A — R is
areward function. The functions P, O, and R are
hidden from the agent. In this setting, S contains
complete information about the scene (e.g., object
positions and states), while O selects from S what
information to show to the agent based on the last
action (Coté et al., 2018). We aim to learn a pol-
icy 7 that maximizes the cumulative undiscounted
rewards.

The agent uses 7 to generate actions in order
to complete a task within a fixed number of steps.
Algorithm 1 outlines this interaction process. In
Step 1, the agent receives an initial observation
0g, which includes the task goal. In Step 5, the
agent takes as input a trajectory history 7o, =
(09,01,a1,71,...,0¢—1,a;—1,7:—1) and outputs
an action a;. In Step 6, the environment returns
a new observation o;, a scalar reward r;, and a
termination signal done, which is true when r; =
1 or the step limit is reached (typically 50 steps).

Throughout the paper, we will focus on
household tasks and use examples from ALF-
World (Shridhar et al., 2021). However, it is im-
portant to note that our approach is not tied to a
particular environment. In Section 4.3, we show
results from ScienceWorld (Wang et al., 2022), an-
other text-based environment.

2.2 Behavior cloning and reinforcement
learning

Our baseline follows the two-stage procedure

of Micheli and Fleuret (2021):

(1) Initialize a policy 7 from expert demonstra-
tions using imitation learning.

Algorithm 1 Agent-environment interaction proto-

col

: 0op <— env.reset()

7 < {(00)}

t—1

while not done do
a; < agent.act(7<;)
0y, T4, done «— env.step(a;)
T 71U {(a, o1, 1)}
t—t+4+1

end while

return 7

—_

R AT A

S

(2) Continue improving 7 through online rein-
forcement learning.

In Stage (1), we frame imitation learning as su-
pervised behavior cloning (Pomerleau, 1991). We
distinguish between general trajectories 7, which
include rewards, and expert trajectories 7*, which
do not. We omit rewards in expert trajectories be-
cause supervised behavior cloning does not require
them. An expert trajectory is defined as:

%
T = (09,a1,01,a2,092,...,ar,07).

Here, T is the final time step of the episode.

We define a stochastic policy m(a|7T%,) =
p(ay|T%,;0) parameterized by 6. We express the
loss on a trajectory 7 as the average negative log-
likelihood over the actions:

1 T
L(0) = = Y logp(ar|72:0). (1)
t=1

In other words, we learn a policy that predicts the
expert’s next action given the trajectory history.
Each action a; consists of a sequence of tokens,
a; = (a,... ,aLat|). We factorize the probability

of the action into token-level probabilities:

|a|

plac|TZ;;0) = Hp(aﬂafi, 724 0).
i=1

We compute each token probability using the out-
put of a large language model (LLM):

p(ai]afi,Tit; 0) = softmax(LLMg(afi,Ti ))

The parameters 6 are those in the LLM.

In Stage (2), we apply a Monte Carlo method
that lets the agent learn from complete episodes of
experience. We define a return g; as the cumulative
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undiscounted reward r from time step ¢ (Sutton and
Barto, 2018):

gt = Tt41 + T2+ ..o+ 1T

The objective maximizes the expected return:

T

1 _
J(0) = Elgi] = o ) logp(asl 7r; O)gr, ()
t=1

where T is a successful trajectory that the agent
collects by interacting with the environment.

Assuming rewards are delayed until the episode
ends, maximizing Eq. (2) becomes equivalent to
minimizing Eq. (1) because g, = 0+0+...+1 =1
for all a; in 7. Thus, Stages (1) and (2) end up
optimizing the same objective over two distinct
sources of data, 7* and 7. Micheli and Fleuret
(2021) refer to these stages as action modeling and
iterated action modeling, respectively.

3 Approach

3.1 Motivating examples

Unlike expert trajectories, self-collected trajecto-
ries can contain intermediate failed actions. A com-
mon type of failure is an infeasible action. For
example, in Figure 1, the agent generates the action
close sidetable 1, but the verb close is incompatible
with that object. Figure 3(a) shows another failure
where the agent tries to use cellphone 1. These
actions fail because the agent does not fully under-
stand object properties and interactions.

Here, we do not intend to analyze all types of
failed actions. Instead, we will focus on failures
where the agent hallucinates the presence of objects.
In Figure 3(b), the agent believes that pencil 3 is
on sidetable 1 and tries to take it to garbagecan 1,
resulting in two failed actions.” In Figure 3(c), the
agent navigates to sofa 1 and then attempts to go to
sofa 2, which does not exist in the current scene.

In text-based environments like ALFWorld, hal-
lucinations are difficult to avoid partly because of
the way scenes are configured. Objects or recepta-
cles of the same type are distinguished by numeric
IDs (e.g., sofa 1, sofa 2, and so on). These ID to-
kens are reused across scenes, and the agent often
starts with a correct object type but hallucinates
non-existing IDs. For example, it may generate go
to sofa 2 even if only sofa 1 exists in the scene.

’This failure is caused by a language model hallucination.

However, similar issues can arise in real environments due to
sensor noise or perceptual errors.

> take cellphone 1 from sidetable 2
You pick up the cellphone 1 from the
sidetable 2.

> use cellphone 1
Nothing happens.

> go to safe 1
You arrive at loc 14. The safe 1 is closed.

\ J

(a) Physical infeasibility

r> go to sidetable 1
You arrive at loc 10. On the sidetable 1,
you see a cd 3, a creditcard 3, and a
keychain 1.

> take pencil 3 from sidetable 1
Nothing happens.

> go to garbagecan 1
You arrive at loc 3. On the garbagecan 1,
you see a cd 2.

> put pencil 3 in/on garbagecan 1
\Nothing happens.

(b) Object hallucination

4 )
> go to sofa 1

You arrive at loc 45. On the sofa 1, you
see a remotecontrol 2.

> go to sofa 2
Nothing happens.

> go to shelf 1
You arrive at loc 23. On the shelf 1, you
see a statue 1.

> take statue 1 from shelf 1
kYou pick up the statue 1 from the shelf 1.

(c) Location hallucination

Figure 3: Examples of intermediate failed actions during
online interaction.

3.2 Failed action-aware objective

The presence of failed actions becomes problem-
atic for iterated action modeling because it treats
all actions, including failed ones, equally when up-
dating the policy from a successful trajectory 7. A
direct approach is to remove failed actions from
the training data before updating the policy. In
the early stages of our research, we tested several
filtering methods, but they hindered the agent’s ex-
ploration and provided only minimal improvements
(see Section 4.2).

Beyond filtering, another possible approach is to
replace the return g; in Eq. (2) with an advantage
function (Schulman et al., 2016), which estimates
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how much better or worse an action performs com-
pared with the average. However, this method re-
quires additional model parameters. Instead, we
propose a simple technique that directly infers re-
turns from textual observations.

Text-based environments typically provide spe-
cific messages for failed actions.® Let F be a set
of known failure messages. We define the failed
action-aware objective as:

. 1 &
J(0) = 7 > logplai 7 0)Alor),  (3)
t=1

where

0 ifoeF,

g: otherwise.

A(Ot) =

We can view A as a binary advantage function, sug-
gesting that there is no advantage to taking a failed
action.* Our failed action-aware objective J intro-
duces minimal computational overhead compared
with the vanilla objective in Eq. (2). Unlike filter-
ing methods, we retain failed actions in 7 in order
to allow the agent to learn from failure.

Our method relies on capturing the determinis-
tic failure messages, which are sufficient for the
environments we target. Generalization to envi-
ronments with more diverse failure signals may
require developing a signal classifier. We leave this
for future work.

3.3 Trajectory perturbation from successful
and unsuccessful pairs

As described in Section 2.2, the agent improves its
policy by using only successful trajectories. We
inspect the number of successful and unsuccessful
trajectories the agent collects during online inter-
action. Figure 4 shows the counts across 10 trials
under the failed action-aware objective J. Like
many online reinforcement learning methods, it-
erated action modeling discards unsuccessful tra-
jectories. We address this limitation by generating
new successful trajectories from pairs of successful
and unsuccessful ones that share the same goal.

Let 7/ be an unsuccessful trajectory. We pair 7’/
with a successful trajectory 7 (without fail actions)

3Both ALFWorld and ScienceWorld provide deterministic
failure messages: Nothing happens and No known action
matches that input, respectively.

*Our method is also similar to reward shaping (Ng et al.,
1999), where the function A is external to the environment

and independent of past states, ensuring the process remains
Markovian.

B Successful 7
B Unsuccessful 7/

Number of trials

Figure 4: Number of successful and unsuccessful tra-
jectories collected in 10 trials, each consisting of 400
episodes. As interaction progresses, the agent collects
more successful trajectories than unsuccessful ones.

if they share the same goal. We define a pertur-
bation function f(7,7’) that returns a successful
perturbed trajectory 7, and apply it to all pairs of
goal-aligned 7 and 7/ found in the collected trajec-
tories.” Figure 2 illustrates how the perturbation
function f generates T by comparing the action
sequences of 7 and 7’.

We implement the perturbation function f using
unified_diff from Python’s difflib library to
identify differences between the action sequences
of 7 and 7/. We annotate actions from 7’ that
do not appear in 7 with the failure message and
include them in 7. We truncate T at the point
where 7 ends to ensure that the perturbed trajectory
preserves a successful state. The process takes less
than one second per pair.

Our augmented training data consist of success-
ful trajectories and their perturbed versions. We use
them to update the policy after online interaction.
Since our objective J allows failed actions in the
trajectory histories, we can learn from 7 even when
it includes failed segments. These perturbed tra-
jectories provide diverse contexts and help to train
a more robust policy without requiring additional
environment interactions.

4 Experiments

Setup. We focused on six household tasks in ALF-
World (Shridhar et al., 2021) derived from the AL-

For example, in Figure 4, we derived 1,962 successful
trajectories without failed actions and 1,426 unsuccessful tra-
jectories from a pool of 4,000 episodes. The successful and
unsuccessful trajectories both had 713/618 unique goals and
shared 382 goals. We could generate 2,468 successful per-
turbed trajectories.
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Task Type Train Seen Unseen

Pick & Place 790 35 24
Examine in Light 308 13 18

Clean & Place 650 27 31
Heat & Place 459 16 23
Cool & Place 533 25 21

Pick Two & Place 813 24 17
All 3,553 140 134

Table 1: Statistics of task types in ALFWorld. The seen
set contains known tasks, but the object locations and
quantities are different from the training set, whereas
the unseen set contains new tasks in the unseen scenes.

FRED benchmark (Shridhar et al., 2020). Table 1
lists the numbers of tasks in the training, seen, and
unseen sets. We obtained expert demonstrations by
running an expert agent on the training tasks. The
expert agent could access permissible actions and
used a hand-coded deterministic policy provided
by the simulator.

Each of the seen and unseen sets has two goal
versions: templated-based and human-annotated.
Both versions use the same scenes, but the human-
annotated goals introduce unseen verbs and nouns,
creating additional generalization challenges. Ap-
pendix F illustrates the differences between these
goal types.

To ensure comparability with prior work, we fol-
lowed the same experimental setup as in Micheli
and Fleuret (2021). We used GPT-2 medium
(355M) (Radford et al., 2018) as our pre-trained
LLM. We reimplemented the action modeling
(AM) and iterated action modeling (IAM), which
yield better performance than the original ver-
sions. For AM, we randomly sampled seven expert
demonstrations per task type (42 in total) to train
an initial policy. For IAM, we started with the AM
policy and let the agent learn by interacting with
the environment over 10 trials, each consisting of
400 episodes. The two variants of our approach are
as follows:

IAM-FA applies our failed action-aware (FA) ob-
jective J described in Section 3.2.

IAM-FA + DA incorporates our data augmenta-
tion (DA) described in Section 3.3 to further
train the IAM-FA policy offline.

Implementation. We used the Transformers li-

brary (Wolf et al., 2020). We optimized the model

parameters by using Adafactor (Shazeer and Stern,

2018). We followed most of the hyperparameter

settings in Micheli and Fleuret (2021), as detailed
in Appendix A. During the online interaction, the
trajectory history could exceed the maximum con-
text length (i.e., 1000 tokens). We handled this
case by truncating the oldest action and observation
pairs while always retaining the initial observation
that contains the goal.

Training times. All models were trained using

a single A6000 GPU per run. AM took around

5 minutes to train. IAM/IAM-FA took around 2

hours (i.e., 12 minutes per trial). IAM-FA + DA

took around 30 minutes.

Comparisons. We compared our approach against

the following methods:

BUTLER (Building Understanding in TextWorld
via Language for Embodied Reasoning, Shrid-
har et al., 2021) is a text agent trained with
50K episodes via imitation learning (Ross et al.,
2011). The authors also present the Seq2Seq
baseline, an encoder-decoder model based on
Transformers (Vaswani et al., 2017) trained with
all expert demonstrations.

ExpeL (Experiential Learning, Zhao et al., 2024)
is an in-context learning-based agent that ex-
tracts insights from successful/unsuccessful tra-
jectories and then composes prompts by com-
bining these insights with similar successful ex-
amples. Each insight is a list of instructions
generated by GPT-4. ExpeL can be combined
with Reflexion (Shinn et al., 2023) to retry failed
tasks multiple times with a long-term memory
buffer.

ETO (Exploration-based Trajectory Optimiza-
tion, Song et al., 2024) pairs unsuccessful tra-
jectories produced by a base agent with expert
trajectories and trains the policy by using direct
preference optimization (DPO, Rafailov et al.,
2023). The authors annotate each action in an
expert trajectory with a chain-of-thought ratio-
nale (Wei et al., 2022) using GPT-4. These anno-
tated expert trajectories are used to fine-tune the
base agent with supervised fine-tuning (SFT),
followed by policy updates using ETO. Their
model uses Llama-2-7B-chat (Touvron et al.,
2023) as the pre-trained LLM.

4.1 Main results

Table 2 shows the results of the various methods.
IAM-FA + DA outperforms other methods that
learn from failure (i.e., ExpeLL and ETO). IAM-
FA consistently performs better than the baseline
1AM, suggesting that our objective J is effective.
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Template Human
Method Seen Unseen Seen Unseen
Shridhar et al. (2021) Seq2Seq 10 9 - -
BUTLER 40 37 - -
Zhao et al. (2024) ExpeL - 59 - -
ExpeL + Reflexion - 64 - -
Song et al. (2024) SFT 60 67 - -
ETO 69 72 - -
Micheli and Fleuret (2021) AM 48 35 19 17
IAM 76 68 35 37
This work IAM-FA 82 761 39 44
IAM-FA + DA 871 781 517 55t

Table 2: Success rates (%) on the seen and unseen sets of template-based and human-annotated goals in ALFWorld.
For AM and IAM variants, we report the average success rate computed over five training/test runs from different
random seeds. The other results are taken directly from the papers. The symbol T indicates a statistically significant
difference (p < 0.05, Mann—Whitney U test) compared with IAM (see Appendix B for more details).

Pick Examine Clean Heat Cool Pick Two
Method Sn Un Sn Un Sn Un Sn Un Sn Un Sn Un
AM 59 40 43 36 65 32 50 63 47 27 12 5
IAM 8 70 51 37 94 75 90 95 80 80 43 32
IAM-FA (ours) 87 81 62 54 94 78 94 95 79 87 64 48
IAM-FA+DA(ours) 93 84 77 56 97 83 92 95 88 8 70 53

Table 3: Success rates (%) by task type for template-based goals. Sn = Seen; Un = Unseen.

AM performs poorly, but this is expected since it is
trained with only 1.2% of expert demonstrations.

To better understand the range of task difficulties,
we inspected the results by task type on template-
based goals. Table 3 shows that success rates vary
significantly across tasks. The most challenging
task is “Pick Two & Place”, which requires the
agent to find an object, pick it up, find a location
to place it, and repeat this process for a second
object within the 50-step limit. Appendix C shows
success cases where IAM-FA + DA completes the
task but [AM fails.

4.2 Ablation studies

How important is the failed action-aware objec-
tive for using augmented data effectively? We
removed our objective J from the training process,
which is equivalent to running IAM and performed
further training with augmented data without .J.
Table 4 shows the results.® The sharp drops in per-

The success rates in the ablation studies and additional
experiments are also averaged over five training/test runs.

formance indicate that .J and our data augmentation
work together to achieve the best results.

How does our data augmentation compare with
alternative strategies? We evaluated three alter-
native strategies. First, we excluded the successful
perturbed trajectories and used only the success-
ful ones. Second, we used only the unsuccessful
trajectories. Third, we combined both successful
and unsuccessful trajectories without perturbation.
As shown in Table 5, all these alternative strategies
perform worse than our approach.

Is filtering failed actions a viable alternative to
our objective? As discussed in Section 3.2, a
simple way to tackle failed actions is to remove
them from the training data. We tested this idea by
(1) filtering out failed actions from the trajectories
and (2) discarding any trajectory that contained
at least one failed action. Table 6 shows that the
results are mixed. While IAM with action filtering
performs slightly better on the human-annotated
goals, it does not allow the agent to experience
failure. In contrast, IAM-FA retains failed actions,
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Template Human
Method Sn Un Sn Un
IAM-FA+DA 87 78 51 55

wlo J 81 73 45 49

Table 4: Ablation of the failed action-aware objective.

Template Human

Method Sn Un Sn Un
IAM-FA + DA 87 78 51 55
augment w/ 7 8 76 44 48
augment w/ 7/ 70 61 33 36

augmentw/ 7 U T’ 82 70 40 47

Table 5: Ablations of different augmentation strategies.

Template Human
Method Sn Un Sn Un
IAM-FA 82 76 39 44

IAM w/ act. filtering 79 74 40 45
IAM w/ traj. filtering 80 75 36 43

Table 6: Ablations of handling failed actions.

allowing the agent to learn from failure and benefit
from our data augmentation method.

4.3 Generalization and scaling results

How useful are self-collected trajectories for pol-
icy improvement? We have already seen in Fig-
ure 4 that the agent progressively collects success-
ful trajectories over time. To assess their utility,
we evaluated the policy at the end of each trial.
Figure 5 shows that IAM-FA achieves higher suc-
cess rates than IAM in every trial, indicating that it
learns more effectively from the same number of
episodes.

Can our approach be applied to a new envi-
ronment? We applied our method to Science-
World (Wang et al., 2022), a different text-based
environment with diverse scientific tasks. Fol-
lowing Song et al. (2024), we used a subset of
24 task types with identical training, seen, and
unseen splits (1,483/194/211 tasks). We com-
pared our method against SFT and ETO from their
work, which achieved strong results on this task
set. We reused the hyperparameter settings from
ALFWorld without any modification. For AM, we
sampled seven expert demonstrations per task type,
resulting in 164 demonstrations in total. We also

851 —— |AM
IAM-FA (ours)
80
<757
S
8 70
i
(%]
& 65
(]
o
3
w 60<
551
501
2 4 6 8 10

Number of trials

Figure 5: Mean success rate (%) of the policy at each
trial computed over five training/test runs on the seen
set of ALFWorld’s template-based goals. Given the
same number of episodes, IAM-FA helps the agent learn
effective policies more quickly than IAM, leading to
higher success rates across all trials.

trained AM*, where the asterisk indicates train-
ing with all expert demonstrations in this split, to
estimate an upper-bound performance. Table 7
shows the average scores on seen and unseen sets.’
AM* scores better than SFT and is competitive with
ETO, while using 19.7x fewer parameters (GPT-2
medium 355M vs. Llama-2-7B-chat) and no GPT-4
annotations.

In ScienceWorld, IAM-FA + DA improves per-

formance and nearly matches AM* on the unseen
set, despite using far fewer expert demonstrations.
TAM-FA also outperforms both AM and IAM, but
the gap is smaller than in ALFWorld. We observed
that successful trajectories in ScienceWorld con-
tain fewer intermediate failed actions, which in turn
limits the contribution of our failed action-aware
objective during training. Appendix D shows a
success case in ScienceWorld.
How does our approach perform with other
LLMs without tuning? We tested our approach
with GPT-2 small (124M) and Pythia-410M (Bider-
man et al., 2023) using the same hyperparameters
as GPT-2 medium. These experiments assessed
whether IAM-FA and IAM-FA + DA generalize
across model scales without adjustment. As shown
in Table 9 (Appendix E), both variants outperform
AM and TAM, with larger improvements on the
harder human-annotated goals. These results indi-
cate the robustness of our method when it is applied
to smaller or mid-sized language models.

"ScienceWorld returns an intermediate score ranging be-
tween 0 and 100 to reflect the task progress.
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Method Seen Unseen
SFT 67.4 53.0
ETO 73.8 65.0
AM* 71.5 61.8
AM 59.8 54.6
IAM 65.8 59.4
TAM-FA (ours) 66.3 60.5
IAM-FA + DA (ours) 67.9 61.3

Table 7: Average scores on the seen and unseen sets
in ScienceWorld. The top section includes methods
trained with all expert demonstrations, including AM*.
Results for SFT and ETO are taken directly from Song
et al. (2024) for comparison. The bottom section reports
results from methods that rely on limited expert data and
learn through online interaction. All values are averaged
over five training/test runs with different random seeds.

Can our method scale to a larger language
model? To evaluate scalability, we conducted addi-
tional experiments using Llama-3.1-8B (Grattafiori
et al., 2024) with parameter-efficient fine-tuning
(PEFT, Mangrulkar et al., 2022) via low-rank adap-
tation (LoRA, Hu et al., 2022). We used LoRA
with » = 16, a = 32, dropout = 0.05, and ap-
plied it to all linear layers. Because LoRA updates
only a small number of parameters, we increased
the learning rate for each method by a factor of
ten over its original value. We also halved the
number of episodes per trial from 400 to 200 to
keep training time manageable. IAM and IAM-
FA required approximately four hours to train. All
models used the same hyperparameters across ALF-
World and ScienceWorld. Tables 10 and 11 (Ap-
pendix E) show that IAM-FA and IAM-FA + DA
outperform AM and IAM on both ALFWorld and
ScienceWorld, confirming that our method remains
robust when scaled to a larger model.

5 Related work

Text-based environments designed as interactive
games date back to the late 1970s (Lebling et al.,
1979), distinguishing them from earlier symbolic
systems like SHRDLU (Winograd, 1972). For a
comprehensive survey of text-based environments,
we refer readers to Jansen (2022). Recent environ-
ments adopt the OpenAl Gym interface (Brockman
et al., 2016), providing a unified API for agents to
interact with the environment (Coté et al., 2018;
Hausknecht et al., 2020; Shridhar et al., 2021;
Wang et al., 2022; Yao et al., 2022; Zhou et al.,

2024). Text agents have been developed using im-
itation learning (Shridhar et al., 2021), reinforce-
ment learning (Yao et al., 2020; Carta et al., 2023),
and hybrid approaches (Lin et al., 2023; Song et al.,
2024). Another line of work focuses on in-context
learning, which uses prompts (e.g., instructions or
few-shot examples) to interact with LLMs with-
out parameter updates (Yao et al., 2023; Shinn
et al., 2023; Zhao et al., 2024). Most studies rely
on commercial LL.Ms, making fair comparisons
and reproducibility difficult. Our work is inspired
by Micheli and Fleuret (2021), who introduced
iterated action modeling to improve policies by us-
ing self-collected trajectories. We extended that
framework by addressing intermediate failed ac-
tions within successful trajectories and by leverag-
ing unsuccessful ones to improve learning.

Learning from failure has been extensively stud-
ied in non-text-based environments. Shiarlis et al.
(2016) introduced an inverse reinforcement learn-
ing (IRL) algorithm that extracts a reward func-
tion from failed demonstrations. However, mod-
eling reward functions in partially observable set-
tings remains challenging (Choi and Kim, 2011).
Andrychowicz et al. (2017) proposed hindsight ex-
perience replay (HER), which generates alternative
goals for unsuccessful trajectories. While effective
in static robotic environments, HER is difficult to
apply to open-ended text-based tasks. In text-based
settings, our work is closely related to Zhao et al.
(2024); Song et al. (2024), who pair successful and
unsuccessful trajectories to support learning. In
contrast, our approach does not require commer-
cial LLMs or expert-annotated trajectories to create
augmented training data. Our perturbation method
is deterministic, computationally efficient, and easy
to implement.

6 Conclusion

We addressed the problem of successful trajectories
that contain intermediate failed actions. Learning
directly from such trajectories can degrade task
performance. Our failed action-aware objective
suppresses the impact of failed actions by assign-
ing zero return at those steps. It also enables the
use of unsuccessful trajectories to generate addi-
tional training data. Together, these techniques
lead to consistent improvements over existing base-
lines. Extending our approach to embodied agents
remains an important direction for future work.
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Limitations

The term A(o;) in Eq. (3) is defined as a determin-
istic 0-1 advantage function. It assigns zero return
to failed actions and a fixed return of one to all
non-failed actions, assuming the environment gives
areward only at the end of a successful trajectory.
This setting does not distinguish non-failed actions
that contribute to meaningful subgoals from those
that do not. One possible extension is to design
graded or learned advantage functions that reflect
subgoal relevance.

Our perturbation function assumes the availabil-
ity of successful and unsuccessful trajectories that
share the same goal. In some environments, finding
exact goal matches may be difficult. One possible
workaround is to represent goals by using sentence
embeddings and select pairs with high semantic
similarity.

IAM-FA and IAM-FA + DA rely on the pres-
ence of deterministic failure messages returned by
the environment. This assumption holds in ALF-
World and ScienceWorld, where failure signals are
consistent and well-defined. In environments with
ambiguous or missing failure feedback, identify-
ing failed actions may be more challenging. One
possible solution is to train a classifier that pre-
dicts failures based on the observation and action
context.
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Number of epochs 50
Batch size 1
Gradient accumulation step 7
Learning rate 5e-5
LR schedule Constant
Max sequence length 1000
LLM’s decoding Greedy
(2) AM
Number of trials 10
Episodes per trial 400
Batch size 1
Gradient accumulation step 8
Learning rate le-5
LR schedule Constant
Max action length 50
Max sequence length 1000
LLM’s decoding Sampling

(b) IAM and IAM-FA

Number of epochs 2
Batch size 1
Gradient accumulation step 8
Learning rate le-5
LR schedule Linear
Max sequence length 1000
LLM’s decoding Greedy

(c) IAM-FA + DA

Table 8: Key hyperparameters for AM, IAM, TAM-FA,
and IAM-FA + DA.

A Hyperparameters

Table 8 lists the key hyperparameters used in our
experiments. All other settings follow the default
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Figure 6: Boxplots showing success rates and results
of the Mann—Whitney U test for the seen and unseen
sets of template-based and human-annotated goals in
ALFWorld. Each dot represents the success rate from
a random seed. The symbol = indicates a statistically
significant difference at p < 0.05.
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values in the Transformers library. We used the
same hyperparameters for both ALFWorld and Sci-
enceWorld. For Llama-3.1-8B experiments with
LoRA, we increased each learning rate by a factor
of ten and reduced the number of episodes per trial
from 400 to 200 in IAM and IAM-FA.

B Statistical significance tests

We performed five training/test runs using differ-
ent random seeds. We then conducted statistical
significance tests to evaluate the performance differ-
ences among IAM variants. For each combination
of goal type (template-based or human-annotated)
and data split (seen or unseen), we conducted sta-
tistical significance tests using the Mann—Whitney
U test across all pairs of IAM variants (IAM, IAM-
FA, and IAM-FA + DA). Figure 6 shows the cor-
responding boxplots for the four settings in ALF-
World.

C Example trajectories in ALFWorld

Figure 7 shows successful trajectories for the
“Clean & Place” and “Pick Two & Place” tasks.
Both are from the unseen set of template-based
goals. IAM-FA + DA successfully completes these
tasks, while IAM fails.

D Example trajectory in ScienceWorld

ScienceWorld (Wang et al., 2022) tests agents on
tasks aligned with an elementary school science
curriculum (e.g., boiling water or finding living
things). Figure 8 shows a successful trajectory for
the “find-plant” task completed by IAM-FA + DA.

E Results for other LLMs

This appendix presents additional results using
LLMs other than GPT-2 medium. Table 9 shows re-
sults on ALFWorld using GPT-2 small and Pythia-
410M, both evaluated with the same hyperparame-
ters as GPT-2 medium. These experiments test the
robustness of our method without hyperparameter
tuning.

Tables 10 and 11 show results when using Llama-
3.1-8B with PEFT via LoRA. All hyperparameters
were adjusted consistently across ALFWorld and
ScienceWorld, as described in Section 4.3. These
experiments demonstrate that our method scales
effectively to a larger model.

Template Human
Method Seen Unseen Seen Unseen
AM 34 30 14 16
IAM 40 37 19 22
IAM-FA 57 47 27 27

IAM-FA + DA 70 64 40 40

(2) GPT-2 small (124M)

Template Human
Method Seen Unseen Seen Unseen
AM 34 25 16 15
IAM 59 55 29 29
IAM-FA 72 64 31 37

IAM-FA + DA 75 67 39 45

(b) Pythia-410M

Table 9: Results on ALFWorld using GPT-2 small and
Pythia-410M. All models were trained with the same
hyperparameters as GPT-2 medium. We report mean
success rates (%) over five training/test runs with differ-
ent random seeds.

Template Human
Method Seen Unseen Seen Unseen
AM 61 66 25 36
IAM 81 78 35 44
IAM-FA 84 80 38 46

IAM-FA + DA 92 92 50 57

Table 10: Results on ALFWorld using Llama-3.1-8B.
All models were fine-tuned with LoRA. We report mean
success rates (%) over five training/test runs with differ-
ent random seeds.

Method Seen Unseen
AM* 79.0 70.6
AM 65.4 56.9
IAM 70.0 60.3
IAM-FA 71.6 63.3
IAM-FA + DA 73.6 65.0

Table 11: Results on ScienceWorld using Llama-3.1-
8B. The top section shows the AM* result, trained
with all expert demonstrations. The bottom section
presents methods that use limited demonstrations and
learn through online interaction. All models were fine-
tuned with LoRA and evaluated over five training/test
runs with different random seeds.
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Looking quickly around you, you see a cabinet 6, a cabinet
5, a cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1,

a coffeemachine 1, a countertop 3, a countertop 2, a
countertop 1, a drawer 3, a drawer 2, a drawer 1, a fridge
1, a garbagecan 1, a microwave 1, a shelf 3, a shelf 2, a
shelf 1, a sinkbasin 1, a stoveburner 4, a stoveburner
3, a stoveburner 2, a stoveburner 1, and a toaster 1.

Your task is to: put a clean knife in countertop.

> go to sinkbasin 1
You arrive at loc 30. On the sinkbasin 1, you see a
butterknife 2, a cup 2, a egg 2, and a spoon 1.

> take knife 2 from sinkbasin 1
Nothing happens.

> go to countertop 1
You arrive at loc 13. On the countertop 1, you see a apple
3, a apple 2, a creditcard 1, and a peppershaker 2.

...[truncated]...

> go to countertop 3

You arrive at loc 6. On the countertop 3, you see a bread
1, a houseplant 1, a knife 1, a peppershaker 3, a pot 1, a
soapbottle 1, a spatula 3, and a statue 3.

> take knife 1 from countertop 3
You pick up the knife 1 from the countertop 3.

> go to sinkbasin 1
You arrive at loc 30. On the sinkbasin 1, you see a
butterknife 2, a cup 2, a egg 2, and a spoon 1.

> clean knife 1 with sinkbasin 1
You clean the knife 1 using the sinkbasin 1.

> look
You are facing the sinkbasin 1. Next to it, you see
nothing.

> go to countertop 1
You arrive at loc 13. On the countertop 1, you see a apple
3, a apple 2, a creditcard 1, and a peppershaker 2.

> put knife 1 in/on countertop 1
You put the knife 1 in/on the countertop 1.

\You put the cd 1 in/on the safe 1.

~

Looking quickly around you, you see a bed 1, a desk 2, a
desk 1, a drawer 6, a drawer 5, a drawer 4, a drawer 3,

a drawer 2, a drawer 1, a garbagecan 1, a laundryhamper 1,
a safe 1, a shelf 6, a shelf 5, a shelf 4, a shelf 3,

a shelf 2, and a shelf 1.

Your task is to: find two cd and put them in safe.
...[truncated]...

> go to drawer 4
You arrive at loc 24. The drawer 4 is closed.

> open drawer 4
You open the drawer 4. The drawer 4 is open. In it, you
see a cd 3, and a creditcard 1.

> take cd 3 from drawer 4
You pick up the cd 3 from the drawer 4.

> go to safe 1
You arrive at loc 8. The safe 1 is closed.

> open safe 1
You open the safe 1. The safe 1 is open. In it, you see
nothing.

> put cd 3 in/on safe 1
You put the cd 3 in/on the safe 1.

> close safe 1
You close the safe 1.

> go to desk 1

You arrive at loc 14. On the desk 1, you see a alarmclock
2, a bowl 1, a cd 1, a cellphone 1, a desklamp 1, and a
mug 1.

> take cd 1 from desk 1
You pick up the cd 1 from the desk 1.

> go to safe 1
You arrive at loc 8. The safe 1 is closed.

> open safe 1
You open the safe 1. The safe 1 is open. In it, you see a
cd 3.

> put cd 1 in/on safe 1

(a) Clean & Place

(b) Pick Two & Place

Figure 7: Examples of successful trajectories on the unseen set of template-based goals in ALFWorld, completed by

IAM-FA + DA.
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N
Your task is to find a(n) plant. First, focus on the thing. Then, move it to

the yellow box in the bedroom.

> look around
This room is called the living room. In it, you see:
the agent
a substance called air
a chair. On the chair is: nothing.
a couch. On the couch is: a white pillow.
a desk. On the desk is: a drawer.
a finger painting
You also see:
A door to the hallway (that is open) [score=0]

> teleport to greenhouse
You teleport to the greenhouse. [score=17]

> look around
This room is called the greenhouse. In it, you see:
the agent
substance called air
bee hive. The bee hive door is closed.
flower pot 1 (containing a apple tree in the adult stage, soil)
flower pot 2 (containing a peach tree in the adult stage, soil)
flower pot 6 (containing a banana tree in the adult stage, soil)
flower pot 7 (containing a substance called water)
flower pot 8 (containing a substance called water)
jug (containing nothing)
shovel
a sink, which is turned off. In the sink is: nothing.
You also see:
A door to the hallway (that is open)
A door to the outside (that is open) [score=17]

P DR DR DR TR VR R P )

> focus on peach tree
You focus on the peach tree. [score=67]

> pick up flower pot 2
You move the flower pot 2 to the inventory. [score=75]

> teleport to bedroom
You teleport to the bedroom. [score=83]

> move flower pot 2 containing peach tree and soil in inventory to yellow box
\You move the flower pot 2 to the yellow box. [score=100]

J

Figure 8: Example of a successful trajectory in ScienceWorld completed by IAM-FA + DA.

F Examples of template-based and
human-annotated goals

The human-annotated goals include 66 unseen
verbs and 189 unseen nouns that are not present
in the template-based goals (Shridhar et al., 2021).
Table 12 shows examples for each task type.
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Task Type Example

Pick & Place (a) put some spraybottle on toilet.
(b) put the spray bottle on the back of the toilet.

Examine in Light  (a) examine the statue with the desklamp.
(b) Pick up the statue from the table and turn on the lamp.

Clean & Place (a) clean some dishsponge and put it in countertop.
(b) Put a wet sponge on the counter.

Heat & Place (a) heat some apple and put it in diningtable.
(b) Put a heated apple on the table.

Cool & Place (a) put a cool egg in microwave.
(b) Put a cold egg in the microwave.

Pick Two & Place  (a) find two knife and put them in drawer.
(b) place two knifes in the kitchen drawer.

Table 12: Examples of (a) template-based and (b) human-annotated goals for each task type.
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