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Abstract

Expanding the breadth of languages used to
study sociophonetic variation and change is
an important step in the theoretical develop-
ment of sociophonetics. As data archives grow,
forced alignment can accelerate the study of
sociophonetic variation in minority languages.
This paper examines the application of English
and custom-made acoustic models on the align-
ment of vowels in two Pacific Creoles, Tok
Pisin (59 hours) and Bislama (38.5 hours). We
find that English models perform acceptably
well in both languages, and as well as humans
in vowel environments described as ‘Highly
Reliable’. Custom models performed better in
Bislama than Tok Pisin. We end the paper with
recommendations on the use of cross-linguistic
acoustic models in the case of English-Based
Creoles.

1 Introduction

The phonetic analysis of spoken language is a cen-
tral tenet of our understanding of language varia-
tion and change (Labov, 1963). What start as small
phonetic changes can develop into salient markers
of linguistic difference: among the English-based
creoles of the Pacific, the transitivity marker on
verbs is -im in Tok Pisin from Papua New Guinea
(e.g. planim ‘to plant’, from plant him) but is -em
in Bislama (Vanuatu) and Solomons Pijin (e.g. Bis-
lama planem and Solomons Pijin plandem/planem).
Currently, European languages dominate phonetic
research (Tucker and Wright, 2020). To evaluate
claims of universal, or at least common patterns

of sound change, phonetic research needs to draw
from a wider base of linguistic diversity (Tucker
and Wright, 2020). Historic hurdles, like data avail-
ability, are being broken down through the cen-
tralisation and archiving of diverse linguistic data
(Thieberger and Harris, 2022; Seifart et al., 2018).
The next step is to identify a pipeline to process
archived data and facilitate the quantitative analysis
of a broader set of languages.

This study assesses whether the pipelines devel-
oped in resource-rich languages are sufficient to
accelerate the study of lesser-resourced languages
or if specific models and approaches must be de-
veloped. We specifically assess the domain of auto-
matic segmentation (forced alignment) of vowels
comparing the performance of English models to
custom made models in English-Based Pacific Cre-
oles.

Vowels are of a particular sociophonetic interest
because their pronunciation often correlates with
social boundaries within a given language (Labov,
1963). For both theoretical and technical reasons,
sociophonetic studies consider the phonological
environment of vowels in analysis (Di Paolo and
Yaeger-Dror, 2011). By understanding vowel envi-
ronments, researchers can identify potential drivers
of variation and change. For example, the longitu-
dinal study of sound change of English in Philadel-
phia describes a series of vowel changes, many of
which are partly conditioned by the surrounding
segments, and so determines the phonetic motiva-
tions of the changes (see Labov, 1994, 2001, 2020).
From a technical view, we know that segmentabil-
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ity varies based on the vowel’s environment (Turk
et al., 2012; Gonzalez et al., 2020). Vowels that
are next to obstruents (e.g. [t] or [p]) have clear
phonological boundaries, but vowels in diphthongs
or bordered by approximants are much less clear
(e.g. [w] or [1]). We focus on the technical case,
with the specific goal of determining whether an au-
tomatic alignment approach can get a low-resource
language dataset ready for sociophonetic analysis.

We analyse newly archived corpora of Tok Pisin
and Bislama, two English-based Pacific Creoles
with national language status (Thieberger; Crowley,
1990; Barth, 2023; Smith and Siegel, 2013). Tok
Pisin has 3-5 million speakers, including 500,000
primary users, while around 318,000 Ni-Vanuatu
speak Bislama (Meyerhoff, 2013). Both languages
are growing rapidly as primary languages, often at
the expense of linguistic diversity (Kik et al., 2021;
Kulick, 2019).

A central component of the automatic forced
alignment pipeline is the acoustic model, which
contains the information that relates phones to au-
dio signal through Mel-Frequency cepstrum coeffi-
cients (MFCCs). State of the art acoustic models
of English are trained on more than 3,600 hours of
speech, including varieties of English from India,
Nigeria, England, and the US/Americas (McAuliffe
and Sonderegger, 2024). These large data models
allow the quick and reliable creation of transcribed
and word or phoneme aligned datasets that can
be used for sociophonetic research. For example,
Gnevsheva (2020) used forced alignment to illus-
trate the ethnolect variation in the production of
vowels across generations and between monolin-
gual and bilingual speakers of Russian/English in
Melbourne, Australia.

Researchers typically rely on one of two strate-
gies depending on the size and cleanliness of the
data for alignment, as well as their programming
proficiency: creating an acoustic model from a
small amount of data (Language-Specific models),
or relying on acoustic models from other languages
(Cross-Language models, Chodroff et al., In Press).

Language-Specific models have produced good-
enough results for further phonetic analysis from
as few as 25 minutes of continuous transcribed
speech (Chodroff et al., In Press). Urum (Turkic)
and Evenki (Tungusic) audio files were aligned
while varying the amount of data used for train-
ing, finding near ceiling level performance once
models were built with more than 70 mins of data
(91-96% Data Retention, 52-69% Precision), but

good-enough performance with as low as 25 min-
utes (Data retention: 84-96%; Precision: 50-61%).
Similar results are seen for Matukar Panau (Aus-
tronesian; Barth et al., 2020), and Nafsan (Aus-
tronesian; Billington et al., 2021). To the con-
trary, a Tongan acoustic model showed around 10%
worse performance than human annotation (John-
son et al., 2018). In general, the performance of
Language-Specific models is encouraging for those
wanting to develop tools for under-resourced lan-
guages, but it is time-consuming and technically
difficult, hence researcher interest in using existing
models cross-linguistically.

If large cross-language acoustic models can be
used on under-resourced languages, it would open
the door to building phonological theory upon a
base of diverse empirical and quantitative research
by quickly creating phone aligned datasets using
the increasing collection of archived data (Michaud
et al., 2018). Some researchers working on lan-
guages without pre-existing acoustic models have
begun using large language models (like English)
(Chodroff et al., In Press; Jones et al., 2017; Walker
and Meyerhoff, 2020; Solano et al., 2018), to align
their data. For example: a model built on Italian
has been used to align Australian Kriol (Jones et al.,
2017), and an English model has been used to align
Bequia Creole (Walker and Meyerhoff, 2020), and
Cook Island Maori (Solano et al., 2018). With in-
creased interest in using pre-trained acoustic mod-
els cross-linguistically, it is important we evalu-
ate their accuracy on diverse languages. Chodroff
et al. (In Press) showed that American English
and Global English models performed equally as
well as Language-Specific models for Urum and
Evenki. Here, we extend the evaluation of En-
glish acoustic models to the English-based Pacific
Creoles, and extend the comparison with two fur-
ther possibilities when choosing an acoustic model
for alignment. First, is to leverage knowledge of
linguistic history to build models of historically
similar languages, and secondly fine tuning large
language models with data from low-resource lan-
guages (called model adaptation).

Although low-resource languages are often not
in the position to build Language-Specific acous-
tic models, it might be possible to leverage exist-
ing knowledge of language history to agglomerate
datasets across closely related languages. Gener-
ally, languages that are more closely related are
also more likely to share vocabulary, phonologi-
cal inventories, and orthography which could be
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Table 1: Description of each acoustic model evaluated and the hours of languages they contain. T.P. is Tok Pisin,

Bis. is Bislama.

UK English; US English

Model Languages Training Reference
. One of Tok Pisin or 59 (T.P) y
Language-Specific Bislama 38.5 (Bis) Barth 2023; Thieberger
Pacific Creole Tok Pisin and Bislama 97.5 Barth 2023; Thieberger
Indian English;
English Nigerian English; 3,614.2 McAuliffe and Sonderegger 2024

English Model and one of

English-Adapted Tok Pisin or Bislama

3,673.2 (T.P.) | Barth 2023; Thieberger
3,652.7 (Bis) | McAuliffe and Sonderegger 2024

combined to create a larger training dataset. We
examine the historical dimension by evaluating the
performance of English models on English-based
Creoles, and evaluate the performance of a general
Pacific Creoles model (i.e. not using English data).

Secondly, we look at model adaptation. Model
adaptation is designed to improve the performance
of an acoustic model when new speakers or acous-
tic conditions are introduced to a dataset (Lee and
Gauvain, 1993). We leverage the idea of English-
Creoles speakers as ‘new speakers’ to adapt ex-
isting English models to the nuances of Pacific
Creoles and improve the performance of alignment
where we have limited data. The precise relation-
ship between phones and MFCC:s is unlikely to be
exactly the same across languages, but by adapt-
ing the large model estimates we might be able to
tweak estimates to identify the patterns of the new
language.

Overall, this paper will evaluate the performance
of four different acoustic models’ ability to align
two Pacific Creoles, using the Montreal Forced
Aligner (MFA; McAuliffe et al., 2017). The four
acoustic models are: an acoustic model built using
only data from that language (Language-Specific);
a model built using all Pacific Creoles data (Pa-
cific Creoles); an existing English acoustic model
(McAuliffe and Sonderegger, 2024); and the same
existing English model, adapted with either the Tok
Pisin or Bislama data (English-Adapted). All mod-
els are compared to 5 minutes of hand-corrected
boundaries for each language, which we treat as a
gold-standard. Our data comes from recently com-
piled speech corpora of Pacific Creole languages,
with a total of 98 hours, comprised of 59 hours
of Tok Pisin (Papua New Guinea) and 38.5 hours
of Bislama (Vanuatu). The performance of each
model is evaluated on its ability to identify the cor-

rect phone in the transcription (Data Retention),
whether aligned boundaries are within 20 ms of
the gold-standard data (Boundary Performance),
whether aligned boundaries contain the midpoint
of the gold-standard interval (Midpoint Retention),
and whether formants extracted from aligned inter-
vals are less than 10% different to the gold-standard
formant (Formant Accuracy).

2 Methods
2.1 Data

Recordings for both Creoles were collected be-
tween 2023 and 2025. Speech was elicited through
inviting a speaker or speakers to introduce them-
selves and describe their life experiences. Efforts
were made to secure two or more speakers within
a session to foster a dialogue. In most cases the
speaker was also invited to share their experiences
of natural disasters, in particular cyclones and
floods, expanding to themes such as disaster prepa-
ration, response, traditional knowledge, COVID-19
and/or other health issues, and for their views on
security and safety. In all cases, recordings were
made in the field and contain consistent background
noise. These are sub-optimal conditions for pho-
netic research, but reflect the conditions in which
minority language data is often recorded.

The Tok Pisin corpus contains free speech from
147 speakers, totalling 24GB of audio data. There
are approximately half men and half women, with
an age-range between 19 and 79, with a median
age of 42. The Bislama corpus also consists of
free speech data from 60 speakers (7.5GB). Ap-
proximately half of the participants are men and
half are women, with ages from 20 to 70 years
old and a median age of 39. Data was collected
with informed consent under protocols approved
by the ANU Human Research Ethics Committee.
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Local community leaders and advisers were con-
sulted as part of the recruitment and recording of
participants.

Bislama and Tok Pisin are both analysed as hav-
ing 5-vowel systems (Crowley, 2004; Smith and
Siegel, 2013), corresponding to orthographic <a
e i o u>. Transcription of the Bislama and Tok
Pisin corpora is orthographic, and thus approxi-
mates phonemic transcription. Common variants or
contractions (e.g., blo as a reduced form of bilong
in Tok Pisin) are usually transcribed as per their
pronunciation. Transcribers were usually native
speakers of the languages, but some transcription
was also undertaken by non-native speakers (Gille-
spie, San Roque, Barth, and Thieberger). Instances
of code-switching to English or other languages
(e.g. Matukar Panau, Nafsan) were demarcated
in the transcription and were removed from the
analysis.

For each language, approximately five minutes
of conversation was extracted and manually
corrected to be used as test data. Manual correction
was performed by one coder in Bislama, and
two non-overlapping coders in Tok Pisin, after
being passed through the Language-Specific
acoustic model pipeline. The five minutes of
conversation was extracted in 15 second chunks
from each conversation, at a random point within
the conversation, and excluded from the training
data. All code used to perform these experiments
is held at https://osf.io/x9scw/. Processed data
is available on request, with raw data available
on PARADISEC. Tok Pisin is available at
http://catalog.paradisec.org.au/collections/3PAC1
and Bislama is available at
https://catalog.paradisec.org.au/repository/3PAC3.

2.2 Preparing the data

The identification of vowel boundaries varies based
on the linguistic environment, ranging from the
easy identification of vowels (such as between ob-
struents), to avoiding the analysis of vowels due
to the ambiguity of their boundary (like next to a
voiced fricative). In an automated sociophonetic
analysis, it is important to focus analysis on vowels
that can be reliably segmented so that subsequent
analysis can draw reliable conclusions (Turk et al.,
2012). Turk et al. (2012) offer three categories
of difficulty when it comes to VC or CV phone
boundaries: reliable, sometimes reliable, and avoid
(Table 2). These levels of difficulty are based on va-
rieties of English, Finnish, and Japanese. Given the

Table 2: A summary of the segmentability of consonants
next to vowels, as they apply to Pacific Creole languages.
Adapted from Turk et al., 2012.

Difficulty | Consonant Sets

. Oral Stops [ptkbd g];
Reliable Sibilants [s, z]
Sometimes | Nasal Stops [m n ng];
Reliable Voiceless Fricatives [f]

. Central Lateral Approx. [w 1];
Avoid Voiced Fricatives [V]

Pacific Creoles’ similarity to English, they provide
an acceptable comparison.

We create five categories of CVC vowel envi-
ronments from Table 2: Vowels that are between
two ‘Reliable’ boundaries (Highly Reliable); vow-
els that are between a ‘Reliable’ boundary and a
‘Sometimes Reliable’ boundary (in either order;
Reliable); a vowel that is between two consonants
that are ‘Sometimes Reliable’ (Moderate), a vowel
that is between a ‘Sometimes Reliable’ consonant
and a consonant to be avoided (Unreliable), and
finally, a vowel between two consonants that are
labelled avoid (Difficult). These categories create
a scale of difficulty, while increasing the number
of vowels tokens that can sit in each one of the
environments. The performance of alignment algo-
rithms is assessed across all vowels observed in test
corpora (Bislama = 1,868 tokens; Tok Pisin = 1,878
tokens), and then as the subset of vowels that exist
in one of the five difficulty environments (Bislama
= 1,432 tokens; Tok Pisin = 1,377 tokens).

2.3 Acoustic Models

We evaluate the viability of four acoustic models
within a forced alignment pipeline. They are: a
Language-Specific model, a Pacific Creoles model,
a pre-trained English model (McAuliffe and Son-
deregger, 2024), and an English model that has
been adapted to each Creole (the English-Adapted
model) (See Table 1). These models can be further
considered as two groups: Custom models, which
includes the Language-Specific model and Pacific
Creoles model (since they are custom built for the
datasets), and English models, which include the
English and English-Adapted models.
Language-Specific models are trained on the
maximum available data for that language, and us-
ing the default parameters in the MFA v3.2.1 train
algorithm (McAuliffe et al., 2017). The Pacific
Creoles model is the sum of these datasets, 98.5
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hours. We use the English MFA acoustic model
v3.1.0 (McAuliffe and Sonderegger, 2024) as the
pre-trained English model. The English-Adapted
model uses the pre-trained English model as a base,
and is adapted either using the Tok Pisin training
data or the Bislama training data. Model adaptation
is performed using a maximum a-posterior (MAP)
approach (Young et al., 2002), as implemented in
Kaldi and MFA (Povey et al., 2011; McAuliffe
etal., 2017). All models were run on a MacBook
Pro with Apple M1 Pro chip, and 16GB Ram.

2.4 Acoustic Model Performance

Following Chodroff et al. (In Press) we evaluate
the performance of our four acoustic models across
three metrics: Data Retention (how often does the
algorithm return the right phone), Boundary Preci-
sion (how often the aligned boundary is within 20
ms of the gold-standard), and Midpoint Retention
(how often the aligned phone contains the mid-
point of the gold phone). We also examine formant
accuracy (whether the F1 and F2 formants from
the midpoint of the aligned segment is within 10%
of the gold-standard formants). These four perfor-
mance measures capture three dimensions needed
for successfully creating an automatically aligned
sociophonetic dataset: identifying phones, aligning
boundaries, and extracting formants. Since the En-
glish models are trained on phonemic data, but the
Creoles are trained on orthographic data, English
models contain a wider range of phones (McAuliffe
and Sonderegger, 2024) . To make the model more
comparable, phones identified as /i:/ and /u:/ were
mapped to /i/ and /u/, respectively.

While boundary performance will provide infor-
mation on how well we can map between automatic
and manual methods, formant extraction could fea-
sibly be robust to some conditions of poor bound-
ary estimation. For example, if automatic methods
systematically identify wider boundaries than the
gold-standard data, then the formant at the mid-
point of both segments should be approximately
the same.

To evaluate formant extraction performance we
extract F1 and F2 using the default settings of Praat
(Boersma and Weenink, 2025) for both the gold
and automatically aligned datasets. All formant
values are normalized by speaker using a variation
of the Lobanov standardization, relative to the gold-
standard formants.

3 Results

Table 3 shows the performance metrics for the seg-
mentation of all vowel tokens across the four mod-
els, for both Tok Pisin and Bislama. In general,
English models perform moderately well across
the four performance measures. In Bislama, The
Language-Specific model slightly outperforms the
English models across all performance measures,
whereas in Tok Pisin, English models consistently
outperform both custom models in all measures
except Data Retention.

3.1 Data Retention

Data Retention is high in all models for both lan-
guages (Table 3). The Language-Specific and Pa-
cific Creoles models outperform the English and
English-Adapted model for this metric. Custom
models return a precision and recall of 100% for
vowels across all difficulty conditions for both
languages (i.e. Table 2). That is, vowels are al-
ways identified correctly and all errors occur in
other vowel boundary conditions (such as diph-
thongs). English and English-Adapted models have
100% recall for all vowel conditions, but precision
scores of around 95%. Surprisingly, all English and
English-Adapted models make errors in the two
most reliable vowel environments (Highly Reliable
and Reliable boundaries). Across both Tok Pisin
and Bislama, all misclassifications are /e/ vowels
as /i/ vowels.

3.2 Boundary Precision

Across all vowels, English and English-Adapted
models outperformed the custom models for Tok
Pisin data, whereas in Bislama, the Language-
Specific model showed the most accurate Bound-
ary Precision (Table 3; Figure 1). If we only
look at ‘Highly Reliable’ vowels in Tok Pisin,
English and English-Adapted models increase to
~80% precision, and in Bislama, English and
English-Adapted models perform comparably to
the Language-Specific model (all around 77%).
There is a general trend of model performance de-
clining as vowel difficulty increases.

In both languages, performance is generally bet-
ter for onset, rather than terminal boundaries (Bis-
lama: 80% of the time, across all models; Tok Pisin:
70%). For Bislama when using the Language-
Specific model (the best performing model), on-
set Boundary Precision is at 100% for the ‘Highly
Reliable’ category, showing a fluctuating decline
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Table 3: Performance results across all vowel tokens for all five metrics, and all four acoustic models.

Tok Pisin English | English-Adapted | Language-Specific | Pacific Creoles
Data Retention 0.74 0.75 0.85 0.84
Precision w/n 20ms | 0.43 0.45 0.29 0.28
Alignment Accuracy | 0.52 0.53 0.34 0.35
F1 Accuracy (10%) | 0.69 0.70 0.55 0.57
F2 Accuracy (10%) | 0.72 0.73 0.55 0.59
Bislama English | English-Adapted | Language-Specific | Pacific Creoles
Data Retention 0.75 0.74 0.91 0.91
Precision w/n 20ms | 0.38 0.38 0.42 0.28
Alignment Accuracy | 0.46 0.46 0.50 0.36
F1 Accuracy (10%) | 0.71 0.70 0.74 0.61
F2 Accuracy (10%) | 0.69 0.69 0.75 0.62

as difficulty increases: 80%, 90%, 85%, and 75%
for the most difficult category. Among terminal
boundaries, precision drops rapidly from 80% in
the two easiest categories, down to 40% in the two
most difficult categories. For Tok Pisin, English-
Adapted models align 90% of onset boundaries for
the two easiest alignment categories, but terminal
boundaries drop from 91% in the ‘Highly Reliable’
category, at 75% in ‘Reliable’ intervals. Both onset
and terminal boundaries follow a similar trajec-
tory downward, at 75% precision for ‘Moderate’
vowels, to 67%, and to 50% in the most difficult
category.

3.3 Midpoint Retention

Midpoint Retention is poor across all models and
languages, when considering all vowels (Figure 1).
Midpoint Retention is influenced by vowel length,
because longer vowels have a wider margin to re-
tain the midpoint. When examining vowels longer
than 50 ms, the Tok Pisin corpus using an English-
Adapted model increased accuracy to 100% for
all phone boundaries, but did not improve perfor-
mance in midpoint retention for Bislama. We con-
sider vowels of all lengths in the remainder of this
section.

Midpoint Retention irregularly decreases as dif-
ficulty increases, across all models. Notably, there
is a sharp increase in performance of the ‘Difficult’
category among all models in Tok Pisin. This sharp
rise consists of only 12 segments, all of which are
greater than 50 ms long, which we have mentioned
increases the probability of midpoint retention. The
Bislama Language-Specific model also observes
an increase in performance in the most difficult
environments, which we can also attribute to small

samples and longer vowels.

Midpoint Retention errors occur either because
the aligned boundaries arrive before the midpoint
(which we call undershooting) or after the mid-
point (overshooting). Within the Bislama corpus,
English models tended to undershoot the midpoint
(~80% of errors), whereas Language-Specific mod-
els tended to overshoot (~60% of errors). In Tok
Pisin, English models overshoot in 80% of errors,
but English-Adapted models undershoot ~80% the
time. The Language-Specific model, in Tok Pisin,
is split evenly between over- and undershooting.

3.4 Formant Accuracy

Across all models and languages, there is no ob-
vious performance difference between F1 and F2,
and the best model for F1 accuracy was also always
the best model for F2 accuracy. In Tok Pisin the
best model is the English-Adapted model (F1 =
70%; F2 = 73%), and the Language-Specific model
in Bislama (F1 = 74%; F2 = 75%; Figure 2).

By only examining vowels in ‘Highly Reliable’
environments, the best Bislama model improves by
around 9% (F1 = 82%; F2 = 79%), but there is no
change to the Tok Pisin model. Formant Accuracy
generally decreased as vowel alignment difficulty
increased, which is likely a result of poorer bound-
ary performance. Errors in Formant Accuracy oc-
cur more frequently in long (>50 ms) vowels, than
in short vowels. In the best performing models of
each language (Tok Pisin = English-Adapted and
Bislama = Language-Specific), 80% of Tok Pisin
formant errors and 71% of Bislama formant errors
are in long vowels.
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Figure 1: (Left) Boundary precision is measured as the proportion of times a forced aligned boundary is within 20
ms of the gold-standard boundary. (Right) Midpoint Retention is the proportion of tokens where forced aligned
boundaries contain the midpoint of the gold-standard interval. Points are sized by the frequency of vowels in that

environment.

4 Discussion

As data from more languages becomes readily
available, there is a pressure to re-evaluate typo-
logical conclusions. In this study, we find that
pre-existing acoustic models of English provide
good-enough results for a first pass alignment
in English-based Pacific Creoles when compared
to models built specifically for those Creoles, or
when agglomerating data across closely related
languages. Adapting English models with data
from the new language is a relatively straight-
forward step researchers can take to incrementally
improve results. In Bislama, the custom Language-
Specific model showed the best performance in all
metrics, although English models performed only
marginally worse. In contrast, English-based mod-
els performed considerably better than a Language-
Specific model in Tok Pisin. Agglomerating data
across closely related languages performed poorly
across all metrics except data retention, and is not
a recommended approach.

The performance of both boundary identification
and formant extraction depends on the difficulty of

the vowel environment. Vowels that sit between
oral stops or sibilants showed higher levels of ac-
curacy than vowels surrounded by central lateral
approximants, and voiced fricatives. Research in
both manual (Turk et al., 2012) and automatic (Gon-
zalez et al., 2020) alignment have identified similar
patterns. An important limitation of our boundary
categorisation is that ‘Sometimes Reliable’ bound-
aries are reliable in some situations. Varying relia-
bility may explain the spike in performance within
Boundary Precision and formant accuracy. What
conditions make *reliable* environments reliable
is probably a language-specific phenomenon and
linguists should use their knowledge to identify
what conditions these might be. Although bound-
ary difficulty is likely to vary between languages, a
general rule is that boundaries which humans find
difficult to position are also likely to be difficult for
automatic approaches. Researchers should utilize
their manual alignment experience to determine
which vowels are more or less likely to be accu-
rately aligned when using automatic processes, or
when prioritising boundaries to correct.

All models performed exceptionally well when
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Figure 2: Formant Accuracy is taken as whether the forced aligned boundaries can extract a formant within 10% of
the gold-standard. Performance is shown for all vowel tokens (All), and each category of vowel alignment difficulty
(Highly Reliable - Difficult). Points are sized by the number of tokens.

identifying vowels. Although English and English-
Adapted models performed well, the errors reveal
cause for caution when applying English language
models to other languages. In both the Tok Pisin
and Bislama data, English-based models system-
atically label /e/ vowels as /i/ vowels, albeit only
in around 4% of cases. If the sounding of vowels
is systematically different in English that it is in
the Pacific Creoles because of, for example, influ-
ence from local languages, then there is reason to
suspect systematic errors in phone identification
caused by the English model. For example: if /e/
vowels are more closed than we expect to find in
English, as seen in the data retention errors, then
they may be misclassified as /i/. However, the risk
appears low.

The performance metrics for Boundary Preci-
sion, Midpoint Retention, and Formant Accuracy
fall well below the theoretical ceilings of 100%.
However, gold-standard alignments are only taken
from one coder per language, and disagreement
can exist within coders. Most existing work usually
considers human agreement to sit at around 80%
(Goldman, 2011; Gonzalez et al., 2020; DiCanio
et al., 2013). Considering 80% performance as a

more realistic ceiling (DiCanio et al., 2013), then,
across the identified vowel environments, these
acoustic models are producing comparable perfor-
mance to humans in Boundary Precision (Bislama
= 78%; Tok Pisin = 81%), but Midpoint Reten-
tion could be improved upon. Performance across
all vowel tokens is about 40% worse than human
alignment, leaving significant room for improve-
ment compared to similar studies (Chodroff et al.,
In Press; Billington et al., 2021; Barth et al., 2020).

5 Conclusions and Recommendations

This paper sought to determine how close an
automatic-alignment pipeline could get to devel-
oping a dataset suitable for phonetic analysis. Re-
searchers whose aim is a completely automatic
pipeline for other English—based Creoles should
consider using an English acoustic model. This
model is likely to provide the best out-of-the-box
performance. For further sociophonetic analysis of
the dataset, we recommend only analysing vowels
that are in reliably segmented phonological envi-
ronments. The more difficult the phonological en-
vironment, the higher the chance of a boundary, or
formant extraction error.
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Adapting the English model with language spe-
cific data provides an incremental performance in-
crease, and is not difficult to implement (Young
et al., 2002; McAuliffe et al., 2017). Models built
specifically for the dataset at hand showed mixed
success. In Tok Pisin, English models outper-
formed the Language-Specific model. This was
despite the fact that Tok Pisin models were trained
on more data than Bislama. We do not recommend
agglomerating datasets across closely related lan-
guages, although future research might examine
conditions where this approach may be viable.

If a researcher requires more confidence in the
alignment, they should consider a manual review
of boundaries. Our results suggest prioritising the
review of more difficult vowel environments, and
to focus on the alignment of terminal boundaries.
If formant extraction is an important output, then
researchers should also prioritize the review of vow-
els longer than 50 ms. This is particularly true if
researchers are interested in specific vowel envi-
ronments, which might dictate the segmentation of
difficult vowels rather than vowels in general.

6 Limitations

This project is limited in at least two ways. First,
the amount of training data varies between lan-
guages. This makes a comparison of performance
in Language-Specific models unfair, but it is a con-
straint of our dataset. Future research could con-
sider downsampling Tok Pisin to match Bislama
for transcribed hours. Secondly, It is not clear why
the Language-Specific model only performed well
in Bislama, and not in Tok Pisin. Some possibili-
ties are that there was a difference in audio quality
between the two field sites, with Tok Pisin hav-
ing worse quality on average, or that Tok Pisin
speakers’ way of speech is more difficult to parse
computationally than Bislama speakers. Since we
have no measure of sound quality, we are limited
in drawing a strong conclusion. To improve this,
future work could consider a qualitative description
of sound quality across recordings.

6.1 Review of Errors

For researchers who may want to use automatic
pipelines to extract vowel information on minor-
ity languages using English-based acoustic models,
we offer an in-depth look at the types of errors
that occur in the most stable CVC environments -
the ‘Highly Reliable’ and ‘Reliable’ environments

(48 vowel tokens in Bislama and 50 tokens in Tok
Pisin). We describe the errors within Boundary Pre-
cision, Midpoint Retention, and Formant Accuracy,
but we note that errors in one measurement tend to
follow with errors in the others.

6.1.1 Boundary Precision Errors

When using the English model on Bislama and Tok
Pisin, vowel boundary errors are concentrated in
phonetically challenging environments. In Bislama
there are 12 vowels with boundary errors, all at
the final boundary, with five also showing onset
errors. Most of these errors (11 of 12 finals and
all onsets) involve the model undershooting the
gold-standard, and two involve the word kasem,
which is completely missed (errors are >2 seconds).
Eight of these vowels occur before nasal conso-
nants, where boundaries between modal phones are
often unclear, while the remaining errors involve
fast speech, breathiness, or frication that masks
boundary cues. Background noise in some record-
ings further complicates alignment. Similarly, the
Tok Pisin model shows 10 vowel boundary errors:
one with both boundaries undershot, five with un-
dershot final boundaries, and four with onset errors
(three overshot, one undershot). Half of these may
stem from annotation errors, while the rest involve
difficult acoustic environments—nasals, whispered
speech, rapid articulation, or noisy backgrounds.
In the English-Adapted results for Bislama and
Tok Pisin, vowel boundary errors largely mirror
those found in the English model. The Bislama
results show 17 vowels with boundary errors, in-
cluding all 12 vowels that appeared with errors in
the English model. As before, all 17 involve final
boundary errors, with four also showing onset er-
rors. Most of the errors (14 final and all four onset)
involve the model undershooting the gold-standard.
Ten vowels appear before nasals, while others in-
volve unusually short or long vowel durations or
occur in recordings with droning background noise
that obscures spectrographic cues. The Tok Pisin
results show 14 vowels with errors, including one
with both onset and final boundary errors (both un-
dershot), 10 with only final errors (nine undershot,
one overshot), and three with only onset errors
(two undershot, one overshot). Nine of the 10 er-
rors seen in the English Tok Pisin model persist
in the adapted version. Six of the 14 errors may
reflect mistakes in the gold-standard segmentation,
while the remaining eight are tied to challenging
acoustic conditions: four involve nasal-vowel tran-
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sitions, one involves a likely phonological variation
in nogut pronounced as [/nongut/], two are whis-
pered, and one is both fast-spoken and noisy.

6.1.2 Midpoint Retention Errors

Midpoint Retention errors show similar pattern-
ing to Boundary Precision errors. When using an
English model on Bislama data, all vowel mid-
points are consistently undershot. Two tokens,
from within the words pikinini and tank, involved
nasal segments following the vowel that were not
clearly distinguishable. Four errors came from
kasem and putum, with fast speech contributing
to errors in putum, while in kasem, although au-
dio quality was good and boundaries seemed ac-
curate, the labels were likely swapped (/a/labelled
as /e/ and vice versa). In pam, a nasal carryover
effect from the preceding /n/ likely influenced seg-
mentation due to shared place of articulation with
the following /p/ and /m/. In paama, phone-level
segmentation followed expected patterns. Eight
tokens ‘Highly Reliable’ or ‘Reliable’ vowels had
alignment issues tied to difficult acoustic environ-
ments. For Tok Pisin, three tokens showed bound-
ary errors—two overshot (disla and nonap) and
one undershot (pinga). The segmentation in disla
was acceptable despite unclear audio, pinga was
affected by rain noise, and nonap was complicated
by surrounding nasals.

When using the English-Adapted model for Bis-
lama, vowel mid-points remained consistently un-
dershot. Again, eight ‘Highly Reliable’ or ‘Reli-
able’ tokens were identified, two of which differed
from the English model. Those errors repeated
from the English model are likely for the same rea-
sons. The two new tokens appeared in bakegen,
which was segmented clearly as /p/ /a/ /g/ /el In/,
and rek, where segmentation was complicated by
slight noise. For the Tok Pisin model, the error pat-
tern reversed compared to the English model—two
tokens were undershot (disla and nogut), and one
was overshot (pinga). As before, disla’s segmen-
tation was acceptable despite poor vowel clarity,
pinga suffered from background rain noise, and
nogut had a noisy signal where the vowel closing
boundary may need refinement.

6.1.3 Formant Errors

When using the English acoustic model for the Bis-
lama dataset we find 12 formant errors. Seven to-
kens have errors for both F1 and F2 measurements.
One of these is /i/, which in this case is a short

vowel measured close to the release of the preced-
ing plosive /k/, with errors caused by poor boundary
alignment and weak acoustic signal. The remain-
ing dual errors are /a/, five which are caused by
misalignment (including cases of incorrect phone
identification), which relate to the boundary errors
described above such as poor audio quality that dis-
rupts formant tracking, while one error is a result of
a formant extraction errors in Praat. There are two
F1 errors, attributed to misalignment and incorrect
formant analysis by Praat. The remaining three er-
rors are in F2, two of which occur on well-aligned
tokens. These errors are ascribed to issues with for-
mant tracking in Praat due to weak F2 signalling,
where the final token formant measurement is at-
tributed to the vowel being taken very close to the
release of the preceding bilabial plosive /p/ where
formants are in transition. In the Tok Pisin data,
four formant errors were identified: one token with
only an F1 error, one with only an F2 error (linked
to weak formant bands and background noise), and
two with both F1 and F2 errors caused by misalign-
ment and unclear formant structures, particularly
in whispered or noisy recordings. Overall, these
errors highlight the challenges of accurate formant
measurement in low-resource, noisy, or phoneti-
cally complex contexts.

In the Bislama and Tok Pisin datasets aligned
with the English-adapted acoustic model, most for-
mant errors mirror those found in the unadapted
model, with additional errors arising from mis-
alignment and formant extraction issues. The Bis-
lama data contains 13 formant errors, 11 of which
are identical to those in the unadapted model and
caused by the same factors, such as misalignment
and poor audio quality. Two errors are new, with
one /e/ token with an F1 error, which was misiden-
tified due to complete misalignment and one /a/
token with an F2 error due to extraction issues
from weak acoustic signal. The Tok Pisin data
shows six errors, three of which match those in the
unadapted model and stem from the same causes.
Of the three new errors, one /o/ token shows incon-
sistent F1 extraction due to weak formant structure
and background noise despite good alignment, one
/i/ token has an F2 error caused by misalignment
near a plosive release, and another /o/ token has
alignment issues that place F2 measurements in a
transitional region following a nasal.

In general, the patterns we observe reflect the
shared challenges of aligning vowels in complex
phonetic contexts across both models. In general,
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we recommend that when correcting an automatic
alignment, researchers pay attention to the align-
ment of final boundaries, vowels that are not spo-
ken in a regular speaking voice or at a regular speed,
and particular attention to vowels occurring before
nasal consonants.
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