
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 29575–29627
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

SEE: Strategic Exploration and Exploitation for Cohesive In-Context
Prompt Optimization

Wendi Cui1*, Jiaxin Zhang1,2, Zhuohang Li3, Hao Sun 4, Damien Lopez1,
Kamalika Das1,2, Bradley Malin3,5, Sricharan Kumar1,2

1Intuit 2Intuit AI Research 3Vanderbilt University 4 University of Cambridge
5Vanderbilt University Medical Center

Abstract

Designing optimal prompts for Large Language
Models (LLMs) is a complicated and resource-
intensive task, often requiring substantial hu-
man expertise and effort. Existing approaches
typically separate the optimization of prompt
instructions and in-context learning examples,
leading to in-cohesive prompts that is defined
and represented by suboptimal task perfor-
mance. To overcome these challenges, we pro-
pose a novel Cohesive In-Context Prompt Op-
timization framework that refines both prompt
instructions and examples. However, formulat-
ing such an optimization in the discrete and
high-dimensional space of natural language
poses significant challenges in both conver-
gence and computational efficiency. To address
these issues, we introduce, SEE, a scalable and
efficient prompt optimization framework that
adopts metaheuristic optimization principles
and strategically balances exploration and ex-
ploitation to enhance optimization performance
and achieve efficient convergence. SEE features
a quad-phased design that alternates between
global traversal (exploration) and local opti-
mization (exploitation) and adaptively chooses
LLM operators during the optimization process.
We have conducted a comprehensive evalua-
tion across 35 benchmark tasks, and SEE sig-
nificantly outperforms state-of-the-art baseline
methods by a large margin, achieving an aver-
age performance gain of 13.94 while reducing
computational costs by 58.67%.

1 Introduction

Large Language Models (LLMs) have exhibited
extraordinary performance across various domains
and tasks (Bubeck et al., 2023; Yang et al., 2023b).
Prompt engineering seeks to craft effective prompts
that unleash the complete capabilities of LLMs.
It is becoming an increasingly popular option for
quickly adapting LLMs for downstream tasks due

*Correspondence to wendi_cui@intuit.com.

Exploit

ExploreExploit

Explore

SEE

Does the provided text contain hate 
speech? Return a Boolean value of 
True or False

Your task is to evaluate whether the 
provided input includes any 
offensive language...

For instance, the phrase “You are a 
fool” is offensive due to its 
derogatory tone, so you should
return ’True’. 

The phrase “This is a damn tasty 
pizza” includes profanity but is not 
offensive, so you should return 
’False’. 

Is the following text hate 
speech? Output Format 
True or False

Better Instruction and Examples

Better instruction onlyTask description

Cohesive In-Context
Prompt Optimization

Figure 1: An illustrative example of the cohesive
in-context prompt optimization.

to its compatibility with black-box APIs (e.g., GPT-
4 (OpenAI, 2023) and PaLM (Chowdhery et al.,
2022)), and its cost-effectiveness compared to the
conventional fine-tuning paradigm. Although good
prompt design can substantially improve LLM’s
performance (Zhu et al., 2023), manually optimiz-
ing prompts is a long process that often requires sig-
nificant human effort and expert knowledge. Thus
automatic prompt optimization is critical to leverag-
ing the power of LLMs and reducing human effort.

However, automatic prompt optimization is a
non-trivial task that involves discrete variables
and complex high-dimensional spaces (Zhou et al.,
2023). To avoid optimizing discrete long prompts,
existing research treats the optimization of instruc-
tion and examples as separate tasks: one line of
research (Pryzant et al., 2023; Chen et al., 2023;
Yang et al., 2023a; Guo et al., 2023) takes the zero-
shot prompting approach (Kojima et al., 2022) to
focus on optimizing a short instruction that com-
prises one or few sentences; while the other line
of work (Liu et al., 2021; Lu et al., 2021, 2022;
Zhang et al., 2022b; An et al., 2023) emphasizes
more the importance of few-shot examples (Brown
et al., 2020) and seeks to selecting the best set of
examples from a pre-defined dataset given a fixed
instruction. Although such treatment effectively
reduces the optimization complexity, it overlooks

29575



the cohesiveness of the full prompt and the inter-
play between instruction and examples, resulting
in sub-optimal performance (Hsieh et al., 2023).

In this work, we formulate the problem to be a
cohesive optimization of instruction and examples
where we simultaneously optimizes the prompt
instruction and examples as a whole. Coher-
ence is defined as the degree to which the prompt
components (instruction and examples) work effec-
tively together to achieve strong task results. As
illustrated in Figure 1, our goal is to not impose
any restrictions or assumptions on the prompt style
(zero-shot or few-shot), thereby unlocking the full
potential of prompt traversal in contrast to previ-
ous instruction-only optimization methods (Zhou
et al., 2023; Pryzant et al., 2023; Chen et al., 2023;
Guo et al., 2023; Fernando et al., 2023). Such a
formulation will derive highly adaptive and flexible
prompts, ranging from a simple zero-shot prompt
to an elaborative few shot prompt with detailed
COT examples, depending on the task at hand.

However, such a problem formulation results in
a complex combinatorial optimization problem that
naturally brings two challenges: (1) performance-
wise, how to design an optimization framework
that navigates the high-dimensional joint space of
instructions and examples, steering clear of local
minima to ensure continuous performance enhance-
ment? (2) cost-wise, what strategies can be em-
ployed to improve the efficiency of the algorithm,
enabling fast convergence with a reasonable level
of computational complexity?

To address such challenges, we propose a novel
Strategic Exploration and Exploitation (SEE) frame-
work that aims at accelerating cohesive prompt op-
timization in high-dimensional spaces while min-
imizing inference costs. Targeting at continuous
performance enhancement, SEE adopts the princi-
ples of metaheuristic optimization framework
which is an iterative refinement framework widely
used for complex high dimensional optimizations
(Talbi, 2009). To reduce the cost, SEE introduces a
quad-phased design that strategically alternates
between exploration and exploitation, efficiently
navigating high-dimensional space.

To apply SEE to prompt optimization task, we
identify five LLM operators to generate new can-
didates in each iteration. By analyzing opera-
tors’ unique strengths and features, SEE is able
to adaptively choose the best operators during
the optimization process, achieving optimal per-
formance while accelerating convergence speed.

Additionally, we integrate two innovative designs
to enhance the performance and efficiency of SEE.
Firstly, we introduce a task-aware similarity met-
ric using performance-based vectors and hamming
distance, proving more effective than traditional
lexical similarity metrics. Secondly, we implement
adaptive phase stop criteria that ensure maximum
performance improvement while optimizing the
overall efficiency.

We conduct an extensive evaluation on a to-
tal number of 35 benchmark tasks and empiri-
cally show that SEE demonstrates substantial im-
provements compared to 9 state-of-the-art (SOTA)
methods, including APE (Zhou et al., 2023),
APO (Pryzant et al., 2023), OPRO (Yang et al.,
2023a), PromptBreeder (Fernando et al., 2023),
EvoPrompt (Guo et al., 2023), MoP (Wang et al.,
2024), EASE (Wu et al., 2024), ZOPO (Hu et al.,
2024), and AELP (Hsieh et al., 2023), with the sig-
nificant computational cost reduction. For harder
tasks like BBH, SEE introduces an average of 13.94
task accuracy improvement while reducing 58.67%
of computational costs compared to SOTA methods.
In summary, our key contributions are:

• We propose SEE, a novel framework integrating
metaheuristic optimization principles to simulta-
neously optimize instructions and examples as a
unity, allowing it to generate both zero-shot and
few-shot prompts. To the best of our knowledge
SEE is the first framework with such capability.

• We introduce an innovative quad-phase design
that strategically balances exploration and ex-
ploitation. Together with an adaptive operator
selection mechanism that uses the most suitable
operator at the right time, such innovation signif-
icantly enhances the efficiency compared to tra-
ditional metaheuristic optimization frameworks.

• We conduct extensive evaluations, demonstrat-
ing that SEE achieves substantial improvements
over state-of-the-art (SOTA) methods while sig-
nificantly reducing computational costs.

2 Preliminaries
Problem Formulation Considering the task T
specified by a dataset D = (Q,A) of input/out-
put pairs, the LLM L produces the corresponding
output A via prompting with the concatenation of
prompt P and a given input Q, i.e., [P;Q]. The
objective of prompt optimization is to design the
best natural language prompt P∗ that maximizes
the performance of L on T .

29576



Typically, an ideal prompt P consists of instruc-
tion, denoted by I and examples denoted by E as
in-context learning (ICL) demonstrations. Our goal
of joint prompt optimization is to search for the op-
timal prompt P∗

(I,E) given L that maximizes the
performance towards a performance metric func-
tion F (e.g., accuracy). This can be formally de-
fined as the following optimization problem:

P∗
(I,E) = argmax

P(I,E)∈X
E(Q,A)

[
F(P(I,E);Q,A) | L

]
,

(1)
where X denotes the sample space for a natural
language prompt, a discrete and intractable space
of arbitrarily large dimension, which makes the
optimization problem in Eq. (1) extremely difficult.

Metaheuristic Optimization Framework The
metaheuristic optimization framework provides a
generalized approach for solving complex opti-
mization problems, particularly those involving
high-dimensional or non-convex solution spaces
where traditional methods may struggle (Talbi,
2009). The framework typically follows an iter-
ative process comprising the following key compo-
nents:

• Initialization: An initial set of candidate so-
lutions is generated, often randomly or using
heuristic methods to ensure a diverse starting
candidate pool.

• Generation and Variation: New candidate so-
lutions are derived through Operators such as
mutation, crossover, probabilistic sampling, or
local search, facilitating effective exploration of
the solution space.

• Selection and Pruning: Candidates are evalu-
ated using an objective function, and suboptimal
solutions are discarded to refine the search to-
ward optimal or near-optimal results.

This iterative process continues until a termina-
tion criterion, such as convergence to a solution or
reaching a computational limit, is met. Examples
of metaheuristic methods include Genetic Algo-
rithms (GA), which simulate the process of natural
evolutio; Particle Swarm Optimization (PSO), in-
spired by the social behavior of birds or fish to
iteratively refine solutions; and Differential Evo-
lution (DE), which optimizes by iteratively com-
bining and mutating candidate solutions. These
techniques are widely applied in fields such as en-
gineering design, scheduling, and machine learning
(Talbi, 2009; Blum and Roli, 2003).

Phase 1: Feedback Mutation

Phase 2: Fusion MutationPhase 3: Semantic Mutation 

Phase 0: Initialization

Global Optima Local Optima In-Context Prompt

Explore Exploit

ExploreExploit

Figure 2: Illustration of SEE framework.

3 Proposed Method: Strategic
Exploration and Exploitation (SEE)

3.1 Intuition

The intuition behind our proposed framework, SEE,
lies in addressing key limitations of traditional
metaheuristic algorithms. Existing methods often
apply generation and variation in a repetitive and
uniform manner—such as genetic algorithms rely-
ing on mutation and crossover repeatedly—without
adapting to the specific needs of the optimization
process. This introduces unnecessary randomness,
increasing computational costs and slowing con-
vergence. In contrast, our framework strategically
divides the optimization process into four distinct
phases, each dedicated to either exploration or ex-
ploitation, thereby accelerating the overall process.

To maximize efficiency in each phase, we ensure
that only the most effective LLM operators tailored
to the requirements of each phase, are utilized to
generate new candidates. By strategically applying
the right operator at the right time, SEE achieves
both faster convergence and improved performance,
delivering a cohesive combination of instructions
and examples for a variety of tasks.

3.2 Generation Operators

SEE uses LLM operators to perform generation and
variation. Full prompts of the operators can be
found in the Appendix section D. For operators
designed for exploration, we call them global oper-
ators. For ones best at exploitation, we define them
as local operators. SEE utilizes five operators that
are used in prior research. More detailed operator
information can be found in Appendix section B.

29577



The three global operators are:

• Lamarckian Operator is a reverse-engineering
operator OL that accepts input-output pairs of
the task and attempts to “reverse-engineer” the
task instruction which will generate the output
based on the input.

• Estimation of Distribution Operator (EDA) is
a function operator OE that takes in a group of
candidates and outputs a new candidate by study-
ing the input group. If the input group is ranked
from the best performer to the worst performer,
we call it EDA + Index (EDA+I).

• Crossover Operator (CR) is a function operator
OC that takes two candidates as parents and gen-
erates a new candidate mixing the traits of both
parents. If the parents are chosen by prioritizing
differences between them, we call it Crossover +
Distinct (CR + D).

The two local operators are:
• Feedback Operator is a function operator OF

that utilizes two LLM agents. OF first passes
mistakes an existing candidate makes to an “Ex-
aminer” agent, whose task is to examine these
mistakes and provide remediation strategies. It
then uses an “Improver” agent that takes the re-
mediation strategies and applies them to the ex-
isting candidate to generate a new candidate.

• Semantic Operator is a function operator OS

that takes in an existing candidate, and modi-
fies the candidate lexically while preserving its
semantic meaning.
To better harness these operators, we compare

them along the following five dimensions that are
critical to our exploration-exploitation strategy in
terms of performance and efficiency:

• Add or remove examples. This examines
whether an operator can add or remove few-shot
examples, to traverse the entire space of a cohe-
sive prompt optimization problem.

• Probability of improvement. This evaluates the
probability (successful rate) of an operator that
brings performance improvement after iterations.

• Convergence speed. This metric aims to evalu-
ate how fast (in terms of iterations) an operator
needs to optimize the current candidate to its
local minimum solution.

• Two or more parents? This indicates whether
an operator needs two or more input candi-
dates(parents) to generate a new candidate. Op-

Operator Add Remove Parents Prob Speed Cost

Lamarckian ✓ - - - - •
Feedback ✓ ✓ - • • • • •• ••

EDA - - ✓ • • •• •• •
Crossover - - ✓ • • •• •• •
Semantic - ✓ - • • • • • • •

Table 1: Qualitative analysis of mutation operators

erators needing more than one parent have the
potential to combine traits from diverse parents,
enhancing global exploration capability.

• API cost per operation. It is the number of API
calls needed to perform a specific operator via
LLM agents.

We conducted a series of experiments (ran each
operator 100 times based on 4 different initializa-
tion settings) to assess the performance of each op-
erator regarding the five features, aiming at obtain-
ing a comprehensive understanding of the inherent
strengths and weaknesses of each operator. This al-
lows us to select effective operators to find optimal
solutions in an accelerated manner. As shown in
Table 1, we observe that the Lamarckian operator is
a crucial operator that introduces diverse samples,
making it an ideal choice for exploration and global
initialization. The feedback operator leads to faster
convergence (four •), making it good for rapid ex-
ploitation, but it requires two API/inference calls
(two •), higher than the other operators (one •).
EDA and Crossover operators share similar charac-
teristics that combine traits from multiple parents
and lead to a higher probability of improvement
(four •), indicating their excellence in exploring
the global space. For a more in-depth discussion
on operators, please refer to Appendix C.1 and C.2.

3.3 SEE Framework

The SEE framework approaches the complex opti-
mization problem strategically through four distinct
phases. Beyond the operators mentioned above, it
requests up to three data sets. Dtrain is used for the
first phase of initialization, specifically used by the
Lamarckian Operator. Ddev acts as a development
data set to compute the performance score for each
candidate during the optimization process. Dtest
is used for the final performance evaluation of the
optimized prompt.

3.3.1 Phase 0: Global Initialization
Following the principle of metaheuristic optimiza-
tion, phase 0 aims to create diverse candidates as
the initial candidate pool to explore the vast joint

29578



Algorithm 1 SEE Framework
1: requirements: size of pool n, a dev set Ddev, score function F on the base LLM L, phase improvement t and performance

gain threshold t∗ and minimum run time tolerance for phases Ki, designed operators OL, OF , OE , OC and OS

2:
initialization: generate diverse initial prompts P0 = {p01, ..., p0n} by Ol or Os, evaluate initial scores S0 ← {s0i =

F(p0i ,Ddev)} //Phase 0
›

3:
while t < t∗ or k ≤ K1 do

4: Local Feedback Operation: generate new prompts by Feedback Operator, Pt ← Of (P0), evaluate St ←
F(P0,Ddev), update P1 ← {Pt,P0}, and score set S1 ← {St,S0} //Phase 1

5:
while t < t∗ or k ≤ K2 do

6: Global Fusion Operation: select prompts from the current pool {pr1 , ..., prk} ∈ P1, generate a new prompt via EDA
or Crossover Operators, evaluate st ← F(pt,Ddev), and update P2 ← {P1, pt} and S2 ← {S1, st} //Phase 2

7:
while t < t∗ or k ≤ K3 do

8: Local Semantic Operation: generate new prompts by Semantic Operator P∗
t ← Os(P2), evaluate S∗

t ←
F(P2,Ddev), and update P3 ← {P∗

t ,P2}, and S3 ← {S∗
t ,S2} //Phase 3

9: return p∗ ← argmaxp∈P3 F(p,Ddev)

space of instruction and example. We provide two
types of initialization based on the availability of
data: initializing from input/output pair of the task,
denoted SEE-io-pair, and initializing from human-
composed example prompts, denoted SEE-example.

• SEE-io-pair: Given a set of input/output pairs
S = {(Q1, A1), ..., (Qm, Am)} from Dtrain, rep-
resenting the input and output for the task T , SEE
apply Lamarckian Operator OL to reverse engi-
neer potential prompts from provided demon-
strating pairs.

• SEE-example: SEE takes expert constructed
prompts and apply Semantic Operator OS to en-
hance the diversity of the initial candidate pool.
This allows humans to jump-start the optimiza-
tion process by incorporating prior knowledge.

3.3.2 Phase 1: Local Feedback Operation

Phase 1 to Phase 3 adheres to the metaheuristic opti-
mization principles where each phase first conducts
generation and variation through designated opera-
tors, then performs selection and pruning greedily
based on the candidates’ performance score on the
development set Ddev.

While an initial phase (Phase 0) may result in a
diverse candidate pool, each candidate could still
be distant from the best version of itself, its lo-
cal minimum. To address this, SEE exploits each
candidate by employing the Feedback Operator
OF to expedite its convergence towards their local
minimums. This involves the introduction of an
LLM Examiner to generate bespoke improvement
guidance and an LLM Improver to apply these to
generate new candidates.

3.3.3 Phase 2: Global Fusion Operation
Phase 1 provides a more refined set of candidates,
while some of them might be stuck in local op-
tima. To address this issue, we prioritize explo-
ration rather than exploitation in Phase 2. By per-
forming fusion between different candidates lever-
aging EDA (EDA-I) Operators OE and CR (CR-D)
Operators OC which request multiple parents, SEE
facilitates the increased fusion of traits among can-
didates on a larger global scale, thus enabling es-
cape from these local optima. Rather than employ-
ing cosine similarity as distance metrics, we adopt
hamming distance (see more discussions in Sec-
tion 3.4) for calculating similarity on performance-
based vectors so that more diversity is promoted
during optimization.

3.3.4 Phase 3: Local Semantic Operation
Upon completing Phase 2’s exploration, Phase 3
employs local exploitation to hasten the “last mile”
of convergence. As the concluding phase of SEE,
the performance score of the candidate pool is rel-
atively optimized. The Semantic Operator OS is
selected to expedite a more cost-effective exploita-
tion. Finally, we identify the best candidate as our
ultimate optimal prompt and assess its performance
on the testing dataset Dtest. The workflow of SEE
framework is shown in Algorithm 1.

3.4 SEE Novel Design Schemes

We also propose two novel design schemes to im-
prove performance and efficiency.
1. Performance vector with Hamming distance.
Fusion operators like EDA and Crossover function
optimally when parents exhibit distinct attributes
(Fernando et al., 2023). In terms of evaluating
similarity scores, we adhere to the principle that
similarity should be gauged based on the perfor-

29579



Method Causal
Judgement

Dis
-ambiguation

Dyck
Languages

Formal
Fallacies Hyperbaton Logical

Five
Color
Reasoning

Salient
Translation

OPRO (Yang et al., 2023a) 71.94 71.53 36.73 49.51 75.92 50.00 65.55 43.88
EvoPrompt (Guo et al., 2023) 67.24 53.70 47.96 50.81 74.79 61.40 60.90 47.58
AELP (Hsieh et al., 2023) 77.77 64.79 10.67 58.25 53.74 73.49 68.14 41.43

SEE-io-pair 72.13 72.37 8.06 58.87 86.02 48.19 60.52 49.19
SEE-example 89.09 68.47 46.77 58.65 87.50 86.29 80.64 47.59

Table 2: Testing performance of the optimal prompt on 8 representative tasks from BBH.

La
m

a
Fe

ed
CR

+D CR
ED

A+
I

ED
A CR ED
A

CR
+D

ED
A+

I
CR CR CR

Se
m

a

Iteration (operator)

0.40

0.45

0.50

0.55

0.60

0.65

Sc
or

e 
va

lu
e

Salient Translation

High Avg Low

La
m

a
Fe

ed CR
CR

+D ED
A

ED
A+

I
CR

+D
CR

+D
ED

A+
I

CR
ED

A+
I

ED
A+

I
ED

A+
I

ED
A+

I
Se

m
a

Iteration (operator)

0.4

0.5

0.6

0.7

Sc
or

e 
va

lu
e

Causal Judgement

High Avg Low

La
m

a
Fe

ed CR ED
A

ED
A+

I
ED

A+
I

ED
A+

I
CR

+D
ED

A+
I

CR
+D ED

A
Se

m
a

Se
m

a
Se

m
a

Se
m

a

Iteration (operator)

0.6

0.7

0.8

0.9

Sc
or

e 
va

lu
e

Hyperbaton

High Avg Low

Figure 3: Iteration history of score values with different operators during optimization. The score is defined as the
accuracy for the given task on the development set Ddev.

mance of the prompts rather than their linguistic
or semantic similarities. Inspired by this intuition,
we propose to construct candidate vectors based
on their performance on the development set Ddev,
named “performance vectors”. To exemplify, in
a development dataset comprising five elements,
a candidate answering the first three queries
correctly and the final two incorrectly would
feature a vector representation of [1, 1, 1, 0, 0].

Rather than calculating the cosine similarity of
embedding space, we propose to compute candi-
date similarity scores by Hamming distance, which
calculates the distance between two vectors of
equal length by examining the number of positions
at which the corresponding symbols are different.
This way ensures that one candidate is more likely
to be paired with a candidate that does not repeat
the same mistakes.
2. Adaptive Phase Stop Criteria. To ensure that
each optimization phase is fully conducted before
transitioning to the next, the decision to proceed to
the following phase is influenced by two criteria.

• Performance Gain. If no performance gain man-
ifests after applying the operators in a particular
phase, it’s indicative that the candidates have
been thoroughly optimized by the operator. Con-
sequently, we transition to the next phase.

• Operator-specific Tolerance. Not all operators
are created equal. For local operators with high
convergence speed like the Feedback Operator,
it makes sense to transition to the next phase
without performance improvements. However,
global operators, e.g., Fusion Operators, might
not bring immediate improvement but are capa-

ble of accessing more diverse parents with traits
worth exploring. Therefore, we assign greater
tolerance to global operators, allowing them to
run for a predefined duration even if immediate
improvement is not observed. More details about
the stop criteria can be found in Appendix C.2.

4 Experiments

We evaluate SEE on 35 tasks across 9 baselines.
Unless specified, all SEE results are from GPT-3.5-
turbo. For additional information regarding the
experiment setup, please refer to Appendix E.

35 Tasks and Datasets We curate 35 benchmark
tasks from three domains for thorough experiments:
8 Big Bench Hard (BBH) (Suzgun et al., 2022); 3
NLP detection tasks, including Ethos (Mollas et al.,
2021), Liar (Wang, 2017), and Sarcasm (Farha and
Magdy, 2020); 24 instruction induction tasks (Hon-
ovich et al., 2022). The task and dataset details are
in Appendix E.1.

9 Baselines We evaluate SEE against a variety of
LLM-based approaches that have achieved state-of-
the-art performance in prompt optimization:

• APE (Zhou et al., 2023), ZOPO (Hu et al., 2024)
and APO (Pryzant et al., 2023): APE utilizes a
Monte Carlo Search strategy that emphasizes ex-
ploration, while APO emphasizes exploitation,
which harnesses incorrect instances as feedback
gradient. ZOPO utilizes zeroth-order optimiza-
tion methods to find local optimal.

• OPRO (Yang et al., 2023a): OPRO leverages
LLM as optimizers to generate better instruction

29580



via meta-prompt, solution-score pairs, and task
descriptions.

• PromptBreeder (Fernando et al., 2023), Evo-
Prompt (Guo et al., 2023) and AELP (Hsieh
et al., 2023): these methods connect LLMs with
evolution algorithms for prompt optimization.

• MoP (Wang et al., 2024), EASE (Wu et al.,
2024): these methods can optimize instructions
and examples simultaneously.

4.1 Main Results

BBH Tasks Following the practice of AELP
(Hsieh et al., 2023), we conduct 8 BBH tasks to
evaluate the performance of SEE holistically. We
consider two initialization schemes SEE-io-pair and
SEE-example and report the final results in Table 2.
SEE demonstrates substantial improvements com-
pared to state-of-the-art methods, introducing big
average performance increase over AELP (+15.31),
EvoPromopt (+13.29), and OPRO (+13.21).

Fig. 3 depicts the iterative history of prompt
optimization, emphasizing the performance score
variations for the best, worst candidate, and aver-
age candidate performance across iterations. Feed-
back Operator yields a performance boost within
a single iteration and rarely introduces continual
improvements. Fusion Operators such as EDA and
Crossover aid in escaping local minima and offer-
ing additional performance leaps (refer to Hyper-
baton). This observation aligns with our initial
operator analysis. The success of SEE lies in the
organic organization of these operators, harnessing
their advantages to maximize performance.

Detection Tasks To present a more expansive
comparison, we adopted the configuration outlined
in APO (Pryzant et al., 2023) and conducted a com-
parative analysis against it across three tasks. SEE
exhibits marginally superior performance to APO
in relatively simple tasks such as Ethos (+1) and
Sarcasm (+4). However, for more complex tasks
such as Liar, SEE demonstrates a significant im-
provement (+18). Full experiment results are in
Table 20 in Appendix.

Instruction Induction Tasks To compare SEE
with broader sets of baselines, we evaluate SEE on
APE’s 24 instruction induction tasks. The results
show that SEE outperforms in 87.5% tasks over
APE and MoP, 91.7% tasks over PromptBreeder,
100% tasks over Evoprompt, OPRO, ZOPO, and

Model
Dis-
ambiguation

Formal
Fallacies

Hyperbaton
Salient
Translation

GPT-3.5 69.99(2.95) 58.49(0.33) 84.35(1.83) 48.39(0.66)
GPT-4 79.34(3.33) 75.91(0.53) 90.58(1.39) 70.45(0.99)
PaLM 2 71.49(0.37) 58.33(1.53) 79.45(0.98) 49.07(3.25)
Claude 2 72.95(2.26) 49.46(1.52) 83.32(1.01) 61.82(0.38)

Mistral-7B 65.89(0.76) 53.23(1.74) 78.76(1.36) 43.84(1.00)
Llama2-7B 42.74(4.61) 56.72(1.37) 53.23(2.37) 21.23(1.01)
Llama3-8B 62.63(3.85) 71.50(4.85) 57.52(4.28) 37.09(2.86)
Llama3-70B 74.73(2.01) 70.93(2.25) 82.26(0.66) 62.90(1.97)

Table 3: SEE performance with different LLM models

Method
Dis-
ambiguation

Formal
Fallacies

Hyperbaton
Salient
Translation

OPRO 71.53 49.51 75.92 43.88
OPRO-fs 66.93 52.41 62.90 37.39
EvoPrompt 53.7 50.81 74.79 47.58
EvoPrompt-fs 57.43 43.54 79.83 31.45

SEE-io-pair 72.37 58.87 86.02 48.19
SEE-example 68.47 58.65 87.51 47.59

Table 4: Effect of few-shot (fs) examples on BBH tasks.

66.7% tasks over EASE. Table 21 in Appendix F.3
provides complete experimental results.

4.2 Analysis
Applicability of SEE framework To evaluate the
general applicability of the SEE framework, we
perform end-to-end optimizations on a diverse set
of models, covering both open-source and closed-
source LLMs. Each model undergoes three end-to-
end runs, with the average performance and stan-
dard deviation reported. As shown in Table 3, GPT-
4 consistently achieves the highest performance
across all tasks, followed by Llama3-70B. Claude
2 demonstrates comparable performance to GPT-
3.5. For open-source LLM models, Mistral-7B
and Llama3-8B are comparable to each other, both
outperforming Llama2-7B by a large margin.

Necessity of Cohesive Prompt Optimization To
better understand whether cohesive prompt opti-
mization is necessary, we randomly add two few-
shot examples to OPRO and EvoPrompt. Our re-
sults in Table 4 indicate that OPRO exhibits a per-
formance gain on only 1 / 4 tasks while EvoPrompt
shows improvement in 2 / 4 tasks. This suggests
the necessity of cohesive prompt optimization as
performance degrades if optimized instructions do
not align cohesively with naive few-shot selection.

Phase Optimization vs Random Optimization
To evaluate the phased design of SEE, we com-
pare it against a random optimization strategy on
4 BBH tasks shown in Table 5. Notably, SEE con-
sistently outperforms random optimization in the

29581



Method
Causal Judgement Disambiguation Hyperbaton Salient Translation
Average score High score Average score High score Average score High score Average score High score

Random Evo 67.70(0.75) 70.28(0.56) 58.22(2.47) 61.3(3.17) 83.00(0.15) 87.8(0.00) 52.00(2.35) 56.80(1.60)
SEE 69.88(2.17) 72.00(3.09) 60.32(2.73) 62.9(2.56) 83.52(0.71) 87.8(0.00) 53.06(0.80) 56.80(0.80)

Table 5: Comparison of our phase optimization with traditional random optimization.

Method
Causal Judgement Disambiguation Hyperbaton Salient Translation
Average score High score Average score High score Average score High score Average score High score

Cosine distance 64.70(2.31) 67.86(2.47) 58.96(1.47) 63.30(0.00) 74.70(1.60) 85.7(0.00) 49.56(1.07) 58.80(0.00)
Hamming distance 65.74(2.87) 69.60(2.97) 64.11(1.28) 66.94(2.88) 79.30(4.48) 86.78(2.15) 50.33(2.32) 58.80(0.00)

Table 6: Performance comparison of hamming distance and cosine similarity.

average score across all tasks and achieves better
highest score in two out of four tasks. This supe-
rior performance highlights the effectiveness of the
well-structured phases with designated operators
employed in SEE .

Effect of Different Phases We conducted addi-
tional studies to highlight the value of different
phases by removing them from the optimization
pipeline, as shown in Figure 4. We only experiment
with Phase 1 - Phase 3 and did not remove Phase
0 as it generates the initial population. Without
Phase 0 there would be no candidate to optimize.
We observe no significant differences when differ-
ent phases are removed. However, removing Phase
1 with the Feedback Operator will cause the great-
est performance degradation. We hypothesize that
the Feedback Operator allows candidates to arrive
at their local optimal efficiently. Thus, removing
it will cause the next phase to start with less than
locally optimized candidates, impacting the overall
performance most. Having all phases yield the best
results. This further proves the effectiveness and
cohesion of the different phases of SEE.

Effect of Hamming Distance We investi-
gate the effectiveness of Hamming distance on
performance-based vectors in comparison to the
traditional cosine distance applied to embedding
vectors for similarity measurement. This analysis
is conducted across four optimization iterations.
Table 6 summarizes the results from four BBH
tasks. The findings show that performance vec-
tors using Hamming distance consistently outper-
form embedding-based approaches using cosine
similarity, achieving higher average and maximum
scores—particularly in tasks such as Disambigua-
tion (+5.2) and Hyperbaton (+4.6). These results
validate the effectiveness of performance-based rep-
resentations with Hamming distance in improving
search efficiency and enhancing task performance.

Disambiguation QA Formal Fallacies
40

45

50

55

60

65

70

75

80

Pe
rfo

rm
an

ce
 S

co
re

63.71

50.80

66.94

54.03

64.52

52.41

72.37

58.87

Without Phase 1
Without Phase 2
Without Phase 3
SEE

Figure 4: Performance comparison with phases removed

Effect of Operators on Prompt Length Our
method is designed to explore the full prompt
space, encompassing both zero-shot and few-shot
configurations. Understanding how prompt length
varies—and how different operators influence this
variation—is critical for interpreting the optimiza-
tion dynamics. Fig. 5 illustrates the average prompt
token length over the course of iterations. Interest-
ingly, the length may increase, decrease, or oscil-
late, which is consistent with the inherently flexible
nature of the optimization process. This behavior
supports our design rationale, demonstrating the op-
erators’ capacity to both add and remove examples
as needed. Such variability is not only expected but
also essential for navigating the diverse and uncon-
strained structure of the prompt space effectively.

La
m

a
Fe

ed ED
A

CR
+D CR CR

CR
+D

ED
A+

I
CR CR CR

Se
m

a

0

200

400

600

Av
g 

to
ke

n 
le

ng
th Antonym

La
m

a
Fe

ed
Fe

ed
CR

+D
ED

A+
I

CR
+D

CR
+D ED

A
ED

A
ED

A CR ED
A

CR
+D

Se
m

a

0

1000

2000

3000 Hyperbaton

La
m

a
Fe

ed ED
A

CR
+D CR CR

CR
+D

ED
A+

I
CR CR CR

Se
m

a

Iteration (operator)

0

200

400

Av
g 

to
ke

n 
le

ng
th

Trans EN-ES

La
m

a
Fe

ed
Fe

ed
Fe

ed
ED

A+
I

CR
CR

+D CR
CR

+D
CR

+D
ED

A+
I

CR
+D

Se
m

a

Iteration (operator)

250

500

750

1000

Orthography

Figure 5: Average prompt length through optimization.

29582



Effect of Initialization Strategy The SEE can ac-
commodate two types of inputs: input/output pair
and prompt example, each bringing its own bene-
fits. When using the input/output pair approach,
the initialization is solely based on LLM’s gener-
ations, resulting in greater diversity. On the other
hand, initialization in prompt example draws upon
human-provided example prompts, consequently
lacking the diversity that input/output pair offers.
However, prompt example empowers users to intro-
duce prior knowledge without relying on LLM’s
interpretation, which leads to better performance
in more complex tasks such as Dyck Languages,
and Logical Five as shown in Table 2.

Prompt Quality SEE generates few-shot prompts
for 20 / 24 Instruction Induction tasks and 4 / 8
BBH tasks. For hard tasks, SEE even integrates with
different techniques, such as COT for task Logical
Deduction Five, or adding “Let’s think step by step”
for the task Reasoning Colored Objects. Beyond
prompt techniques, SEE also generates prompts that
are easier for human understanding and more rele-
vant to the tasks. These validates SEE’s applicabil-
ity in diverse cases and interpretability for human
verifications. More details on prompt quality can be
found in Appendix F.4 where we compare prompts
generated by different baselines. All generated
prompts are in Section H.

Hyperparameters SEE has some hyperparame-
ters such as the threshold for phase transition, and
pool size. To test the universal applicability of these
settings, we have utilized a threshold of 1% and a
pool size of 15 for initialization, and 5 for the rest
of the phases in all 35 tasks. SEE achieves superior
results without specific parameter calibration. The
experiments conducted on 7 other models shown
in Table 3 with the same configuration also provide
competitive results. Given the superior results in
the universal setting, we believe SEE requires little
to no parameter tuning for practical application.

Computational Cost We evaluate computational
cost using two metrics: (1) the total number of API
calls to the LLM, and (2) the total token consump-
tion during the end-to-end optimization process.
These metrics include both operator application
and candidate evaluation steps. We intentionally
select these metrics because they directly correlate
with the overall runtime and computational over-
head of the optimization process.

As illustrated in Fig. 6, SEE demonstrates the

highest cost-efficiency, achieving reductions in
computational cost by several orders of magni-
tude compared to other optimization strategies, in-
cluding those based on metaheuristic approaches.
For instance, PromptBreeder—an evolutionary al-
gorithm representing a traditional metaheuristic
method—requires approximately 2.5 orders of
magnitude more API calls than SEE .

Given that SEE , APO, and EvoPrompt exhibit
the lowest number of API calls, we further compare
these methods based on token consumption on the
BBH task formal fallacies. Even under this stricter
metric, SEE remains the most efficient, reinforc-
ing the advantage of its quad-phased design and
adaptive operator selection. This innovation signif-
icantly enhances the computational efficiency of
metaheuristic-inspired optimization frameworks.

Methods such as ZOPO, MoP, and EASE involve
additional computational components (e.g., model
training or clustering), and are therefore excluded
from this analysis to maintain a fair comparison.

SE
E

APO

Ev
oPr

om
pt APE

AELP OPR
O

Pro
mptB

ree
de

r

104

105

106

Nu
m

be
r o

f A
PI

 C
al

ls 
(lo

g 
sc

al
e)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

To
ke

n 
Co

ns
um

pt
io

n

1e6
API Calls Token Consumption

Figure 6: Comparison of computational cost measured
by both total API calls and overall token consumption.

5 Conclusion

We introduce a cohesive in-context prompt opti-
mization framework that leverages metaheuristic
optimization principles to optimize both prompt
instructions and examples. We define cohesive-
ness as the extent to which instructions and exam-
ples work synergistically to enhance task perfor-
mance. Through a strategically designed explo-
ration–exploitation schedule and adaptive opera-
tor application, SEE achieves SOTA performance
across a diverse set of benchmark tasks, while sig-
nificantly reducing computational cost. Notably,
SEE is the first framework to dynamically gener-
ate both few-shot and zero-shot prompts, adapting
flexibly to the specific requirements of each task.

29583



6 Limitations

Although SEE is the most cost-effective method
among baselines, it still needs around 12 iterations
and 4, 000 API calls, which might be insufficient
for supporting large-scale online applications. Fu-
ture work could explore better initialization strate-
gies or data compression techniques to further im-
prove efficiency and reduce latency. Another im-
portant opportunity lies in extending the framework
beyond single-objective optimization. Developing
multi-objective optimization capabilities—such as
simultaneously improving accuracy, interpretabil-
ity, efficiency, or safety—could significantly en-
hance the framework’s flexibility and real-world
utility, and is not what SEE currently focuses on.

Acknowledgments

This work includes contributions from Vanderbilt
University researchers, supported by funding from
Intuit.

References

Srivastava Aarohi and BIG bench authors. 2023. Be-
yond the imitation game: Quantifying and extrapolat-
ing the capabilities of language models. Transactions
on Machine Learning Research.

Shengnan An, Bo Zhou, Zeqi Lin, Qiang Fu, Bei Chen,
Nanning Zheng, Weizhu Chen, and Jian-Guang Lou.
2023. Skill-based few-shot selection for in-context
learning. arXiv preprint arXiv:2305.14210.

Christian Blum and Andrea Roli. 2003. Metaheuristics
in combinatorial optimization: Overview and concep-
tual comparison. ACM Computing Surveys (CSUR),
35(3):268–308.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
“language models are few-shot learners".

Sébastien Bubeck, Varun Chandrasekaran, Ronen El-
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lund-
berg, et al. 2023. Sparks of artificial general intelli-
gence: Early experiments with gpt-4. arXiv preprint
arXiv:2303.12712.

Lichang Chen, Jiuhai Chen, Tom Goldstein, Heng
Huang, and Tianyi Zhou. 2023. Instructzero: Ef-
ficient instruction optimization for black-box large
language models.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan
Wang, Han Guo, Tianmin Shu, Meng Song, Eric P
Xing, and Zhiting Hu. 2022. Rlprompt: Optimizing
discrete text prompts with reinforcement learning.
arXiv preprint arXiv:2205.12548.

Shizhe Diao, Zhichao Huang, Ruijia Xu, Xuechun Li,
Yong Lin, Xiao Zhou, and Tong Zhang. 2022. Black-
box prompt learning for pre-trained language models.
arXiv preprint arXiv:2201.08531.

Ibrahim Abu Farha and Walid Magdy. 2020. From
arabic sentiment analysis to sarcasm detection: The
arsarcasm dataset. n Proceedings of the 4th Work-
shop on Open-Source Arabic Corpora and Process-
ing Tools, with a Shared Task on Offensive Language
Detection,, pages 32–39.

Chrisantha Fernando, Dylan Banarse, Henryk
Michalewski, Henryk Osindero, and Tim Rock-
taschel. 2023. Promptbreeder:self-referential
self-improvement via prompt evolution.

Qingyan Guo, Rui Wang Wang, Junliang Guo Guo, Bei
Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian,
and Yujiu Yang. 2023. “connecting large language
models with evolutionary algorithms yields powerful
prompt optimizers".

Mark Hauschild and Martin Pelikan. 2011. An in-
troduction and survey of estimation of distribution
algorithms. Swarm and evolutionary computation,
1(3):111–128.

Or Honovich, Uri Shaham, Samuel R Bowman, and
Omer Levy. 2022. Instruction induction: From few
examples to natural language task descriptions.

Bairu Hou, Joe O’connor, Jacob Andreas, Shiyu Chang,
and Yang Zhang. 2023. Promptboosting: Black-box
text classification with ten forward passes. In Inter-
national Conference on Machine Learning, pages
13309–13324. PMLR.

Cho-Jui Hsieh, Si Si, Felix X. Yu, and Inderjit S. Dhillon.
2023. “automatic engineering of long prompts".

Wenyang Hu, Yao Shu, Zongmin Yu, Zhaoxuan
Wu, Xiangqiang Lin, Zhongxiang Dai, See-Kiong
Ng, and Bryan Kian Hsiang Low. 2024. Local-
ized zeroth-order prompt optimization. Preprint,
arXiv:2403.02993.

29584

https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=uyTL5Bvosj
https://doi.org/10.1145/937503.937505
https://doi.org/10.1145/937503.937505
https://doi.org/10.1145/937503.937505
https://arxiv.org/abs/2403.02993
https://arxiv.org/abs/2403.02993


Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in
neural information processing systems, 35:22199–
22213.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190.

F. Nelson Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2023. Lost in the middle: How language
models use long contexts.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2021. What
makes good in-context examples for gpt-3? arXiv
preprint arXiv:2101.06804.

Pan Lu, Liang Qiu, Kai-Wei Chang, Ying Nian Wu,
Song-Chun Zhu, Tanmay Rajpurohit, Peter Clark,
and Ashwin Kalyan. 2022. Dynamic prompt learning
via policy gradient for semi-structured mathematical
reasoning. arXiv preprint arXiv:2209.14610.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2021. Fantastically ordered
prompts and where to find them: Overcoming
few-shot prompt order sensitivity. arXiv preprint
arXiv:2104.08786.

Ioannis Mollas, Zoe Chrysopoulou, Stamatis Karlos,
and Grigorios Tsoumakas. 2021. Ethos: An online
hate speech detection dataset.

OpenAI. 2023. Gpt-4 technical report. ArXiv,
abs/2303.08774.

Silviu Pitis, Michael R Zhang, Andrew Wang,
and Jimmy Ba. 2023. Boosted prompt ensem-
bles for large language models. arXiv preprint
arXiv:2304.05970.

Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit
Bansal. 2022. Grips: Gradient-free, edit-based in-
struction search for prompting large language models.
arXiv preprint arXiv:2203.07281.

Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Zhu
Chenguang, and Michael Zeng. 2023. Automatic
prompt optimization with “gradient descent” and
beam search.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV,
Eric Wallace, and Sameer Singh. 2020. Autoprompt:
Eliciting knowledge from language models with
automatically generated prompts. arXiv preprint
arXiv:2010.15980.

Hao Sun, Alihan Hüyük, and Mihaela van der Schaar.
2023. Query-dependent prompt evaluation and opti-
mization with offline inverse rl. arXiv e-prints, pages
arXiv–2309.

Tianxiang Sun, Zhengfu He, Hong Qian, Yunhua Zhou,
Xuan-Jing Huang, and Xipeng Qiu. 2022a. Bbtv2:
towards a gradient-free future with large language
models. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 3916–3930.

Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing
Huang, and Xipeng Qiu. 2022b. Black-box tuning for
language-model-as-a-service. In International Con-
ference on Machine Learning, pages 20841–20855.
PMLR.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny
Zhou, et al. 2022. Challenging big-bench tasks and
whether chain-of-thought can solve them. arXiv
preprint arXiv:2210.09261.

El-Ghazali Talbi. 2009. Metaheuristics: From Design
to Implementation. John Wiley & Sons, Hoboken,
NJ.

Ruochen Wang, Sohyun An, Minhao Cheng, Tianyi
Zhou, Sung Ju Hwang, and Cho-Jui Hsieh. 2024.
One prompt is not enough: Automated construc-
tion of a mixture-of-expert prompts. Preprint,
arXiv:2407.00256.

William Yang Wang. 2017. “liar, liar pants on fire”: A
new benchmark dataset for fake news detection.

Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai,
Haotian Luo, Jiayou Zhang, Nebojsa Jojic, Eric P
Xing, and Zhiting Hu. 2023. Promptagent:
Strategic planning with language models enables
expert-level prompt optimization. arXiv preprint
arXiv:2310.16427.

Zhaoxuan Wu, Xiaoqiang Lin, Zhongxiang Dai,
Wenyang Hu, Yao Shu, See-Kiong Ng, Patrick Jaillet,
and Bryan Kian Hsiang Low. 2024. Prompt optimiza-
tion with ease? efficient ordering-aware automated
selection of exemplars. Preprint, arXiv:2405.16122.

Weijia Xu, Andrzej Banburski-Fahey, and Nebojsa Jojic.
2023. Reprompting: Automated chain-of-thought
prompt inference through gibbs sampling. arXiv
preprint arXiv:2305.09993.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao
Liu, Quoc V. Le, Denny Zhou, and Xinyun Chen.
2023a. “challenging big-bench tasks and whether
chain-of-thought can solve them".

Jingfeng Yang, Hongye Jin, Ruixiang Tang, Xiaotian
Han, Qizhang Feng, Haoming Jiang, Bing Yin, and
Xia Hu. 2023b. Harnessing the power of llms in
practice: A survey on chatgpt and beyond. arXiv
preprint arXiv:2304.13712.

Ningyu Zhang, Luoqiu Li, Xiang Chen, Shumin Deng,
Zhen Bi, Chuanqi Tan, Fei Huang, and Huajun
Chen. 2021. Differentiable prompt makes pre-trained
language models better few-shot learners. arXiv
preprint arXiv:2108.13161.

29585

https://api.semanticscholar.org/CorpusID:257532815
https://doi.org/10.1002/9780470496916
https://doi.org/10.1002/9780470496916
https://arxiv.org/abs/2407.00256
https://arxiv.org/abs/2407.00256
https://arxiv.org/abs/2405.16122
https://arxiv.org/abs/2405.16122
https://arxiv.org/abs/2405.16122


Tianjun Zhang, Xuezhi Wang, Denny Zhou, Dale Schu-
urmans, and Joseph E Gonzalez. 2022a. Tem-
pera: Test-time prompting via reinforcement learning.
arXiv preprint arXiv:2211.11890.

Yiming Zhang, Shi Feng, and Chenhao Tan. 2022b. Ac-
tive example selection for in-context learning. arXiv
preprint arXiv:2211.04486.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han,
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy
Ba. 2023. Large language models are human-level
prompt engineers.

Kaijie Zhu, Jindong Wang, Jiaheng Zhou, Zichen
Wang, Hao Chen, Yidong Wang, Linyi Yang, Wei
Ye, Neil Zhenqiang Gong, Yue Zhang, et al. 2023.
Promptbench: Towards evaluating the robustness of
large language models on adversarial prompts. arXiv
preprint arXiv:2306.04528.

29586



Organization The Appendix is organized as follows:

• Appendix A. Related Work
Related work in automatic prompt optimization.

• Appendix B. Operator Definition
We formally define the operators used in our framework.

• Appendix C. Operator Analysis
We analyze various properties and behaviors of the operators.

• Appendix D. Operator Prompts
We discuss the prompt templates used for these operators.

• Appendix E. Details of Experiments
We provide comprehensive details of our experimental setups and protocols.

• Appendix F. Additional Experiment Results
We present extended results and further analysis beyond the main text.

• Appendix G. Few-shot Add/ Removal Examples
We illustrate representative showcasing operators’ ability to add/ removal examples.

• Appendix H. Generated Prompts
We show all the final prompts automatically generated by our system.

A Related Work

In-context prompting is an efficient approach for communicating LLMs but the performance is strongly
affected by the design of the prompt in specifized tasks. Prompt optimization to find the optimal prompt
has thus obtained broader attention. One research direction is the continuous prompt approaches that tune
embeddings of input tokens to generate better prompts (Li and Liang, 2021; Zhang et al., 2021; Sun et al.,
2022b,a; Chen et al., 2023). However, the optimized “soft” prompts from this paradigm often fall short of
interpretability and are inaccessible for blackbox APIs. Discrete prompt approaches (Diao et al., 2022;
Prasad et al., 2022), operating discrete tokens directly, offer an interactive interface to humans with better
interpretability and show promising performance. Various methods have been proposed via gradient-based
search (Shin et al., 2020), reinforcement learning (Zhang et al., 2022a; Deng et al., 2022; Sun et al., 2023)
and ensemble methods (Hou et al., 2023; Pitis et al., 2023) while these methods encounter concerns in
terms of scalability, reliability and efficiency (Wang et al., 2023).

More recent advancements rely on iterative sampling, scoring, and selection of exceptionally promising
prompts, generating diverse possibilities for prompt optimization. Fernando et al. (2023); Guo et al.
(2023); Hsieh et al. (2023) proposed leveraging LLMs to implement optimization strategies in prompt
searches. Yang et al. (2023a) demonstrates the capability of LLM as optimizers in prompt design. Pryzant
et al. (2023); Zhou et al. (2023) utilizes natural language feedback to refine prompt instructions. However,
these prompt optimization/refinement strategies largely focus on prompt instructions, typically short
sentences or paragraphs. While previous search and sampling algorithms have been investigated, such as
Monte Carlo search (Zhou et al., 2023), Gibbs sampling (Xu et al., 2023), or Beam search (Pryzant et al.,
2023), we introduce a novel dual exploration-exploitation strategy that leverages the in-depth traits of
each operator, implementing the metaheuristic optimization framework with adaptive operator selection
to enhance the interactive dynamics during optimization.

29587



B Operator Definition

Operators are used to generate new candidates. Seven types of operators, broadly categorized into five
classes are used by SEE. The idea is to provide a diverse set of operators so that a broad cognitive space of
linguistics is covered. Table 7 lists the operators that different kinds of methods use.

B.1 Lamarckian Operator

The Lamarckian operator follows the principles proposed in APE and Prompt Breeder (Zhou et al.,
2023; Fernando et al., 2023). Given a set of input-output pairs for the task, an LLM agent is used to
reverse-engineer the prompt from the provided demonstrating pairs. This type of operator allows a diverse
set of prompt candidates to be generated with no prior knowledge of the task. Any prompt candidate will
have to be induced from the demonstrating pairs. The prompt used by the LLM agent is in Table 12.

(Lamarckian Operator) Given a set of input/output pairs (Q,A) = [(Q1, A1), ..., (Qm, Am)] and a
base LLM L, the Lamarckian operator is to reverse engineer the instruction OL so that OL(Qi) = Ai, i =
1, ...,m.

B.2 Feedback Operator

Inspired by the concept of Gradient Descent in machine learning model training, we introduce an LLM
agent that works as an examiner which examines the cases where the current task prompt fails and provides
improvement guidance. Such guidance will be treated as gradient and be used by another LLM Agent
as an improver to generate a new candidate. Though similar to what is proposed in APO (Pryzant et al.,
2023), instead of only using gradient descent repeatedly, which has a higher probability of arriving at a
local minimum, we take advantage of its fast converge rate to local minimum and combine it with other
operators to target global minimum. When applying the Feedback operator, it will be applied to every
candidate in the current pool. The prompt can be found in Table 13 - 14.

(Feedback Operator) The Feedback operator generates a new prompt p′ based on the existing prompt
p ∈ P , and where p made mistakes for a task. The feedback operator OF first looks at the cases where
the current p failed to generate a list of advice G, and then asks LLM L to apply such advice G to existing
prompt p for generating the new prompt p′.

B.3 ESTIMATION OF DISTRIBUTION Operator

The next class of operators takes a set of parents as input to generate a modified candidate.
Estimation of Distribution Operator (EDA): Following the principles proposed by (Hauschild and

Pelikan, 2011) and work in (Fernando et al., 2023), we use a LLM agent that is fed with a subset of the
current pool to generate new candidate. To ensure the diversity and quality of the subset, we first rank the
candidates in the current pool by their performance in descending order. Then starting from the first item
in the ordered candidates, we only add the candidate to the subset if it does not have a similarity score
over a threshold with any other candidate that is already in the subset. This way candidates with higher
performance are more prone to be added to the subset and the diversity of the subset is achieved. More
details on how similarity is calculated can be found in section 3.4. The subset will be randomized before
feeding into the LLM agent so the candidate’s performance does not dictate its order. The prompt can be
found in Table 15.

EDA and Index Operator: This is a variant of the EDA operator above. Based on the observations
that LLM is more prone to use examples that appear late in the in-context learning (Liu et al., 2023;
Fernando et al., 2023), after generating the subset following procedures of EDA, the subset is ordered by
their performance in ascending order. To further balance exploitation and exploration and avoid being
too biased over the candidate with the highest performance (Fernando et al., 2023), we instructed LLM
that the candidates are ranked by their performance in descending order so that the low performance
candidates are taken into consideration. The prompt can be found in Table 16.

(Estimation of Distribution Operator - EDA) EDA generates a new candidate based on a list of parents.
It is a function operator OE that performs OE(P,L) = p′. Given a list of prompts P = [p1, ..., pm] and
an LLM L, EDA provides a new prompt p′. Items in P satisfy the restriction that d(pi, pj) < t, where d

29588



Operator OPRO EvoPrompt AELP PromptBreeder APE APO SEE

Lamarckian Operator ✓ ✓ - ✓ ✓ - ✓

Feedback Operator - - - - - ✓ ✓

Crossover Operator - ✓ - ✓ - - ✓

EDA Operator ✓ - - ✓ - - ✓

Semantic Operator - ✓ ✓ ✓ ✓ ✓ ✓

Table 7: Comparison of operators across methods.

is a function that calculates similarity, and t is a predefined threshold. If the items in P are ordered based
on certain criteria, we call it EDA + Index (EDA+I).

B.4 Crossover Operator
This class of operators takes two parents as input to generate a crossover candidate. The prompt can be
found in Table 17.

Crossover Operator(CR): Following the concept of crossover in the optimization algorithm, we
introduce an LLM agent to function as a crossover operator that takes two parents and generates a
crossover candidate. It takes the best two candidates in the current pool, namely the top two candidates
with the highest performance, and performs linguistic crossover.

Crossover with Diversity Operator(CR+D): This is a variance of the Crossover Operator. To provoke
exploration, we follow a similar process in EDA where diversity in parents is considered. Thus it takes
the best candidate and the most distinct individual to it as two parents for crossover operation. The
distinctness between two candidates is measured by a similarity score. More details on how the similarity
score is calculated can be found in section 3.4.

(Crossover Operator - CR) Crossover generates a new candidate based on two parents. It is a function
operator OC that performs OC(p1, p2,L) = p′ where p1, p2 are two prompts selected from a prompt
pool P where P = [p1..., pm], p′ is the generated prompt that hold features from both p1 and p2. If
p2 = argminp∈P d(p1, pi) is applied for choosing p2, we call it Crossover + Distinct (CR + D).

B.5 Semantic Operator
This class of operators takes a candidate and uses an LLM agent to compose a new candidate that shares
its semantic meaning. When applying the Semantic operator, it will be applied to every candidate in the
current pool. The prompt can be found in Table 18.

(Semantic Operator) The Semantic operator is a function operator OS that performs OS(p,L) = p′

where p′ is the generated prompt that shares the same semantic meaning as p.

C Operator Analysis

C.1 Few-Shot Additional / Removal Analysis
The ability to add and remove few-shot examples is crucial in dictating whether it is possible to traverse
the full in-context prompt space. Thus we conduct the few-shot addition/ removal analysis to gauge each
operator’s capabilities. Below are examples of how operators add or remove few-shot examples.

29589



Operator In-
put

I gave a friend an instruction and some examples The friend read the instruction and
wrote an output for every one of the inputs.
Here are the input-output pairs:

## Example ##
## Input ## : 92 24
## Output ##: [’68’]

The instruction was:

Operator
Output

Subtract the second number from the first number and write the result. If the result is
negative, write the absolute value of the result.

Here are the input-output pairs:

Input: 10 5
Output: [’5’]

Input: 50 75
Output: [’25’]

Input: 100 100
Output: [’0’]

Input: 7 20
Output: [’13’]

Input: 0 5
Output: [’5’]

Input: -10 5
Output: [’15’]

Input: 92 24
Output: [’68’]

Input: 50 -75
Output: [’125’]

Table 8: Lamarckian Operator Add Few-shot Example

29590



Original
Prompt

For each word, find its antonym and write it as the output.

Generated
Feedback

1. Clarify the definition of "antonym" to ensure that the prompt is asking for the op-
posite meaning of the word, rather than just a different word that is related in some way.

2. Provide more specific instructions for determining the antonym, such as
indicating whether the opposite meaning should be an adjective or a noun.

3. Add a list of common antonyms for each word to help users who may not
be familiar with all possible opposites.

4. Provide a context or sentence for each word to help users determine the
appropriate antonym.

Generated
Prompt

For each word, find its antonym, which is a word that has the opposite meaning, and
write it as the output. The antonym should be a word that is commonly used to express
the opposite meaning of the given word, and it should be of the same part of speech
(e.g. noun, verb, adjective, adverb).

To help you identify the antonym, we have provided a list of common antonyms for
each word. Additionally, we have included a context or sentence for each word to help
you determine the appropriate antonym.

Example:
Word: Hot
Antonym: Cold
Context: The soup is too hot to eat.

Please note that some words may have multiple antonyms depending on the context,
so use your best judgment to determine the most appropriate one.

Table 9: Feedback Operator Add Few-shot Example: In this operation, few-shot examples are added based on the
feedback. Individual feedback and their corresponding changes are color-coded.

29591



Original
Prompt

For each word, remove the prefix or suffix that indicates a negative or opposite
meaning, and write the resulting word as the output.

For example, for the input "destabilize," remove the prefix "de-" which indi-
cates a negative meaning, and the resulting word is "stabilize

Generated
Feedback

1.Clarify the prompt to specify that it only applies to words with a negative or opposite
prefix or suffix. This will prevent confusion and mistakes when dealing with words
that do not have such affixes.

2. Provide examples of common negative or opposite prefixes and suffixes,
such as "un-" or "-less," to help users identify them more easily.

3. Include a check to ensure that the resulting word is a valid English word,
to avoid outputs like "ane" or "direct" that are not actual words. This could be done by
cross-referencing the output with a dictionary or word list.

4. Consider adding an option to retain the original word if no negative or op-
posite prefix or suffix is present. This would eliminate confusion when dealing with
words like "linear" that do not have such affixes.

Generated
Prompt

For each word that contains a negative or opposite prefix or suffix, remove the affix
and write the resulting word as the output. Common negative or opposite prefixes and
suffixes include "un-," "dis-," "in-," "-less," and "-ful." Please note that this prompt
only applies to words with these specific affixes.

To ensure that the resulting word is a valid English word, we will cross-refer-
ence the output with a dictionary or word list. If the resulting word is not a valid
English word, it will be excluded from the output.

If the original word does not contain a negative or opposite prefix or suffix,
you may choose to retain the original word or exclude it from the output. Please
specify your preference in the input.

Table 10: Feedback Operator Remove Few-shot Example: In this operation, few-shot examples are removed based
on the feedback. Individual feedback and their corresponding changes are color-coded.

29592



Operator
Input

Order adjectives correctly in English sentences.

Q: Which sentence has the correct adjective order:
Options:
(A) rubber terrible ship (B) terrible rubber ship
A: Let’s think step by step. When there is more than one adjective before a noun, the
adjectives need to respect the following order before a noun: "[1. opinion] [2. size]
[3. age] [4. shape] [5. color] [6. origin] [7. material] [8. purpose] noun". Option (A):
"rubber terrible ship". (1) rubber" falls into the material category. (2) "terrible" falls
into the opinion category. Option (A) has the following adjective order: [7. material]
[1. opinion] (or, in numeric terms, 7 1). Because 7 < 1 is not correct, (A) does not have
the correct ordering. Option (B): "terrible rubber ship". Option (B) has the following
adjective order: [1. opinion] [7. material] (or, in numeric terms, 1 7). Because 1 < 7 is
correct, (B) has the correct ordering. So the answer is (B).

Q: Which sentence has the correct adjective order:
Options:
(A) repulsive small Brazilian exercise ship (B) Brazilian repulsive exercise small ship
A: Let’s think step by step. When there is more than one adjective before a noun, the
adjectives need to respect the following order before a noun: "[1. opinion] [2. size]
[3. age] [4. shape] [5. color] [6. origin] [7. material] [8. purpose] noun". Option (A):
"repulsive small Brazilian exercise ship". (1) "repulsive" falls into the opinion category.
(2) "small" falls into the size category. (3) "Brazilian" falls into the origin category.
(4) "exercise" falls into the purpose category. Option (A) has the following adjective
order: [1. opinion] [2. size] [6. origin] [8. purpose] (or, in numeric terms, 1 2 6 8).
Because 1 < 2 < 6 < 8 is correct, (A) has the correct ordering. Option (B): "Brazilian
repulsive exercise small ship". Option (B) has the following adjective order: [6. origin]
[1. opinion] [8. purpose] [2. size] (or, in numeric terms, 6 1 8 2). Because 6 < 1 < 8 < 2
is not correct, (B) does not have the correct ordering. So the answer is (A).

Q: Which sentence has the correct adjective order:
Options:
(A) blue gold wonderful square shoe (B) wonderful square blue gold shoe
A: Let’s think step by step. When there is more than one adjective before a noun, the
adjectives need to respect the following order before a noun: "[1. opinion] [2. size] [3.
age] [4. shape] [5. color] [6. origin] [7. material] [8. purpose] noun". Option (A): "blue
gold wonderful square shoe". (1) "blue" falls into the color category. (2) "gold" falls
into the material category. (3) "wonderful" falls into the opinion category. (4) "square"
falls into the shape category. The adjective order that Option (A) has is [5. color] [7.
material] [1. opinion] [4. shape] (or, in numeric terms, 5 7 1 4). Because 5 < 7 < 1 < 4
is not correct, (A) does not have the correct ordering. Option (B): "wonderful square
blue gold shoe". Option (B) has the following adjective order: [1. opinion] [4. shape] [5.
color] [7. material] (or, in numeric terms, 1 4 5 7 ). Because 1 < 4 < 5 < 7 is correct, (B)
has the correct ordering. So the answer is (B).

Operator
Output

Rearrange the adjectives in the given sentence in the correct order.

Table 11: Semantic Operator Remove Few-shot Example

29593



C.2 Operator Feature Analysis
To study the features of each operator we conduct a preliminary experiment where we study four operators:
EDA Operator, Crossover, Feedback Operator, and Semantic Operator.

Initialization: As the initialized points have a tremendous impact on optimization problems. We
randomly use four different seeds to create four initial pools for four different tasks: Causal Judgement,
Salient Translation Error Detection, Disambiguation QA, and Hyperbaton. The idea is to provide various
initialization points so that the performance of operators can be averaged to rule out the influence of
initialization.

Operator Applications: For each initialization, we apply the following procedure for all four operators.

• For one round, starting with the initial pool, we consecutively apply the operator 5 times. This is to
study the value of applying the operator consecutively.

– For EDA and CrossOver, as they require multiple parents, we keep a pool size of 5 for each
iteration after applying the operator. Performance gain is defined as whether the average
performance of the pool is improved.

– For Feedback Operator and Semantic Operator, as they only need one parent, we apply them
to a random candidate from the initial pool and use the new candidate as the base for the next
round. Performance gain is defined as whether the new candidate has a higher performance than
its parent.

• To reduce the impact of randomness, we run this process 5 rounds for each operator.

Thus for each operator, it will be run a total of 4 tasks * 5 rounds * 5 application = 100 times.

EDA Crossover Feedback Semantic
0

10

20

30

40

50

60

70

80

Co
un

t

Figure 7: Operator Improvement Count

Analysis: There are two aspects we are particularly interested in. The first is what the likelihood of
performance gain when applying an operator is (Probability of Improvement), and the second is how
fast each operator can continuously bring improvement (Convergence Speed).

• Probability Of Improvement: Figure 7 shows the number of times performance is improved by
each operator. Crossover and EDA Operator introduces improvements in more steps with Semantic
Operator ranking third. Feedback Operator introduces the least number of improvements. This result
helps populate the Prob column in table 1.

• Convergence Speed: Figure 8 shows that for each operator, as they are applied in 5 consecutive
steps, the number of times improvement is introduced for each step. Figure 9 shows the average
percentage of performance gain operators brought in each step.

– For EDA Operator and Crossover, each 5 step has a similar number of contributions for
performance gains as shown in figure 8. From figure 9 we can also observe the first step brings
the most improvement and the first 4 steps bring a similar improvement ratio.

29594



– For Feedback Operator and Semantic Operator, the first step has a significantly higher chance
of introducing improvement as shown in figure 8. This is especially true for Feedback Operator
where step 1 accounts for over 34% of the total improvement counts. As for the improvement
ratio, the first step for both Feedback Operator and Semantic Operator introduces significantly
more improvements than the rest of the steps shown in figure 9.

Based on the tests, we learned that the value gained for applying Feedback Operator and Semantic
Operator is significantly reduced after the 1st application. We interpret it as Feedback Operator and
Semantic Operator can jump to the local minimum pretty fast, namely in 1 step, thus leading to
less possibility of improvement for steps 2 - 5. Whereas for EDA Operator and Crossover, as they
are merging genetic information between candidates, the likelihood of improvement is relatively
randomized. So even if the first round of applying them renders no improvement, there is still a
chance of performance gain in the following run. In other words, we should be more patient with
EDA Operator and Crossover. Thus the operator tolerance (described in section 3.4-design 2)
for EDA and Crossover is set to 4 and for Feedback Operator and Semantic Operator is 1. These
learnings help populate the Speed column in table 1.

EDA Crossover Feedback Semantic
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Co
un

t

Step 1
Step 2
Step 3
Step 4
Step 5

Figure 8: Operator Improvement Pattern: EDA Operator and Crossover have similar improvement counts for each
step whereas for Feedback Operator and Semantic Operator, the first step introduced significantly more times of
improvement compared to the others.

EDA Crossover
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Im
pr

ov
em

en
t P

er
ce

nt
ag

e

Feedback Mutation Semantic
0

20

40

60

80

100

120

140

Im
pr

ov
em

en
t P

er
ce

nt
ag

e

Step 1
Step 2
Step 3
Step 4
Step 5

Figure 9: Improvement Ratio: On the left, for EDA and Crossover, we observe an almost equal improvement ratio
for the first four steps. Improvement Ratio is defined as the relative percentage of improvement in the average
performance for the entire pool. On the right, for Feedback and Semantic Operator, we observe the first round
contributes significantly more improvement compared to the others. As Feedback and Semantic Operators take
one input candidate, Improvement Ratio is defined as the relative performance improvement percentage for the
candidate after applying the operator.

29595



D Operator Prompts

Operator Implementation: The state-of-art frameworks such as APO, EVOPROMPT, and AELP have
already implemented operators such as feedback operator, crossover operator, and semantic operator
with LLM. However, these implementations inflict restrictions on LLM with prompts. For example, in
APO when implementing the feedback operator, the prompt specifically identified the use case to be
zero-shot. (Pryzant et al., 2023) In EVOPROMPT-DE, when applying crossover operators, the focus is to
only change the parts that two parents differentiate from each other. (Guo et al., 2023) In AELP, when
applying semantic operators, it is restricted to a sentence level, not the whole prompt. (Hsieh et al., 2023).
In SEE, we pay special attention not to apply any restrictions in our operator prompt, realizing the full
potential of LLMs.

I gave a friend an instruction and some input. The friend read the instruction and
wrote an output for every one of the inputs. Here are the input-output pairs:

## Example ##
{input output pairs}

The instruction was:

Table 12: Lamarckian Operator Prompt

You are a quick improver. Given an existing prompt and a series of cases where it
made mistakes. Look through each case carefully and identify what is causing the
mistakes. Based on these observations, output ways to improve the prompts based
on the mistakes.

## Existing Prompt ##
{existing prompt}

## Cases where it gets wrong:##
{wrong cases}

ways to improve the existing prompt based on observations of the mistakes in the
cases above are:

Table 13: Gradient Descent Generation Prompt: Unlike APO which is also using gradient descent, we are NOT
adding restrictions such as "zero-shot classifier prompt.", nor providing any differentiation between instructions and
examples. Instead, we specifically ask LLM to output multiple feedback in one go. Also as are passing in the existing
prompt as a whole, thus feedback should be on the paragraph/prompt level instead of the sentence/instruction level.
We highlight the design that helps us achieve this below.

29596



You are a quick improver. Given an existing prompt and feedback on how it should
improve. Create an improved version based on the feedback.

## Existing Prompt ##
{existing prompt}

## Feedback##
{feedback}

## Improved Prompt##

Table 14: Gradient Descent Application Prompt: Following the principle of optimizing prompt as a whole, our
operator prompts take input and output on the entire prompt level

You are a mutator. Given a series of prompts, your task is to generate another prompt
with the same semantic meaning and intentions.

## Existing Prompts ##
{existing prompt}

The newly mutated prompt is:

Table 15: EDA Prompt

You are a mutator. Given a series of prompts, your task is to generate another prompt
with the same semantic meaning and intentions. The series of prompts are ranked by
their quality from best to worst.

## Existing Prompts ##
{existing prompt}

The newly mutated prompt is:

Table 16: EDA+Index Prompt: The difference between EDA + Index and EDA is that EDA + Index takes advantage
of the in-context learning technique and informs the order of the passed-in prompts

29597



You are a mutator who is familiar with the concept of cross-over in genetic algorithm,
namely combining the genetic information of two parents to generate new offspring.
Given two parent prompts, you will perform a cross-over to generate an offspring
prompt that covers the same semantic meaning as both parents.

# Example
Parent prompt 1: Now you are a categorizer, your mission is to ascertain the
sentiment of the provided text, either favorable or unfavorable

Parent prompt 2: Assign a sentiment label to the given sentence from [’neg-
ative’, ’positive’] and return only the label without any other text.

Offspring prompt: Your mission is to ascertain the sentiment of the pro-
vided text and assign a sentiment label from [’negative’, ’positive’].

## Given ##
Parent prompt 1: {prompt 1}
Parent prompt 2: {prompt 2}
Offspring prompt:

Table 17: Cross Over Prompt

You are a mutator. Given a prompt, your task is to generate another prompt with the
same semantic meaning and intentions.

# Example:
current prompt: Your mission is to ascertain the sentiment of the provided text and
assign a sentiment label from [’negative’, ’positive’].
mutated prompt: Determine the sentiment of the given sentence and assign a label
from [’negative’, ’positive’].

Given:
current prompt: {existing prompt}
mutated prompt::

Table 18: Semantic Operator Prompt: To provoke LLM’s creativity, we do not restrict to the semantic level but
expand that to intentions, allowing LLM to not stick to a sentence-by-sentence modification.

29598



E Details of Experiments

Implementation Details. We utilized GPT-3.5-turbo to develop LLM agents capable of performing
various operators in all tasks. The GPT-3.5-turbo access was through internal hosting of Azure, where
additional security guardrails prevented some API calls from completing for security reasons. As such,
accuracy was computed only on successful responses. We conduct comparisons between GPT 3.5 and
GPT. 4 in 4 BBh tasks and all the other tasks. We set up training, development, and testing datasets, select
the prompt with the highest score on the dev set, and report its score on the testing set. For BBH and APO
tasks, we conducted three end-to-end runs, with the average performance and standard deviation reported
in Table 19 and Table 20. For additional parameter settings please refer to Section E.3.

E.1 Benchmark tasks

• 24 Instruction Induction Tasks: These 24 instruction tasks (Honovich et al., 2022) span many facets
of language understanding, from simple phrase structure to similarity and causality identification. Both
training and testing data are provided for these tasks and we create our training and development data
set from the available training data and use the provided testing data set as is. Depending on the task,
we use up to 50 training data and up to 50 development data. We use input/output pair format for these
tasks.

• Ethos: Ethos (Mollas et al., 2021) is an online English hate speech detection data set with 997 online
comments and hate speech labels. We select 50 for training, 50 for development, and 150 for testing.
We use prompt example format for this data set following the practice of APO (Pryzant et al., 2023).

• Liar: Liar (Wang, 2017) is an English fake news detection data set with 4000 statements, context, and
lie labels. We select 50 for training, 50 for development, and 150 for testing. We use prompt example
format for this data set following the practice of APO (Pryzant et al., 2023).

• Sarcasm: Sarcasm (Farha and Magdy, 2020) is an Arabic sarcasm detection data set with 10,000 online
comments and sarcasm labels. We select 50 for training, 50 for development, and 150 for testing. We
use prompt example format for this data set following the practice of APO (Pryzant et al., 2023).

• BBH: BBH (Aarohi and bench authors, 2023) is a collaborative benchmark that aims to quantitatively
measure the capabilities and limitations of language models. We followed the same practice in the
AELP paper with the same tasks and randomly selected 125 for training/ development, and up to 125
for testing. (Hsieh et al., 2023)

E.2 Baselines

9 Baselines. We evaluate SEE against a variety of LLM-based approaches that have achieved state-of-
the-art performance in prompt optimization:

• APE (Zhou et al., 2023), ZOPO (Hu et al., 2024) and APO (Pryzant et al., 2023): APE utilizes a
Monte Carlo Search strategy that emphasizes exploration, while APO emphasizes exploitation, which
harnesses incorrect instances as feedback gradient. ZOPO utilizes zeroth-order optimization methods to
find local optimal.

• OPRO (Yang et al., 2023a): OPRO leverages LLM as optimizers to generate better instruction via
meta-prompt, solution-score pairs, and task descriptions.

• PromptBreeder (Fernando et al., 2023), EvoPrompt (Guo et al., 2023) and AELP (Hsieh et al., 2023):
these methods connect LLMs with evolution algorithms for prompt optimization.

• MoP (Wang et al., 2024), EASE (Wu et al., 2024): these methods can optimize instructions and
examples simultaneously.

29599



E.3 SEE Setting
• Pool Size: In the experiments, for phase 0: Global initialization we set the pool size to be 15. For the

rest phases, we set the pool to be 5.

• Operator Tolerance: Based on operator analysis in section C.2, the tolerance for Feedback Operator
and Semantic Operator is set to 1. The tolerance for EDA Operator and Crossover is set to 4. Thus the
minimum number of times operators will be applied in phase 2: global optimization operation is 8.

• Model Configuration: For operators, we set the temperature to 0.5 to tap into LLM’s creativity. For
performance evaluations, we set the temperature to 0.

• Performance Gain in Stop Criteria: To improve efficiency, when evaluating performance gain to
decide whether we should move to the next phase, we are only looking at the best candidate in the
current pool.

• Candidate Selection: To improve efficiency, after getting new candidates, we combine them with the
current pool and use a greedy algorithm to select the top performer to be the new pool.

29600



F Additional Experiment Results

F.1 BBH Task Average & Standard Deviation
We run each method three times and report and average and standard deviation in Table 19.

Method Causal
Judgement

Dis
-ambiguation

Dyck
Languages

Formal
Fallacies Hyperbaton Logical

Five
Color
Reasoning

Salient
Translation

SEE-pair 69.97(2.45) 69.90(3.53) 7.06(1.23) 58.49(0.41) 84.36(2.24) 45.49(2.73) 58.13(2.36) 48.38(0.81)

SEE-example 84.85(5.45) 68.01(0.4) 35.48(12.18) 53.06(4.95) 81.58(9.89) 73.56(8.99) 77.15(4.13) 47.01(0.88)

Table 19: BBH Tasks Average and Standard Deviation

F.2 3 Detect Task for APO
Below are the results of SEE on 3 detection task compared with APO.

Method Ethos Liar Sarcasm

APO (Pryzant et al., 2023) 0.95 0.51 0.85
SEE (GPT-3.5) 0.96(0.96) 0.61(3.85) 0.87(1.25)
SEE (GPT-4) 0.96 0.69 0.89

Table 20: Testing performance on 3 detect tasks from APO.

F.3 24 Instruction Induction Tasks
Table 21 shows the comparison between APE, PromptBreeder, MoP, EvoPrompt, OPRO, EASE, ZOPO
and SEE evaluated by the best prompt on 24 instruction induction tasks. For EASE we use the results with
instruction for a fair comparison. For ZOPO, we use the better performance between the two versions.
SEE outperforms 23 / 24 tasks over APE zero shot, 21 / 24 tasks over APE few shot, 22 / 24 tasks over

Prompt Breeder, 21 / 24 tasks over MoP, 14 / 14 tasks over EvoPrompt, 14 / 14 tasks over OPRO, 10 / 15
tasks over EASE and 14 / 14 tasks over ZOPO.
SEE generated few-shot prompts for 20 / 24 tasks and zero-shot examples for 4 / 24 tasks. For the full

set of generated prompts please refer to Table 29.

Task
APE
(zero-
shot)

APE
(few-
shot)

PB
(few-
shot)

MoP
Evo
Pro-
mpt

OP-
RO

EA-
SE
(w/in)

ZO-
PO
(best)

SEE-
3.5

SEE-4

Antonyms 0.83 0.86 0.87 0.88 0.84 0.79 0.85 0.85 0.89 0.91

Cause Effect 0.84 1 1 0.93 0.84 0.83 _ 0.95 0.96 1

Common Concept 0.27 0.32 0 0.38 0.11 0.09 _ 0.24 0.23 0.28

Diff 1 1 1 1 0.27 1 1 1 1 1

First Word Letter 1 1 1 1 _ _ _ _ 1 1

Informal Formal 0.65 0.70 0.07 0.63 0.52 0.48 _ 0.62 0.6 0.67

Large Animal 0.97 0.97 0.97 0.96 _ _ 1 _ 0.96 0.94

Letters List 0.99 1 0.99 0.99 1 0.99 _ 1 1 1

Taxonomy Animal 0.66 0.79 1 0.72 0.83 0.30 1 0.90 0.96 1

Negation 0.83 0.9 0.9 0.87 0.86 0.73 1 0.86 0.94 0.88

Num Verb 1 1 1 1 _ _ _ _ 1 1
Continuation of Table 21

29601



Continuation of Table 21

Active Passive 1 1 1 1 _ _ _ _ 1 1

Singular Plural 1 1 1 1 _ _ _ _ 1 1

Rhymes 1 0.61 1 0.94 0.60 0.23 1 1 1 1

Second Word Letter 0.87 0.69 0.95 0.75 0.25 0.87 1 0.97 1 1

Sentence Similarity 0.36 0.43 0.56 0.68 0.02 0.03 0.58 0.37 0.38 0.55

Sentiment 0.94 0.93 0.93 0.97 _ _ 1 _ 0.94 0.94

Orthography Starts 0.68 0.69 0.71 0.72 0.15 0.34 0.82 0.71 0.72 0.94

Sum 1 1 1 1 1 1 1 1 1 1

Synonym 0.22 0.14 0.43 0.26 0.40 0.40 0.32 0.45 0.46 0.38

Trans En De 0.72 0.86 0.87 0.72 _ _ 0.90 _ 0.83 0.96

Trans En Es 0.86 0.91 0.91 0.86 _ _ 1 _ 0.92 0.94

Trans En Fr 0.78 0.9 0.91 0.79 _ _ 0.85 _ 0.88 0.93

Word in Context 0.62 0.63 0.65 0.67 _ _ _ _ 0.66 0.7

Table 21: 24 Instruction Induction Task in APE

F.4 Generated Prompt Comparison
We notice that the prompts generated by SEE are easier to understand by humans. Below is a
comparison between prompts generated for task Rhymes. The task description is: "Write a word that
rhymes with the input word."

The prompt generated by APE and ZOPO does not fit the task. The prompt generated by Prompt
Breeder is not easy to understand how it relates to rhyme. The prompt generated by SEE is easy to
understand with few shot examples added.

Framework Generated Prompt

APE write a function that takes in a string and outputs the string with the first letter
capitalized.

Continuation of Table 22

29602



Continuation of Table 22

Prompt
Breeder

Prompt 0: If the last letter of the input is ’e’, remove it.
Prompt 1: remove the last two letters of the input and add the letters \xc2 \x93mote
\xc2 \x94.
Contexts
Context 0:
Q. pea
A. If the last letter of the input is ’e’, remove it.
A. If the last letter of the input is ’s’, remove it.
A. If the last letter of the input is ’y’, remove it.
A. If the last letter of the input is
remove the last two letters of the input and add the letters \xc2 \x93mote \xc2 \x94.
Therefore, the correct answer is (a) pea.
Context 1:
Q. night
A. If the last letter of the input is ’e’, remove it.
A. If the last letter of the input is ’t’, remove it.
A. If the last letter of the input is ’h’, remove it.
A. If the last letter of the input is
remove the last two letters of the input and add the letters \xc2 \x93mote \xc2 \x94.
Therefore, the correct answer is (The answer is night.
Context 2:
Q. add
A. If the last letter of the input is ’e’, remove it.
A. If the last letter of the input is ’d’, remove it.
A. If the last letter of the input is ’a’, remove it.
A. If the last letter of the input is
remove the last two letters of the input and add the letters \xc2 \x93mote \xc2 \x94.
Therefore, the correct answer is (The answer is added.

ZOPO
The prompts were to create a program that takes in a word as input and outputs a
related word based on a specific set of rules. The rules are as follows: If the input
word starts with “tri", the output should be “slip".

Continuation of Table 22

29603



Continuation of Table 22

SEE

Create a list of words that rhyme with the given word. To ensure that your rhymes are
accurate, make sure that the words have the same vowel sound and ending consonant
sound. For example, "cat" rhymes with "bat" and "hat," but not with "dog" or "mat."

To get started, here are some examples of words that rhyme with the given
word:

- Love: dove, glove, above, shove, of
- Time: rhyme, chime, climb, mime, prime

To find more rhyming words, you can use a rhyming dictionary, online re-
sources, or brainstorm with friends. Be creative and try to use a variety of different
rhyming words instead of repeating the same one multiple times.

To avoid common pitfalls, make sure to double-check your spelling and pro-
nunciation of the words. Also, avoid using words that only partially rhyme or have a
different stress pattern.

After you’ve created your list, ask for feedback on the quality of your rhymes. This
can help you to improve and refine your skills.

For an added challenge, consider generating rhyming words that fit a particu-
lar theme or context. This can help you to focus your creativity and generate more
interesting and relevant rhymes.

Table 22: Generated Prompt Comparison for task "Rhymes"

29604



G Few-shot Add/ Removal Examples

Below are cases listing examples where few-shot examples are added or removed with SEE.

G.1 Zero-shot to Few-shot

Task Ethos

Input
Prompt

Is the following text hate speech? \n ## Output Format ## True or False

Output
Prompt

Your task is to evaluate whether the provided input includes any offensive language.
This could be language that is sexist, racist, discriminatory, or advocates violence or
harm. Offensive language can also be identified by an aggressive or belittling tone.
However, remember that the mere presence of profanity does not necessarily make a
statement offensive. The context and intention behind the statement should also be
taken into account. If none of these conditions are fulfilled, return ’False’.

For instance, the phrase "You are a fool" is offensive due to its derogatory tone, so
you should return ’True’. On the other hand, the phrase "This is a damn tasty pizza"
includes profanity but is not offensive, so you should return ’False’. Similarly, a phrase
like "All people of X race are lazy" is offensive because of its racist undertones, so
you should return ’True’. In contrast, a phrase like "I dislike the color yellow" is not
offensive, so you should return ’False’.

Table 23: Add Few-shot Example: added examples are highlighted.

G.2 Zero-shot to Zero-shot

Task Ethos

Input
Prompt

Is the following text hate speech? \n ## Output Format ## True or False

Output
Prompt

Classify the given text as hate speech or not and generate a binary output of 1 for Yes
and 0 for No.

Table 24: Zero-shot to Zero-shot

G.3 Few-shot to Zero-shot

Task Hyperbaton

Continuation of Table 25

29605



Continuation of Table 25

Input
Prompt

Order adjectives correctly in English sentences.

Q: Which sentence has the correct adjective order:
Options:
(A) rubber terrible ship
(B) terrible rubber ship
A: Let’s think step by step.
When there is more than one adjective before a noun, the adjectives need to respect
the following order before a noun: "[1. opinion] [2. size] [3. age] [4. shape] [5. color]
[6. origin] [7. material] [8. purpose] noun".
Option (A): "rubber terrible ship". (1) rubber" falls into the material category. (2)
"terrible" falls into the opinion category. Option (A) has the following adjective order:
[7. material] [1. opinion] (or, in numeric terms, 7 1). Because 7 < 1 is not correct, (A)
does not have the correct ordering.
Option (B): "terrible rubber ship". Option (B) has the following adjective order: [1.
opinion] [7. material] (or, in numeric terms, 1 7). Because 1 < 7 is correct, (B) has the
correct ordering. So the answer is (B).

Q: Which sentence has the correct adjective order:
Options:
(A) repulsive small Brazilian exercise ship
(B) Brazilian repulsive exercise small ship
A: Let’s think step by step.
When there is more than one adjective before a noun, the adjectives need to respect
the following order before a noun: "[1. opinion] [2. size] [3. age] [4. shape] [5. color]
[6. origin] [7. material] [8. purpose] noun".
Option (A): "repulsive small Brazilian exercise ship". (1) "repulsive" falls into the
opinion category. (2) "small" falls into the size category. (3) "Brazilian" falls into
the origin category. (4) "exercise" falls into the purpose category. Option (A) has
the following adjective order: [1. opinion] [2. size] [6. origin] [8. purpose] (or, in
numeric terms, 1 2 6 8). Because 1 < 2 < 6 < 8 is correct, (A) has the correct ordering.
Option (B): "Brazilian repulsive exercise small ship". Option (B) has the following
adjective order: [6. origin] [1. opinion] [8. purpose] [2. size] (or, in numeric terms, 6
1 8 2). Because 6 < 1 < 8 < 2 is not correct, (B) does not have the correct ordering. So
the answer is (A).
...

Output
Prompt

Identify the sentence with the correct order of adjectives: opinion, size, age, shape,
color, origin, material, purpose.

Table 25: Few-shot to Zero-shot

29606



Task Hyperbaton

Input
Prompt

Order adjectives correctly in English sentences.

Q: Which sentence has the correct adjective order:
Options:
(A) rubber terrible ship
(B) terrible rubber ship
A: Let’s think step by step.
When there is more than one adjective before a noun, the adjectives need to respect
the following order before a noun: "[1. opinion] [2. size] [3. age] [4. shape] [5. color]
[6. origin] [7. material] [8. purpose] noun".
Option (A): "rubber terrible ship". (1) rubber" falls into the material category. (2)
"terrible" falls into the opinion category. Option (A) has the following adjective order:
[7. material] [1. opinion] (or, in numeric terms, 7 1). Because 7 < 1 is not correct, (A)
does not have the correct ordering.
Option (B): "terrible rubber ship". Option (B) has the following adjective order: [1.
opinion] [7. material] (or, in numeric terms, 1 7). Because 1 < 7 is correct, (B) has the
correct ordering. So the answer is (B).

Q: Which sentence has the correct adjective order:
Options:
(A) repulsive small Brazilian exercise ship
(B) Brazilian repulsive exercise small ship
A: Let’s think step by step.
When there is more than one adjective before a noun, the adjectives need to respect
the following order before a noun: "[1. opinion] [2. size] [3. age] [4. shape] [5. color]
[6. origin] [7. material] [8. purpose] noun".
Option (A): "repulsive small Brazilian exercise ship". (1) "repulsive" falls into the
opinion category. (2) "small" falls into the size category. (3) "Brazilian" falls into
the origin category. (4) "exercise" falls into the purpose category. Option (A) has
the following adjective order: [1. opinion] [2. size] [6. origin] [8. purpose] (or, in
numeric terms, 1 2 6 8). Because 1 < 2 < 6 < 8 is correct, (A) has the correct ordering.
Option (B): "Brazilian repulsive exercise small ship". Option (B) has the following
adjective order: [6. origin] [1. opinion] [8. purpose] [2. size] (or, in numeric terms, 6
1 8 2). Because 6 < 1 < 8 < 2 is not correct, (B) does not have the correct ordering. So
the answer is (A).
...

Continuation of Table 26

29607



Continuation of Table 26

Output
Prompt

Adjective Order Practice:

In English grammar, the order of adjectives is important to convey accurate
and effective descriptions. Here are two examples of sentences with adjectives.
Determine which sentence has the correct adjective order.

Example 1:
a) The big, red, round ball bounced down the street.
b) The round, red, big ball bounced down the street.

Example 2:
a) The delicious, homemade, chocolate cake was devoured by the guests.
b) The chocolate, homemade, delicious cake was devoured by the guests.

Choose the letter of the sentence with the correct adjective order as your an-
swer.

Note: Adjective order generally follows the pattern of opinion, size, age,
shape, color, origin, material, and purpose. If the adjectives do not fit into this pattern,
the order is determined by the speaker’s preference.

If you choose the incorrect sentence, we will explain why it is wrong to help
you learn from your mistakes. Good luck!

Table 26: Few-shot to Few-shot

G.4 Synthetic Few-shot Examples.
We observe that in certain cases SEE would generate novel synthetic few-shot examples instead of selecting
from existing ones. To verify their veracity, we conduct a manual evaluation of the accuracy of the few-
shot examples generated by SEE on a total of 24 instruction deduction tasks. We find that 90 out of the
92 examples evaluated (97.8%) are accurate. Among them, 24 out of the 92 (24.09%) are aligned with
samples present in the training set. There are two cases where the synthetic example is inaccurate: the
sentiment of "A non-mystery mystery" is identified as "neutral" where the ground truth is "negative",
and "Little more than a well-mounted history lesson" is identified as "neutral" where the ground truth
is "negative". In both cases, we empirically validate that such a level of inaccuracy does not influence
prompt performance (score remained 94% regardless of the labels).

29608



H Generated Prompts

In this section, we list the prompts generated by SEE with the best performance for each task. All prompts
are generated by gpt-3.5. We observe a mix of few-shot prompts and zero-shot prompts for different tasks.
This indicates both LLM’s ability to perform in-context prompt optimization and SEE’s ability to traverse
the whole problem space to find optimal solutions.

We also notice that the few-shot examples in the final prompts are largely generated by LLM instead of
copied from example instruction or training sets. Thus it serves as further proof of LLM’s capability of
in-context prompt optimization and SEE’s credibility in this problem space.

Causal
Judgment

Provide reactions to intentional actions in diverse scenarios, while also con-
sidering causation and its complexities. To assist with determining causation,
provide specific guidelines and examples for each scenario. To avoid any
confusion or misinterpretation, precise language and definitions will be used
throughout the prompt. Additionally, feedback from experts and individuals
with relevant experience in the field of causation will be incorporated to ensure
accuracy and relevance. To challenge users’ critical thinking skills, include
diverse and complex scenarios that require creative problem-solving and a
deeper understanding of causation in various areas of life.

Dyke Lan-
guages

Correctly close all brackets, including nested brackets, in the provided sequence
in the proper order from innermost to outermost. Mistakes such as forgetting to
close a bracket or closing brackets in the wrong order can result in an error. If
an error is made, a clear and concise message will indicate which bracket is not
properly closed and suggest how to correct it. A visual representation of the
correct sequence of closed brackets is provided below:
[ ( [ ( ) ] ) ]

Examples of valid and invalid inputs:

Valid input: [ ( ) ]
Valid input: [ ( [ ] ) ]
Invalid input: [ ( [ ) ]
Warning message: The bracket at position 8 is not properly closed. Please close
the bracket to ensure proper syntax.
Suggested correction: [ ( [ ] ) ]

Invalid input: [ ( [ ] ) ]
Warning message: The bracket at position 8 is not properly closed. Please close
the bracket to ensure proper syntax.
Suggested correction: [ ( [ ] ) ]

Formal Fal-
lacies

Read the given argument carefully and determine whether it is deductively valid
or invalid based on the explicitly stated premises. Provide a justification for
your answer.

Dis-
ambiguation
QA

For each sentence with a gender-neutral pronoun, determine the antecedent or
state if it is ambiguous. Use (A) for the first option, (B) for the second option,
or (C) for ambiguous. Additionally, provide an explanation of the antecedent
(the person or thing the pronoun refers to) for each sentence.

Continuation of Table 27

29609



Continuation of Table 27

Hyperbaton

Test your knowledge of adjective order in English sentences with interactive
exercises and quizzes. Learn the rule of opinion-size-age-shape-color-origin-
material-purpose noun and apply it to different types of nouns such as animals,
objects, and people. Practice constructing your own sentences and receive
feedback on incorrect answers to improve your skills. By the end of this exercise,
you’ll be able to confidently order adjectives and communicate accurately in
English.

Continuation of Table 27

29610



Continuation of Table 27

Logical De-
duction Five

On a plate, there are three fruits: a red apple, a yellow banana, and a green pear.
The banana is positioned to the immediate left of the apple, meaning there are
no other fruits between them. The pear is the rightmost fruit, meaning it comes
last in the order.

Which of the following statements is true?

(A) The red apple is the leftmost fruit.
(B) The yellow banana is the leftmost fruit.
(C) The green pear is the leftmost fruit.

Explanation:
To solve this prompt, pay attention to the precise language used to describe the
relationships between the fruits and their positions in the order. The banana is
to the immediate left of the apple, meaning it is directly adjacent to it and there
are no other fruits between them. The pear is the rightmost fruit, meaning it
comes last in the order.
Therefore, the correct answer is (B) The yellow banana is the leftmost fruit.

To further practice this concept, here are some additional examples:
1. On a plate, there are three different colored balls: a blue ball, a red ball, and
a green ball. The red ball is directly to the left of the blue ball, meaning there
are no other balls between them. The green ball is the rightmost. Which of the
following statements is true?
(A) The blue ball is the leftmost ball.
(B) The red ball is the leftmost ball.
(C) The green ball is the leftmost ball.

2. In a row of three houses, there is a blue house, a yellow house, and
a green house. The blue house is in the middle, and the yellow house is directly
to the left of the green house, meaning there are no other houses between them.
Which of the following statements is true? (A) The blue house is the leftmost
house.
(B) The yellow house is the leftmost house.
(C) The green house is the leftmost house.

Feedback:
If you selected the wrong answer, here’s why:
(A) The red apple is not the leftmost fruit. The yellow banana is directly to its
left.
(C) The green pear is not the leftmost fruit. The banana and the apple come
before it in the order.

To avoid confusion, use precise language to describe the relationships
between objects and their positions in the order. Avoid using vague terms like
"newer" or "older" without specifying their exact relationship to other objects
in the order. Provide more context or details to help clarify any ambiguities in
the prompt. Make sure the order of the objects is clearly defined and consistent
throughout the prompt.

Continuation of Table 27

29611



Continuation of Table 27

Reasoning
Colored
Objects

Identify the color of objects arranged in a row on a surface.
Q: On the desk, there is a black stapler, a green highlighter, a yellow ruler, a
blue pen, and a purple marker. What color is the pen?
Options:
(A) red
(B) orange
(C) yellow
(D) green
(E) blue
(F) brown
(G) magenta
(H) fuchsia
(I) mauve
(J) teal
(K) turquoise
(L) burgundy
(M) silver
(N) gold
(O) black
(P) grey
(Q) purple
(R) pink
A: Let’s think step by step.
According to this question, the objects are arranged in a row, from left to right,
as follows: (1) a black stapler, (2) a green highlighter, (3) a yellow ruler, (4) a
blue pen, and (5) a purple marker.
The pen is the fourth item on the list, namely (4). The color of the pen is blue.
So the answer is (E).

Continuation of Table 27

29612



Continuation of Table 27

Salient
Transla-
tion Error
Detection

Read the following translations from German to English and identify the type
of error present in each one. The error can be one of the following types:
Named Entities, Numerical Values, Modifiers or Adjectives, Negation or
Antonyms, Facts, or Dropped Content. Write the corresponding letter for each
error type in the options provided.

For example:
Source: Der Hund ist braun.
Translation: The cat is brown.
The translation contains an error pertaining to:
Options:
(A) Modifiers or Adjectives
(B) Numerical Values
(C) Negation or Antonyms
(D) Named Entities
(E) Dropped Content
(F) Facts

Output: (D)

Table 27: BBH Prompts

29613



Ethos Does the provided text contain hate speech? Return a boolean value of True or False.

Liar

Analyze the context and other information provided to determine the truthfulness of
the statement. To do so, consider the following guidelines:

1. Identify key sources of information, such as reputable news outlets or
government reports, and consider the credibility of the sources. Look for corroborat-
ing evidence and consider any potential biases or conflicts of interest.

2. Conduct additional research or seek out expert opinions when necessary
to determine the truthfulness of a statement. Use resources or links to relevant
information provided, and consider consulting with subject matter experts or
fact-checking organizations.

3. Note that the determination of truthfulness may not always be possible
based on the information provided, and that additional research or analysis may be
required. Use your best judgment and be transparent about any uncertainties or
limitations in your analysis.

4. Consider specific examples or scenarios to help you apply the prompt in
different contexts. For instance, you might analyze a political statement, a scientific
claim, or a news article. Be aware of common pitfalls or errors, such as relying on
unreliable sources or failing to consider alternative explanations.

Output Format: Assign 0 for true and 1 for false. Note that this determina-
tion is based on the information provided and may not be definitive.

Sarcasm

Determine if the input contains any language that could be considered derogatory or
discriminatory towards a particular group based on their race, ethnicity, gender, sexual
orientation, religion, or any other protected characteristic. If such language is found,
output True. If not, output False. The prompt should be trained on a diverse dataset to
improve its accuracy and reduce errors.

Table 28: APO Prompts

29614



Antonyms

"Provide a list of adjectival antonyms for each of these words, keeping in mind the
given context:"

## Input ##: hot (in the context of weather)
## Output ##: [’cold’, ’cool’, ’chilly’]

## Input ##: happy (in the context of emotions)
## Output ##: [’sad’, ’unhappy’, ’depressed’, ’miserable’]

## Input ##: big (in the context of size)
## Output ##: [’small’, ’tiny’, ’little’, ’miniature’]

## Input ##: fast (in the context of speed)
## Output ##: [’slow’, ’sluggish’, ’leisurely’, ’gradual’]

## Input ##: old (in the context of age)
## Output ##: [’young’, ’new’, ’fresh’, ’modern’]

Cause
Effect

Determine the sentence that is the cause in each pair. Remember to thoroughly
comprehend the meaning of each sentence before selecting the cause. Additionally,
verify your output to ensure that you only include the sentence that is the cause. To
aid in identifying cause and effect relationships, consider using keywords or phrases
that indicate causality, analyzing the context of each sentence, and practicing with
feedback and interactive activities.

Common
Concept

For each input, come up with a category or characteristic that they have in common
and write it as the output. Use your knowledge and experience to make educated
guesses and be creative in your thinking. Also, try to keep the output concise and
clear.

Diff Subtract the second number from the first number and give me the result. Make sure
to double check your calculations and write the answer as a string in a list format.

Continued next page for Table 29

29615



Continuation of Table 29

First Word
Letter

Write a program that takes in a word and returns a list containing the first letter of the
word as a string. The program will be used to label items in a game.

Make sure to handle cases where the input word is empty or only contains
whitespace. You can use the string method ‘strip()‘ to remove any leading or trailing
whitespace. If the input is empty or contains only whitespace, return an empty list.

To ensure that your program works correctly, test it with the following exam-
ples:

Example 1:
Input: "apple"
Output: ["a"]

Example 2:
Input: " banana"
Output: ["b"]

Example 3:
Input: ""
Output: []

Example 4:
Input: " "
Output: []

Informal
Formal

Reword the following sentences using more formal language, but also provide
alternative rewordings that are more appropriate for different contexts:

1. "Regrettably, I am unable to attend the meeting tomorrow." (formal)
Alternative: "Unfortunately, I won’t be able to make it to the meeting tomorrow."
(casual)

2. "I must depart now, farewell!" (overly formal)
Alternative: "I have to go now, see you later!" (casual)

3. "I apologize, but I am unable to assist you with that matter." (formal)
Alternative: "I’m sorry, but I can’t help you with that." (casual)

4. "Thank you for the invitation, however, I am unable to attend." (formal)
Alternative: "Thanks for inviting me, but I can’t make it." (casual)

5. "In my opinion, this is the optimal choice." (formal)
Alternative: "I think this is the best option." (casual)

Continued next page for Table 29

29616



Continuation of Table 29

Large Ani-
mal

Choose one animal as the output based on its size. For example, if the input pair is
"elephant, mouse", choose "elephant" as the output. If the input pair is "giraffe, lion",
choose "giraffe" as the output. Use the following criteria to choose the output:

- If one animal is significantly larger than the other, choose the larger animal
as the output.
- If the animals are similar in size, choose the animal with the name that comes first
alphabetically as the output.

Here are some examples of correct outputs:

- "whale, dolphin" -> choose "whale" as the output
- "panda, koala" -> choose "panda" as the output
- "tiger, zebra" -> choose "tiger" as the output

Choose the output carefully to avoid confusion and errors.

Letters List

Please write a program that takes in a word as input and outputs a list of its letters
separated by spaces. The output should be a list with one element containing the
separated letters in the same order as the input word.

To ensure the program works correctly, please follow these guidelines:

1. Input validation: Check that the input is a non-empty string containing
only alphabetic characters. If the input is invalid, print an error message and exit the
program.

2. Separating the letters: Use the ‘split()‘ method to separate the letters of
the input word.

3. Expected output format: The output should be a list with one element
containing the separated letters in the same order as the input word.

Here are some examples of valid and invalid input:

Valid input: "hello"
Expected output: ["h", "e", "l", "l", "o"]

Invalid input: "hello world"
Expected output: "Error: Input must be a non-empty string containing only alphabetic
characters."

Invalid input: "123"
Expected output: "Error: Input must be a non-empty string containing only alphabetic
characters."

Continued next page for Table 29

29617



Continuation of Table 29

Taxonomy
Animal

"List all the animals from the given inputs."

## Input ##: apple, banana, orange, kiwi, grape
## Output ##: []

## Input ##: dog, cat, fish, bird, hamster
## Output ##: [’dog’, ’cat’, ’fish’, ’bird’, ’hamster’]

## Input ##: elephant, giraffe, lion, tiger, zebra
## Output ##: [’elephant’, ’giraffe’, ’lion’, ’tiger’, ’zebra’]

## Input ##: pencil, eraser, notebook, ruler, pen
## Output ##: []

## Input ##: turtle, snake, lizard, frog, salamander
## Output ##: [’turtle’, ’snake’, ’lizard’, ’frog’, ’salamander’]

Negation

For each input, negate the specified part of the statement and write it as an output.

1. Negate the part about using the gold color: "We will use gold as the pri-
mary color for our new logo." Output: "We will not use gold as the primary color for
our new logo."

2. Negate the part about Gary Kubiak participating as a player: "Gary Ku-
biak will play as a quarterback in the upcoming game." Output: "Gary Kubiak will
not play as a quarterback in the upcoming game."

Note: When negating statements with proper nouns or names, simply negate
the verb or action associated with the noun or name.

Continued next page for Table 29

29618



Continuation of Table 29

Num Verbal

Convert a given number into its English word representation, including commas for
thousands and negative sign if applicable.

## Input 1 ## : 1234
## Output 1 ##: [’one thousand two hundred and thirty-four’]

## Input 2 ## : 987654321
## Output 2 ##: [’nine hundred and eighty-seven million six hundred and fifty-four
thousand three hundred and twenty-one’]

## Input 3 ## : 0
## Output 3 ##: [’zero’]

## Input 4 ## : -42
## Output 4 ##: [’negative forty-two’]

## Input 5 ##: 999999999
## Output 5 ##: [’nine hundred and ninety-nine million nine hundred and ninety-nine
thousand nine hundred and ninety-nine’]

Active Pas-
sive

Passive Voice Practice:
In passive voice, the subject of the sentence receives the action instead of performing
it. Rewrite each sentence in passive voice.

Example: The dog chased the cat.
Passive voice: The cat was chased by the dog

1. The teacher graded the exams.
2. The company launched a new product.
3. The chef cooked a delicious meal.
4. The team won the championship.
5. The doctor prescribed medication for the patient.

Instructions:
- Rewrite each sentence in passive voice.
- Make sure the subject of the sentence receives the action instead of performing it.
- Use the examples provided to guide you.
- Check your work for accuracy and clarity.

Feedback:
- If you have any questions or need clarification, please ask.
- Practice makes perfect! Keep practicing to improve your writing skills.
- If you make any mistakes, don’t worry! Learn from them and try again

Continued next page for Table 29

29619



Continuation of Table 29

Singular
Plural

Add an "s" or the correct plural form to the end of the input word, depending on the
following rules:

1. If the word ends in "y" with a consonant before it, change the "y" to "ies"
instead of just adding an "s".
2. If the word ends in "f" or "fe", change the "f" or "fe" to "ves" instead of just adding
an "s".
3. If the word is already plural, return the input word as is instead of adding an "s".
4. If the word has an irregular plural form, return the correct plural form instead of
just adding an "s".

Examples:

- Input: cat
Output: cats

- Input: book
Output: books

- Input: car
Output: cars

- Input: tree
Output: trees

- Input: computer
Output: computers

- Input: story
Output: stories

- Input: half
Output: halves

- Input: aircraft
Output: aircraft

- Input: century
Output: centuries

Continued next page for Table 29

29620



Continuation of Table 29

Rhymes

Create a list of words that rhyme with the given word. To ensure that your rhymes are
accurate, make sure that the words have the same vowel sound and ending consonant
sound. For example, "cat" rhymes with "bat" and "hat," but not with "dog" or "mat."

To get started, here are some examples of words that rhyme with the given
word:

- Love: dove, glove, above, shove, of
- Time: rhyme, chime, climb, mime, prime

To find more rhyming words, you can use a rhyming dictionary, online re-
sources, or brainstorm with friends. Be creative and try to use a variety of different
rhyming words instead of repeating the same one multiple times.

To avoid common pitfalls, make sure to double-check your spelling and pro-
nunciation of the words. Also, avoid using words that only partially rhyme or have a
different stress pattern.

After you’ve created your list, ask for feedback on the quality of your rhymes. This
can help you to improve and refine your skills.

For an added challenge, consider generating rhyming words that fit a particu-
lar theme or context. This can help you to focus your creativity and generate more
interesting and relevant rhymes.

Second
Word Letter

For each input word with at least two letters, identify and output the second letter.
Please ensure that the input is a valid word in the specified language or dialect to
prevent errors. The prompt is case-insensitive, so it will work for both uppercase and
lowercase letters.

Examples:
- Input: "hello" Output: "e"
- Input: "apple" Output: "p"
- Input: "book" Output: "o"

Please note that the language or dialect of the input should be specified to
avoid confusion with words that have different spellings or pronunciations in different
regions.

Continued next page for Table 29

29621



Continuation of Table 29

Sentence
Similarity

Rate the similarity of two given sentences on a scale of 1 to 5, where 1 indicates a
significant difference in meaning and 5 indicates almost identical meaning. Please
consider the following factors when rating:

- The overall message and purpose of the sentences
- The structure and syntax of the sentences
- The use of key words and phrases

Provide a brief explanation for your rating, taking into account any minor
differences in wording or details that may affect the similarity rating. Additionally,
please provide context for the sentences being compared, such as the intended
audience or purpose.

For reference, here are some examples of sentences that fall into each cate-
gory:

Highly similar: "The cat sat on the mat" and "The mat was sat on by the
cat"
Moderately similar: "I enjoy playing soccer" and "Soccer is a fun sport to play"
Not similar at all: "The sky is blue" and "I am going to the beach tomorrow"

Thank you for your evaluation and explanation.

Continued next page for Table 29

29622



Continuation of Table 29

Sentiment

Please analyze the following statements and determine their overall sentiment as
either [’negative’, ’neutral’, ’positive’]. Keep in mind the context and any figurative
language used.

1. The sun is shining and the birds are singing.
Output: [’positive’]

2. I failed my exam and now I have to retake the class.
Output: [’negative’]

3. My best friend surprised me with a thoughtful gift.
Output: [’positive’]

4. The traffic on the highway was backed up for miles.
Output: [’negative’]

5. I received a promotion at work and a raise in salary.
Output: [’positive’]

6. A non-mystery mystery.
Output: [’neutral’]

7. Little more than a well-mounted history lesson.
Output: [’neutral’]

8. Too daft by half ... but supremely good natured.
Output: [’positive’]

Note: This prompt uses more sophisticated language analysis techniques to
better understand the sentiment of the input. However, providing more context for the
input is still important for accurate sentiment analysis.

Continued next page for Table 29

29623



Continuation of Table 29

Orthography
Starts With

SIdentify the first word or phrase that starts with the letter given in the input. The
identified word or phrase should not contain any punctuation or special characters,
and should be case-insensitive. If there are no words or phrases starting with the given
letter, return an empty list.

Here are the input-output pairs:

Input: She sang a beautiful song to the audience. [b]
Output: [’beautiful’]

Input: The cat chased the mouse. [c]
Output: [’cat’]

Input: It is important to always be kind to others. [i]
Output: [’important’]

Input: The dog barked loudly, frightening the neighbors. [l]
Output: [’loudly’]

Input: The book is on the shelf. [s]
Output: [’shelf’]

Input: The baby cried all night. [n]
Output: []

Input: The teacher gave a long lecture on the history of art. [l]
Output: [’lecture’]

Input: The car drove down the street, passing by many shops. [s]
Output: [’street’]

Input: To the boy’s delight, he received a new toy for his birthday. [t]
Output: [’toy’]

Note: If there are multiple words or phrases starting with the given letter,
the prompt will return the first one encountered. If the input contains multiple
sentences or clauses, the prompt will identify the first word or phrase that starts with
the given letter in the entire input text. The output will be in lowercase

Sum

"Write a program that takes two numbers as input and returns their sum as a string in a
list. Make sure to test your program with different inputs to ensure it works correctly.
Remember to convert the input numbers to integers before adding them together, and
then convert the sum back to a string before putting it in a list. Also, make sure to use
the correct syntax for creating a list with one element (i.e. use square brackets around
the string). Good luck!"

Continued next page for Table 29

29624



Continuation of Table 29

Synonym

Please provide a list of synonyms for the given words that convey a similar meaning
and are commonly used in everyday language. Be sure to double-check your spelling
and grammar before submitting.

For example, if the word is "happy," acceptable synonyms could be "joyful,"
"pleased," or "content."

Please use gender-neutral language and avoid using words with different con-
notations or meanings. If you notice any incorrect synonyms, please flag them and
provide feedback for improvement.

Words to avoid using as synonyms include those with different connotations
or meanings, such as "ecstatic" for "happy" or "depressed" for "sad."

Trans En De

Translate the following English words into German.

## Input ## : happy
## Output ##: [’glücklich’]
## Input ## : love
## Output ##: [’Liebe’]
## Input ## : cat
## Output ##: [’Katze’]
## Input ## : dog
## Output ##: [’Hund’]
## Input ## : house
## Output ##: [’Haus’]
## Input ## : tree
## Output ##: [’Baum’]
## Input ## : water
## Output ##: [’Wasser’]
## Input ## : sun ## Output ##: [’Sonne’]
## Input ## : moon
## Output ##: [’Mond’]
## Input ## : star
## Output ##: [’Stern’]

Continued next page for Table 29

29625



Continuation of Table 29

Trans En Es

Convert these English terms into their corresponding Spanish translations.

## Input ## : happy
## Output ##: [’feliz’]
## Input ## : beach
## Output ##: [’playa’]
## Input ## : computer
## Output ##: [’computadora’]
## Input ## : book
## Output ##: [’libro’]
## Input ## : music
## Output ##: [’música’]

Trans En Fr

Translate the following English words into French.

## Input ## : happy
## Output ##: [’heureux’]
## Input ## : love
## Output ##: [’amour’]
## Input ## : family
## Output ##: [’famille’]
## Input ## : friend
## Output ##: [’ami’]
## Input ## : music
## Output ##: [’musique’]
## Input ## : beach
## Output ##: [’plage’]
## Input ## : book
## Output ##: [’livre’]
## Input ## : movie
## Output ##: [’film’]
## Input ## : food
## Output ##: [’nourriture’]
## Input ## : travel
## Output ##: [’voyage’]

Continued next page for Table 29

29626



Continuation of Table 29

Word In
Context

Compare the usage of a given word in two different sentences and determine if they
have the same or different meanings based on the context of the sentences. Write
"same" or "not the same" as the output.

To avoid ambiguity and ensure clarity, please provide sufficient context for
the sentences. If the word has multiple meanings depending on the context, please
indicate all correct answers.

For example, consider the word "bank." In the sentence "I need to deposit
my paycheck at the bank," and "I sat on the bank of the river and watched the sunset,"
the word "bank" has different meanings. Therefore, the correct answer would be "not
the same."

Please note that the comparison should be based on the context of the sentences, not
just the isolated word

Table 29: APE Prompts

29627


