
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 26332–26351
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Mixtures of In-Context Learners

Giwon Hong1 Emile van Krieken1 Edoardo M. Ponti1

Nikolay Malkin1 Pasquale Minervini1,2
1University of Edinburgh, United Kingdom 2Miniml.AI, United Kingdom

{giwon.hong, p.minervini}@ed.ac.uk

Abstract

In-context learning (ICL) adapts LLMs by pro-
viding demonstrations without fine-tuning the
model parameters; however, it is very sensi-
tive to the choice of in-context demonstrations,
and processing many demonstrations can be
computationally demanding. We propose Mix-
tures of In-Context Learners (MOICL), a novel
approach that uses subsets of demonstrations
to train a set of experts via ICL and learns a
weighting function to merge their output distri-
butions via gradient-based optimisation. In our
experiments, we show performance improve-
ments on 5 out of 7 classification datasets com-
pared to a set of strong baselines (e.g., up to
+13% compared to ICL and LENS). Moreover,
we improve the Pareto frontier of ICL by re-
ducing the inference time needed to achieve
the same performance with fewer demonstra-
tions. Finally, MOICL is more robust to out-of-
domain (up to +11%), imbalanced (up to +49%)
and perturbed demonstrations (up to +38%).1

1 Introduction

In-context learning (ICL) refers to the ability of
a large language model (LLM) to learn to per-
form tasks by interpreting and adapting to exam-
ples (demonstrations) provided directly in the input
context without requiring updates to its parame-
ters (Brown et al., 2020; Wei et al., 2022). However,
in ICL, the number of demonstrations may be lim-
ited by the memory requirements of the model (Wei
et al., 2022), and its effectiveness can vary signifi-
cantly depending on which demonstrations are se-
lected (Lu et al., 2022; Chen et al., 2023b) and how
they are verbalised (Voronov et al., 2024). Current
methods for selecting demonstrations are largely
heuristic and do not adequately quantify the influ-
ence of individual examples on the generalisation
properties of the model (Lu et al., 2024). Demon-

1Our code is available at https://github.com/
HongGiwon/Mixture-of-In-context-Learners

 D1

 D2

 …

 Dk

 log p (⋅ ∣ D1, x)

 log p (⋅ ∣ D2, x)

 log p (⋅ ∣ Dk, x)

∑
i

wi log p (⋅ ∣ Di, x)

Weighting Function w

MoICLPartitions

Demonstrations

D
{(x1, y1), …, (xn, yn)}

ExpertsDemonstrations

Figure 1: A Mixture of In-Context Learners (MOICL) first
partitions a set of demonstrations D in k partitions to create
k experts trained via in-context learning, and then combines
their next-token predictions via a trainable weighting function.

strations are often selected randomly or based on
simple heuristics (Xu et al., 2024), which can lead
to suboptimal results.

To address these issues, we propose Mixtures
of In-Context Learners (MOICL), a method for
dynamically learning how different sets of exam-
ples contribute to the prediction task. MOICL
prompts an LLM with multiple subsets of exam-
ples and combines their next-token distributions
via a weighting function that can be trained via
gradient-based optimisation methods; Fig. 1 shows
a high-level outline of the method.

We analyse the generalisation properties of
MOICL in the following settings: (1) presence of
out-of-domain (OOD) demonstrations, where some
in-context demonstrations are sourced from a differ-
ent dataset; (2) label imbalance, where the training
label distribution is significantly skewed towards
a subset of labels; and (3) perturbed demonstra-
tions, where the labels of some demonstrations are
perturbed to be completely incorrect. In all cases,
we find that MOICL produces significantly more
accurate results than ICL.

Furthermore, MOICL does not require access to
the internal parameters of the LLM, making it ap-
plicable to black-box LLMs, and it significantly re-
duces the computational complexity issues arising
from long contexts since it allows the distribution
of the training samples among multiple experts. We
also show that MOICL can be made more efficient

26332

https://github.com/HongGiwon/Mixture-of-In-context-Learners
https://github.com/HongGiwon/Mixture-of-In-context-Learners

by sparsifying the mixing weights.
We summarise our contributions as follows:

• We introduce Mixtures of In-Context Learners
(MOICL), a method for combining the predic-
tions of multiple models trained via ICL and iden-
tifying the optimal mixture weights via gradient-
based optimisation. (§2)

• We show that MOICL is resilient to perturbed
demonstrations and label imbalance. (§3)

• We demonstrate that MOICL is competitive with
standard ICL while being significantly more
data-, memory-, and compute-efficient. (§4)

2 Mixtures of In-Context Learners

2.1 In-Context Learning

In ICL, given a LLM with next-token distri-
bution p(·), a set of n demonstrations D =
{(x1, y1), . . . , (xn, yn)} and an input instance x,
the model generates a response y when prompted
with the concatenation of the examples in D and x:

y ∼ p(y | x1, y1, . . . , xn, yn, x)
= p(y | D,x),

(1)

we refer to the model in Eq. (1) as concat-based
ICL (Min et al., 2022a). With concat-based ICL,
given a demonstration set D, the model can gener-
ate a response y for the input text x without need-
ing task-specific fine-tuning or access to the model
parameters. However, concat-based ICL is still
problematic; recent works show that it is very sen-
sitive to the choice of the prompts and in-context
demonstrations (Voronov et al., 2024), the number
of demonstrations is bounded by the maximum con-
text size (Brown et al., 2020), and, in Transformer-
based LLMs, the cost of self-attention operations
grows quadratically with the number of in-context
samples (Liu et al., 2022).

2.2 Mixtures of In-Context Learners

We propose Mixtures of In-Context Learners
(MOICL), a method for addressing the limitations
of concat-based ICL (§2.1). We first partition the
set of demonstrations D into k disjoint subsets
D1, . . . , Dk, i.e. D = D1 ⊔ . . .⊔Dk.2 Then, each
demonstration subset Di ⊆ D is passed to the
LLM along with the input text x, and we denote
the LLM predictors with the different demonstra-
tions in their context as experts. The next-token

2We compare different partitioning strategies in Ap-
pendix B.2

distributions of the experts are combined using a
vector of mixing weights w ∈ Rk:

p (y | D,x) ∝ exp

[
k∑

i=1

wi log p (y | Di, x)

]
(2)

where each wi ∈ R represents the contribution
of the expert denoted by p (y | Di, x) to the fi-
nal next-token distribution p (y | D,x), and each
p (y | Di, x) is a concat-based ICL expert, as in
Eq. (1), with its own set of demonstrations. 3

For computing the weights w ∈ Rk of the k
experts in MOICL, we use a vector of trainable
parameters w ∈ Rk, where wi denotes the weight
associated to the i-th expert. We refer to this pa-
rameterisation of the weighting function as scalar
weights (scalar).

Adaptive Mixture Weights In addition to a vec-
tor of parameters w ∈ Rk, for computing the mix-
ture weights in MOICL, we also experiment with
using a hyper-network (Ha et al., 2017) hϕ(·) with
parameters ϕ to generate the weights of each ex-
pert wi, given all in-context demonstration subsets
concatenated, i.e. w1, . . . , wk = hϕ(D1, . . . , Dk).
We learn the parameters of the weighting function
w by maximising the conditional log-likelihood of
a training set DT . One advantage of using a hyper-
network hϕ for dynamically computing the weights
w is that the model can provide weights for sets of
demonstrations Di not seen during training. We
refer to this using of a hyper-network to generate
weights as adaptive weights (adaptive)

Sparsifying the Mixture Weights One limita-
tion of MOICL is that, for each token, it requires
invoking the base LLM k times, one for each ex-
pert with a different set of in-context examples.
To solve this issue, we propose to sparsify the
weighting coefficients w ∈ Rk so that only k′ < k
of them have non-zero values. To achieve this,
we define the output of the weighting function as
w = w′ ⊙ top-k′(m), where w′ ∈ Rk are scalar
weights for the k experts, m ∈ Rk is a set of mask-
ing coefficients, top-k′ : Rk 7→ {0, 1}k is a func-
tion that produces a mask that selects the highest
k′ elements of a k-dimensional input vector, and
⊙ is the element-wise product. To back-propagate
through the rationale extraction process, we use
Implicit Maximum Likelihood Estimation (IMLE;

3The formulation in Eq. (2) uses a product of experts; it
is also possible to use a regular mixture of experts — we
experimentally compare them in Fig. 2 and Appendix B.3.

26333

Niepert et al., 2021; Minervini et al., 2023), a
gradient estimation method for back-propagating
through continuous-discrete functions like top-k′

into neural architectures.

3 Experiments

Datasets To study how well MOICL performs
on classification tasks, we use the TweetEval (Bar-
bieri et al., 2020) offensive/hate, SST2 (Socher
et al., 2013), RTE (Bentivogli et al., 2009),
FEVER (Thorne et al., 2018), PAWS (Zhang et al.,
2019), and QNLI (Wang et al., 2018) datasets. We
report the performance on the development set for
SST2, RTE, FEVER, and QNLI. For generation
tasks, we use Natural Questions (NQ; Kwiatkowski
et al., 2019) with an open-book setting (Lee et al.,
2019), GSM8K (Cobbe et al., 2021) employing
Chain-of-Thought (CoT) reasoning. For the pref-
erence fine-tuning (Appendix B.7), we use HH-
RLHF (Bai et al., 2022).

Models We primarily used Llama-3-8B and
its instruction-tuned model, Llama-3-8B-Instruct
(AI@Meta, 2024) as our base LLMs. We
use Llama-3-8B-Instruct for classification tasks,
GSM8K, and HH-RLHF, while Llama-3-8B is
used for NQ. In §3.4 (across multiple models), we
used Llama-3.2-1B, Llama-3.2-1B-Instruct, and
Llama-3.2-3B-Instruct. We use Llama-2-7b-chat,
13b-chat, and 70b-chat (Touvron et al., 2023)
for analysing the influence of model scale (Ap-
pendix B.1). For longer context models in Ap-
pendix B.8, we use Llama-3.1-8B and Llama-
3.1-8B-Instruct (Dubey et al., 2024). For hyper-
networks, we used the T5 models (T5-efficient-
tiny/mini, t5-small, t5-base; Raffel et al., 2020)

Baselines We compare MOICL with the follow-
ing baselines. Concat-based ICL refers to the
standard ICL introduced in §2.1 where all demon-
strations are concatenated into a single sequence
and passed as input to the LLM along with the in-
put text. Similarity-based Search selects demon-
strations from the demonstration pool according to
their BM-25 similarity to the input text, concate-
nates them, and applies them in the same manner
as Concat-based ICL. Random Search samples
random subsets from the demonstration pool, con-
catenates them and utilizes them as in Concat-based
ICL. Specifically, we sample k random subsets and
select the one that performs best on the training set.
Here, k is the maximum number of subsets used in

MOICL, and the size of each subset is a random
number between 1 and the number of demonstra-
tions n. After finding the best subset, we evaluate it
on the test set. Inspired by Wang et al. (2022), we
also implement Plurality Voting baseline, which
aggregates outputs through plurality voting over
multiple inferences with different demonstrations.
Ensemble-based ICL (Min et al., 2022a), Le et al.
(2022), LARA (Huang et al., 2025), and LENS (Li
and Qiu, 2023) were adjusted in terms of tasks
and models to fit our experimental setup. We also
report the results of fine-tuning the target model us-
ing LoRA (Hu et al., 2022), which requires access
to the model weights. Finally, we study MOICL
Uniform (uniform), an ablation that weights all
experts equally, i.e. ∀i : wi = 1/k. More imple-
mentation details of the baselines can be found in
Appendix A.3.

Evaluation Metrics For classification tasks, we
use accuracy as the evaluation metric. We
use EM (Exact Match) for NQ-open and accu-
racy for GSM8K. For preference fine-tuning (Ap-
pendix B.7), we measure accuracy using the log
probabilities of chosen and rejected responses.

More detailed settings, including hyperparame-
ters (Appendix A.2) and implementation details
with the training process (Appendix A.3), are
provided in Appendix A. Furthermore, in Ap-
pendix B.2, we show that our method is not sig-
nificantly affected by the choice of partitioning
methods. Therefore, we applied static partitioning
in all experiments.

Research Questions In our experiments, we
aim to answer the following questions: (1) Does
MOICL demonstrate general performance im-
provements over concat-based ICL and other base-
lines? (§3.1 and §3.2) (2) Does enforcing the
mixture-weights to be non-negative improve the
downstream accuracy of MOICL? (§3.3) (3) Can
MOICL be extended across multiple language mod-
els? (§3.4) (4) Is MoICL resilient to problem set-
tings involving label imbalance and perturbation?
(§3.5 to §3.7) (5) Can we select demonstrations (ex-
perts) based on the tuned weights? (§3.8) (6) Can
MOICL handle demonstrations that were not seen
during fine-tuning? (§3.9) (7) Is MOICL more data,
time, and memory-efficient compared to traditional
concat-based ICL? (§4)

26334

Method (n = 30) ↓ Dataset → Offensive Hate SST2 RTE FEVER PAWS QNLI

Concat-based ICL 76.44±2.48 53.54±4.29 95.46±0.14 86.43±1.26 80.63±0.49 78.12±0.77 89.08±0.44

Similarity-based Search 76.58±0.12 57.02±0.02 94.27±0.16 82.24±0.48 81.62±0.11 77.33±0.10 88.60±0.10

Random Search 77.88±1.14 58.09±1.93 95.76±0.18 86.57±1.43 82.13±0.10 78.88±0.57 89.99±0.26

Plurality Voting 73.21±0.60 58.51±0.78 94.06±0.20 75.38±2.18 79.42±0.42 64.97±1.02 88.98±0.17

Ensemble-based ICL (Min et al., 2022a) 73.35±0.44 53.68±4.27 95.48±0.12 86.43±1.34 80.63±0.46 65.27±0.48 88.57±0.21

Le et al. (2022) 73.14±0.47 58.63±0.62 94.38±0.19 76.32±1.89 79.40±0.43 65.29±0.50 88.54±0.23

LARA (Huang et al., 2025) 74.28±0.44 49.72±2.06 94.01±0.51 79.78±1.46 78.84±1.62 73.04±0.62 87.36±0.94

LENS (Li and Qiu, 2023) 78.70±0.67 53.20±3.11 93.81±0.16 84.98±0.74 80.07±0.29 75.60±0.72 89.04±0.40

PEFT (LoRA, Hu et al., 2022) 79.79±4.07 53.76±4.98 85.89±6.32 88.88±2.78 59.78±0.62 54.82±3.08 57.24±4.77

Mixture of ICL (uniform)
k = 5 73.77±1.60 59.29±1.23 95.39±0.30 83.10±1.28 80.12±0.64 75.37±0.53 89.65±0.22

k = 10 74.00±0.87 61.70±1.61 94.91±0.19 79.93±0.81 77.47±0.89 73.49±0.46 89.65±0.14

k = 30 73.37±0.34 59.12±0.47 94.17±0.21 77.26±1.02 79.46±0.36 65.29±0.51 88.66±0.25

Mixture of ICL (scalar)
k = 5 78.35±1.49 66.03±3.31 95.46±0.35 84.12±1.07 81.43±0.90 77.56±0.53 89.99±0.44

k = 10 79.42±1.48 66.52±2.62 95.32±0.27 83.32±1.60 82.04±0.98 79.42±0.79 90.44±0.27

k = 30 81.33±0.69 63.45±1.69 94.79±0.34 79.93±0.93 82.66±0.38 79.50±0.33 90.11±0.20

Table 1: Comparison between baseline methods and the proposed Mixture of In-Context Learners across classification tasks
using Llama-3-8B-Instruct. n and k refer to the number of demonstrations and the number of subsets. Bold text signifies the
highest accuracy for each task. For baseline methods, k is set to 30 when applicable.

3.1 MOICL in Classification Tasks

To determine the effectiveness of MOICL across
various datasets, we compare it with baseline meth-
ods in Table 1. In this experiment, we set the
total number of demonstrations (n) as 30 and the
number of subsets (k) as 5, 10, and 30. MOICL
outperformed the Baseline ICL on the Offensive,
Hate, FEVER, PAWS, and QNLI datasets. The
exceptions are SST2 and RTE, where MOICL per-
forms similarly to concat-based ICL in SST2 and
shows lower performance in RTE. The exception
in RTE may be attributed to the inherent character-
istics of the dataset; as noted in prior works (Dodge
et al., 2020; Mosbach et al., 2021; Du and Nguyen,
2023), RTE is known to be particularly unstable,
which may be further exacerbated in the context
of initial demonstration selection. Surprisingly,
MOICL scalar achieved the highest performance
with k=10 (e.g. in Hate MOICL achieves 66.52,
which is about 10 points increase compared to
the concat-based ICl) or k=30 (e.g. in Offensive
MOICL achieves 81.33), rather than k=5, in all
tasks except for SST2 and RTE. Considering that
a larger k reduces the context length (which will
be further discussed in §4), MOICL manages to
capture both efficiency and effectiveness.

3.2 Impact of Partitioning Size

In Fig. 2, we present the performance changes on
the test set of TweetEval offensive when varying
the number of subsets, k. Since the total number

(1, 30) (2, 15) (3, 10) (5, 6) (6, 5) (10, 3) (15, 2) (30, 1)

(Number of Demonstration per Subset , Number of Subsets)

72

74

76

78

80

82

A
cc

ur
ac

y

Uniform (logit)
Uniform (Prob.)
Scalar (logit)
Scalar (Prob.)

Figure 2: Test accuracy according to the number of demonstra-
tions per subset on TweetEval Offensive dataset. The shaded
area represents one standard deviation. We also compare mix-
ing logits to mixing probabilities; see Appendix B.3.

of demonstrations is fixed at 30, each subset con-
tains 30/k demonstrations, which corresponds to
the x-axis of the Figure. Note that when the num-
ber of demonstrations per subset is 30 (k = 1),
it corresponds to the standard Concat-based ICL.
We observe that Uniform Weights and scalar ex-
hibit distinctly different patterns. With Uniform
Weights, as the number of demonstrations per sub-
set decreases, performance tends to decline, which
is an expected outcome for ICL. However, with
scalar, performance surprisingly increases. This
seems to be because the decrease in the number of
demonstrations per subset is outweighed by the in-
creased flexibility afforded by having more subsets,
each assigned tuned weights by scalar.

26335

MOICL Method (n = k = 30) Accuracy

uniform 76.44±2.48

scalar (w ∈ R) 81.33±0.69

scalar (w ∈ R+) (ReLU) 76.05±0.55

scalar (w ∈ R+) (Softplus) 73.70±0.60

scalar (w ∈ R+) (Positive Experts) 74.47±0.68

Table 2: How important is it to be able to detect anti-experts?
Results on the TweetEval Offensive Test set using Llama-
3-8B-Instruct. “scalar w ∈ R+” constraints the weights
w to non-negative values. n and k refer to the number of
demonstrations and the number of subsets.

3.3 Impact of Non-Negative Mixture Weights

In Mixtures of Experts, an anti-expert is a model
that performs poorly on some inputs. Inspired by
Liu et al. (2024), in MOICL, we assume that each
expert could also serve as an anti-expert by allow-
ing the expert weights to be negative; if the weight
wi ∈ R is negative, this indicates that the corre-
sponding expert is actively being used as an anti-
expert in generating the response. To assess the
utility of anti-experts in MOICL, we conducted
an ablation study in which expert weights were
constrained to be non-negative. Specifically, we
applied a ReLU activation function (Agarap, 2018)
and a Softplus function (to constrain weights in a
more gradient-friendly manner) during training to
ensure that all weights remained non-negative, and
the same constraint was enforced at inference time.
We also implement Positive Experts method that
uses weights learned from the standard scalar set-
ting but ignores any expert with a negative weight
during prediction.

As shown in Table 2, this restriction signifi-
cantly degraded performance (81.33 → 76.05 with
ReLU), suggesting that anti-experts play a criti-
cal role in improving prediction quality. Among
the non-negative methods, using ReLU led to bet-
ter performance than Softplus, indicating that en-
forcing a hard zero cutoff is more effective than
a smooth constraint. Furthermore, the Positive
Experts strategy also resulted in a notable perfor-
mance drop. These findings collectively highlight
the importance of allowing the model to leverage
both positively and negatively contributing experts.
By doing so, MOICL can not only promote useful
subsets but also actively suppress useless or mis-
leading ones, ultimately leading to more robust and
accurate predictions.

Method (n = 6) GSM8K (Acc.)

Llama-3.2-3B 24.76±3.12

Llama-3.2-1B-Instruct 26.47±4.27

Llama-3.2-1B 6.34±0.91

Multiple models

Proxy-Tuning (Liu et al., 2024) 33.63±3.99

MOICL (uniform) 24.66±1.12

MOICL (scalar) 28.93±1.62

MOICL (adaptive) 35.65±1.45

Table 3: Comparison of Concat-based ICL, Proxy-Tuning, and
MOICL with multiple models (§3.4) on the GSM8K dataset
using Llama-3.2-1B, Llama-3.2-1B-Instruct, and Llama-3.2-
3B-Instruct. k represents the number of demonstrations subset,
where the total number of demonstrations is n.

Method (n = k = 30) p = 0.0 p = 0.5 p = 0.7

Concat-based ICL 76.44±2.48 70.67±5.06 68.49±4.34

Mixture of ICL
uniform 73.37±0.34 72.07±0.38 70.79±0.56

scalar 81.33±0.69 80.95±0.65 80.19±0.37

Table 4: Analysis of out-of-domain (OOD) demonstrations
on TweetEval offensive test set using Llama-3-8B-Instruct.
Here, p represents the proportion of OOD demonstrations
sampled from the SST2 dataset. n and k refer to the number
of demonstrations and subsets.

3.4 MOICL with Multiple Models

For efficiency reasons, the experts in MOICL
(§2.2) use the same base model; however, this is not
a strict requirement, and experts can also use differ-
ent base models.4 To analyse the impact of using
MOICL with several models, we draw inspiration
by Proxy-Tuning (Liu et al., 2024) and consider a
MOICL composed of three models: two smaller
models (Llama-3.2-1B and Llama-3.2-1B-Instruct,
respectively), and a larger base model (Llama-3.2-
3B) and evaluate it on GSM8K. Among the base-
lines, we also consider the recently proposed Proxy-
Tuning (Liu et al., 2024), which merges the next-
token distribution of multiple models.

Results are outlined in Table 3. MOICL with
the three models led to an improvement of approx-
imately 9.18% from concat-based ICL and 1.3%
from Proxy-Tuning. Additionally, an examination
of the learned weights for each model revealed val-
ues of [0.52±0.02, -0.21±0.03, 0.69±0.02] for the large
base model, base model, and instruction-tuned
model, respectively—aligning with the insights and
findings from Proxy-tuning. This demonstrates that
MOICL is extensible to multiple models and serves
as a generalization of Proxy-Tuning.

4When vocabularies do not match, techniques like Twist
Decoding (Kasai et al., 2022) can be used.

26336

0 50 100 150
Sorted Index (Ascending Order)

0.10

0.05

0.00

0.05

0.10
W

ei
gh

t
ID Demonstration
OOD Demonstration

(a) 50% OOD

0 50 100 150
Sorted Index (Ascending Order)

0.05

0.00

0.05

0.10

W
ei

gh
t

ID Demonstration
OOD Demonstration

(b) 70% OOD

Figure 3: Visualisation of the tuned weights when (a) 50%
and (b) 70% of demonstrations are OOD. The y-axis indicates
the weights, whereas the x-axis represents the index of demon-
strations sorted in ascending order (across five different seeds).
Blue bars correspond to in-domain (ID) demonstrations, and
red bars correspond to out-of-domain (OOD) demonstrations.

3.5 Handling Out-of-domain Demonstrations

By learning to associate a weight to each expert,
MOICL can be used to identify whether demon-
strations are relevant to the task. To analyse this,
in Table 4, we present the accuracy of MOICL on
the TweetEval offensive test set, using a mix of
demonstrations sampled from the SST dataset and
those from the TweetEval offensive dataset. We
observe that as p (the proportion of OOD demon-
strations) increases, the performance of standard
ICL methods decreases. However, MOICL (with
scalar) effectively mitigates this by reducing the
influence of these OOD demonstrations, resulting
in the smallest performance drop.

This becomes even more apparent when
analysing the weights of actual OOD demon-
strations. When p = 0.5 (i.e. the number of
OOD and in-domain demonstrations is equal), the
average weight of in-domain demonstrations is
0.0108±0.0025, while the average weight for OOD
demonstrations is -0.0059±0.0027. For p = 0.7,
the average weight of in-domain demonstrations is
0.0127±0.0052, while the average weight for OOD
demonstrations is -0.0019±0.0016. In Fig. 3, we
show how the weights of in-domain demonstrations
(blue bars) and OOD demonstrations (red bars) are
distributed. We can see that in-domain demonstra-
tions typically receive positive weights, while OOD
demonstrations tend to receive negative weights.
This provides evidence that MOICL successfully
mitigates the influence of OOD demonstrations.

3.6 Mitigating Label Imbalance

To determine whether our proposed method can
handle label imbalance, on the TweetEval Offen-
sive dataset, we set up 29 “offensive” label demon-
strations and one ‘non-offensive’ label demonstra-
tion out of 30 demonstrations. Since the TweetEval

Method (n = k = 30) Original Imbalanced

Concat-based ICL 76.44±2.48 28.49±0.86

Mixture of ICL
uniform 73.37±0.34 40.19±2.32

scalar 81.33±0.69 77.77±1.20

Table 5: Analysis of imbalanced demonstrations on the Tweet-
Eval Offensive Test set using Llama-3-8B-Instruct. “Imbal-
anced” refers to a condition where only one out of 30 demon-
strations has a “neutral” label, while the rest are “offensive”.

2 4 6 8 10
Number of Perturbed Demonstrations

0

10

20

30

40

EM

(0.13, -0.15) (0.16, -0.08) (0.19, -0.03) (0.28, -0.02) (0.64, -0.03)

Concat-based ICL
MoICL - Uniform
MoICL - Scalar

Figure 4: Resilience of ICL to adding perturbed demonstra-
tion. We report the EM based on the number of perturbed
demonstrations out of the total 12 demonstrations in NQ. For
the case of scalar, we also present the average weights of stan-
dard and perturbed demonstrations as (standard, perturbed).

Offensive dataset has a “non-offensive” to “offen-
sive” label ratio of 7:3, such imbalanced demon-
strations would be detrimental to performance. As
seen in Table 5, such imbalanced demonstrations
caused a significant performance drop in standard
ICL methods. However, MOICL (scalar) showed
the least performance drop by mitigating the effects
of label imbalance.

3.7 Filtering Perturbed Demonstrations

One of the benefits of assigning weights to each
demonstration or its subsets is the ability to handle
low-quality, or more specifically, perturbed demon-
strations. To verify this, in NQ-Open, we perturbed
demonstrations (see Appendix B.4 for the result of
NQ-open without perturbation) by randomly chang-
ing the answers to one of (yes, no, foo, bar), where
the total number of demonstration is 12, and each
subset has one demonstration (n, k = 12). The
results in Fig. 4 show that our proposed method ef-
fectively handles perturbed demonstrations. While
the EM of the concat-based ICL significantly de-
creases as the number of perturbed demonstrations
increases, the MOICL methods can maintain per-
formance. Additionally, without tuning the weights
(uniform), performance gradually declines as the

26337

Method ↓ Subset → k′ = 5 k′ = 10 k′ = 20 k′ = 30 k′ = 90

Concat-based ICL (n = k′) 72.19±2.63 74.12±2.24 74.84±1.88 76.44±2.48 75.67±2.33

MOICL (n, k = k′)
uniform 73.05±0.52 73.42±0.76 73.42±0.49 73.37±0.34 73.26±0.16
scalar 76.26±1.11 78.16±0.91 80.16±1.23 81.33±0.69 83.35±0.41

MOICL scalar (n = k = 90)
Highest k′ Weights 75.58±0.81 75.56±0.46 74.42±0.61 74.33±0.38 -
Highest k′ Weights (abs) 69.79±14.84 60.53±21.84 71.58±14.67 72.93±13.14 -
IMLE Top-k′ mask 76.07±0.64 75.93±0.69 76.35±0.35 76.44±0.64 -

Table 6: Analysis of selecting useful demonstrations with the proposed MOICL on the TweetEval Offensive test set on Llama-3-
8b-Instruct. ‘Highest k′ Weights’ refers to selecting the k′ subsets with the largest weights out of 90 weights of MOICL scalar,
while ‘Highest k′ Weights (abs)’ uses absolute weights instead.

Method ↓ Dataset → Offensive Hate SST RTE FEVER PAWS QNLI

Concat-based ICL (n = 30) 76.44±2.48 53.54±4.29 95.46±0.14 86.43±1.26 80.63±0.49 78.12±0.77 89.08±0.44

Mixture of ICL (n = k = 30)
uniform 73.37±0.34 59.12±0.47 94.17±0.21 77.26±1.02 79.46±0.36 65.29±0.51 88.66±0.25

adaptive 77.33±3.28 65.01±4.10 94.24±0.50 80.00±0.59 80.68±0.32 73.79±0.14 89.21±0.26

Table 7: Comparison of MOICL methods on unseen demonstrations, including uniform and adaptive, on the TweetEval Offensive
and Hate, using Llama-3-8b-Instruct.

number of perturbed demonstrations increases, but
with tuning (scalar), the performance remains sta-
ble (more than +35% with 10 perturbed demonstra-
tions). This is clear when analysing the weights;
Fig. 4 shows the average weights of normal and
perturbed demonstrations, with significantly lower
weights for the latter (e.g., 0.64 vs -0.03).

3.8 Selecting Demonstration Subsets
We now analyse the impact of sparsifying the mix-
ture weights w ∈ Rk in MOICL. Results are avail-
able in Table 6 — “Highest n Weights” refers to se-
lecting the subsets with the n largest w weights (or
|w| in the case of “abs”), while IMLE Top-k′ mask
refers to the method introduced in §2.2, following
the default hyper-parameters proposed by Niepert
et al. (2021). While MOICL (scalar) achieved
the highest accuracy, the need to learn them for
each m and k makes selection methods that tune
weights for a large n and then select m of them
more practical. Notably, “Highest n Weights (abs)”
is high-variance, indicating the difficulty in effec-
tively leveraging anti-experts (§3.3). In contrast,
IMLE, which uses a mask, demonstrated stable per-
formance, achieving the best results even with a
limited number of demonstrations. This also sug-
gests that MOICL can be interpreted through the
lens of a mixture-of-experts paradigm: rather than
relying solely on the highest-weighted experts, per-
formance gains emerge from expert coordination
and interaction among experts within a broader set.

3.9 Generalisation to Unseen Demonstrations

While MOICL in the scalar setting is conceptu-
ally simpler, it has the disadvantage of requiring
a fixed set of demonstration subsets. A solution
to overcome this limitation is to utilise a smaller,
fine-tuned hyper-network (adaptive) that calculates
the weights for arbitrary demonstration subsets. Ta-
ble 7 compares the performance of MOICL with
different choices for the mixing weights in settings
where the demonstration set D was not available
during the training process. In this situation, scalar,
which assumes that experts and their demonstra-
tions are available beforehand, cannot be used.
However, a hyper-network trained to map sets of
demonstrations to mixture weights can generalise
even when presented with unseen demonstrations.

Compared to the uniform baseline, MOICL
consistently outperforms it, indicating that the
hyper-network can assign meaningful, appropri-
ate weights to arbitrary demonstration subsets.
When compared to the concat-based ICL baseline,
MOICL achieves competitive or superior perfor-
mance on 4 out of 7 tasks. Considering that the
concat-based ICL baseline uses full n-shot demon-
strations while the adaptive variant of MOICL ef-
fectively operates in a much lower (n/k)-shot set-
ting, this level of performance can be considered
reasonable.

26338

10 20 40 80 160 320 640 1280 2560 5120 10240
Number of Annotated Demonstrations

66

68

70

72

74

76

78

80
A

cc
ur

ac
y

Concat-based ICL
MoICL Scalar (n,k=5)
MoICL Scalar (n,k=10)
MoICL Scalar (n,k=20)
MoICL Scalar (n,k=40)

(a) TweetEval Offensive

10 20 40 80 160 320 640 1280 2560 5120
Number of Annotated Demonstrations

54

56

58

60

62

64

66

68

A
cc

ur
ac

y

Concat-based ICL
MoICL Scalar (n,k=5)
MoICL Scalar (n,k=10)
MoICL Scalar (n,k=20)
MoICL Scalar (n,k=40)

(b) TweetEval Hate

Figure 5: An analysis of MOICL’s data-efficiency on the
TweetEval offensive/hate test set using Llama-3-8B-Instruct.
Concat-based ICL concatenated all available demonstrations
(x-axis), exceeding the context length when (n > 160).

4 Data and Compute Efficiency

To analyse the data-efficiency of MOICL, we
present the accuracy on TweetEval Offensive and
Hate test set in Fig. 5 under settings where the
number of training instances (Number of Anno-
tated Demonstrations) is limited. In this experi-
ment, we set n = k, so each expert is assigned one
demonstration and weight tuning is performed us-
ing the number of training instances minus k (e.g.,
when the x-axis is at 40, MOICL with k = 10 is
tuned with 30 training instances). We observed
that MOICL is highly data-efficient, achieving bet-
ter performance than concat-based ICL with only
around 20 annotated demonstrations. In contrast,
concat-based ICL showed lower performance when
given the same number of annotated demonstra-
tions and particularly struggled when the number
of demonstrations exceeded 160, exceeding the
maximum allowed context length.

Furthermore, we analyse whether MOICL is
more time-efficient than concat-based ICL. Fig. 6
compares the performance in terms of the average
inference time (in seconds) per instance with up to

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Inference Time per Instance (s)

74

75

76

77

78

79

A
cc

ur
ac

y

n=10

n=20

n=40 n=80

n=160

n,k=5

n,k=10
n,k=20

n,k=40

Concat-based ICL
MoICL Scalar

(a) TweetEval Offensive

0.1 0.2 0.3 0.4 0.5 0.6
Inference Time per Instance (s)

54

56

58

60

62

64

66

A
cc

ur
ac

y

n=10

n=20 n=40
n=80

n=160

n,k=5
n,k=10

n,k=20
n,k=40

Concat-based ICL
MoICL Scalar

(b) TweetEval Hate
Figure 6: An analysis of the inference time efficiency of
MOICL on the TweetEval offensive/hate test set using Llama-
3-8B-Instruct. The total number of demonstrations available
to MOICL scalar is 160, the same as the maximum number
of demonstrations that concat-based ICL can use within the
context length limit.

160 annotated demonstrations (which is the context
length limit for concat-based ICL) are provided.
We observed that MOICL consistently showed
higher accuracy compared to concat-based ICL rel-
ative to inference time, demonstrating that MOICL
is not only data-efficient but also time-efficient. In
addition, Appendix B.5 shows that MOICL train-
ing can also be made more efficient with caching.

Complexity The proposed MOICL method par-
titions demonstrations into subsets rather than con-
catenating them, thereby reducing the input con-
text length for LLMs. This reduction is beneficial
in Transformer-based architectures, where com-
putational load increases quadratically with the
context length. In Table 8, we analyse the com-
putation cost based on the unit computation cost
(one forward pass for one example) of an LLM
and a hyper-network, namely CLLM and CHyper.
Concat-based ICL exhibits the highest cost by con-
catenating all demonstrations and the test input,
whereas Ensemble-based ICL shows the lowest
cost by concatenating each demonstration with
the test input. MOICL lies in-between, with the

26339

Method Complexity

Concat-based ICL (n+ 1)2 · CLLM

Ensemble-based ICL n · (1 + 1)2 · CLLM

Mixture of ICL
uniform k · (nk + 1)2 · CLLM

scalar k · (nk + 1)2 · CLLM

adaptive k · (nk + 1)2 · CLLM + n2 · CHyper

Table 8: Comparison of the computational complexity at in-
ference time between MOICL Methods and Baseline ICL
Methods. CLLM and CHyper refer to the unit computation com-
plexity for one demonstration and one forward pass for an
LLM and a hyper-network, respectively. n and k refer to the
number of demonstrations and the number of subsets.

cost determined by the number of subsets k. In
adaptive, the weights calculation adds a cost of
(n + 1)2 · CHyper. Since CLLM is usually signif-
icantly larger than CHyper, this approach still of-
fers a computational advantage. Furthermore, the
weights of the experts need to be computed only
once, which means n2 · CHyper is a one-time cost.

5 Related Work

In-Context Learning In-context learning (ICL)
is an approach to few-shot learning by concatenat-
ing the training examples and providing them as
input to the model before the actual test example.
Being able to perform ICL is an emerging ability
of very large models, such as GPT-3 (Brown et al.,
2020) and PaLM (Chowdhery et al., 2023). One
characteristic of ICL is that increasing the number
of demonstrations tends to increase the downstream
task accuracy (Brown et al., 2020; Lu et al., 2022).
However, Agarwal et al. (2024) show that, after a
given number of demonstrations, performance satu-
rates and additional examples might even decrease
the downstream task accuracy. Furthermore, in
Transformer-based LLMs, increasing the number
of ICL demonstrations can be too computationally
demanding due to the complexity of self-attention
operations growing quadratically with the context
size (Liu et al., 2022). Finally, ICL is sensitive to
out-of-domain demonstrations (Min et al., 2022b)
or label imbalance, underscoring the importance
of the selection of the in-context demonstrations to
use (Zhao et al., 2021; Fei et al., 2023).

Ensembles of Demonstrations Min et al.
(2022a) introduce ensemble-based demonstrations,
where each demonstration is provided to a lan-
guage model along with the input to obtain a next-
token distribution; such next-token distributions

are then combined in a product-of-experts. Le et al.
(2022) propose Mixtures of In-Context Experts for
anaphora resolution, where the weights for each
expert were calculated based on the cosine sim-
ilarity between the embeddings of the test input
and the demonstrations. Ye et al. (2023) extend
the models by Le et al. (2022) and analyse the im-
pact of merging the expert activations at different
stages, both in terms of efficiency and downstream
task performance. Wang et al. (2024) proposed a
framework that partitions demonstrations into se-
mantically similar clusters, assigns them to experts,
and trains a retriever model for each expert to re-
trieve demonstrations based on a given input query.

MOICL is related to ensemble-based ICL meth-
ods in that it aggregates predictions from multiple
demonstration subsets. However, unlike prior ap-
proaches that rely on similarity-based retrieval or
uniform aggregation, MOICL learns performance-
driven weights across fixed or dynamic subsets,
enabling more explicit modelling of expert contri-
butions. Most notably, Huang et al. (2025) (LARA)
shares similar motivations and can be considered
as a concurrent approach. While LARA uses non-
gradient-based optimisation, MOICL leverages
gradient-based optimisation with support for su-
pervised fine-tuning and preference tuning (Ap-
pendix B.7). Additionally, MOICL incorporates
a hyper-network (adaptive) to generalise to un-
seen demonstration subsets (Section 3.9), which
addresses the limitation of requiring fixed demon-
strations between training and inference. MOICL
also introduces the concept of anti-experts in ICL
and demonstrates practical effectiveness under chal-
lenging conditions such as out-of-domain inputs,
label imbalance, and perturbed demonstrations.

6 Conclusions

We proposed MOICL, a method for dynamically
learning to combine multiple models, each trained
via ICL, via gradient-based optimisation methods.
We show that MOICL significantly improves ac-
curacy compared to several strong baselines, as
well as in terms of data, memory, and compute
efficiency. Furthermore, we show that MOICL is
robust to out-of-domain and perturbed demonstra-
tions, can help mitigate label imbalance, and can
be used to select sets of demonstrations.

26340

Limitations

Although MOICL does not require direct access
to the model parameters, it requires access to the
logits of the distribution over the vocabulary or
answers produced by the model, both to train the
experts and to calculate the final prediction at infer-
ence time, which prevents its use with completely
black-box models like GPT-4. As discussed and
tested in Appendix B.6, it is possible to apply
MOICL by leveraging an approximation of the
full logits in situations where logits are extracted
from proprietary, restricted-access models or only
top-k tokens are available. However, the require-
ment for logits themselves (even if only partially)
can be a limitation.

An important direction for future work, though
not explored in this study, is training scalar weights
for all demonstrations in the training set. Currently,
we sample n demonstrations from the training set
and assign them to experts, tuning their weights.
Extending this to all demonstrations in the train-
ing set would require progressively expanding the
experts and their tuned weights. One possible ap-
proach for future work is to incorporate the search
and relevance heuristics proposed by Li and Qiu
(2023) as inductive biases in our proposed MOICL
(adaptive).

Additionally, due to computational resource lim-
itations, we conduct our experiments on the Llama-
2 models (Llama-2-7B-chat, Llama-2-13B-chat,
Llama-2-70B-chat), Llama-3 models (Llama-3-8B,
Llama-3-8B-Instruct), Llama-3.1 models (Llama-
3.1-8B, Llama-3.1-8B-Instruct), and Llama-3.2
models (Llama-3.2-3B, Llama-3.2-1B, Llama-3.2-
1B-Instruct) as target LLMs, and T5-models (T5-
efficient-tiny, T5-efficient-mini, T5-small, T5-base)
as hyper-network models (Appendix B.1). How-
ever, our method is not limited to specific LMs and
can be applied across various models.

Acknowledgments We thank the anonymous re-
viewers for their useful feedback and comments.
Giwon Hong was supported by the ILCC PhD pro-
gram (School of Informatics Funding Package) at
the University of Edinburgh, School of Informatics.
Pasquale Minervini and Emile van Krieken were
partially funded by ELIAI (The Edinburgh Labora-
tory for Integrated Artificial Intelligence), EPSRC
(grant no. EP/W002876/1). Additionally, Pasquale
Minervini was partially funded by an industry grant
from Cisco and a donation from Accenture LLP.
This work was supported by the Edinburgh Inter-

national Data Facility (EIDF) and the Data-Driven
Innovation Programme at the University of Edin-
burgh.

References
Abien Fred Agarap. 2018. Deep learning using rectified

linear units (relu). arXiv preprint arXiv:1803.08375.

Rishabh Agarwal, Avi Singh, Lei M Zhang, Bernd
Bohnet, Luis Rosias, Stephanie CY Chan, Biao
Zhang, Aleksandra Faust, and Hugo Larochelle. 2024.
Many-shot in-context learning. In ICML 2024 Work-
shop on In-Context Learning.

AI@Meta. 2024. Llama 3 model card.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al.
2022. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv
preprint arXiv:2204.05862.

Francesco Barbieri, Jose Camacho-Collados, Luis Es-
pinosa Anke, and Leonardo Neves. 2020. TweetEval:
Unified benchmark and comparative evaluation for
tweet classification. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1644–1650, Online. Association for Computational
Linguistics.

Valerio Basile, Cristina Bosco, Elisabetta Fersini,
Debora Nozza, Viviana Patti, Francisco Manuel
Rangel Pardo, Paolo Rosso, and Manuela Sanguinetti.
2019. SemEval-2019 task 5: Multilingual detection
of hate speech against immigrants and women in
Twitter. In Proceedings of the 13th International
Workshop on Semantic Evaluation, pages 54–63, Min-
neapolis, Minnesota, USA. Association for Compu-
tational Linguistics.

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo
Giampiccolo. 2009. The fifth pascal recognizing
textual entailment challenge. TAC, 7(8):1.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Nicholas Carlini, Daniel Paleka, Krishnamurthy Dj Dvi-
jotham, Thomas Steinke, Jonathan Hayase, A Feder
Cooper, Katherine Lee, Matthew Jagielski, Milad

26341

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://doi.org/10.18653/v1/2020.findings-emnlp.148
https://doi.org/10.18653/v1/2020.findings-emnlp.148
https://doi.org/10.18653/v1/2020.findings-emnlp.148
https://doi.org/10.18653/v1/S19-2007
https://doi.org/10.18653/v1/S19-2007
https://doi.org/10.18653/v1/S19-2007

Nasr, Arthur Conmy, et al. Stealing part of a pro-
duction language model. In Forty-first International
Conference on Machine Learning.

Jiuhai Chen, Lichang Chen, Chen Zhu, and Tianyi Zhou.
2023a. How many demonstrations do you need for
in-context learning? In The 2023 Conference on
Empirical Methods in Natural Language Processing.

Yanda Chen, Chen Zhao, Zhou Yu, Kathleen McKeown,
and He He. 2023b. On the relation between sensi-
tivity and accuracy in in-context learning. In 2023
Findings of the Association for Computational Lin-
guistics: EMNLP 2023, pages 155–167. Association
for Computational Linguistics (ACL).

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2023. Palm: Scaling language mod-
eling with pathways. J. Mach. Learn. Res., 24:240:1–
240:113.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali
Farhadi, Hannaneh Hajishirzi, and Noah Smith. 2020.
Fine-tuning pretrained language models: Weight ini-
tializations, data orders, and early stopping. arXiv
preprint arXiv:2002.06305.

Yupei Du and Dong Nguyen. 2023. Measuring the in-
stability of fine-tuning. In Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 6209–
6230, Toronto, Canada. Association for Computa-
tional Linguistics.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Yu Fei, Yifan Hou, Zeming Chen, and Antoine Bosselut.
2023. Mitigating label biases for in-context learning.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 14014–14031, Toronto, Canada.
Association for Computational Linguistics.

Matthew Finlayson, Xiang Ren, and Swabha
Swayamdipta. 2024. Logits of API-protected LLMs
leak proprietary information. In First Conference on
Language Modeling.

David Ha, Andrew M. Dai, and Quoc V. Le. 2017. Hy-
pernetworks. In ICLR (Poster). OpenReview.net.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Chengsong Huang, Langlin Huang, and Jiaxin Huang.
2025. Divide, reweight, and conquer: A logit arith-
metic approach for in-context learning. In Sparsity
in LLMs (SLLM): Deep Dive into Mixture of Experts,
Quantization, Hardware, and Inference.

Jungo Kasai, Keisuke Sakaguchi, Ronan Le Bras, Hao
Peng, Ximing Lu, Dragomir Radev, Yejin Choi, and
Noah A. Smith. 2022. Twist decoding: Diverse gener-
ators guide each other. In EMNLP, pages 4909–4923.
Association for Computational Linguistics.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, et al. 2019. Natural questions: a benchmark
for question answering research. Transactions of the
Association for Computational Linguistics, 7:453–
466.

Nghia T. Le, Fan Bai, and Alan Ritter. 2022. Few-
shot anaphora resolution in scientific protocols via
mixtures of in-context experts. In Findings of the
Association for Computational Linguistics: EMNLP
2022, pages 2693–2706, Abu Dhabi, United Arab
Emirates. Association for Computational Linguistics.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova.
2019. Latent retrieval for weakly supervised open
domain question answering. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 6086–6096, Florence, Italy.
Association for Computational Linguistics.

Xiaonan Li and Xipeng Qiu. 2023. Finding support
examples for in-context learning. In Findings of the
Association for Computational Linguistics: EMNLP
2023, pages 6219–6235.

Alisa Liu, Xiaochuang Han, Yizhong Wang, Yulia
Tsvetkov, Yejin Choi, and Noah A. Smith. 2024. Tun-
ing language models by proxy. In First Conference
on Language Modeling.

26342

https://openreview.net/forum?id=JPUx2nVgWa
https://openreview.net/forum?id=JPUx2nVgWa
https://doi.org/10.18653/v1/2023.acl-long.342
https://doi.org/10.18653/v1/2023.acl-long.342
https://doi.org/10.18653/v1/2023.acl-long.783
https://openreview.net/forum?id=oRcYFm8vyB
https://openreview.net/forum?id=oRcYFm8vyB
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=8V8u1edFAr
https://openreview.net/forum?id=8V8u1edFAr
https://doi.org/10.18653/v1/2022.findings-emnlp.197
https://doi.org/10.18653/v1/2022.findings-emnlp.197
https://doi.org/10.18653/v1/2022.findings-emnlp.197
https://doi.org/10.18653/v1/P19-1612
https://doi.org/10.18653/v1/P19-1612
https://openreview.net/forum?id=dribhnhm1i
https://openreview.net/forum?id=dribhnhm1i

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mo-
hta, Tenghao Huang, Mohit Bansal, and Colin Raffel.
2022. Few-shot parameter-efficient fine-tuning is
better and cheaper than in-context learning.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2022. Fantastically ordered
prompts and where to find them: Overcoming few-
shot prompt order sensitivity. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
8086–8098, Dublin, Ireland. Association for Compu-
tational Linguistics.

Yao Lu, Jiayi Wang, Raphael Tang, Sebastian Riedel,
and Pontus Stenetorp. 2024. Strings from the library
of babel: Random sampling as a strong baseline for
prompt optimisation. In NAACL-HLT, pages 2221–
2231. Association for Computational Linguistics.

Sourab Mangrulkar, Sylvain Gugger, Lysandre De-
but, Younes Belkada, Sayak Paul, and Benjamin
Bossan. 2022. Peft: State-of-the-art parameter-
efficient fine-tuning methods. https://github.
com/huggingface/peft.

Sewon Min, Mike Lewis, Hannaneh Hajishirzi, and
Luke Zettlemoyer. 2022a. Noisy channel language
model prompting for few-shot text classification. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 5316–5330, Dublin, Ireland. As-
sociation for Computational Linguistics.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022b. Rethinking the role of demonstrations:
What makes in-context learning work? In Proceed-
ings of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 11048–11064,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Pasquale Minervini, Luca Franceschi, and Mathias
Niepert. 2023. Adaptive perturbation-based gradi-
ent estimation for discrete latent variable models. In
AAAI, pages 9200–9208. AAAI Press.

John Xavier Morris, Wenting Zhao, Justin T Chiu, Vi-
taly Shmatikov, and Alexander M Rush. 2024. Lan-
guage model inversion. In The Twelfth International
Conference on Learning Representations.

Marius Mosbach, Maksym Andriushchenko, and Diet-
rich Klakow. 2021. On the stability of fine-tuning
{bert}: Misconceptions, explanations, and strong
baselines. In International Conference on Learning
Representations.

Mathias Niepert, Pasquale Minervini, and Luca
Franceschi. 2021. Implicit mle: backpropagating

through discrete exponential family distributions. Ad-
vances in Neural Information Processing Systems,
34:14567–14579.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2024. Direct preference optimization: Your language
model is secretly a reward model. Advances in Neu-
ral Information Processing Systems, 36.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Stephen Robertson, Hugo Zaragoza, et al. 2009. The
probabilistic relevance framework: Bm25 and be-
yond. Foundations and Trends® in Information Re-
trieval, 3(4):333–389.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631–1642, Seattle, Washington, USA. Association
for Computational Linguistics.

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018.
Fever: a large-scale dataset for fact extraction and
verification. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages
809–819.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Anton Voronov, Lena Wolf, and Max Ryabinin. 2024.
Mind your format: Towards consistent evaluation
of in-context learning improvements. In ACL (Find-
ings), pages 6287–6310. Association for Computa-
tional Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. Glue:
A multi-task benchmark and analysis platform for
natural language understanding. In Proceedings of
the 2018 EMNLP Workshop BlackboxNLP: Analyz-
ing and Interpreting Neural Networks for NLP, pages
353–355.

Song Wang, Zihan Chen, Chengshuai Shi, Cong Shen,
and Jundong Li. 2024. Mixture of demonstrations
for in-context learning. In The Thirty-eighth Annual
Conference on Neural Information Processing Sys-
tems.

26343

https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://doi.org/10.18653/v1/2022.acl-long.365
https://doi.org/10.18653/v1/2022.acl-long.365
https://doi.org/10.18653/v1/2022.emnlp-main.759
https://doi.org/10.18653/v1/2022.emnlp-main.759
https://openreview.net/forum?id=t9dWHpGkPj
https://openreview.net/forum?id=t9dWHpGkPj
https://openreview.net/forum?id=nzpLWnVAyah
https://openreview.net/forum?id=nzpLWnVAyah
https://openreview.net/forum?id=nzpLWnVAyah
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc
Le, Ed Chi, and Denny Zhou. 2022. Rationale-
augmented ensembles in language models. arXiv
preprint arXiv:2207.00747.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al.
2022. Emergent abilities of large language models.
Transactions on Machine Learning Research.

Xin Xu, Yue Liu, Panupong Pasupat, Mehran Kazemi,
et al. 2024. In-context learning with retrieved demon-
strations for language models: A survey. arXiv
preprint arXiv:2401.11624.

Qinyuan Ye, Iz Beltagy, Matthew Peters, Xiang Ren,
and Hannaneh Hajishirzi. 2023. FiD-ICL: A fusion-
in-decoder approach for efficient in-context learning.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 8158–8185, Toronto, Canada.
Association for Computational Linguistics.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019. Semeval-2019 task 6: Identifying and catego-
rizing offensive language in social media (offenseval).
In Proceedings of the 13th International Workshop
on Semantic Evaluation, pages 75–86.

Yuan Zhang, Jason Baldridge, and Luheng He. 2019.
PAWS: Paraphrase adversaries from word scrambling.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 1298–1308,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models. In
International conference on machine learning, pages
12697–12706. PMLR.

26344

https://doi.org/10.18653/v1/2023.acl-long.454
https://doi.org/10.18653/v1/2023.acl-long.454
https://doi.org/10.18653/v1/N19-1131

Split Offensive Hate SST2 RTE FEVER PAWS QNLI

Train set 11,916 9,000 66,349 2,190 54,550 49,401 99,743
Dev set 1,324 1,000 1,000 300 5,000 8,000 5,000
Test set 860 2,970 872 277 13,332 8,000 5463

Table 9: Statistics of the classification datasets used in our
experiments.

A Detailed Experiment Settings

A.1 Datasets

TweetEval (Barbieri et al., 2020) offensive/hate
datasets are originally from Zampieri et al.
(2019) and Basile et al. (2019), respectively.
PAWS (Zhang et al., 2019) is released under a cus-
tom license5 from Google LLC. For SST-2 (Socher
et al., 2013)6, RTE (Bentivogli et al., 2009),
FEVER (Thorne et al., 2018)7, and QNLI (Wang
et al., 2018)8, we used the original valida-
tion/development set as the test set and sampled
a portion of the training set to construct a new
validation set. Table 9 presents the dataset split
statistics for all classification datasets used in our
experiments. For NQ-open (Lee et al., 2019)9,
we used the top 1 retrieved documents as a con-
text. The dataset contains 79,168 train instances,
8,757 validation instances, and 3,610 test instances.
GSM8K (Cobbe et al., 2021)10 contains 7,473
train instances and 1,319 test instances, employ-
ing chain-of-thought (CoT). HH-RLHF (Bai et al.,
2022)11 Harmless dataset contains 42,537 training
instances (chosen, rejected pairs) and 2,312 test
instances.

A.2 Hyperparameters

We used five seeds [31, 42, 65, 438, 991] in all ex-
periments except for Appendix B.7, which were
applied to every possible aspect, including dataset
shuffle, demonstration pooling and partition, and
hyper-network fine-tuning, and baseline results.
Also, we set the batch size to 1, the gradient
accumulation steps to 12, the warmup steps to
500, the weight decay to 0.01, and the learning
rate to 0.0001 without performing a hyperparam-
eter search for these settings. We used AdamW

5The dataset is provided "AS IS" without any warranty,
express or implied. Google disclaims all liability for any dam-
ages, direct or indirect, resulting from the use of the dataset.

6The dataset is released under The MIT License.
7The dataset is released under CC BY-SA 3.0 license.
8The dataset is released under CC BY-SA 4.0 license.
9The dataset is released under CC BY-SA 3.0 license.

10The dataset is released under The MIT License.
11The dataset is released under The MIT License.

(Loshchilov and Hutter, 2019) as an optimiser. We
use the same setting for Direct Preference Op-
timization (DPO; Rafailov et al., 2024) in Ap-
pendix B.7 as well. For the PEFT (LoRA, Hu
et al., 2022) baseline, we set r=16 (rank), alpha=32
(scale factor), and dropout=0.1. We did not perform
a search for these LoRA hyperparameters as we
utilised the default settings provided by Mangrulkar
et al. (2022). Unless otherwise specified, a total
of 30 demonstrations were used along with Static
partitioning. Both baselines (when applicable) and
MOICL are tuned for 5 epochs. We use greedy
decoding for generating from MOICL. The hyper-
networks used in our experiments have parameters
of 16M (t5-efficient-tiny), 31M (t5-efficient-mini),
60M (t5-small), and 220M (t5-base), respectively.

A.3 Implementation Details

MOICL For all datasets used in the experiments,
we fine-tuned all the MOICL weights and hyper-
networks on the training set and evaluated them
on the validation/development set at each epoch,
selecting the ones with the highest performance.
The results reported in all experiments were mea-
sured on the test set. For scalar, we first sam-
pled D from the training set based on the different
seeds and used the remaining training instances as
DT (§2.2). In experiments across multiple models
(§3.4), the same fixed in-context demonstration set
(n = 6, k = 1) was provided to all three models
(Llama-3.2-1B, Llama-3.2-1B-Instruct, and Llama-
3.2-3B), forming three separate experts. The out-
puts of these experts were then combined using
a learned weighting function to generate the final
output. For adaptive in §3.9, D is not available
during training and is used only during evaluation.
We further separate DT into Dpool and Dpair ran-
domly at each epoch, where demonstrations are
sampled from Dpool and (x, y) ∈ Dpair. While
any model that produces weights can be used for
the hyper-network, we attach a linear layer on top
of a pre-trained encoder-decoder T5-small (Raffel
et al., 2020) model. For the data efficiency analysis
on Fig. 5 in §4, we applied the same training step
(10,240) to all different MOICL settings.

Baselines For PEFT fine-tuned on RTE, we ap-
plied early stopping based on the dev set accu-
racy, as we observed that the training process was
highly unstable. Both Ensemble-based ICL (Min
et al., 2022a) and LENS (Li and Qiu, 2023) used
the Direct method instead of the Channel method,

26345

Method ↓ Model → ll2-chat-7b ll2-chat-13b ll2-chat-70b

Concat-based ICL 73.09±3.21 63.09±3.85 69.42±1.78

MOICL
uniform 79.35±0.22 63.60±1.84 67.88±1.03

scalar 79.16±0.60 80.49±1.01 82.26±0.65

Table 10: Comparison on the TweetEval Offensive Test set
across different sizes of the Llama-2 models.

which also applied for MOICL as well. For LENS,
We first apply Progressive Example Filtering to
select 30 demonstrations, then perform Diversity-
Guided Search to obtain five permutations of the
examples and report the average and standard de-
viation based on these five permutations. For
Le et al. (2022), we used SBERT model with
all-roberta-large-v1 checkpoint12 to calculate in-
put–demonstration similarity, following the orig-
inal setting. For LARA (Huang et al., 2025), we
used the original implementation provided by the
authors13, set n=k=30 (1-shot), increased the num-
ber of iterations from 20 to 40 (considering that
switching from 2-shots to 1-shot increases the num-
ber of weights to learn), and modified the training
instances to be a separate n×3 rather than n.

B Additional Analyses

B.1 Impact of Model Size

Considering the ongoing trend of scaling up LLMs,
it is essential to analyse how the proposed method
is affected by model size. In Table 10, we com-
pare the accuracy of our proposed method on the
TweetEval Offensive task when using Llama-2-chat
models in various sizes (7B, 13B, 70B) as the target
LLM. 14 Although the performance of the Llama-
2-7B-chat model is somewhat unusual compared
to the other two models, we observed that MOICL
consistently outperforms concat-based ICL across
all three model sizes.

We also analysed the impact of hyper-network
model size on the performance of adaptive weights.
Table 11 compares the dev/test set accuracy on the
TweetEval hate/offensive task based on the size of
the T5 model used as the hyper-network. We chose
T5 because it is available in a wide range of model

12https://www.sbert.net/docs/sentence_
transformer/pretrained_models.html

13https://github.com/Chengsong-Huang/LARA
14We chose LLaMA-2-chat because it offers three clearly

separated model sizes, making it suitable for analysing trends
across scale. In contrast, LLaMA-3 currently provides only 8B
and 70B models (while LLaMA-3.1 includes a 405B version,
it was beyond our available computational resources)

Hyper-network Model Offensive Hate

t5-efficient-tiny (16M) 69.32±2.07 | 74.60±2.03 67.32±0.66 | 60.48±4.56
t5-efficient-mini (31M) 68.50±2.01 | 73.74±1.43 66.00±1.51 | 56.61±0.90
t5-small (60M) 71.01±1.09 | 76.65±1.31 70.20±1.53 | 65.07±5.22
t5-base (220M) 69.14±1.01 | 74.40±2.39 68.24±0.75 | 63.23±4.51

Table 11: Comparison on the TweetEval Offensive/hate
Dev|Test set using Llama-3-8b-Instruct as a target LLM across
different sizes of the hyper-network. The numbers in paren-
theses indicate the number of parameters.

MOICL Method Static Random Size BM25

uniform
k = 3 74.86±1.84 74.74±1.90 74.79±1.79

k = 5 73.77±1.60 74.09±1.35 73.47±2.19

k = 10 74.00±0.87 73.37±0.94 74.40±0.82

scalar
k = 3 76.14±1.48 77.37±1.97 77.21±2.02

k = 5 78.35±1.49 77.67±2.69 78.37±1.62

k = 10 79.42±1.48 78.72±0.87 79.70±1.32

Table 12: Analysis of partitioning methods on TweetEval Of-
fensive dataset. Random and BM25 represent random cluster-
ing and clustering based on BM25 scores, respectively. Bold
text signifies the highest accuracy for each method.

sizes, allowing us to systematically examine the
tradeoff between model capacity and performance.
Importantly, the hyper-network must remain signif-
icantly smaller than the underlying LLM to main-
tain overall efficiency. From analysing the dev set
results, we found that even with a very small model
size (16M–60M), the hyper-network performed rea-
sonably well. Based on this analysis, we selected
T5-small (60M) as the default hyper-network, as it
offers a favourable balance between computational
efficiency and performance, representing less than
1% of the total size of the main model (8B).

B.2 Partitioning a Demonstration set D.

In this work, we analyse the following partition-
ing strategies: Static, Random Size, and BM25.
Static means partitioning n demonstrations into k
subsets, with each subset containing n/k demon-
strations. The demonstrations are selected ran-
domly, but the subset sizes are kept fixed (hence,
“static”). Random Size refers to partitioning into
k subsets, but both the subset sizes and the demon-
stration assignments are randomised. BM25 apply
k-NN clustering based on BM25 scores over the
demonstrations (Robertson et al., 2009), producing
k semantically coherent subsets with variable sizes.

Table 12 compares the performance of MOICL
methods and different partitioning methods (Static,
Random, BM25) for the same k (number of sub-
sets). In uniform, there is little difference between

26346

https://www.sbert.net/docs/sentence_transformer/pretrained_models.html
https://www.sbert.net/docs/sentence_transformer/pretrained_models.html
https://github.com/Chengsong-Huang/LARA

MOICL ↓ Label Ratio → 27:3 25:5 23:7

scalar (n=30, k=10)
- Static Partitioning 73.33±0.96 72.72±0.76 73.81±2.25

- BM25 Partitioning 74.63±1.03 74.09±1.07 74.42±1.50

Table 13: Performance comparison of static and BM25-based
partitioning under varying levels of label imbalance on the
TweetEval Offensive dataset with k = 10 subsets. Each
imbalance setting denotes the number of demonstrations per
label (e.g., 27:3 indicates 27 for the majority label and 3 for
the minority).

Static and Random and only a slight performance
improvement with BM25. However, there is a
common performance enhancement when MOICL
scalar are applied. This indicates that our proposed
method is not significantly affected by partitioning
methods and can be applied in a complementary
manner across them. As such, we decided to use
only the Static method in the other experiments.

To further assess the robustness of partitioning
strategies, we investigate their behaviour under la-
bel imbalance (§3.6). Specifically, we compare
static and BM25-based partitioning on the Tweet-
Eval Offensive dataset using k = 10 subsets, with
varying degrees of label imbalance across demon-
strations (from 27:3 to 23:7 ratios). As shown in
Table 13, BM25 consistently outperforms the static
strategy, especially in highly imbalanced settings
such as 27:3 and 25:5. We attribute this to BM25’s
ability to group demonstrations based on semantic
similarity, which often correlates with label sim-
ilarity. This clustering effect enables MOICL to
assign more targeted and informative weights to
subsets, thereby mitigating the negative impact of
label imbalance. These findings suggest that while
static partitioning is effective and stable in general,
semantically informed strategies like BM25 can
offer clear advantages when label distributions are
skewed.

B.3 Logits vs. Probabilities for Mixing
Experts

As stated in §2.2, we mix the experts in the log
domain. However, it is also possible—and per-
haps more appropriate—to use a regular mixture
of probabilities, as in Eq. (3).

p (y | D,x) ∝
[

k∑

i=1

wip (y | Di, x)

]
(3)

Accordingly, in Fig. 2, we compare the accu-
racy trends based on partitioning size when us-
ing weighting in the probability and logit domains.

Methods (n = 12) GSM8K (Acc.)

Concat-based ICL 61.83±1.77

Mixture of ICL (uniform)
k = 6 62.32±1.25

k = 12 61.74±0.78

Mixture of ICL (scalar)
k = 6 63.20±0.50

k = 12 62.14±1.03

Mixture of ICL (adaptive)
k = 6 63.96±2.00

k = 12 61.49±2.19

Table 14: Comparison between baseline methods and MOICL
on GSM8K using Llama-3-8B. k represents the number of
demonstrations subset, where the total number of demonstra-
tions (n) is 12

In uniform, whether logits or probabilities were
used did not make a significant difference, but in
scalar, the impact was substantial. This is likely
because distinct differences in the distribution pat-
terns among experts (and thus useful information
in the mixture) get diluted during the normalisation
process when using probabilities.

B.4 MOICL in a Generation Task
In addition to the classification tasks in §3.1, we
also apply our MOICL on a generation task, NQ-
open (Lee et al., 2019) and GSM8K (Cobbe et al.,
2021), in Table 14 and Table 15. However, un-
like in classification tasks, MOICL did not show
significant EM improvements over baseline ap-
proaches in NQ. For GSM8K, although MOICL
using scalar weights and adaptive weights achieves
performance improvements over Concat-based ICL
and uniform weighting, these gains are not statis-
tically significant when considering the standard
deviations. Nevertheless, as seen in §3.7, MOICL
exhibited strong robustness in situations involving
perturbed demonstrations, proving the usefulness
of the expert’s tuned weights.

B.5 Reducing Training Costs Through
Caching

While MOICL does not fine-tune the expert models
themselves, it leverages their next-token distribu-
tions to guide the weighting function. A key effi-
ciency gain arises from caching these distributions
during the training process. Because the under-
lying LLM parameters remain fixed, the output
distributions computed at the outset can be stored
and subsequently reused for all training instances.

26347

Methods NQ-open (EM)

Concat-based ICL
n = 12 40.34±0.26

n = 24 40.58±0.47

n = 48 40.07±0.50

n = 96 -

Concat-based ICL (Llama-3.1-8B)
n = 12 39.70±0.56

n = 24 40.29±0.75

n = 48 40.17±0.58

n = 96 40.47±0.68

Mixture of ICL (scalar, n = 96)
k = 6 40.86±0.31

k = 12 40.74±0.35

Mixture of ICL (adaptive, n = 96)
k = 6 40.66±0.26

k = 12 40.64±0.48

Table 15: Comparison between baseline methods and MOICL
on NQ-open using Llama-3-8B. We also use Llama-3.1-8B
for concat-based ICL to evaluate the effectiveness of a longer-
context model. k represents the number of demonstrations
subset, where the total number of demonstrations is n. For
n = 96, the performance of concat-based ICL with Llama-3-
8B could not be measured due to exceeding the context length
limit.

This approach eliminates the need to recompute the
distributions from scratch for each training epoch.

Table 16 reports the number of floating-point
operations (FLOPs) for MOICL ’s training and in-
ference on the offensive classification task, using
a scalar weighting function, k=10, and 10 demon-
strations for weight tuning15. Without caching,
the first training epoch requires 21.61 TFLOPs per
instance and 216.15 TFLOPs per epoch. By con-
trast, once caching is enabled, training costs drop
drastically to approximately 205 FLOPs per in-
stance and 2,050 FLOPs per epoch. Moreover,
these training costs represent only about 1% of the
total FLOPs when inference—requiring roughly
18,975.90 TFLOPs—is considered. By quantify-
ing training costs in terms of FLOPs, we clearly
demonstrate that freezing the LLM and leveraging
caching yields substantial efficiency gains, making
MOICL highly practical.

B.6 Applying MOICL to Black-Box Models
Proprietary LLMs offered via API often differ in
the level of access they provide to their underlying
distributions. While some grant full distributional

15In this setup, we use k=10 and 10 demonstrations (20
annotated demonstrations in total) for weight tuning, as these
values have been found (in §4 and Fig. 5) to provide a practical
balance between performance and computational cost.

access, others restrict output to the top-k logits,
enable user-defined logit biases, or limit the user
to text-only outputs without any direct probability
information. Such constraints pose challenges for
methods like MOICL, which rely on next-token
distributions to tune the weighting function.

However, recent work has shown that extracting
logits or other internal model components from
proprietary, restricted-access models is feasible un-
der a range of conditions. Morris et al. (2024) de-
tail approaches to language model inversion, while
Carlini et al. and Finlayson et al. (2024) explore
methods for partially revealing models’ logits and
other parameters despite limited access. These tech-
niques demonstrate that even under scenarios with
partial distributional access, user-specified logit
biases, or text-only responses, there are practical
strategies to approximate or recover critical infor-
mation about the model’s outputs.

To investigate the applicability of MOICL in
settings where only top-k logits are available, in
Table 17, we trained and evaluated MOICL on
the TweetEval Offensive and GSM8K tasks under
a setting where only the top 40 logits were pro-
vided. MOICL demonstrates its performance under
a black-box setting—where only partial distribu-
tional information is accessible—demonstrating its
potential adaptability to restricted-access environ-
ments.

B.7 MOICL with Preference Fine-Tuning
One notable feature of MOICL is its ability to in-
corporate anti-experts into ICL, as discussed in
§3.3. This opens up the possibility of applying
MOICL to preference fine-tuning (e.g. for RLHF)
where, for a given input query, there are preferred
responses (“chosen”) and dispreferred responses
(“rejected”). MOICL can learn the weighting func-
tion of experts and anti-experts through Direct Pref-
erence Optimization (DPO; Rafailov et al., 2024)
by assigning "chosen" demonstrations to experts
and "rejected" demonstrations to anti-experts.

Table 18 compares the results of training and
evaluating MOICL DPO on the HH-RLHF harm-
less dataset (Bai et al., 2022) with concat-based
ICL and uniform weighting. When “chosen” and
“rejected” demonstrations were assigned to experts
and anti-experts, respectively (chosen + rejected),
MOICL outperforms concat-based ICL by 2.1%.
The learned weights of MOICL showed a clear
distinction, with experts having weights of 0.43
and 0.60, while anti-experts had weights of 0.15

26348

Epoch w/o cache (1st epoch) Epoch w/ cache (2nd-last epoch)

Training FLOPs per Instance 21.61 TFLOPs 205 FLOPs
Training FLOPs per Epoch 216.15 TFLOPs 2,050 FLOPs

Inference FLOPs per Instance 22.07 TFLOPs -
Inference FLOPs in Total 18,975.90 TFLOPs -

FLOPs in total (Training + Inference) 19,191.91 TFLOPs -

Table 16: Training and inference FLOPs for MOICL on the offensive classification task. We report per-instance and per-epoch
costs both with and without caching, using a scalar weighting function, k=10, and 10 demonstrations for weight tuning.

Offensive GSM8K

MOICL (scalar, n = k) 81.33±0.69 62.14±1.03

w/ black-box setting 79.81±0.39 62.26±1.12

Table 17: MOICL on the TweetEval Offensive and GSM8K
tasks using Llama-3-8B-Instruct under a black-box scenario
where only the top-40 logits are accessible.

HH-RLHF Harmless

Concat-based ICL (n=8) 55.02

MOICL (n = 2, k = 4)
uniform 55.41
adaptive (chosen only) 56.23
adaptive (chosen + rejected) 57.14

Table 18: Results (accuracy) of MOICL using Direct Prefer-
ence Optimization (DPO) on the HH-RLHF Harmless dataset
test set using Llama-3-8B-Instruct. "chosen + rejected" repre-
sents chosen and rejected demonstrations assigned to experts
(k = 2) and anti-experts (k = 2), respectively.

and -0.32. This result demonstrates that MOICL
can successfully incorporate anti-experts into ICL,
proving its potential for extension to preference
tuning.

B.8 Comparison with Longer Context Models

By distributing demonstrations across experts or
using them for tuning the weight function, MOICL
can mitigate the limitations imposed by the model’s
context length. However, this limitation could also
be addressed by using an LLM with a longer con-
text length. To evaluate whether MOICL remains
effective when compared to longer-context LLMs,
we assess the performance of longer-context LLMs
(Llama-3.1-8B and Llama-3.1-8B-Instruct with a
128k context length) to MOICL based on the orig-
inal base LLMs (Llama-3-8B and Llama-3-8B-
Instruct with an 8k context length) in scenarios
where the context length of the base LLMs was
exceeded.

As shown in Table 15, on NQ-open, Llama-3-8B

10 20 40 80 160 320 640 1280 2560 5120 10240
Number of Annotated Demonstrations

66

68

70

72

74

76

78

80

A
cc

ur
ac

y

Concat-based ICL
MoICL Scalar (n,k=5)
MoICL Scalar (n,k=10)
MoICL Scalar (n,k=20)
MoICL Scalar (n,k=40)
Concat-based ICL (Llama-3.1)

(a) TweetEval Offensive

10 20 40 80 160 320 640 1280 2560 5120
Number of Annotated Demonstrations

50.0

52.5

55.0

57.5

60.0

62.5

65.0

67.5

A
cc

ur
ac

y Concat-based ICL
MoICL Scalar (n,k=5)
MoICL Scalar (n,k=10)
MoICL Scalar (n,k=20)
MoICL Scalar (n,k=40)
Concat-based ICL (Llama-3.1)

(b) TweetEval Hate

Figure 7: An analysis of MOICL’s data-efficiency on the
TweetEval offensive/hate test set using Llama-3-8B-Instruct.
Concat-based ICL concatenated all available demonstrations
(x-axis), exceeding the context length when (n > 160). We
also use Llama-3.1-8B-Instruct for concat-based ICL to evalu-
ate the effectiveness of a longer-context model.

model fails to produce an output when n = 96 due
to context length limitations. However, MOICL ef-
ficiently distributes demonstrations across experts
(k = 6, k = 12), achieving effective performance
that even outperforms the longer-context model,
Llama-3.1-8B. Similarly, as shown in Fig. 7 for the
TweetEval Offensive and Hate datasets, Llama-3-
8B-Instruct model fails to produce an output when
n > 160 due to context length limitations. While
the longer-context model, Llama-3.1-8B-Instruct,
maintained reasonable performance even at higher

26349

n values (except when results could not be obtained
due to memory limitations at n > 2, 560 for Of-
fensive and n > 1, 280 for Hate), MOICL outper-
forms the longer-context model on both datasets.

One possible explanation for this is that sim-
ply increasing the number of demonstrations in
ICL does not always lead to better performance, as
performance may saturate or even degrade (Chen
et al., 2023a). In this regard, MOICL ’s effec-
tiveness compared to longer-context models may
be attributed to its more efficient ICL framework,
which distributes demonstrations across experts
and utilises them during training.

C Prompt Templates

Table 19 presents the corresponding metric and
prompt template for all tasks included in the exper-
iments. For NQ, the delimiter for ICL demonstra-
tions was ‘\n\n’. For the remaining tasks, ‘\n’ was
used as the delimiter.

D Computation Details

The experiments were conducted using NVIDIA
A100 40GBs and 80GBs with 120GB of RAM.
The GPU hours vary depending on the models and
tasks; tuning MOICL scalar weights (n, k = 30)
on TweetEval offensive takes approximately 1 hour
and 20 minutes per epoch.

26350

Table 19: Prompt template setting details for the tasks. The double curly braces "{{}}" signify input data.

Task Metric Prompt Template

TweetEval Offensive Accuracy

Classify tweets that are offensive as offensive, and tweets that are not offensive as neutral.
{{ICL Demonstrations}}
Tweet: {{tweet}}
Label:

TweetEval Hate Accuracy

Classify tweets that are hateful against immigrants or women as hate and tweets that are
not hateful against immigrants or women as neutral.
{{ICL Demonstrations}}
Tweet: {{tweet}}
Label:

SST2 Accuracy

Classify sentences that are negative as negative and sentences that are positive as positive.
{{ICL Demonstrations}}
Sentence: {{sentence}}
Label:

RTE Accuracy

Classify two sentences that entail each other as true and two sentences that do not
entail each other as false.
{{ICL Demonstrations}}
Sentence1: {{first sentence}} Sentence2: {{second sentence}}
Label:

FEVER Accuracy

Classify claims that are false as refuted, and tweets that are true as supported.
{{ICL Demonstrations}}
Claim: {{claim}}
Label:

PAWS Accuracy

Classify the two sentences as yes if they are paraphrases of each other, and if not,
classify them as no.
{{ICL Demonstrations}}
sentence1: {{first sentence}} sentence2: {{second sentence}}
label:

QNLI Accuracy

Classify as yes if the sentence contains the answer to the question, if not, classify as no.
{{ICL Demonstrations}}
sentence: {{sentence}}
question: {{question}}
label:

NQ EM

{{ICL Demonstrations}}
title: {{title}} text: {{text}}
Question: {{question}}
Answer:

GSM8K EM
{{ICL Demonstrations}}
Q: {{question}}
A: {{CoT reasoning}} The answer is

HH-RLHF Accuracy

{{ICL Demonstrations}}
{{Chosen response}}
or
{{Rejected response}}

26351

