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Abstract

This paper explores the effectiveness of Mul-
timodal Large Language models (MLLMs) as
assistive technologies for visually impaired in-
dividuals. We conduct a user survey to identify
adoption patterns and key challenges users face
with such technologies. Despite a high adop-
tion rate of these models, our findings highlight
concerns related to contextual understanding,
cultural sensitivity, and complex scene under-
standing, particularly for individuals who may
rely solely on them for visual interpretation.
Informed by these results, we collate five user-
centred tasks with image and video inputs, in-
cluding a novel task on Optical Braille Recog-
nition. Our systematic evaluation of thirteen
MLLMs reveals that further advancements are
necessary to overcome limitations related to
cultural context, multilingual support, Braille
reading comprehension, assistive object recog-
nition, and hallucinations. This work provides
critical insights into the future direction of mul-
timodal AI for accessibility, underscoring the
need for more inclusive, robust, and trustwor-
thy visual assistance technologies.1

1 Introduction

As the capabilities of Large Language Models
(LLMs) have been extended to multimodal con-
texts, particularly in applications that combine vi-
sion and language processing, one promising area
is the use of multimodal LLMs (MLLMs) as vi-
sual assistants. MLLMs can provide valuable sup-
port, particularly for individuals with visual im-
pairments, by accurately interpreting visual con-
tent. They have already been integrated into as-
sistive technologies and services,2 such as auto-
mated captioning systems and smart devices (Yuan
et al., 2025). However, these models still face
limitations in acting as effective visual assistants

1We release our survey, evaluation data, and code at
MalvinaNikandrou/visual-assistant-eval.
2https://aira.io/, https://www.bemyeyes.com/
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Figure 1: User survey results highlighting the 15 most
important terms (measured by TF-IDF scores), repre-
senting key challenges for AI visual assistants. (*) in-
cludes tasks such as object, handwriting and face recog-
nition; and image, scene, and video description.

(Karamolegkou et al., 2024; Tong et al., 2024). For
example, a Blind or Low Vision (BLV) traveller
using an MLLM-powered assistant to navigate a
foreign city may receive inaccurate descriptions of
street signs due to poor image quality or incom-
plete translations, leading to confusion or safety
risks. Such scenarios raise concerns about relia-
bility and safety in critical tasks and pose risks
for users who depend on precise visual assistance.
Given that modern MLLMs are hill-climbing multi-
modal reasoning benchmarks (Liu et al., 2024c; Li
et al., 2024c; Wang et al., 2024b), a comprehensive
evaluation of their effectiveness and limitations in
accessibility applications is urgently needed.

To better understand these challenges, we con-
ducted a user survey (§3) to identify the tasks
and issues most relevant to individuals with visual
impairments. Figure 1 summarizes the survey re-
sponses, highlighting that inaccuracies, such as
hallucinations (i.e., factually incorrect or inconsis-
tent generated content) and misleading informa-
tion, are the primary concerns. Motivated by the
findings of our survey, we design an evaluation
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Task Setting Example Model Response

Q: What colour are these sandals? 
A:  Pink

Q: Where are my keys? 
A: in corner of doormat next to slipper

Q: What does this parcel say?
A: Not enough information are depicted in 
video to answer this question

Video Question 
Answering

Descriptive
Questions

Spatial
Questions

Adversarial
Questions

Translate the Braille to English:
His second goal of the night was his 60th of 
the season, becoming the first [...]

Q: Based on this text who had scored 60 
goals in the season 1995-96?
A: Jaromir Jagr and Mario Lemieux 

Optical Braille 
Recognition

Transcription

Cross-script 
Question Answering

Q: What type of assistive measuring device 
appears in the video?

A:  Liquid level indicator

Video Object 
Recognition

General
Objects

Assistive
Objects

Transcription: The provided content appears 
to already be in English. If you are asking for 
an interpretation or explanation of the [...]

Answer: The provided content does not 
contain any information about goals scored 
in the 1995-96 season.

Original General: A stork with Asian symbols on a silver 
coin. 

Cultural: The obverse side of a 500 won South 
Korean coin with a Red-crowned crane.

Image Captioning
Cultural

Caption: An elegant coin featuring a bird in flight, 
bearing inscriptions that hint at its cultural 
significance.

Original EN Q: What is the title of this book? 
EN A: dog years (n=9), dog years: memoir (n=1)

EL Q: Ποιος είναι ο τίτλος αυτού του βιβλίου;
EL A: Χρόνια σκύλου (n=9), Χρόνια σκύλου: 
απομνημονεύματα (n=1)

Image Question 
Answering

EN Answer:  dog years

EL Answer: Δεν μπορεί να απαντηθεί (Cannot 
be answered)Multilingual

Answer: Measuring cup

Descriptive Answer: Blue

Spatial Answer: on mat

Adversarial Answer: Amazon

Figure 2: Illustration of the five key areas of our framework. We focus on tasks pertinent to BLV people, covering
different aspects of captioning, transcribing, and answering questions about visual content.

framework with tasks relevant to BLV individuals,
focusing on five key areas as shown in Figure 2:
1) Image Captioning targeting cultural content,
2) multilingual Image Question Answering , 3)
Optical Braille Recognition to transcribe and
answer questions about Braille text rendered in
images, 4) Video Object Recognition covering
general usage objects as well as assistive items com-
monly used by BLV people, and 5) Video Question
Answering covering descriptive, spatial, and
adversarial questions. Importantly, we contribute
datasets for multilingual and video question answer-
ing as well as Braille recognition to improve the
capabilities of the next generation of MLLMs that
assist BLV individuals. Our experiments empha-
size the need for further advances in multimodal
AI to ensure these models can reliably support in-
dividuals who rely on them for visual tasks.

2 Related Work

MLLM Evaluation Benchmarks MLLMs are
mainly evaluated on general-domain benchmarks
that assess visual perception, knowledge, and rea-
soning (Goyal et al., 2017b; Schwenk et al., 2022;

Yin et al., 2023; Li et al., 2024b; Liu et al., 2024c;
Lu et al., 2024). However, these benchmarks do
not capture all critical dimensions of MLLM per-
formance. One exception is the holistic evaluation
by Lee et al. (2024), which examined 22 MLLMs
across nine aspects, revealing that no model excels
in all areas and that all lack multilingual support.
Other studies highlight inconsistencies in MLLMs’
responses (Chen et al., 2024) and measure perfor-
mance in diverse cultural contexts (Nayak et al.,
2024; Mogrovejo et al., 2024). Despite these ef-
forts, the effectiveness of MLLMs as visual assis-
tants in accessibility settings remains unexplored.

Multimodal Models for Assistive Applications
Previous works apply task-specific models for assis-
tive applications including visual question answer-
ing (Liu et al., 2024b; Huh et al., 2024; Gurari et al.,
2018), image captioning (Gurari et al., 2020), ob-
ject detection (Reynolds et al., 2024; Tseng et al.,
2022), and private content identification (Tseng
et al., 2024). Some conversational agents focus on
privacy-aware assistance (Baker et al., 2021), edu-
cation for BLV users (Di Nuovo et al., 2024), sce-
narios with low-quality images (Yang et al., 2024),
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while other studies integrate MLLMs into assis-
tive devices and smartphone applications (Holiel
et al., 2024; De Marsico et al., 2024). These works
demonstrate the potential of MLLMs in accessi-
bility but also highlight the need for systematic
evaluation of their effectiveness and limitations.

3 User Survey

Understanding user perspectives is crucial for iden-
tifying key application areas, surfacing unmet
needs, and guiding future improvements in model
design and evaluation (Liao et al., 2024; Kirk et al.,
2024). To gain insights into the real-world usability
of MLLMs in the role of visual assistants, we con-
ducted a survey focused on user adoption patterns
and experienced challenges.

Design The survey consists of two phases: open-
ended questions and Likert scale ratings. Phase
one begins with a user adoption question, asking
whether participants use or would consider using
AI for visual assistance. The second question ex-
plores tasks where these models could be most ben-
eficial, while the third targets challenges users have
experienced in past interactions. Phase two focuses
on assessing specific tasks and issues. We recruited
106 participants through Prolific,3 with varying de-
grees of visual impairment. By analysing responses
and identifying key themes, we identified common
use cases and areas where AI needs improvement.
Below, we present a summary of the open-ended
responses and provide further details on survey de-
sign, analysis, compensation, demographics, and
Likert scale results in Appendix A.

User Adoption and Tasks The majority of re-
spondents (87%) use or would use AI as visual as-
sistants, while 9% declined due to concerns about
accuracy, reliability, and lack of personal touch,
and 4% were unsure, depending on the assistance
type. Participants found AI most useful for de-
scription, transcription, translation, and recogni-
tion. Common use cases included identifying and
translating products for shopping or cooking, un-
derstanding diagrams in subjects like chemistry and
math, analysing food consistency, choosing outfits,
and interpreting facial expressions. Some men-
tioned more specialized uses, such as autonomous
navigation, medical imaging analysis, Braille inter-
pretation, space planning, design assistance, artistic
creation, and emotional support.

3https://www.prolific.com/

Challenges Participants were asked to list chal-
lenges they have experienced when using AI mod-
els. Responses varied in specificity, requiring
grouping and qualitative analysis using an itera-
tive open thematic approach4 (Liao et al., 2024).
The most common challenges are visualized in Fig-
ure 1. A major problem was inaccuracies, as it
was often mentioned that users struggle to ver-
ify whether the provided information is correct.
This included issues such as incorrect directions,
misidentification of objects, misinterpretation of
signs and symbols, and misleading or incomplete
responses. Many challenges fell under recognition
and description tasks, particularly difficulties with
handwritten text (especially small, messy, or multi-
lingual), Braille, currency, and signs. Participants
also reported problems with object recognition in
poor image conditions (low resolution, lighting is-
sues, or background noise) and in cluttered or am-
biguous settings, sometimes mistaking shadows for
obstacles or misidentifying overlapping objects.

Some also mentioned that AI often fails to rec-
ognize hazards, interpret multicultural and social
cues, and provide sufficiently detailed descriptions.
Further challenges involved trust, language limi-
tations, contextual understanding in scenes (e.g.,
understanding spatial relationships or complex en-
vironments), latency, bias, privacy concerns, depen-
dency on high-quality data, emotional understand-
ing, and communication barriers, such as unclear
prompts or lack of adaptation to individual needs.

4 Evaluation Framework

We evaluate MLLMs across image and video un-
derstanding tasks, specifically designed to assist
visually impaired individuals. Our task selection is
informed by user input, reflecting use cases where
users reported a high likelihood of adopting AI vi-
sual assistants (see Figure 8). We additionally em-
phasize high-priority needs such as cultural context
awareness, multilingual support, and recognition
of assistive devices and hallucinations.

Tasks The evaluation spans five tasks: Image
Captioning, which evaluates performance in gen-
erating descriptions for images taken by visu-
ally impaired individuals (§5). Image Question
Answering to evaluate question answering us-
ing images and questions provided by visually
impaired individuals (§6). Optical Braille

4Further details are in Appendix A.
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Recognition, where we assess the performance
on transcribing and answering questions about
Braille text in images (§7). Finally, using videos
recorded by BLV individuals, we evaluate Video
Object Recognition (§8), and Video Question
Answering on descriptive, spatial, and adversar-
ial questions (§9). In each corresponding section,
we introduce the related background, specify the
evaluation setup, and report our results.

Models We evaluate thirteen prominent general-
purpose models selected based on the following cri-
teria: 1) strong performance in image and video un-
derstanding, 2) open access (open-source/weights),
and 3) moderate computational overhead (up to
11B parameters) to balance performance and la-
tency. Our model selection aimed to cover a diverse
range of categories, including general-purpose ap-
plicability, domain-specific optimization, multilin-
gual capabilities, and video integration. We provide
the model details in Table 14.

5 Image Captioning

Image captioning aims at generating textual de-
scriptions for images. Gurari et al. (2020) intro-
duce VizWiz, the first dataset with images from
visually impaired users, launching a series of mul-
timodal challenges (Gurari et al., 2018). Since
then, research has focused on improving mod-
els for assisting visually impaired users (Dognin
et al., 2022; Ahsan et al., 2021; Delloul and Larabi,
2023), mostly in English settings. More recently,
Karamolegkou et al. (2024) identified cultural im-
plicatures in VizWiz that annotations and models
overlook and curated a subset of 324 images and
648 captions spanning 60 cultures.

Setup We evaluate model performance on gener-
ating descriptions for images taken by visually im-
paired people. We use the original validation set of
VizWiz-Captions (N=500) (Gurari et al., 2020) and
the multicultural extension (Karamolegkou et al.,
2024) (N=324), which filters the original set and
provides re-annotations focused on culture-related
content. As a metric, we use the RefCLIPScore
(Hessel et al., 2021), which has shown robust align-
ment with human judgment.

Results Table 1 shows the image captioning eval-
uation results. All models achieve RefCLIPScores
between 70 and 81 on the original setting, indicat-
ing relatively good performance. Paligemma out-
performs other MLLMs by at least 5 points, likely

Model Original Cultural

Idefics3 76.0 75.5
InternVL2.5-MPO 74.3 74.8
LLaVA-v1.6 72.3 52.2
Llama-3.2-Vision-Instruct 75.0 72.8
MiniCPM-V-2.6 78.0 74.8
Molmo 70.9 47.4
Paligemma 81.0 55.0
Pangea 73.2 73.2
Phi-3.5-Vision-Instruct 71.9 62.6
Qwen2-VL-Instruct 75.9 76.9

Table 1: RefCLIPScore results on the original and cul-
tural VizWiz image captioning validation set.

Model Original Multilingual

Idefics3 45.7 30.4
InternVL2.5 65.1 39.1
LLaVA-v1.6 54.8 40.8
Llama-3.2-Vision-Instruct 52.9 29.6
MiniCPM-V-2.6 72.2 30.7
Molmo 40.2 28.6
Paligemma 75.6 16.9
Pangea 62.2 35.9
Phi-3.5-Vision-Instruct 59.0 36.5
Qwen2-VL-Instruct 61.9 44.9

Table 2: VQA Accuracy results on the original and
multilingual VizWiz question answering validation set.

due to its exposure to VizWiz data during pretrain-
ing. In the cultural setting, we observe a clear per-
formance divide. Six out of the examined MLLMs
show robust performance (±4 points difference),
while other models show substantial degradation
(20-25 points). To assess progress in culture-aware
descriptions, we inspect 100 captions from the top
two models. For both Qwen2-VL-Instruct and
Idefics3, approximately a third of the generated
captions (31% and 33%, respectively) include ac-
curate but generic information–while they correctly
describe the scene, they miss culturally significant
details such as specific names of symbols, cultural
figures, or non-English language scripts. This in-
dicates that models might still overlook cultural
context, which is essential to fully describe a scene.

6 Image Question Answering

Image question answering (IQA) enables users to
ask about images and receive relevant answers. As
part of the VizWiz initiative, Gurari et al. (2018)
created an IQA dataset capturing real-world chal-
lenges, where visually impaired users take pho-
tos that may be blurry, poorly framed, or contain
unanswerable questions. Recent efforts address
these issues through answer grounding (Chen et al.,
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2023), long-form answers (Huh et al., 2024), and
models suggesting image adjustments (Liu et al.,
2024b). However, no work has yet examined these
challenges in a multilingual setting.

Setup We evaluate each model on visual question
answering using the VizWiz validation set (Gurari
et al., 2018). To assess the global accessibility of
these models, we extend the evaluation to a mul-
tilingual setting. We use an automatic translation
pipeline with human quality checks to translate 500
questions and reference answers to 34 languages.
Details about the translation process are provided
in Appendix B.1. The task metric is VQA accuracy
(Antol et al., 2015), which takes into account mul-
tiple reference answers as the evaluation metric.

Results The results shown in Table 2 reveal large
performance disparities across models and eval-
uation settings. In the original English setting,
Paligemma and MiniCPM-V-2.6 (75.6% and 72.2%
respectively), which include VizWiz VQA data in
their pretraining mixture, achieve the highest per-
formance by a large margin. However, these mod-
els also suffer the largest performance drops in the
multilingual setting. We observe that they often fail
to follow prompt instructions, such as answering
in the language of the question, instead defaulting
to English responses. The best multilingual perfor-
mance is achieved by Qwen2-VL-Instruct, which
shows the most consistent performance, ranging be-
tween 35.4 and 49.0 for all non-English languages.
Table 9 shows the VQA accuracy grouped by high-,
medium-, and low-resourced languages (Joshi et al.,
2020). We observe limited performance variance
across the three groups, with all models performing
similarly poorly regardless of language resource
levels. This suggests that even high- and medium-
resource languages lack reliable IQA support for
blind users who do not speak English.

7 Optical Braille Recognition

Despite increasing interest in the text comprehen-
sion abilities of MLLMs (Li et al., 2024a; Liu et al.,
2024d), their capacity to process Braille within
images remains underexplored. Existing Braille
recognition approaches focus on character-level
classification where a visual component first de-
tects the characters, followed by a character clas-
sifier (Li et al., 2020; Smelyakov et al., 2018; Gao
et al., 2024). However, character-level approaches
do not fully assess the reading comprehension ca-

pabilities of modern MLLMs. For this purpose, we
compile two datasets focusing on sentence-level
Braille-to-Text transcription and paragraph-level
cross-script question-answering. Our datasets dif-
fer from prior work as they target longer context,
support zero-shot and few-shot evaluation, and in-
troduce a training split that can be incorporated in
the visual instruction tuning data of an MLLM.

7.1 Dataset Creation

For sentence-level transcription, we compile a
dataset using English sentences from the shared
task of WMT 2024 (Haddow et al., 2024). More
specifically, we use a subset of 100k sentences from
the Facebook-wikimatrix-1-deu-eng corpus for
training, as well as NTREX-128 (Federmann et al.,
2022) (N=1997), and FLORES-200 (NLLB Team
et al., 2024) (N=1012) for evaluation. With regards
to paragraph-level question answering, we leverage
SQuAD (Rajpurkar et al., 2018) (training N=130K,
evaluation N=11.9K), which provides text para-
graphs together with a few relevant questions. In
both tasks, we render the Braille text into images
(see Appendix C), and apply augmentations that
correlate with quality flaws often occurring in im-
ages taken by BLV people (Yu et al., 2023). The
model accepts an image containing Braille text, the
input prompt including a question for SQuAD only,
and needs to provide the appropriate English re-
sponse, i.e. either the transcription of the rendered
Braille sentence or the answer to the question.

Evaluation Metrics Since the Braille-to-Text
transcription is a character-level transformation,
for the sentence-level transcription, we report the
chrF++ score (Popović, 2017). For SQuAD, we
report the character-level F1-score based on the
model’s prediction and the candidate answers for
each question, as well as the exact match.

7.2 Results

Can MLLMs read Braille? We prompt MLLMs
to transcribe rendered Braille sentences to regular
English text. Table 3 illustrates the zero-shot per-
formance on our two English-to-Text transcription
evaluation sets. Our results clearly demonstrate
that most modern MLLMs lack Braille recognition
capabilities. Surprisingly, out of the examined mod-
els, only Qwen2-VL-Instruct demonstrates non-
trivial performance, indicating its capability of
reading Braille from images.
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Figure 3: Left: Average chrF++ on sentence-level Braille-to-Text transcription. Right: F1-Score on cross-script
question answering, where results are binned based on the length of the context paragraph.

Model F-200 N-128 Avg

Idefics3 1.9 2.1 2.0
InternVL2.5-MPO 8.7 8.5 8.6
LLaVA-v1.6 2.9 2.7 2.8
Llama-3.2-Vision-Instruct 8.9 8.3 8.5
MiniCPM-V-2.6 8.9 9.2 9.1
Molmo 5.3 5.44 5.4
Phi-3-vision-128k-instruct 10.2 9.5 9.9
Qwen2-VL-Instruct 75.2 72.5 73.8

Table 3: Zero-shot results on sentence-level Braille-to-
Text transcription. F-200 notes FLORES-200 while
N-128 stands for NTREX-128. Out of the eight models,
only Qwen2-VL-Instruct exhibits Braille comprehen-
sion capabilities.

Proof of concept: Learning to Read Braille
Next, we are interested in a training recipe that
results in an MLLM capable of reading Braille
text in images. For this purpose, we focus exclu-
sively on Llama-3.2-Vision-Instruct, as a model
with strong text comprehension capabilities but
lacking the ability to read Braille text. We finetune
Llama-3.2-Vision-Instruct both for sentence-level
transcription, as well as paragraph-level question
answering using LoRA (Hu et al., 2022) following
guidelines from existing cookbook recipes.5 For
each configuration, we sweep across different hy-
perparameters (see Appendix C) and select the one
with the best validation performance.

Table 4 illustrates the finetuning results of Llama-
3.2-Vision-Instruct on both tasks. We observe that
the model achieves great performance across a
wide range of configurations. Additionally, Fig-

5Practical Tips for Finetuning LLMs Using LoRA

F-200 N-128 Avg SQuAD
r α chrF++ F1 EM

32 64 88.2 82.6 85.4 51.8 49.8
64 128 88.2 81.9 85.0 51.8 49.8

128 256 87.4 81.4 84.4 52.0 50.0
256 512 87.6 81.9 84.8 51.7 49.7

32 16 87.2 81.4 84.3 51.9 49.9
64 32 87.4 81.4 84.4 51.9 50.2

128 64 87.5 81.7 84.6 51.9 50.1
256 128 89.2 83.5 86.4 52.1 50.1

Table 4: LoRA fine-tuning results for Llama-3.2-Vision-
Instruct on sentence-level Braille-to-Text transcription,
and cross-script question answering. F-200 notes
FLORES-200 while N-128 stands for NTREX-128.

ure 3 (left) shows that model performance improves
quickly–typically saturating at 30K samples. Simi-
lar results can be observed in the case of paragraph-
level question answering. Finally, Figure 3 (right)
shows the F1-Score of all finetuning runs according
to the length of the context paragraph, i.e., the num-
ber of English tokens that have been transcribed to
Braille and rendered in images. We observe that
the model maintains similar performance in short
as well as long paragraphs. Taken together, these
results show that while most modern MLLMs are
not equipped with Braille comprehension, learning
to read Braille text in images is feasible with a mod-
erate number of demonstrations. Consequently, we
expect the next generation of MLLMs powering ac-
cessibility applications to take into account Braille
reading comprehension capabilities as part of the
visual instruction tuning stage.
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Model General Assistive
(N=880) (N=156)

Video LMs

LLaVA-NeXT-Video 56.0 26.0
LLaVA-Video 65.7 41.3
VideoChat-Flash 56.0 20.8

Image + Video LMs

InternVL2.5-MPO 59.1 36.5
MiniCPM-V-2.6 65.1 44.2
Phi-3.5-Vision-Instruct 52.2 25.3
Qwen2-VL-Instruct 69.8 39.7

Table 5: Accuracy in Video Object Recognition of gen-
eral and assistive object categories.

8 Video Object Recognition

Video-based object recognition extends traditional
image recognition (Russakovsky et al., 2015; Hu
et al., 2023; Sun et al., 2021), allowing models to
identify objects that appear in a video sequence.
While image recognition provides a snapshot of
visual content, it may miss useful contextual cues
available in videos, such as gradual occlusions or
varying viewpoints. Unlike video classification,
which typically focuses on activity recognition
(Goyal et al., 2017a; Kay et al., 2017), our task
aims to identify the presence of objects in a video,
making it more aligned with real-world assistive
applications. Moreover, while several datasets have
been filmed in real-world environments (Lomonaco
and Maltoni, 2017; Damen et al., 2018), very few
explicitly focus on visual assistance for visually
impaired users (Massiceti et al., 2021; Islam et al.,
2024).

Setup We evaluate models on their ability to iden-
tify objects from videos recorded by BLV people.
Similar to the image settings, these videos pose
challenges such as blurriness and non-centred ob-
jects. We use 1036 video clips from ORBIT (Mas-
siceti et al., 2021), which show household objects
from 92 categories. These objects include both
general everyday objects (e.g., TV remote control)
and assistive items (e.g., Braille display). Addition-
ally, objects are recorded in Clean videos, which
show an object in isolation, and Clutter videos,
which show the target object in context with other
items. More details about the dataset are provided
in Appendix D.1. Following previous work on
evaluating generated outputs with one ground truth
answer, we adopt the LAVE protocol (Mañas et al.,
2024), which leverages a language model to judge

Model D S A Avg

Video LMs

LLaVA-NeXT-Video 56.0 49.7 13.4 39.7
LLaVA-Video 78.2 63.4 7.7 49.8
VideoChat-Flash 72.4 64.1 9.2 48.6

Image + Video LMs

InternVL2.5-MPO 67.7 59.4 9.0 45.4
MiniCPM-V-2.6 68.7 63.3 17.7 49.9
Phi-3.5-Vision-Instruct 61.4 46.3 10.2 39.3
Qwen2-VL-Instruct 71.9 58.5 12.6 47.7

Table 6: Accuracy in Video Question Answering. D:
Descriptive, S: Spatial, A: Adversarial Questions.

the generated outputs and provide a rating between
1-3. We use Llama-3.3-70B-Instruct (AI@Meta,
2024) and report average normalized ratings.

Results Table 5 reports model accuracy on rec-
ognizing general and assistive objects, revealing a
clear gap: while models perform moderately well
on generic object categories (52-69.8% accuracy),
they struggle significantly at recognizing assistive
items, achieving only 23-41% accuracy. This per-
formance disparity might be expected from a data
distribution perspective, as assistive objects are
less common and current MLLMs are known to
struggle with capturing long-tail knowledge (Gei-
gle et al., 2024; Parashar et al., 2024). However,
this result indicates that generalist MLLMs are still
far from providing comprehensive support for visu-
ally impaired users in everyday contexts.

9 Video Question Answering

There have been a lot of works assessing descrip-
tive and spatial understanding of models through
video question-answering (Yu et al., 2019; Xiao
et al., 2021; Xu et al., 2017; Li et al., 2024c), as
well as more fine-grained skills like perception and
reasoning (Patraucean et al., 2023), or ego-centric
setups (Mangalam et al., 2023). Most datasets are
compiled from existing corpora (Fabian Caba Heil-
bron and Niebles, 2015; Grauman et al., 2022) and
crawled from open platforms (Thomee et al., 2016;
Shang et al., 2019), and do include on videos filmed
by visually impaired people. To address this gap,
we curated a new video QA dataset based on videos
filmed by BLV users.

Setup We evaluate models on their ability to an-
swer questions based on videos recorded by vi-
sually impaired people using the ORBIT object
recognition dataset (Massiceti et al., 2021). We an-
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notate 98 videos and provide 882 question-answer
pairs that target three types of questions: 1) de-
scriptive questions regarding the attributes of the
objects (colour, shape, number), 2) spatial Under-
standing about the position of items and their rela-
tion to other items, and 3) adversarial questions
about items not present in the video (Li et al.,
2023). Adversarial questions, which cannot be
answered based on the information provided in
the video, help assess whether models halluci-
nate responses or can reliably acknowledge uncer-
tainty—a critical safety feature for assistive tech-
nologies. More details about the dataset are pro-
vided in Appendix D.2. For evaluation, we follow
the LAVE protocol as described above.

Results Table 6 shows the evaluation results for
MLLMs that support video inputs. MiniCPM-V-
2.6 and LLaVA-Video achieve the highest overall
performance, although no model ranks first across
all question types. Notably, we do not observe a
performance advantage for models specifically fine-
tuned on video data compared to models trained on
both images and videos. Regarding the results per
question type, we observe the following patterns.
While most MLLMs show promising results on de-
scriptive questions, spatial understanding remains
challenging even for the best-performing models
(VideoChat-Flash and LLaVA-Video at 63-64%).
Most concerning is the behaviour on adversarial
questions, where models consistently provide con-
crete answers rather than acknowledge uncertainty.
For assistive technologies, this tendency to hallu-
cinate responses instead of expressing an inability
to answer could lead to misleading or potentially
unsafe guidance (Li et al., 2023). In Appendix D.4,
we show that even explicit prompting to express
uncertainty as needed yields limited success: while
some models improve on adversarial questions,
they either achieve only modest gains or overgener-
alize uncertain responses to valid questions.

10 Qualitative Analysis

To complement our quantitative findings, we manu-
ally reviewed 100 examples per task and conducted
a focused qualitative analysis comparing two mod-
els: Phi-3.5-Vision-Instruct and MiniCPM-V-2.6.
These models were selected due to their mid-range
performance and their support for all evaluated
tasks, making them suitable for cross-task com-
parison. A sample of representative examples is
included in Appendix F. This comparison reveals

systematic differences in response style, accuracy,
and failure modes across tasks.

In image captioning, Phi-3.5 often produced con-
cise but vague descriptions, while MiniCPM-2.6
tended to generate longer, more expressive captions.
However, MiniCPM sometimes over-interpreted
the visual content, introducing speculative details
not grounded in the image. Both models struggled
with culturally specific images, frequently failing
to recognize key elements such as foreign scripts,
culturally significant objects, or regional cues. In
image question answering, the models often repro-
duced the reference answers verbatim, even when
those answers contained annotation errors. For
example, instead of “blank CD”, the output was
“blanket,” a wrong answer that is present in the orig-
inal English annotation that both models repeated
across several languages. This suggests memo-
rization rather than robust visual understanding or
effective multilingual capabilities.

For video object recognition, both models mis-
classified assistive technologies. Phi often labeled
Braille readers and audio book devices as generic
electronics like “remote control,” while MiniCPM
was somewhat better—correctly identifying the
Orbit Reader in some cases—but still inconsis-
tent across examples. In video question answer-
ing, MiniCPM showed stronger performance on
descriptive and spatial questions, whereas Phi fre-
quently underperformed or provided incomplete
answers. However, both models failed on adversar-
ial questions, often giving incorrect responses to
prompts that should have been unanswerable. This
highlights a critical gap in uncertainty handling,
which is essential for safe deployment in assistive
contexts.

Overall, these patterns point to key areas for
improvement: cultural and linguistic grounding,
recognition of domain-specific objects, and more
reliable handling of uncertain or unanswerable sce-
narios.

11 Discussion

What is missing from existing evaluation frame-
works? To better understand the use cases and
challenges faced by individuals with visual impair-
ments, we designed a survey to collect firsthand
insights. These findings provide valuable input for
designing more effective, user-centred multimodal
AI systems and can add evaluation aspects to both
targeted and holistic evaluation approaches (Liang

25956



et al., 2023; Lee et al., 2024). Our analysis captured
a wide range of challenges that are underexplored
or missing from holistic evaluation frameworks,
such as 1) technical constraints (latency, real-time
settings, internet dependency), 2) multilingual, cul-
tural and contextual understanding, 3) trust and
reliability issues amplified by hallucinations, misin-
terpretations, underspecified responses and failure
in safety-critical or ambiguous scenarios.

Can existing models be used as visual assistants?
We evaluated a range of multimodal models on
datasets from visually impaired users, revealing
notable limitations. For example, captioning be-
comes more challenging with culture-specific im-
ages, as models struggle to capture cultural nuances
and distinctive items. Similarly, in image question
answering, models show substantial performance
degradation, which aligns with our survey findings.
Optical Braille recognition seems to be a new chal-
lenge for almost all models, with most failing to
perform the task, pointing to gaps in both training
data and generalization capabilities. In tasks like
video object recognition, MLLMs struggle to iden-
tify assistive objects, revealing a lack of specificity
in recognizing items important to BLV users. For
video question answering, models have difficulty
answering adversarial questions that refer to items
not present in the image, highlighting the models’
vulnerability in real-world applications where visi-
bility and conditions are not always ideal.

Beyond classic benchmark evaluation. Our
findings suggest a pressing need for the devel-
opment of datasets and models tailored to user
needs and preferences. Such datasets should reflect
the real-world complexities and unique challenges
faced by BLV users across culturally diverse envi-
ronments, multilingual settings, assistive devices,
poor-quality input, and latency constraints. Fur-
thermore, engaging with BLV users in the design
and improvement of visual assistants is essential
to ensure models address their needs (Caselli et al.,
2021; Sloane et al., 2022). Continuously gathering
feedback on usability, accuracy, trust, and prefer-
ences can help develop more accessible, contextu-
ally aware, and user-centred AI (Kirk et al., 2023).

Traditional evaluation metrics and benchmarks
are insufficient in capturing the specific difficulties
faced by users in practice (Liao and Xiao, 2023;
Wang et al., 2024a). Existing benchmarks primar-
ily focus on general performance and may over-
look critical aspects, such as real-world usability

and user satisfaction. To bridge this gap, future
research should explore new, reproducible, user-
centred methodologies of evaluation that go be-
yond conventional metrics to better assess models
in everyday scenarios (Elangovan et al., 2024). By
focusing on the unique challenges of visually im-
paired users and integrating their experiences into
the development and evaluation of AI models, we
can move towards more effective and inclusive vi-
sual assistants.

12 Conclusion

This paper addresses an important and underex-
plored challenge: evaluating the effectiveness of
MLLMs as visual assistants for visually impaired
users. Using a user-centered approach grounded in
a user survey, we evaluated several MLLMs across
a range of tasks involving images and videos, high-
lighting both capabilities and limitations. While
adoption of these technologies is growing, our find-
ings highlight critical gaps in cultural understand-
ing, multilingual support, Braille comprehension,
and object recognition, particularly for assistive
items and adversarial questions. These limitations
reflect a broader need for models that can per-
form reliably across diverse and realistic conditions.
This work contributes new datasets and evaluation
methods that can support future research on assis-
tive AI. Continued progress in this area will require
not only technical improvements but also closer
alignment with the everyday needs of visually im-
paired users.

Limitations

While this work offers valuable insights into the
potential of MLLMs as visual assistants for the
visually impaired, several limitations should be ac-
knowledged. First, our evaluation does not cover
tasks related to navigation assistance, a crucial
aspect of real-world applications for visually im-
paired individuals. Future work could incorporate
real-world deployment scenarios, such as blind
users interacting with MLLMs in navigation tasks.
Second, our experimental design focuses primarily
on the performance of MLLMs in controlled envi-
ronments and user-centred tasks and may not fully
capture the complexities of dynamic, real-world
scenarios. Third, we acknowledge that our current
work provides training data only for the OBR task
as a necessary scope constraint. The paper’s pri-
mary goal is to evaluate tasks identified through
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our survey and to contribute evaluation datasets for
these tasks. Since OBR is a novel task with no
existing parallel data, we also provide training data
to demonstrate its learnability in a data-efficient
manner. Providing training sets for each task is
essential for future research. Lastly, our findings
highlight the need for further research to address is-
sues related to real-time responsiveness, reasoning
tasks, and the inclusion of marginalized languages
and cultural contexts.

Ethics Statement

This research contributes to the development of AI-
driven visual assistants, which have important soci-
etal implications, particularly for accessibility and
human-computer interaction. We adhere to ethical
guidelines. The user survey was carried out with
compensation and informed consent, ensuring that
participants were fully aware of the purpose of the
study and how their data would be used. We took
careful measures to protect the privacy and con-
fidentiality of all participants, with no personally
identifiable information being disclosed or shared.
All datasets used in this work are under CC BY 4.0
license. 6 We acknowledge the potential bias intro-
duced in our survey and evaluation due to the use
of datasets and models that may themselves con-
tain inherent biases. Bias could lead to disparities
in performance across demographic groups, poten-
tially reinforcing inequalities in AI-assisted tech-
nologies. To mitigate these risks, we have taken
steps to ensure diversity, such as including partic-
ipants from different backgrounds in our survey,
selecting and adapting use-case specific datasets,
evaluating thirteen models, and performing quali-
tative checks of the model outputs. Despite these
efforts, inherent biases may persist, and we en-
courage further scrutiny through external audits
and real-world user testing. Future research should
focus on developing bias-aware training methods,
expanding dataset representativeness, and incorpo-
rating user feedback loops to enhance fairness and
inclusivity. Additionally, interdisciplinary collabo-
rations with social scientists, ethicists, and affected
communities can help refine ethical AI deployment
and ensure equitable outcomes for all users. This
work emphasizes the need for AI systems that pri-
oritize user trust and safety while acknowledging
the potential limitations associated with AI deploy-
ment in sensitive contexts.

6https://creativecommons.org/licenses/by/4.0/
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Maja Popović. 2017. chrF++: words helping charac-
ter n-grams. In Proceedings of the Second Confer-
ence on Machine Translation, pages 612–618, Copen-
hagen, Denmark. Association for Computational Lin-
guistics.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don‘t know: Unanswerable ques-
tions for SQuAD. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 784–789,
Melbourne, Australia. Association for Computational
Linguistics.

Jarek Reynolds, Chandra Kanth Nagesh, and Danna Gu-
rari. 2024. Salient object detection for images taken
by people with vision impairments. In Proceedings
of the IEEE/CVF Winter Conference on Applications
of Computer Vision, pages 8522–8531.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei. 2015. ImageNet Large
Scale Visual Recognition Challenge. International
Journal of Computer Vision (IJCV), 115(3):211–252.

Dustin Schwenk, Apoorv Khandelwal, Christopher
Clark, Kenneth Marino, and Roozbeh Mottaghi. 2022.
A-okvqa: A benchmark for visual question answer-
ing using world knowledge. In European conference
on computer vision, pages 146–162. Springer.

Xindi Shang, Donglin Di, Junbin Xiao, Yu Cao, Xun
Yang, and Tat-Seng Chua. 2019. Annotating objects

25962

https://openreview.net/forum?id=E18kRXTGmV
https://openreview.net/forum?id=E18kRXTGmV
https://doi.org/10.18653/v1/2024.emnlp-main.329
https://doi.org/10.18653/v1/2024.emnlp-main.329
https://doi.org/10.1038/s41586-024-07335-x
https://doi.org/10.1038/s41586-024-07335-x
https://aclanthology.org/P02-1040.pdf
https://aclanthology.org/P02-1040.pdf
https://openaccess.thecvf.com/content/CVPR2024/html/Parashar_The_Neglected_Tails_in_Vision-Language_Models_CVPR_2024_paper.html
https://openaccess.thecvf.com/content/CVPR2024/html/Parashar_The_Neglected_Tails_in_Vision-Language_Models_CVPR_2024_paper.html
https://openreview.net/forum?id=HYEGXFnPoq
https://openreview.net/forum?id=HYEGXFnPoq
https://doi.org/10.18653/v1/2022.findings-acl.196
https://doi.org/10.18653/v1/2022.findings-acl.196
https://doi.org/10.18653/v1/W17-4770
https://doi.org/10.18653/v1/W17-4770
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://openaccess.thecvf.com/content/WACV2024/html/Reynolds_Salient_Object_Detection_for_Images_Taken_by_People_With_Vision_WACV_2024_paper.html
https://openaccess.thecvf.com/content/WACV2024/html/Reynolds_Salient_Object_Detection_for_Images_Taken_by_People_With_Vision_WACV_2024_paper.html
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://link.springer.com/chapter/10.1007/978-3-031-20074-8_9
https://link.springer.com/chapter/10.1007/978-3-031-20074-8_9
https://dl.acm.org/doi/10.1145/3323873.3325056


and relations in user-generated videos. In Proceed-
ings of the 2019 on International Conference on Mul-
timedia Retrieval, pages 279–287. ACM.

Mona Sloane, Emanuel Moss, Olaitan Awomolo, and
Laura Forlano. 2022. Participation is not a design
fix for machine learning. In Proceedings of the 2nd
ACM Conference on Equity and Access in Algorithms,
Mechanisms, and Optimization, EAAMO ’22, New
York, NY, USA. Association for Computing Machin-
ery.

Kirill Smelyakov, Anastasiya Chupryna, Dmytro Yere-
menko, Anton Sakhon, and Vitalii Polezhai. 2018.
Braille character recognition based on neural net-
works. In 2018 IEEE Second International Confer-
ence on Data Stream Mining & Processing (DSMP),
pages 509–513. IEEE.

Zeren Sun, Yazhou Yao, Xiu-Shen Wei, Yongshun
Zhang, Fumin Shen, Jianxin Wu, Jian Zhang, and
Heng Tao Shen. 2021. Webly supervised fine-grained
recognition: Benchmark datasets and an approach. In
IEEE International Conference on Computer Vision
(ICCV).

Ashish Thapliyal, Jordi Pont-Tuset, Xi Chen, and Radu
Soricut. 2022. Crossmodal-3600: A Massively Mul-
tilingual Multimodal Evaluation Dataset. In EMNLP.

Bart Thomee, David A Shamma, Gerald Friedland, Ben-
jamin Elizalde, Karl Ni, Douglas Poland, Damian
Borth, and Li-Jia Li. 2016. Yfcc100m: The new
data in multimedia research. Communications of the
ACM, 59(2):64–73.

Shengbang Tong, Zhuang Liu, Yuexiang Zhai, Yi Ma,
Yann LeCun, and Saining Xie. 2024. Eyes wide shut?
exploring the visual shortcomings of multimodal llms.
In 2024 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 9568–9578.

Yu-Yun Tseng, Alexander Bell, and Danna Gurari. 2022.
Vizwiz-fewshot: Locating objects in images taken by
people with visual impairments. In European Confer-
ence on Computer Vision, pages 575–591. Springer.

Yu-Yun Tseng, Tanusree Sharma, Lotus Zhang, Abigale
Stangl, Leah Findlater, Yang Wang, and Danna Gu-
rari. 2024. Biv-priv-seg: Locating private content
in images taken by people with visual impairments.
arXiv preprint arXiv:2407.18243.

Jiayin Wang, Fengran Mo, Weizhi Ma, Peijie Sun, Min
Zhang, and Jian-Yun Nie. 2024a. A user-centric
multi-intent benchmark for evaluating large language
models. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
pages 3588–3612, Miami, Florida, USA. Association
for Computational Linguistics.

Ke Wang, Junting Pan, Weikang Shi, Zimu Lu, Houxing
Ren, Aojun Zhou, Mingjie Zhan, and Hongsheng Li.
2024b. Measuring multimodal mathematical reason-
ing with MATH-vision dataset. In The Thirty-eight
Conference on Neural Information Processing Sys-
tems Datasets and Benchmarks Track.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhi-
hao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin
Wang, Wenbin Ge, et al. 2024c. Qwen2-vl: Enhanc-
ing vision-language model’s perception of the world
at any resolution. arXiv preprint arXiv:2409.12191.

Weiyun Wang, Zhe Chen, Wenhai Wang, Yue Cao,
Yangzhou Liu, Zhangwei Gao, Jinguo Zhu, Xizhou
Zhu, Lewei Lu, Yu Qiao, et al. 2024d. Enhancing
the reasoning ability of multimodal large language
models via mixed preference optimization. arXiv
preprint arXiv:2411.10442.

Junbin Xiao, Xindi Shang, Angela Yao, and Tat-Seng
Chua. 2021. Next-qa: Next phase of question-
answering to explaining temporal actions. In Pro-
ceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 9777–9786.

Dejing Xu, Zhou Zhao, Jun Xiao, Fei Wu, Hanwang
Zhang, Xiangnan He, and Yueting Zhuang. 2017.
Video question answering via gradually refined atten-
tion over appearance and motion. In Proceedings of
the 25th ACM international conference on Multime-
dia, pages 1645–1653.

Bufang Yang, Lixing He, Kaiwei Liu, and Zhenyu Yan.
2024. Viassist: Adapting multi-modal large language
models for users with visual impairments. arXiv
preprint arXiv:2404.02508.

Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang,
Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li,
Weilin Zhao, Zhihui He, et al. 2024. Minicpm-v:
A gpt-4v level mllm on your phone. arXiv preprint
arXiv:2408.01800.

Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing
Sun, Tong Xu, and Enhong Chen. 2023. A survey on
multimodal large language models. arXiv preprint
arXiv:2306.13549.

Lu Yu, Malvina Nikandrou, Jiali Jin, and Verena Rieser.
2023. Quality-agnostic image captioning to safely
assist people with vision impairment. In Proceedings
of the Thirty-Second International Joint Conference
on Artificial Intelligence, pages 6281–6289.

Zhou Yu, Dejing Xu, Jun Yu, Ting Yu, Zhou Zhao, Yuet-
ing Zhuang, and Dacheng Tao. 2019. Activitynet-qa:
A dataset for understanding complex web videos via
question answering. In Proceedings of the AAAI
Conference on Artificial Intelligence, 01, pages 9127–
9134.

Zhiqiang Yuan, Ting Zhang, Jiapei Zhang, Jie Zhou, and
Jinchao Zhang. 2025. Walkvlm:aid visually impaired
people walking by vision language model. Preprint,
arXiv:2412.20903.

Xiang Yue, Yueqi Song, Akari Asai, Seungone Kim,
Jean de Dieu Nyandwi, Simran Khanuja, Anjali Kan-
tharuban, Lintang Sutawika, Sathyanarayanan Ra-
mamoorthy, and Graham Neubig. 2024. Pangea: A
fully open multilingual multimodal llm for 39 lan-
guages. arXiv preprint arXiv:2410.16153.

25963

https://dl.acm.org/doi/10.1145/3323873.3325056
https://doi.org/10.1145/3551624.3555285
https://doi.org/10.1145/3551624.3555285
https://ieeexplore.ieee.org/document/8478615
https://ieeexplore.ieee.org/document/8478615
https://github.com/NUST-Machine-Intelligence-Laboratory/weblyFG-dataset
https://github.com/NUST-Machine-Intelligence-Laboratory/weblyFG-dataset
https://aclanthology.org/2022.emnlp-main.45/
https://aclanthology.org/2022.emnlp-main.45/
https://dl.acm.org/doi/abs/10.1145/2812802
https://dl.acm.org/doi/abs/10.1145/2812802
https://doi.org/10.1109/CVPR52733.2024.00914
https://doi.org/10.1109/CVPR52733.2024.00914
https://link.springer.com/chapter/10.1007/978-3-031-20074-8_33
https://link.springer.com/chapter/10.1007/978-3-031-20074-8_33
https://arxiv.org/abs/2407.18243
https://arxiv.org/abs/2407.18243
https://doi.org/10.18653/v1/2024.emnlp-main.210
https://doi.org/10.18653/v1/2024.emnlp-main.210
https://doi.org/10.18653/v1/2024.emnlp-main.210
https://openreview.net/forum?id=QWTCcxMpPA
https://openreview.net/forum?id=QWTCcxMpPA
https://arxiv.org/abs/2409.12191
https://arxiv.org/abs/2409.12191
https://arxiv.org/abs/2409.12191
https://arxiv.org/abs/2411.10442
https://arxiv.org/abs/2411.10442
https://arxiv.org/abs/2411.10442
https://arxiv.org/pdf/2105.08276
https://arxiv.org/pdf/2105.08276
https://dl.acm.org/doi/abs/10.1145/3123266.3123427?casa_token=rSh8y5EgnQ8AAAAA:QXHBTNbm_pLsdnJeNldaeXWjN1Icl5ScWNrKtmpmbt_N7sAXBhrLcmXS5Y1C3PI6ddKma6FadKQ3eCc
https://dl.acm.org/doi/abs/10.1145/3123266.3123427?casa_token=rSh8y5EgnQ8AAAAA:QXHBTNbm_pLsdnJeNldaeXWjN1Icl5ScWNrKtmpmbt_N7sAXBhrLcmXS5Y1C3PI6ddKma6FadKQ3eCc
https://arxiv.org/abs/2404.02508
https://arxiv.org/abs/2404.02508
https://arxiv.org/abs/2408.01800
https://arxiv.org/abs/2408.01800
https://arxiv.org/abs/2306.13549
https://arxiv.org/abs/2306.13549
https://dl.acm.org/doi/abs/10.24963/ijcai.2023/697
https://dl.acm.org/doi/abs/10.24963/ijcai.2023/697
https://ojs.aaai.org/index.php/AAAI/article/view/4946
https://ojs.aaai.org/index.php/AAAI/article/view/4946
https://ojs.aaai.org/index.php/AAAI/article/view/4946
https://arxiv.org/abs/2412.20903
https://arxiv.org/abs/2412.20903
https://arxiv.org/abs/2410.16153
https://arxiv.org/abs/2410.16153
https://arxiv.org/abs/2410.16153


Yuanhan Zhang, Bo Li, haotian Liu, Yong jae Lee,
Liangke Gui, Di Fu, Jiashi Feng, Ziwei Liu, and
Chunyuan Li. 2024a. Llava-next: A strong zero-shot
video understanding model.

Yuanhan Zhang, Jinming Wu, Wei Li, Bo Li, Zejun
Ma, Ziwei Liu, and Chunyuan Li. 2024b. Video
instruction tuning with synthetic data. Preprint,
arXiv:2410.02713.

A Survey Design and Results

Our survey was designed to explore how individu-
als who are blind or have low vision use AI models
as visual assistants. The focus was on understand-
ing the tasks they perform and the challenges they
face. The survey combined multiple-choice and
open-ended questions, allowing for both quanti-
tative and qualitative insights. The responses are
useful to help identify patterns and areas for im-
provement in AI models to better serve individuals
with vision impairments.

A.1 Survey Construction
The survey was carefully designed with input from
individuals who are blind or have low vision to
ensure it accurately reflected their experiences and
needs. We implemented two feedback loops by
engaging with blind participants during the design
process, allowing us to refine questions and make
sure the survey was accessible and relevant.

Demographics Participants were recruited via
Prolific, and compensation was based on an av-
erage reward per hour (9 pounds) to ensure fair
payment for their time. We asked for participants
to be located across all countries available, and
for a fair distribution sample. We also added a
screener that participants have no vision (found
under Add Screeners<Health<No Vision). This re-
sulted in 25,485 matching participants who have
been active in the past 90 days. We collected a total
of 106 participants after filtering out some partici-
pants without visual impairments. Even though our
survey was completely anonymous, Prolific pro-
vides some basic demographics for participants in
a .csv format. We plotted some of the participant
demographics after excluding the vision "yes" and
"revoked_consent" participations in Figure 4.

A.2 Survey Sections and Results
Introduction. Before beginning the survey, par-
ticipants were briefed on its content and purpose:
This survey is for individuals who are blind or have
low vision and use AI models like ChatGPT or

Gemini as visual assistants. Our goal is to under-
stand the tasks they perform, the challenges they
encounter, and their overall experiences with AI.

We then obtained their consent, assuring them
that their responses would remain completely
anonymous—no email addresses or identifying in-
formation were requested. Participants were in-
formed that the survey would contribute to a re-
search project leading to a scientific publication and
were encouraged to answer honestly and thought-
fully. Additionally, we provided contact details for
both the student and their supervisor.

At the beginning of the survey, we had some
initial questions asking participants about their pro-
lific ID, and we added an extra question to verify
Prolific’s screener is accurate and that we are go-
ing to get responses from visually impaired people.
As shown in Figure 10, there were actually some
participants who did not have a visual impairment,
so we had to filter their responses.

Phase 1: Open Ended Questions. The second
section, as shown in Figure 11, was about user
adoption and tasks, asking participants whether
they currently use or would consider using Artifi-
cial Intelligence models as visual assistants. After
filtering the responses from individuals without
impairments, we visualize the results in Figure 5.
Most participants would use AI models as visual
assistants, but there are some who are reluctant
to use them. Participants were also asked to list
situations where AI would be most helpful as a vi-
sual assistant, providing their responses as comma-
separated elements. We left the question open to
gather insights into the settings and tasks partici-
pants perform using AI models. The third question
asked participants about problems and challenges
they have experienced when using AI models as
visual assistants.

We conducted an iterative thematic analysis to
better understand participants’ perceptions of the
open-ended questions, following (Liao et al., 2024).
Two authors reviewed and coded all responses into
thematic categories. They then met with the re-
search team to compare and finalize the themes.
For the user tasks questions, we tried to use key-
words from the responses to stay closer to the orig-
inal task; for the challenges question, we tried to
group the concerns under more generic themes.

In Figure 7 we present a wordcloud of term
frequencies of extracted themes from the responses
regarding AI problems and challenges. We also
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present further details of the most recurrent themes
along with definitions and examples that justify
their grouping in Table 7.

The last section, as shown in Figure 12, was
optional and asked for any additional feedback or
comments, but we only collected 40 responses, and
most of them had no new insights.

Phase 2: Likert Scale Questions. For the second
phase of the survey, we asked the same participants
after they provided their open-ended question an-
swers to rate specific tasks and challenges. The
task was to indicate on a scale of 1 to 5 how likely
they are to use AI models for any of the following
tasks: Image Captioning, Image Question Answer-
ing (IQA), Braille support, Video Question Answer-
ing (VQA), and Navigation. The exact phrasing
of the questions can be seen in Figure 13. We

Figure 6: Visualizing all the user cases listed in our
survey under the tasks open-ended question.

then asked them to indicate how problematic their
shortcomings are related to image quality, language
barriers, misinformation, latency, and bias. These
categories were chosen based on the discussions
we had with visually impaired users in the survey
design phase. The exact phrasing of the questions
can be seen in Figure 14.

The results from Phase 2, presented in Figure 8
and Figure 9, indicate a growing adoption of AI
models for tasks such as image captioning, ques-
tion answering, and Braille recognition. However,
opinions on using AI for navigation are more var-
ied, with responses distributed across all possible
values, suggesting that participants are not certain
about using AI models as navigators.

Regarding challenges, misinformation appears
to be the most common issue faced by participants,
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Theme Description Example

Inaccuracies Whether the model provides accurate
predictions

Accuracy is one issue whether this is about objects or
faces, Innacurate object detection; gives wrong direc-
tions; can provide inaccurate information

Context Ability to interpret information based on
surrounding factors, background knowl-
edge, and situational cues

problematic contextual understanding; inadequate local-
ization and navigation; limited scene understanding; AI
may not grasp complex spatial relationships or context;
difficulty in recognizing context; limited understanding
of social cues

Recognition Whether the model can recognize ob-
jects, faces, characters

"Inaccurate Object Recognition; Object recognition er-
rors"; difficulty recognizing elements in dimly lit envi-
ronments; recognizing small or ambiguous objects or
text; limitations in recognizing facial expressions; error
in recognizing text in blurred or obstructed images

Description Whether the model can describe objects
or scenes (from image or video)

"Difficulty describing complex scenes with multiple ob-
jects; Bad photo descriptions; inability to describe nu-
anced scenes; inability to describe subjective or abstract
contexts and challenges in distinguishing similar ob-
jects"

Languaculture Difficulties in effectively using or un-
derstanding language in multilingual or
multicultural settings

Speaking in my native language is not natural; Does not
speak my language; They cannot identify culture-specific
photographs

Privacy Whether data is kept private and stored
securely

Constant image and audio processing could raise secu-
rity issues; Privacy concerns when analyzing personal
images or surroundings

Miscommunication Communication barriers and misinter-
pretation of user input or intent

They misunderstand what I mean; I dont know how to
describe something to an AI model or how to get a cor-
rect response; Not effectively understanding my need or
description of the question

Quality
Dependency

Reliance on high-quality training data
for accurate outputs

Dependency on high-quality data; Problems with blurry
images that are too colorful or lower quality; Weather
and lighting conditions and poor image quality can re-
duce accuracy

Latency The delay in processing or response time Speed of process is slow; Delays in processing can affect
real-time assistance; Slow responses; No fast natural
human-like answers

Trust The belief or confidence in the reliability,
and truth of the model outputs

I cannot trust it with confidence; No trust in description
of images; There is no trust between users and technol-
ogy; Detailed information cannot be trusted

Table 7: Themes found in phase 1 question about problems and challenges participants have experienced when
using AI models as visual assistants.

Figure 7: Visualizing all the concerns listed in our sur-
vey under the challenges open-ended question.

followed by language-related difficulties. Image
quality also poses a problem, potentially affecting
the reliability of AI-generated descriptions. While
latency is a concern for many, a significant number
of participants remain neutral on this issue. No-
tably, bias does not seem to be a major issue among
respondents, indicating that, at least in their experi-

ence, AI models are perceived as relatively fair in
their outputs.

We refrain from making broad generalizations
and encourage readers to interpret these findings
in the context of our sample size. Future research
with larger and more diverse participant groups
may provide further insights into these trends.

B Visual Question Answering

Given the lack of multilingual visual question-
answering datasets focused on visually impaired
users (Karamolegkou et al., 2024), and the chal-
lenges in evaluating multilingual models for visual
question answering (Pfeiffer et al., 2022), we de-
cided to create a multilingual version of the existing
VizWiz dataset (Gurari et al., 2018). The original
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dataset is under CC BY 4.0 license.7

B.1 Multilingual Dataset Construction
Translation and Filtering We extend the
VizWiz dataset to a multilingual setting by automat-
ically translating the original questions and answers
into 35 languages from the XM3600 benchmark
(Thapliyal et al., 2022), shown in Table 8. We ex-
clude Cuzco Quechua because it is not supported
by most translation models. We use the NLLB-
Distilled-1.3B (Costa-jussà et al., 2022) model to
translate the question-answer pairs, given its strong
performance and extensive language coverage. Ad-
ditionally, we sample for translation a stratified
subset of 500 questions, utilizing the skill annota-
tions to ensure representative coverage of different
visual question-answering scenarios.

We follow the automatic translation process de-
scribed by (Yue et al., 2024). We generate multiple
translations of each question-answer pair and em-
ploy backtranslation for filtering. Specifically, we

7https://creativecommons.org/licenses/by/4.0/

keep the translation whose backtranslation to En-
glish has the highest BLEU score (Papineni et al.,
2002) with the original input as reference.

Evaluation For evaluation, we follow the VizWiz
framework which relies on multiple answer refer-
ences to compute the model accuracy. We extend
the answer preprocessing to include non-English
punctuation symbols and additionally perform uni-
code normalization on both predicted and ground
truth answers.

B.2 Human Evaluation of Automatic
Translation

To validate the quality of the automatically trans-
lated VizWiz QA data, we run a human evaluation.
The evaluation focused on assessing the quality of
machine-translated questions and answers while
quantifying translation errors. At least 20 trans-
lated questions in random order were reviewed per
language, each accompanied by 10 similar short an-
swers. Evaluators assessed only the quality of the
target language translation and provided relevant
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Figure 10: Phase 1: First section of the survey
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Figure 11: Phase 1: Second section of the survey
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Figure 12: Phase 1: Last question before we direct the participants to the second phase.
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Figure 13: Phase 2: Asking participants to rate tasks that AI can be used for.
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Figure 14: Phase 2: Asking participants to rate challenges they have encountered when using AI models.
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Language ISO Code Script Resource

Arabic ar Arabic High
Bengali bn Bengali Mid
Czech cs Latin High
Danish da Latin Mid
German de Latin High
Greek el Greek Mid
English en Latin High
Spanish es Latin High
Persian fa Arabic High
Finnish fi Latin High
Filipino fil Latin Mid
French fr Latin High
Hebrew he Hebrew Mid
Hindi hi Devanagari High
Croatian hr Latin Mid
Hungarian hu Latin High
Indonesian id Latin Mid
Italian it Latin High
Japanese ja Japanese High
Korean ko Hangul High
Māori mi Latin Low
Dutch nl Latin High
Norwegian no Latin Low
Polish pl Latin High
Portuguese pt Latin High
Romanian ro Latin Mid
Russian ru Cyrillic High
Swedish sv Latin High
Swahili sw Latin Low
Telugu te Telugu Low
Thai th Thai Mid
Turkish tr Latin High
Ukrainian uk Cyrillic Mid
Vietnamese vi Latin High
Chinese zh Han High

Table 8: Language, ISO-Codes, script, and resource
levels.

examples and comments in a spreadsheet tab corre-
sponding to each language. The human evaluation
guidelines are shown in Figure 15.

The study examined 7 languages selected based
on the authors’ fluency. Each language was as-
sessed using 220 data points, resulting in a total of
1,540 translated questions and answers. Of these,
257 were labeled as incorrect, yielding an average
translation error rate of 16.28%, representing the
proportion of translations with noticeable errors.

Most errors occurred because of improper trans-
lation of English brand names, which were mis-
takenly translated as generic words or altered (e.g.,
Gevalia Coffee, Diet Coke, Dr Pepper, Windows
PC, LG, Mrs. Dash, Manwich). Additionally, there
were issues with yes/no questions, where some
languages produced incorrect responses such as
double ‘yes, yes’, ‘I don’t know’, or ‘I am sorry’
instead of a simple yes or no.

Some errors also resulted from problematic orig-

inal answers that contained typos or ungrammatical
phrases, such as ‘can diet’ instead of ‘a can of Diet
Coke’ or ‘ginerale’ instead of ‘ginger ale’. A no-
table case involved the number 321, which was
mistranslated as a random sentence rather than be-
ing retained as a numeral.

Finally, two ambiguous words in the validation
set—‘denomination’ and ‘dressing’—posed chal-
lenges. Since the responses consisted of short,
context-free answers, some models translated them
with a single interpretation, while others chose
a different meaning, resulting in inconsistencies
across languages and a deviation from the intended
meaning of the correct response.

B.3 Further Results

We report performance per language script in Ta-
ble 10, and per language in Table 11.

Model High Mid Low

Idefics3 24.8 20.8 21.7
InternVL2.5-MPO 40.3 36.4 39.6
Llava-v1.6 41.9 37.7 43.3
Llama-3.2-Vision-Instruct 29.8 27.6 33.4
Molmo 28.2 28.5 32.6
MiniCPM-2.6 32.1 31.0 22.7
Paligemma 19.5 13.7 11.2
Pangea 39.2 31.2 30.4
Phi-3-Vision-Instruct 36.9 36.3 34.6
Qwen2-VL-Instruct 44.8 44.9 42.9

Table 9: Accuracy on multilingual VizWiz grouped
based on the language characterization as High, Mid,
and Low resource.

C Optical Braille Recognition

Dataset Creation We generate rendered images
of Braille text as summarized in Section 7.1. We
apply augmentations to the images from both tran-
scription and cross-script QA tasks using the im-
gaug library (Jung et al., 2020). More specifically,
we use color, edge, geometric, contrast, and blur
transformations families, where an image can be
transformed with multiple of these augmentations
at the same time. For color, we select one of pos-
terize, color quantization, and color temperature.
With regards to edge transformation, we either
sharpen, emboss the image, or convert edges into
black or white and overlay the resulting transforma-
tion with the original image. For geometric trans-
formations, we shear the image over the width or
height or rotate the image. Additionally, we scale
pixel values by a fixed gamma constant. Finally, we
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Human Evaluation Instructions

MULTILINGUAL TRANSLATION EVALUATION

Objective:
Your task is to evaluate the translation quality of at least 20 machine-translated questions and their
corresponding answers. (1 question has 10 similar short answers.) Focus only on the quality of
the target language translation, not the accuracy of the question-answer content. Translations are
provided in a JSON file, and results should be recorded in the spreadsheet tab labeled with your
language name.

Evaluation Process:

1. Review Translations:

• Read the translated answers for each question in the JSON file.
• If unsure about a translation, retrieve the original question using the image ID on

this platform: https://vizwiz.cs.colorado.edu/VizWiz_visualization/view_
dataset.php.

2. Identify Errors: For each translated question-answer pair, check for errors. For example you
can identify:

• Grammatical Errors: Incorrect grammar or sentence structure.
• Lexical Errors: Incorrect word choices or omissions.
• Formatting Errors: Issues with punctuation or capitalization.

3. Assign Error Severity:

• Minor: Small errors that do not impact the meaning.
• Moderate: Errors that partially affect clarity or meaning.
• Severe: Errors that significantly alter or obscure the meaning.

4. Count Errors:

• Track the total number of errors for each translated QA pair.
• Provide a severity score for each error identified.

Report Results:
Record your results in the spreadsheet using the provided structure:

ImageID, Error Count, Error Type, Comments, Examples

If a QA pair has multiple error types, separate them with commas under Error Type.

Figure 15: Guidelines for Multilingual Translation Evaluation.

apply either Gaussian, bilateral, motion, or mean
shift blur. All augmentations are applied in random
order. The values for all of the parameters, along
with scripts to reproduce the augmentations, are
available in our GitHub repository.

Table 16 illustrates examples of inputs and out-
puts for both tasks, where the Braille text is ren-
dered in images that have been augmented, and the

model needs to output plain English text. Note that
in all cases, the correct output cannot be inferred
unless the model is able to read the Braille content
from the image.

Training Logs & Hyperparameters Table 13
illustrates the hyperapameters used to finetune
Llama-3.2-Vision-Instruct on both tasks for Optical
Braille Recognition. Note that the LoRA adapters
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Model Latin Han Japanese Hangul Cyrillic Arabic Devanagari Hebrew Thai Telugu Greek Bengali

Idefics3 26.1 11.2 8.9 19.2 17.5 23.7 27.0 25.9 11.5 13.4 20.8 20.3
InternVL2.5-MPO 40.5 44.1 39.7 25.9 27.2 41.3 35.6 43.6 42.0 39.6 39.3 29.3
Llava-v1.6 42.9 43.2 34.3 42.0 24.9 42.5 41.2 44.0 42.6 42.9 41.7 19.0
Llama-3.2-Vision-Instruct 31.1 35.9 23.5 20.7 23.2 30.7 16.9 34.3 37.9 30.9 26.8 18.0
Molmo 31.8 23.6 6.8 32.1 25.5 22.0 12.8 42.3 19.4 30.1 33.2 12.5
MiniCPM-2.6 34.0 43.4 32.2 21.4 24.4 22.1 11.0 31.8 33.5 14.4 34.9 10.3
Paligemma 18.4 15.5 26.9 22.9 13.3 8.9 9.9 10.8 13.1 20.5 9.9 12.5
Pangea 37.2 44.4 26.2 31.4 27.1 42.6 40.1 47.5 27.3 28.5 41.6 13.7
Phi-3-Vision-Instruct 38.7 33.7 31.5 34.3 26.0 33.0 30.4 37.7 37.7 30.1 35.5 35.5
Qwen2-VL-Instruct 45.5 42.7 36.9 44.6 43.0 43.9 44.2 42.2 46.3 42.9 46.4 42.1

Table 10: Accuracy on multilingual VizWiz per script.

Model ar bn cs da de el en es fa fi fil fr he hi hr hu id it

Idefics3 25.7 20.3 22.4 27.8 37.4 20.8 50.4 26.8 21.7 25.6 14.1 22.4 25.9 27.0 21.8 19.7 30.9 31.9
InternVL2.5-MPO 42.9 29.3 38.9 36.3 43.3 39.3 60.2 37.8 39.8 41.0 43.3 40.7 43.6 35.6 41.8 32.4 35.8 41.6
Llava-v1.6 43.6 19.0 40.8 43.3 46.5 41.7 60.1 42.0 41.4 40.7 43.7 44.0 44.0 41.2 39.4 41.8 45.1 44.7
Llama-3.2-Vision-Instruct 41.3 18.0 32.0 20.8 33.4 26.8 45.1 35.8 20.1 33.3 15.7 32.2 34.3 16.9 28.3 23.7 37.2 36.9
Molmo 38.9 12.5 24.6 27.2 23.6 33.2 43.6 31.7 5.2 25.4 38.4 32.6 42.3 12.8 29.7 32.4 40.8 31.6
MiniCPM-2.6 39.8 37.6 16.9 3.6 8.3 36.8 30.8 44.0 32.4 34.1 30.3 39.5 55.3 70.2 34.3 40.8 5.0 6.0
Paligemma 5.6 12.5 12.3 13.5 26.2 9.9 78.3 10.6 12.2 26.0 16.7 4.7 10.8 9.9 9.9 16.6 19.4 12.0
Pangea 43.9 13.7 45.8 39.0 15.2 41.6 62.2 41.5 41.3 43.7 24.4 45.0 47.5 40.1 21.2 36.9 43.8 46.0
Phi-3-Vision-Instruct 33.6 35.5 36.6 38.3 37.5 35.5 51.0 37.4 32.5 36.9 41.0 36.3 37.7 30.4 38.2 39.6 41.1 39.4
Qwen2-VL-Instruct 45.3 42.1 41.6 47.2 48.2 46.4 68.6 43.7 42.5 45.6 47.8 44.8 42.2 44.2 44.7 35.4 48.9 44.7

ja ko mi nl no pl pt ro ru sv sw te th tr uk vi zh

Idefics3 8.9 19.2 28.9 27.8 25.8 25.3 26.1 22.3 22.7 21.8 18.8 13.4 11.5 17.2 12.4 28.8 11.2
InternVL2.5-MPO 39.7 25.9 43.3 44.4 40.5 40.5 40.2 42.6 44.8 30.3 34.8 39.6 42.0 40.0 9.6 41.8 44.1
Llava-v1.6 34.3 42.0 43.0 45.3 44.0 41.4 41.6 40.8 32.3 36.5 43.2 42.9 42.6 35.0 17.4 40.6 43.2
Llama-3.2-Vision-Instruct 23.5 20.7 32.2 30.8 39.9 26.2 39.3 32.4 21.3 21.9 30.6 30.9 37.9 25.6 25.0 30.7 35.9
Molmo 6.8 32.1 39.2 28.1 33.0 28.5 38.8 30.8 40.2 37.7 28.0 30.1 19.4 17.4 10.8 36.0 23.6
MiniCPM-2.6 36.3 20.4 38.3 27.5 36.5 37.0 35.8 27.7 16.7 5.3 34.7 38.3 21.5 33.7 41.0 42.0 33.8
Paligemma 26.9 22.9 1.2 41.2 12.7 12.1 18.2 21.2 16.9 19.2 10.5 20.5 13.1 13.8 9.7 9.3 15.5
Pangea 26.2 31.4 43.2 29.6 35.9 43.8 45.5 43.5 44.0 14.8 14.2 28.5 27.3 40.4 10.2 41.8 44.4
Phi-3-Vision-Instruct 31.5 34.3 39.2 36.5 38.5 38.3 34.5 43.5 37.5 43.8 30.5 30.1 37.7 42.0 14.5 31.7 33.7
Qwen2-VL-Instruct 36.9 44.6 41.9 46.4 43.7 45.3 37.9 46.8 49.0 44.9 43.1 42.9 46.3 42.3 37.1 47.1 42.7

Table 11: Accuracy on multilingual VizWiz per language.

Model #1 #2 # 3 # 4 Avg

InternVL2.5-MPO 0.92 0.79 0.87 0.88 0.86
MiniCPMV2.6 0.91 0.74 0.79 0.89 0.84
Phi-3-Vision-Instruct 0.87 0.73 0.83 0.92 0.84

Table 12: Pearson correlation coefficients between hu-
man participant and Llama scores (all of them statisti-
cally significant with p « 0.05).

are applied to the key and value weight matrices
in each transformer layer following the default im-
plementation (Hu et al., 2022). We expect that
applying the adapters to other linears can further
improve performance. All experiments were con-
ducted using 1xH100 GPU. Training logs for all
runs are available linked removed for review.

D Video Object Recognition and
Question Answering

ORBIT dataset ORBIT (Massiceti et al., 2021)
is a dataset of videos collected by people who are
blind/low-vision, originally collected for few-shot
object recognition. The dataset includes “clean"
videos, which show an object in isolation, and “clut-
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Figure 16: Video duration histogram.

ter" videos, which show the target object in the con-
text of other items. The target objects are labelled
by the participants and grouped into clusters by the
dataset authors. Videos are provided at 1080x1080
frame resolution and 30 frames per second. We
utilize 1069 video clips from 51 participants and
92 object clusters, with a median duration of 19.7
seconds (see Figure 16 for the video duration dis-
tribution). The videos include household objects,
which are general everyday objects (e.g., TV re-
mote, house keys, wallet) and assistive items (e.g.,
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Figure 17: Number of videos per assistive category.
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Figure 18: Accuracy on VideoQA when prompting the
model to output “Not enough information" as needed.

Braille display, white cane, liquid level indicator),
as illustrated in Figure 17.

D.1 Video Object Recognition Dataset
Construction

For video object recognition, we use the dataset
provided from (Massiceti et al., 2021). The dataset
is under CC BY 4.0 license. 8 We select 512
“clean" and 514 “clutter" videos through stratified
sampling across object categories. We convert the
dataset into a question-answering format using a
two-step semi-automatic process. First, we prompt
a language model to extract a representative key-
word for each object cluster. Second, based on
these keywords and object labels, we generate an
object recognition question for each group. The
prompts used for the dataset creation are shown
in Figure 20. Finally, the generated questions are
reviewed manually and adjusted if needed.

8https://creativecommons.org/licenses/by/4.0/
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Figure 19: Accuracy in Video Object Recognition in
Clean vs Clutter videos.

D.2 Video Question Answering Dataset
Construction

Since there is currently no dataset with question
answering for videos filmed by visually impaired
users, we decided to curate such a dataset using
videos from ORBIT (Massiceti et al., 2021). We
use only “clutter" videos that provide a more natu-
ralistic setting.

We generate three types of questions: 1) Descrip-
tive Questions, such as questions about color and
number of objects, 2) Spatial Understanding, such
as questions about the location or spatial relation-
ship between objects and 3) Adversarial Questions
which cannot be answered based on the informa-
tion provided in the video. To generate the ques-
tions, we used a manual approach where three of
the authors of the paper followed the guidelines
provided in Figure 21. We create a total of 882
question-answer pairs (294 per question type).

D.3 Evaluation Metric
Given that only one label is available for each ques-
tion, we adopt the LAVE metric (Mañas et al.,
2024) for evaluation. LAVE uses a language model
judge to provide a rationale and a rating between 1-
3. Ratings are then normalized in the range [0,
1]. We use Llama-3.3-70B-Instruct (AI@Meta,
2024) as the language model. We also involved
four human evaluators to independently evaluate
150 responses from three of our models. Table 12
shows the Pearson correlation coefficients between
human participant and Llama scores (all of them
statistically significant with p « 0.05).

D.4 Further Results
Given the low performance on adversarial ques-
tions, we explore whether explicit prompting can
mitigate this shortcoming. We modify the prompt
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Hyperparameter Values

global batch size 64
LR {1e-5, 1e-4, 5e-4}
lr schedule cosine decay
LR warmup 0.03
number of epochs 1
optimizer AdamW
LoRA rank {32, 64, 128, 256}
LoRA alpha {16, 32, 64, 128, 256, 512}

Table 13: Hyperparameters during both finetuning on
both sentence-level and paragraph-level tasks.

to instruct models to respond with “Not enough
information" when the video content is insufficient
to answer the question. As shown in Figure 18, per-
formance in Adversarial Questions consistently im-
proves with the “Not enough information" prompt.
For most models, however, performance remains
poor (at most 50% accuracy) with minimal effect
on other question types. This suggests that models
continue to hallucinate answers frequently. While
performance increases drastically for MiniCPM-V-
2.6 and Phi-3.5-Vision-Instruct, this comes at the
cost of performance in other categories, as mod-
els tend to unnecessarily over-generate the “Not
enough information" response. These results sug-
gest that current prompting strategies alone can-
not reliably prevent hallucination in video question
answering—a critical safety concern for assistive
applications.

E Models

Table 14 reports the details for selected models, in-
cluding the Huggingface tag used when accessing
the model, the total number of model parameters,
and whether models support image, video, and mul-
tilingual inputs. Additionally, we report whether
VizWiz is included in the model’s training data. We
find no evidence that any models are exposed to the
ORBIT dataset. Note that Paligemma is the only
model that is not instruction fine-tuned, which is
why we exclude it from zero-shot results in optical
Braille recognition (Table 3).

F Examples and Qualitative Analysis

The qualitative examples presented in Table 15 and
Table 16 reveal key insights into model behaviors
across multiple challenging tasks, including cul-
tural captioning, multilingual understanding, assis-
tive technology, and braille recognition.

Cultural Captioning and Multilingual Perfor-
mance: The first set of examples illustrates the
variation in descriptive richness and accuracy be-
tween Phi-3.5 and MiniCPM-2.6 models. Phi tends
to produce concise and sometimes overly generic
captions (e.g., Example 1), whereas MiniCPM of-
ten generates more elaborate and evocative descrip-
tions. However, both models struggle to correctly
capture culturally specific or nuanced details (Ex-
amples 2 and 3), highlighting ongoing limitations
in culturally aware captioning. The replication of
original errors, such as confusing "blanket" with
"blank CD" (Examples 5 and 6), suggests potential
memorization or insufficient generalization, espe-
cially in multilingual contexts.

Assistive Technology Recognition: Examples
7 through 9 emphasize difficulties in identifying
assistive devices like braille readers or special-
ized hardware. Models frequently misclassify or
confuse objects, indicating a need for improved
domain-specific understanding and training.

Spatial and Adversarial Question Answering:
In spatial and more complex question-answering
scenarios (Examples 10 to 12), MiniCPM generally
outperforms Phi in descriptive accuracy and rea-
soning, though both provide incorrect answers on
adversarial or ambiguous inputs, underlining the
challenge of nuanced comprehension.

Optical Braille Recognition (OBR): Table 16
provides sample inputs and outputs for the Braille-
to-Text transcription and Cross-Script Question
Answering tasks. The transcription task requires
precise mapping of Braille symbols to English
text. Outputs demonstrate that when models cor-
rectly decode Braille (e.g., transcription of news ex-
cerpts), they can produce coherent and contextually
accurate text. However, the question-answering
task reveals challenges in visual-textual reasoning
and handling unanswerable queries, reflecting the
complexity of cross-modal understanding and the
necessity for robust grounding in both image and
text modalities.

Summary of Qualitative Analysis: This analy-
sis highlights systematic strengths and weaknesses
across models and tasks. While some outputs show
impressive descriptive abilities and accurate an-
swers, persistent errors and variability indicate ar-
eas for future improvement, especially in cultural
nuance, multilingual contexts, adversarial settings
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Model Huggingface Tag Param Image Video Multilingual Trained on
(# Langs) VizWiz

Idefics3 (2024) HuggingFaceM4/Idefics3-8B-Llama3 8B ✓ ✗ ✗ ✗
InternVL2.5-MPO (2024d) OpenGVLab/InternVL2_5-8B-MPO 8B ✓ ✓ ✓(11) ✗
LLaVA-NeXT-Video (2024a) llava-hf/LLaVA-NeXT-Video-7B-hf 7B ✗ ✓ ✗ ✗
LLaVA-Video (2024b) lmms-lab/LLaVA-Video-7B-Qwen2 7B ✗ ✓ ✗ ✓∗

LlaVA-v1.6 (2024a) llava-hf/llava-v1.6-mistral-7b-hf 8B ✓ ✗ ✗ ✗
Llama-3.2-Vision-Instruct (2024) meta-llama/Llama-3.2-11B-Vision-Instruct 11B ✓ ✗ ✗ –
MiniCPM-V-2.6 (2024) openbmb/MiniCPM-V-2_6 8B ✓ ✗ ✓(36) ✓
Molmo (2024) allenai/Molmo-7B-D-0924 7B ✓ ✗ ✗ ✗
Paligemma (2024) google/paligemma-3b-mix-448 3B ✓ ✗ ✓(35) ✓
Pangea (2024) neulab/Pangea-7B-hf 8B ✓ ✗ ✓(39) ✗
Phi-3.5-Vision-Instruct (2024) microsoft/Phi-3.5-vision-instruct 4B ✓ ✓ ✓(–) –
Qwen2-VL-Instruct (2024c) Qwen/Qwen2-VL-7B-Instruct 8B ✓ ✓ ✓(–) –
VideoChat-Flash (2024d) OpenGVLab/VideoChat-Flash-Qwen2-7B_res448 8B ✓ ✓ ✗ ✗

Table 14: Model Details. The model pool is limited to 1) open-source/weights models with 2) strong image or
video understanding capabilities, and 3) medium computational overhead. ‘–’ is used when there is insufficient
public information to determine the value. * VizWiz is included in the image training phase before video instruction
tuning.

and specialized domains like assistive technologies
and Braille recognition.
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Prompts for ORBIT Video Object Recognition Data Generation

KEYWORD EXTRACTION

You will be given a list of objects, and you have to answer with one short word or phrase that can
be used to describe the group.
Examples
Objects: [watch, wrist watch, apple watch, apple wath, risk watch, my apple watch]
Answer: watch
Objects: [black small wallet, my purse, my wallet, ladies purse, money pouch, coin purse, wallet
for bus pass cards and money, id wallet, ipod in wallet, walletv, wallet, purse]
Answer: wallet
Objects: [orbit Braille reader and notetaker, orbit reader 20 Braille display, Braillepen slim Braille
keyboard, Braille orbit reader, Braille note, my Braille displat]
Answer: Braille reading device
Generate the answer for the following objects:

QA DATA GENERATION

You will be given a list of objects and a common label that describes the group. Your task is to
generate a question that can be asked to identify an instance of this group in a video.
Examples:
Objects: [slippers, nike trainers, my shoes, boot, trainers, trainer shoe, slipper, my trainers, shoes,
running shoes]
Group: shoes
Question: What type of clothing do you see in the video?
Objects: [orbit Braille reader and notetaker, orbit reader 20 Braille display, Braillepen slim Braille
keyboard, Braille orbit reader, Braille note, my Braille displat] Group: Braille reading device
Question: What kind of assistive device was there?
Objects: [black small wallet, my purse, my wallet, ladies purse, money pouch, coin purse, wallet
for bus pass cards and money, id wallet, ipod in wallet, walletv, wallet, purse]
Group: wallet
Question: What type of accessory appears in the video?
Generate the question for the following:

Figure 20: Prompts for the Video Object Recognition dataset.
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Instructions for ORBIT Video QA Data Generation

ANNOTATION GUIDELINES FOR VIDEO-BASED QUESTION GENERATION

Step1: Video Access Open this link containing short videos: url and the json file attached. Watch
50 short video clips and generate 3 short questions + short answers about the clip.
Step2: Question Generation Questions should be designed to help a Visually Impaired Person
(VIP) understand and interact with their environment. They should be based on information that
can be visibly inferred from the video. The focus should be on:

• Descriptive Questions (D) These questions ask about the appearance, quantity, or basic
attributes of objects. Examples: "What is the colour of this item?", "How many X items do
you see?", "What shape is this object?"

• Spatial Understanding Questions (S) These questions focus on the location and relationships
between objects and people. Examples: "What is next to this item?", "Where is item X?", "Is
there an item Y next to item X?"

• Adversarial Questions (A) These questions ask for items or cues not present in the video.
Examples: "Is there an X in the image?", "Is there an X item next to the Y item?", "Is the
colour of X item green?"

The answer to this question is always: "Not enough information are depicted in the video to
answer this question."

Step3: Answer Generation Answers should be grounded in the information provided in the video.
They should be short, clear, concise, and based on the video footage. For example Q: "How many
X items are there", A: "four", Q: "Where is X item placed?" A: "inside a kitchen cabinet", Q: "Are
there any mangoes next to the toy?" A: "No".
Step4: Write the video name id (eg. "P100–exercise bench–clutter-pan–P100–exercise-bench–
clutter"), question, question_type, and answer, in the json file. We provide some examples there
for your guidance.

Figure 21: Guidelines for Video Question Answering Data Generation
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Table 15: Sample qualitative examples across tasks, highlighting differences in model outputs.

Example Source True Label Phi-3.5 MiniCPM-2.6

1 VizWiz_train_00023346.jpg A 2008 bottle of
Chateauneuf du Pape
French red wine sit-
ting on a table

A bottle of wine An evening of fine
wine and relaxation:
A bottle of 2omaine
Les Raymond
Châteauneuf-du-
Pape from 2008,
ready to be savored
in a cozy setting.

2 VizWiz_train_00007395.jpg Hardcover of Rus-
sian book with
a picture of men
on a boat about
James Cook’s first
circumnavigation of
the world

Embarking on a Jour-
ney: Discovering the
First Greek Voyage
to India

The image show-
cases a book with a
blue cover

3 VizWiz_train_00018636.jpg A 100 South African
Rand bank note
against a dark sur-
face

A 100 dollar bill Harmony in Diver-
sity: A Vibrant Dis-
play of Cultural Sym-
bols and Colors.

4 VizWiz_val_00004201.jpg Hunt’s, Manwich,
Hunt’s Sloppy Joe
Sauce, Sloppy Joe
Sauce

Hunt’s, Manwich,
Hunt’s Sloppy Joe
Sauce, Sloppy Joe
Sauce.

Hunt’s, Manwich,
Hunt’s Sloppy Joe
Sauce, Sloppy Joe
Sauce

5 VizWiz_val_00002074.jpg blank, blank CD,
Maxwell, blanket,
blank

blank, blank CD,
Maxwell, blanket,
blank

blank, blank CD,
Maxwell, blanket,
blank

6 VizWiz_val_00002074.jpg vide, vide CD,
Maxwell, couverture,
vide

le vide, Un CD vide,
Je suis désolé, Max-
ell CD-R est, couver-
ture, le vide

le vide, Un CD vide,
Je suis désolé, Max-
ell CD-R est, couver-
ture, le vide

7 P198–braille-orbit-reader.mp4 braille orbit reader remote control remote control

8 P198–braille-orbit-reader.mp4 braille orbit reader remote control Orbit Reader 20

9 P455–victor-reader-stream.mp4 victor reader stream Computer mouse Remote control

10 P235–bottle-of-alcoholic-drink.mp4 How many bottles of
wine do you see? A:
1

2 1

11 P400–mayonnaise-jar–clutter-pan.mp4 Next to what jar is
the ketchup? A:
Mayonnaise jar

Tomato Hellmann’s Real
Mayonnaise jar

12 P642–symbol-cane–.mp4 What color are the
headphones? A:
Unanswerable

White White
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Source: WMT2024
Input: Transcribe the Braille to English.
Output: British newspaper The Guardian suggested Deutsche Bank

controlled roughly a third of the 1200 shell companies used

to accomplish this.

Source: WMT2024
Input: Transcribe the Braille to English.
Output: Despite these accusations, Ma won handily on a platform

advocating closer ties with the Chinese mainland.

Source: WMT2024
Input: Transcribe the Braille to English.
Output: his second goal of the night was his 60th of the season,

becoming the first player to score 60 or more goals in a season since

1995-96, when Jaromir Jagr and Mario Lemieux each reached that

milestone.

Source: SquAD
Input: Answer the following question based on the image.
If the question is not answerable, output ‘unanswerable’.
When were the Normans in Normandy?
Output: 10th and 11th centuries

Source: SquAD
Input: Answer the following question based on the image.
If the question is not answerable, output ‘unanswerable’.
What Egyptian president jailed hundreds of members of the Brotherhood?
Output: unanswerable

Table 16: Illustration of inputs-outputs for the two Optical Braille Recognition tasks: Braille-to-Text Transcription
and Cross-Script Question Answering. Highlighted text indicates the target output. Note that the model cannot
provide the correct response unless it can map Braille symbols to English.
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