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Abstract

Limited availability of multilingual text corpora
for training language models often leads to poor
performance on downstream tasks due to un-
dertrained representation spaces for languages
other than English. This ‘under-representation’
has motivated recent cross-lingual transfer
methods to leverage the English representa-
tion space by e.g. mixing English and ‘non-
English’ tokens at the input level or extend-
ing model parameters to accommodate new
languages. However, these approaches often
come at the cost of increased computational
complexity. We propose Fusion for Language
Representations (FLARE) in adapters, a novel
method that enhances representation quality
and downstream performance for languages
other than English while maintaining param-
eter efficiency. FLARE integrates source and tar-
get language representations within low-rank
(LoRA) adapters using lightweight linear trans-
formations, maintaining parameter efficiency
while improving transfer performance. A se-
ries of experiments across representative cross-
lingual natural language understanding tasks,
including natural language inference, question-
answering and sentiment analysis, demonstrate
FLARE’s effectiveness. FLARE achieves perfor-
mance improvements of 4.9% for Llama 3.1
and 2.2% for Gemma 2 compared to standard
LoRA fine-tuning on question-answering tasks,
as measured by the exact match metric.1

1 Introduction

Representation degradation for ‘non-English’ lan-
guages poses a challenge in the context of pre-
trained multilingual language models (mPLMs)2.

1Our code repository is available at https://github.
com/pnborchert/FLARE

2The domination of the English representation space is ob-
served independent of model architectures, including encoder-
only, decoder-only and encoder-decoder transformer (Wu and
Dredze, 2020; Lee et al., 2022a; Yang et al., 2022; Wendler
et al., 2024; Tang et al., 2024).

Large-scale English text corpora are widely avail-
able for self-supervised pretraining, resulting in su-
perior representation quality and downstream task
performance when compared to low(er)-resource
languages (Lauscher et al., 2020; Yang et al., 2022).
Despite the substantial improvements, the imbal-
ance in pretraining resources still substantially re-
duces performance (Winata et al., 2022).

Cross-lingual transfer (termed XLT henceforth)
aims to narrow this performance gap by trans-
ferring task-specific knowledge acquired in high-
resource languages to lower-resource languages
(Ruder et al., 2019). Given the dominance of En-
glish in pretraining corpora, machine translations
(MT) are frequently utilized to avoid processing
non-English data (Shi et al., 2010; Artetxe et al.,
2020, 2023; Ansell et al., 2023). However, trans-
lation can result in information loss, including the
loss of cultural nuances, which can negatively im-
pact downstream task performance (Conia et al.,
2024). Various XLT techniques address this issue
by leveraging both source and target language rep-
resentation spaces, such as language mixup (Yang
et al., 2022) and concatenating multilingual input
sequences for in-context XLT (Kim et al., 2024;
Tanwar et al., 2023; Cueva et al., 2024). These ap-
proaches, while improving XLT, typically focus on
representations in a specific mPLM layer or require
extensive training and computational resources by
extending the input length.

Parameter-efficient fine-tuning (PEFT) methods
are designed to acquire new knowledge and spe-
cialize general-purpose models for specific tasks
or domains while minimizing the number of extra
parameters required and keeping the large underly-
ing mPLM frozen (Hu et al., 2022; Pfeiffer et al.,
2023). In particular, bottleneck-style adapters, such
as low-rank adapters (LoRA), extract relevant fea-
tures from new data by compressing model repre-
sentations with the assumption that task informa-
tion can be captured in a lower-dimensional space

25848

https://github.com/pnborchert/FLARE
https://github.com/pnborchert/FLARE


Figure 1: Fusion of source and target representations
in LoRA adapters inserted within the query and value
matrices. The representations are fused in the adapter
bottlenecks and the outputs are added + to the query
and value outputs before softmax ⊗ activation.

(Houlsby et al., 2019; Hu et al., 2022). This directly
aligns with the XLT objectives, providing resource-
efficient language and task adaptation capabilities.
In XLT, adapters are widely used for acquiring task
and language knowledge (Pfeiffer et al., 2020). Yet,
the extent of knowledge transfer across languages
within adapters remains underexplored.

In this work, we introduce Fusion for Language
Representations (FLARE), a novel approach that
merges latent representations from different lan-
guages within lower-dimensional adapter bottle-
necks to enable parameter-efficient XLT. By merg-
ing representations from high-resource languages
like English into target language representations
through lightweight fusion functions, such as ad-
dition or multiplication, FLARE facilitates effec-
tive cross-lingual information transfer with min-
imal computational overhead. As illustrated in the
schematic overview in Figure 1, FLARE performs
token-wise fusion of source and target language
representations within each transformer block,
without adding additional parameters to LoRA and
maintaining computational efficiency. FLARE is
applied during task-specific fine-tuning, enabling
models to extract knowledge from both the source
and target languages and apply it effectively in the
target language.

Our experiments demonstrate FLARE’s versatility
and effectiveness across tasks like natural language
inference, sentiment classification, and question
answering, using encoder-only, encoder-decoder,
and decoder-only multilingual pre-trained language
models (mPLMs). It is particularly beneficial for
downstream tasks that involve text generation, such
as question answering. For instance, FLARE im-
proves the absolute exact match performance for
Llama 3.1 and Gemma 2 on the TyDiQA dataset

by 4.9% and 2.2%, respectively. Further experi-
ments illustrate that computational efficiency can
be further enhanced by using latent translations as
source language inputs in FLARE, and demonstrate
the flexibility of the method, which is orthogonal
to the choice of mPLMs and MT systems.

Contributions. 1) We introduce FLARE, a novel
method that fuses language representations within
adapter bottlenecks for parameter-efficient cross-
lingual transfer. 2) Our approach improves per-
formance across diverse multilingual downstream
tasks, particularly benefiting text generation tasks
(e.g., applied to question answering). 3) We demon-
strate the adaptability of our approach by incorpo-
rating machine translation encoder representations
directly into the mPLM.

2 Related Work

Cross-lingual Representation Transfer. Improv-
ing performance for underrepresented languages
with mPLMs often involves aligning and combin-
ing latent representations from different languages
(Oh et al., 2022). Several methods have been pro-
posed to achieve this, including concatenating mul-
tilingual input sequences to leverage a shared rep-
resentation space (Kim et al., 2024; Tanwar et al.,
2023; Cueva et al., 2024). Another line of work
focuses on projection-based methods, where tar-
get language representations are projected onto
high-resource languages, such as English, to en-
hance feature extraction (Xu et al., 2023). Yang
et al. (2022) introduced X-Mixup, which combines
source and target representations in one specific
mPLM layer using cross-attention during down-
stream task adaptation. Building on this idea, Cao
et al. (2023) proposed using cross-attention with
additional semantic and token-level alignment loss
terms. In contrast, our FLARE method provides
a more parameter-efficient approach by directly
merging latent source and target language repre-
sentations within adapter bottlenecks, thereby con-
tributing to the stream of parameter-efficient XLT.

Representation fusion has also been applied to
integrate information across different modalities,
such as vision and language (Fang et al., 2021;
Ramnath et al., 2021). For instance, Qu et al.
(2025) used feature routing in cross-modal vision-
language tasks, guiding language model represen-
tations through LoRA bottlenecks using the last
hidden state of a vision model. Our work dif-
fers in its scope and fusion methodology: FLARE
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extracts richer representations from the source
and target languages by capturing layer-wise rep-
resentations for each transformer block in the
mPLMs. Moreover, by ensuring dimensional align-
ment, we perform token-wise representation fu-
sion within adapter bottlenecks, thereby transfer-
ring finer-grained information across languages.

PEFT in Multilingual Language Models and
Cross-Lingual Transfer. PEFT aims to incor-
porate task or language-specific knowledge into
mPLMs without updating all model weights (Pfeif-
fer et al., 2020). Most prominent techniques in-
clude sparse fine-tuning, which selectively updates
model parameters (Ansell et al., 2022), and insert-
ing adapter modules that reduce trainable parame-
ters to a small fraction of total weights of the under-
lying mPLM (Houlsby et al., 2019). Furthermore,
PEFT modules are composable, allowing for the
combination of information from multiple modules
(Wang et al., 2022; Lee et al., 2022b). Bottleneck
adapters, such as LoRA (Hu et al., 2022) and its
variants (Liu et al., 2024), are widely used for fine-
tuning language models. These adapters project
model representations into a lower-dimensional
space, creating a bottleneck that regulates infor-
mation flow (Houlsby et al., 2019).

In XLT, mixtures of task and language adapters
are used to merge language representation spaces
effectively (Lee et al., 2022b). For example,
AdaMergeX combines the weights of adapters
trained on task data in English with those trained
on target language data. (Zhao et al., 2024). In
contrast, our fusion approach enables the model to
learn from the interactions between source and tar-
get languages by combining inputs from multiple
languages during the adapter fine-tuning process.
This allows for a more dynamic transfer of task-
specific knowledge between languages.

3 Methodology

3.1 Language Representation Fusion

Our methodology is based on the hypothesis that
incorporating English with target language repre-
sentations enhances cross-lingual knowledge trans-
fer and distills task-relevant information into the
target language. We assume (typically MT-created)
parallel corpora P = {

(
xS , xT

)
} during task fine-

tuning, where x are instances in the respective
source and target language. Our methodology fo-
cuses on using machine-translated parallel data,
where widely available English data is translated

into the target language for training, and target
language data is translated into English during in-
ference. This approach reflects practical real-world
scenarios, as human-annotated data is often scarce
and costly.

Yang et al. (2022) introduced cross-lingual man-
ifold mixup (X-Mixup), aligning multilingual rep-
resentations within a specific transformer layer us-
ing consistency loss terms and a cross-attention
module. However, this method introduces addi-
tional model parameters and shows performance
variability depending on the choice of the mixup
layer. Another potentially effective method for
aligning multilingual representations is to concate-
nate source and target language input sequences
xS,T = [xS ;xT ] where x ∈ R2m, with m rep-
resenting the sequence length of both source and
target languages. This so-called input-level fusion
enables cross-lingual knowledge transfer across all
layers of the mPLM, facilitating in-context learn-
ing, which typically does not require additional
training (Cueva et al., 2024). However, this ap-
proach can become computationally expensive, es-
pecially for longer inputs, due to increased input
sequence lengths and encounters scalability issues
related to the context length limitations in mPLMs.

To address these limitations, we propose FLARE,
a method for representation-level language fu-
sion within bottleneck adapters, as illustrated in
Figure 2. Instead of extending the input, FLARE
processes source and target language representa-
tions independently and fuses them only within the
adapters, thus preserving computational efficiency.
Source language representations vSi , extracted from
the frozen mPLM without adapters, and target lan-
guage representation vTi at transformer block i are
down-projected using W down and combined with
fusion function ϕ (see Section 3.2) to create a fused
representation h = ϕ

(
vSi+1W

down, vTi W
down

)
,

where h ∈ Rm×r with sequence length m and
bottleneck dimensions r (Qu et al., 2025). We uti-
lize the source representation vSi+1, which has been
processed by the subsequent transformer block, to
leverage task-specific information extracted from
the source language. Following a standard LoRA
procedure, this fused low-rank representation is
then up-projected and added to the frozen atten-
tion outputs v0 to form the target language output
representation vTi+1 = hW up + v0 of the attention
block.

This enhances model performance during task
adaptation in the target language by directing
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Figure 2: During the forward pass with FLARE, source
language representations xS are processed by trans-
former block i and before fusion with target language
representations xT . Source representations are obtained
by inferencing the mPLM without the fusion adapters.

the model’s attention to task-relevant information.
Thereby, the adapter bottleneck is used for cross-
lingual knowledge transfer, as well as task and
language adaptation. A key advantage of FLARE is
the reduction in computational complexity, thereby
enhancing parameter efficiency for both task and
language adaptation. By processing multilingual in-
puts separately and only fusing highly compressed
representations within adapter bottlenecks, our
method avoids the computational overhead asso-
ciated with quadratic scaling in attention compu-
tations for model dimensions d, thus enhancing
resource efficiency. Furthermore, the memory re-
quirements are limited to the last hidden states ob-
tained from the output of each transformer block.

Moreover, our fusion approach is agnostic re-
garding the source language representation. We
exploit this flexibility in the FLARE MT variant,
which explores the impact of reducing computa-
tional resources for processing the source language
on cross-lingual transfer performance. Specifi-
cally, FLARE MT utilizes representations from a
MT encoder M as ‘latent translations’ that serve
as source language representations. This avoids
discretizing the translation as text through the MT
decoder. FLARE MT further enhances resource effi-
ciency compared to regular FLARE by bypassing

the forward pass of the source language in the
mPLM. We extract a single representation (latent
translation) from the MT encoder by processing
the target language input vT = M

(
xT

)
, where

vT ∈ Rm×dM .
To ensure compatibility between the dimension-

ality of the MT encoder outputs and the mPLM, we
utilize a linear projection layer W proj . This pro-
jection is jointly trained during the adaptation to
the downstream task, ensuring resource efficiency.
The up-projected representation vTW proj is fused
with the target language representation within the
adapter bottlenecks of each mPLM layer, as dis-
played in Figure 3.

3.2 Fusion Functions
To fuse cross-lingual representations in bottle-
neck adapters, we evaluate both linear and non-
linear transformations that do not require additional
model parameters, alongside cross-attention. We
extract token-wise representations from source and
target language sequences, capturing rich contex-
tual information at the token level.

The down-projected representations in the
adapter bottlenecks for source and target languages
are denoted as S = vSW down and T = vTW down,
where S and T are representations of dimensions
Rm×r. These representations are subsequently
combined at the token level through the following
fusion functions:

1. element-wise addition (add): S + T
2. element-wise multiplication (mul): S ◦ T
3. cross-attention:3 softmax

(
WQ

a S(WK
a T)′√

r

)
WV

a T

WQ
a , WK

a and W V
a are the weight matrices of the

query, key and value projections in the adapter a,
respectively, and ′ denotes the matrix transpose.
We focus on lightweight linear transformations to
maintain parameter and computational efficiency.

Additionally, linear fusion functions are ex-
tended with non-linear transformations through rec-
tified linear units ReLU (S) and ReLU (T ) (Qu
et al., 2025). This allows for selective information
flow in token representations, which can be partic-
ularly beneficial for multilingual input sequences
that may be misaligned at the token level. By intro-
ducing non-linear transformation functions, we can

3Although cross-attention modules add parameters to the
adapters, the low bottleneck dimensions r, typically smaller
than 64, minimize the parameter count in comparison to the
model’s internal dimensions d. Specifically, we utilize a single
cross-attention head to maintain efficiency.
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Figure 3: Illustration of the FLARE MT variant where
projected encoder representations from an MT model
are directly fused with target language representations
within the fusion adapters in the mPLM. Encoder rep-
resentations from the MT model serve as latent transla-
tions, avoiding discretization in the decoder.

restrict the propagation of misaligned information,
potentially leading to improved task performance.

3.3 Training

To adapt the mPLM to downstream tasks in the tar-
get language, we insert LoRA fusion adapters into
the query and value weight matrices of the mPLM
that has been previously fine-tuned on English task
data, referred to as the base model. These adapters
implement fusion function ϕ that combines source
and target language input representations into a sin-
gle fused representation. Consistent with standard
PEFT training, only the task head and LoRA pa-
rameters are trainable, while all other parameters
remain frozen.

During the forward pass, illustrated in Figure 2,
we extract representations from both the source
and target languages at each transformer block.
Source language representations are obtained from
the base model without fusion adapters. These
layer-wise representations are stacked in matrix
V S ∈ Rl×m×d, where l represents the number of
layers in the mPLM. Target language representa-
tions are obtained during the forward pass through
the base model with fusion adapters. In our FLARE
approach, the source and target language repre-
sentations are compressed to lower dimensions
r ≪ d using the adapter’s down-projection W down.

The compressed representations are then combined
through the fusion function, and decompressed in
the up-projection. By sharing the down-projection
layers for both source and target language rep-
resentations before fusion, we hypothesize that
the model’s reliance on the English representation
space is reduced.

4 Experimental Setup

4.1 Underlying Models and Baselines

mPLMs. First, we again note that the design of
FLARE makes it transformer architecture-agnostic;
it is directly applicable to encoder, decoder and
encoder-decoder models. Our experiments are thus
based on various mPLMs including the encoder-
only XLM-R Large (550M) (Conneau et al., 2020),
the encoder-decoder mT5-XL (3.7B) (Xue et al.,
2021), the decoder-only Llama 3.1 (8B) (Grattafiori
et al., 2024), and the decoder-only Gemma 2 (9B)
(Gemma Team et al., 2024).

Fine-Tuning Setup. We follow a modular XLT
approach where the mPLM is fine-tuned on En-
glish task data and subsequently adapted using task
data in the target language (Zhao et al., 2021). For
decoder-only models like Llama and Gemma, we
use a causal language modeling objective for fine-
tuning, and the models generate predictions as text
accordingly. We employ the QLoRA fine-tuning
approach with 4-bit quantization and insert LoRA
adapters in all linear layers for Llama and Gemma
models (Dettmers et al., 2023). Importantly, we
apply representation fusion in FLARE only in the
attention modules, ensuring a consistent experimen-
tal setup across different transformer architectures.
The LoRA configurations use r = 64 and α = 128,
where r corresponds to the bottleneck dimensions
and α is a scaling factor applied to the low-rank up-
dates before merging them with the frozen attention
outputs. Detailed hyperparameter configurations
for each model can be found in Table 5 in the ap-
pendix.

Baselines. We evaluate FLARE against several base-
lines, including zero-shot cross-lingual transfer,
translate-test, as well as translate-train methods
such as regular LoRA fine-tuning, X-Mixup, and
input-level fusion. We focus on baseline methods
that fine-tune on task-specific data in the target
language, as these provide the most competitive
performance. All translate-train models are trained
with the same LoRA configurations. Unless oth-
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erwise specified, FLARE models are trained using
the add+relu fusion function, with a detailed com-
parison of fusion functions presented in Table 2.
Model checkpoints are selected based on validation
data that was machine-translated from English to
the respective target languages.

X-Mixup aligns source and target language rep-
resentations through cross-attention in one specific
transformer layer and further aligns model outputs
using consistency loss terms (Yang et al., 2022). In
contrast, input-level fusion combines source and
target language texts directly in the input prompt
of the mPLM, doubling the sequence length (Kim
et al., 2024; Cueva et al., 2024). More details on
the baselines below:
Zero-Shot XLT. The base model fine-tuned on En-
glish task data is directly evaluated on test data in
the target languages without further training.
Translate-Test. Test sets in each target language
are translated into English using NLLB (NLLB
Team et al., 2022). Subsequently, the base model
is evaluated on these machine-translated test sets.4

Translate-Train. The base model is fine-tuned on
machine-translated task data in the respective target
languages. The training data comprises instances
translated from English to the target language using
NLLB. For fusion methods and X-Mixup, we ob-
tain the required ‘silver’ parallel data also through
MT (using NLLB). The training set consists of par-
allel sets of English and MT-ed instances, whereas
the validation and test sets consist of parallel tar-
get language instances and corresponding machine
translations into English. We posit that the assumed
absence of gold translations both during training
and during inference is the most realistic evaluation
of FLARE models.

4.2 Evaluation Tasks and Datasets

XNLI consists of machine-translated sentence
pairs that are translated from English to 15 lan-
guages (Conneau et al., 2018). The task involves
determining whether a sentence entails, contradicts,
or is neutral to a given premise.

NusaX is a human-annotated sentiment classifica-
tion dataset that spans 11 Indonesian languages,
including low-resource languages (Winata et al.,
2023). With 500 labeled instances for each lan-
guage, the dataset evaluates few-shot adaptation.

4Although monolingual English-only PLMs can process
machine-translated text, they fail to outperform multilingual
models, particularly when evaluating low-resource languages
or culturally sensitive content (Ebing and Glavaš, 2024).

TyDiQA-GoldP is a human-annotated extractive
QA dataset covering 8 languages (Clark et al.,
2020). The task is to extract the answer spans
from context passages.

Additional information on evaluation languages
and datasets used for source language fine-tuning
are available in Table 10 in the appendix.

4.3 Machine Translations
We utilize the NLLB 3.3B variant (NLLB Team
et al., 2022) as the main MT model, employing
greedy decoding to obtain translations (Artetxe
et al., 2023). Additionally, FLARE MT utilizes the
encoder of the NLLB 600M variant to generate
latent translations. To maintain consistency in our
experimental setup, we also translate languages that
are not directly supported by NLLB. Specifically,
Madurese (mad) and Ngaju (nij) are translated us-
ing the Indonesian language identifier, as these
languages are not supported by NLLB5 (Winata
et al., 2023). For translating extractive QA datasets,
we employ EasyProject (Chen et al., 2023), which
involves enclosing answer spans within marker to-
kens prior to translation with NLLB. This method
allows us to determine the position of the translated
answer spans by locating these marker tokens in
the translated text. Instances that fail to retain the
marker tokens in the translated output are excluded
from evaluation.

5 Results and Discussion

Main Results. The results displayed in Table 1
confirm our hypothesis that task-specific knowl-
edge can be efficiently transferred from English to
other languages within adapter bottlenecks. Our
proposed approach, FLARE, consistently surpasses
all baselines across various tasks, demonstrating
robust performance and validating the effective-
ness of our method. It improves the average per-
formance, averaged across metrics for all tasks,
by 2.14% and 1.27% for Llama and Gemma, re-
spectively, when compared to standard LoRA fine-
tuning. The most substantial performance gains
are observed on the TyDiQA dataset, particularly
for text generation tasks with decoder-only mod-
els. FLARE substantially improves performance on
this dataset, with the largest gains achieved on In-
donesian, Russian, and Swahili. This suggests that
latent representation fusion with FLARE works best

5We note that Toba Batak (bbc) is unsupported by NLLB
and excluded from the evaluation due to translation artifacts
resulting in random classification performance.
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Model XNLI TyDiQA NusaX Avg. Avg. rank

Zero-Shot Cross-Lingual Transfer (models are trained on English data)

XLM-R Large 76.95± 0.3 36.31± 2.3 75.26± 1.0 62.84 2.33
mT5-XL 77.92± 1.2 45.90± 0.2 74.72± 1.6 66.18 1.67
Llama 3.1 8B 77.40± 0.2 2.36± 0.2 71.74± 2.8 50.50 3.33
Gemma 2 9B 80.47± 0.1 2.46± 0.2 71.61± 3.4 51.51 2.67

Translate-Test (test data is translated to English)

XLM-R Large 77.13± 0.2 41.06± 1.6 74.85± 1.0 64.35 2.67
mT5-XL 79.03± 0.2 47.92± 0.2 75.77± 0.3 67.57 1.67
Llama 3.1 8B 79.08± 0.5 2.53± 0.4 72.67± 2.4 51.54 2.67
Gemma 2 9B 79.99± 0.9 2.28± 0.2 71.61± 3.4 51.29 3.00

Translate-Train (models are trained on training data translated to the target language)

XLM-R Large w/ LoRA 80.49± 1.3 40.14± 0.4 77.00± 0.8 65.88 3.33
w/ X-Mixup (Yang et al., 2022) 79.47± 0.2 38.24± 3.2 76.37± 2.8 64.69 4.67
w/ input-level fusion 77.24± 0.8 40.45± 0.5 78.53± 0.3 65.41 3.00
w/ FLARE MT 81.60± 0.3 38.88± 1.3 77.18± 0.2 65.89 2.67
w/ FLARE 80.99± 0.9 40.93± 0.2 79.18± 1.4 67.03 1.33

mT5-XL w/ LoRA 79.79± 2.1 46.76± 0.7 80.41± 0.2 68.99 3.67
w/ X-Mixup (Yang et al., 2022) 79.63± 1.0 48.23± 0.5 78.61± 0.2 68.82 4.00
w/ input-level fusion 78.81± 0.2 47.58± 0.2 80.12± 0.2 68.84 4.33
w/ FLARE MT 80.80± 1.4 48.48± 0.2 81.37± 0.8 70.22 1.67
w/ FLARE 81.00± 1.2 49.34± 0.3 80.54± 0.2 70.29 1.33

Llama 3.1 8B w/ LoRA 80.74± 0.4 42.84± 0.7 74.76± 1.4 66.11 3.00
w/ X-Mixup (Yang et al., 2022) 80.22± 0.2 17.47± 1.6 75.91± 0.7 57.87 4.00
w/ input-level fusion 80.70± 0.5 46.09± 0.9 74.60± 1.6 67.13 3.33
w/ FLARE MT 80.83± 0.2 38.95± 0.2 74.52± 1.6 64.77 3.67
w/ FLARE 80.92± 0.2 47.74± 1.2 76.08± 1.1 68.25 1.00

Gemma 2 9B w/ LoRA 84.89± 0.4 49.93± 0.7 79.37± 1.2 71.40 2.67
w/ X-Mixup (Yang et al., 2022) 84.62± 0.5 35.45± 2.0 79.94± 1.2 66.67 3.67
w/ input-level fusion 80.53± 0.2 51.29± 0.3 77.98± 1.1 69.93 4.00
w/ FLARE MT 84.84± 0.3 49.63± 0.9 78.09± 0.9 70.85 3.67
w/ FLARE 85.01± 0.4 52.14± 0.7 80.86± 0.5 72.67 1.00

Table 1: Average performance (with standard deviation) on natural language understanding datasets, computed over
5 random seeds. Metrics used are: Accuracy for XNLI, Exact Match for TyDiQA, and Macro F1 for NusaX. The
best-performing results for each XLT model are highlighted in bold.

for text generation when the target languages have
a similar word order to the source language, in this
case, subject-verb-object. However, we also ob-
serve substantial performance gains for the Llama
model on Telugu, which has a different word or-
der than English, indicating that FLARE can still
achieve considerable improvements even when the
word order differs.

The results on XNLI and NusaX do not exhibit
a clear correlation between performance benefits
for languages with subject-verb-object word order.
Furthermore, the results on NusaX demonstrate
that FLARE can consistently provide performance
improvements for lower-resourced languages, even
when only a few training data is available. This
highlights the potential of FLARE to support lan-
guage adaptation in low-resource settings, where
data is scarce. Compared to all benchmarked mod-
els, FLARE provides consistent performance bene-
fits, demonstrating its effectiveness in transferring
knowledge from English to other languages, and
its potential to improve the performance of down-
stream tasks in low-resource languages. Beyond
performance benefits, FLARE reduces the average

training time on TyDiQA by more than 40% when
compared to input-level fusion.

Impact of Translation Quality. Figure 4 presents
averaged performance results for XLM-R Large
with FLARE on TyDiQA and NusaX, comparing
the use of different-sized machine translation (MT)
models, specifically NLLB 3.3B and NLLB 600M.
The results demonstrate that FLARE is robust to
lower-quality machine translations. Although uti-
lizing the larger NLLB 3.3B model yields per-
formance improvements of 1.27% and 1.77% on
NusaX and TyDiQA, respectively, the FLARE mod-
els trained on lower-quality machine translations
still achieve competitive performance with standard
LoRA fine-tuning based on higher-quality machine
translations. This demonstrates how FLARE can
further enhance resource efficiency by effectively
leveraging smaller MT models, thereby reducing
computational requirements without compromising
performance relative to its benchmarks.

On Latent MT Fusion. For encoder-only models
like XLM-R Large and encoder-decoder models
like mT5, latent MT fusion provides notable perfor-
mance benefits compared to standard LoRA fine-
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Figure 4: Average performance differences on NusaX
and TyDiQA for XLM-R Large using FLARE with MT
models of different size.

Fusion Function TyDiQA NusaX

Translate-Train (models are trained on data translated to the
target language)

add 40.76 79.56
mul 40.44 78.81
add+relu 40.93 79.18
cross-attention 39.63 78.11

Table 2: Average performance of fusion functions using
XLM-R Large with FLARE, evaluated on TyDiQA with
Exact Match and on NusaX with Macro F1.

tuning, X-Mixup, and input-level fusion, as shown
in Table 2. However, for decoder-only models like
Llama and Gemma, we do not observe substan-
tial performance benefits from latent MT fusion.
This suggests that reducing the computational re-
sources for processing the source language repre-
sentations in regular FLARE can negatively impact
cross-lingual transfer performance, particularly for
larger models. Nonetheless, it provides a resource-
efficient alternative to regular FLARE for smaller
mPLMs by avoiding the need for decoding in the
MT and eliminating the forward pass for the source
language representations.

Impact of Fusion Function. Our study on the
impact of fusion functions, presented in Table 2,

Model r TyDiQA NusaX

Translate-Train (models are trained on training data translated
to the target language)

XLM-R Large w/ FLARE MT 8 40.86 77.84
w/ FLARE 42.37 79.52

XLM-R Large w/ FLARE MT 64 38.88 77.18
w/ FLARE 40.93 79.18

XLM-R Large w/ FLARE MT 128 40.21 77.18
w/ FLARE 40.88 78.32

Table 3: Average performance for varying adapter bot-
tleneck size r in LoRA; based on XLM-R Large, using
FLARE. Evaluation metrics include Exact Match for Ty-
DiQA and Macro F1 for NusaX.

shows that adding non-linearity to the fusion func-
tions does not necessarily provide decisive perfor-
mance benefits over simpler linear transformations.
Notably, the functions add and add+relu demon-
strate the best performance. Despite the additional
parameters available in cross-attention, this tech-
nique does not yield superior downstream perfor-
mance, consistent with the low performance of X-
Mixup in Table 1. These findings suggest that the
optimal fusion function is task-dependent and can
be regarded as a hyperparameter that can be fine-
tuned based on validation data.

Impact of Adapter Capacity. We investigate the
impact of the adapter capacity on FLARE’s perfor-
mance, with results presented in Table 3. The find-
ings indicate that small bottleneck sizes (r = 8)
yield optimal performance for XLM-R Large on
the TyDiQA and NusaX datasets. This observation
is consistent with the findings in the original LoRA
paper (Hu et al., 2022), indicating that the intro-
duction of our fusion adapter does not affect the
intrinsic rank of the tasks.

Layer-wise Language Activation. Figure 6 shows
that the magnitudes of source and target language
activations across the entire XLM-R Large are com-
parable. This indicates that FLARE does not overly
rely on either source or target representations dur-
ing fusion, but instead integrates both sources of
information in a balanced manner. Further, Figure
5 displays the average activations for English and
Acehnese in the first adapter bottleneck: this con-
firms that both source and target languages main-
tain similar activation magnitudes. Hence, subse-
quent Acehnese representations are infused with
the English representations from this initial trans-
fer, integrating balanced source and target language
information. Detailed activations for individual
instances are illustrated in Figure 7, which show
positional activation differences and demonstrate
the alignment of source and target languages for
information transfer.

6 Conclusion

In this paper, we introduced Fusion for Language
Representations (FLARE), a parameter-efficient
method for cross-lingual transfer (XLT) that en-
hances representation quality and downstream per-
formance for languages other than English. Our
experimental results demonstrate that FLARE consis-
tently outperforms strong XLT baselines, including
target language fine-tuning with LoRA adapters,
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Figure 6: Average activations in the adapters across all
XLM-R Large layers for the NusaX test set.

X-Mixup, and input-level fusion, on various natu-
ral language understanding tasks. FLARE demon-
strates robust performance, even for lower-quality
machine translations. A key takeaway is that
FLARE remains more parameter-efficient compared
to benchmarked baseline approaches, while yield-
ing superior performance. Furthermore, FLARE
provides most substantial performance benefits for
multilingual question answering with decoder-only
language models such as those from Llama and
Gemma model families.
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8 Limitations

Our work demonstrates that highly compressed En-
glish language representations can be effectively

transferred to other languages within adapter bot-
tlenecks. However, our experiments focus on bilin-
gual transfer settings. Extending fusion adapters
to integrate multiple target languages is non-trivial,
as it requires adapters to extract language-agnostic
information across multiple languages.

The proposed FLARE method by design relies
data availability for both source and target lan-
guages. Consequently, the application of FLARE
is dependent upon the availability of machine trans-
lation models. Furthermore, our evaluation exclu-
sively employs English as the high-resource source
language for representation fusion. While English
is predominantly used in mPLM pretraining cor-
pora, exploring other high-resource languages that
share linguistic similarities, with the target lan-
guages could potentially yield similar or improved
cross-lingual transfer performance.

The reliance on machine translation also pose
challenges for extremely low-resource languages,
particularly where translation quality suffers or
where cultural nuances are difficult to preserve
(Alemayehu et al., 2024; Conia et al., 2024). To
examine the impact of translation quality on FLARE,
we conducted a manual error analysis on 200 ran-
domly selected TyDiQA examples using Llama 3.1
and Gemma 2. We found no cases where machine
translation quality was responsible for model errors.
Most errors were due to answers unrelated to the
question, while a smaller subset consisted of cor-
rect answers that did not match the dataset’s ground
truth. Additionally, the flexibility of FLARE’s fusion
functions provides opportunities to incorporate cul-
tural context more explicitly in future work.

We opt for the original and established LoRA
architecture as our go-to PEFT model, due to its
wide adoption and popularity. However, we note
that FLARE is not tied to the LoRA architecture, and
might be combined with other, more recent and
more sophisticated PEFT architectures (Liu et al.,
2024; Kopiczko et al., 2024) in future research.

Finally, our choice of base multilingual LMs
has been motivated by the current state-of-the-art
(SotA) in the field of multilingual NLP and XLT to
low-resource languages for NLU tasks, combined
with our computational budget and constraints.
Therefore, the main models are SotA encoder-only
(XLM-R) and encoder-decoder mPLMs (mT5), and
decoder-only LLMs (Llama 3, Gemma 2). How-
ever, we note that the LLM technology and its adap-
tation to XLT for NLU in lower-resource languages
has not been proven to be fully mature yet (Lin
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et al., 2024; Razumovskaia et al., 2024).
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model using FLARE and the add+relu fusion func-
tion. This visualization highlights the positional
alignment process between English and Acehnese
token representations, with varying activation val-
ues across different sequence positions reflecting
the dynamics of language representation fusion.
Table 4 presents the performance of FLARE and
input-level fusion when using gold translations for
fusion, as opposed to machine translations gener-
ated by NLLB. The results demonstrate that input-
level fusion performance is sensitive to the quality
of English input provided. Notably, when gold
translations are available, input-level fusion repli-
cates English performance, indicating that it heav-
ily relies on the quality of English inputs. In con-
trast, FLARE balances the fusion of source and tar-
get language information, as evident from the find-
ings in Figure 6. While input-level fusion outper-
forms FLARE when gold translations are available,
FLARE achieves substantially higher performance in
the more realistic setting using machine-translated
data.
Table 6 shows the results for the XNLI dataset
for each language in zero-shot XLT, translate-
test, translate-train settings, including translate-
train with gold translations in the source language.
The results confirm that FLARE consistently im-
proves XTL performance in the translate-train set-
ting across different languages without particular
bias towards typological relatedness to English or
frequency in pretraining corpora.
Table 7 details the results for the TyDiQA dataset
for each language in the zero-shot XLT, translate-
test, and translate-train settings. The outcomes
demonstrate that FLARE performance extends to
tasks including positional information, such as ex-
tractive question-answering.
Table 9 reports p-values from the Pitman permuta-
tion tests comparing FLARE and FLARE MT to base-
line methods, based on average per-language per-
formance from Tables 6, 7, and 8. The results indi-
cate that FLARE and FLARE MT yield consistent and
often statistically significant improvements over
regular LoRA, X-Mixup, and input-level fusion,
with particularly strong gains for the decoder-only
Llama and Gemma models.
Table 8 outlines the performance for the NusaX
dataset for each language in zero-shot XLT,
translate-test, translate-train, and translate-train
settings with gold translations in the source lan-
guage. Even with few training samples, our FLARE
method demonstrates consistent performance im-
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Figure 7: Activation values for individual instances
included in the NusaX test set. English and Acehnese
activation values are extracted from the first bottleneck
query layer in XLMR-Large, which is trained with the
add+relu fusion function.

provements across the low-resource languages in-
cluded in the NusaX dataset.

B Training Details

Our evaluation results are averaged across five ran-
dom seeds. Initially, we fine-tune the language
models on English task data using LoRA adapters
set with r = 64 and α = 128, which are subse-
quently integrated into the model’s weights prior
to task fine-tuning in the target languages. Hy-
perparameter configurations for each mPLM are
provided in Table 5.

The total computation time for the experimental
results exceeds 5,000 GPU hours. All models are
trained using half-precision.

C Implementation Details of FLARE MT

We introduce FLARE MT as variant of FLARE aimed
at further enhancing resource efficiency. FLARE MT
improves efficiency in two key ways. Firstly, it
leverages latent translations generated by the ma-
chine translation (MT) encoder, thereby reducing
the computational resources required to produce
full text translations. Secondly, it eliminates the
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need for a forward pass through the source lan-
guage representations in the mPLM, resulting in
significant computational savings. As a results, a
single source language representation, namely the
latent translation, is fused with the target language
representation in the fusion adapters for each trans-
former layer. To enable this fusion, a projection
module is introduced to align the dimensions of the
MT encoder with those of the mPLM. Although
this module adds additional parameters, it is es-
sential for ensuring compatibility between the two
models. Notably, related work suggests that extend-
ing the single projection layer to a MLP and train-
ing it on additional self-supervised data can yield
substantial performance benefits (Liu et al., 2023;
Schmidt et al., 2024). This provides a promising
direction for future research and potential improve-
ments to the FLARE MT approach.

D Practical Implications

The practical implementation of bilingual cross-
lingual transfer methods, such as FLARE, requires
an additional step of language identification to
determine bilingual adapter for model inference.
While this introduces a preprocessing stage, lan-
guage identification systems are widely accessible
and highly accurate. For example, NLLB achieves
a 95% F1 score across 193 FLORES languages,
including many low-resource languages (Burchell
et al., 2023), ensuring that this step can be seam-
lessly integrated into real-world applications.

E Another Ablation: Representation
Fusion during Training Only

To investigate the importance of utilizing source
language representations during inference, we mod-
ified FLARE to restrict representation fusion to
the training phase only. Specifically, we limited
the fusion with source language representations
to 50% of the training instances and excluded
source language data during inference. This eval-
uates cross-lingual transfer capabilities based on
instance-independent patterns learned from source
language representations during training. Our find-
ings reveal that fusion adapters struggle to learn
patterns that are independent of specific instances
from source language representations during train-
ing. As a result, when implemented in the XLM-R
Large model on the NusaX test set, the performance
of the train-only FLARE variant decreased by 30%.
Crucially, this drop in performance underscores the

Model XNLI NusaX

Translate-Train (fusion models are trained on data translated
into the target language and evaluated using gold translations
from the target language to the source language)

XLM-R Large
w/ input-level fusion 87.19 90.93
w/ FLARE 88.15 84.66

mT5-XL
w/ input-level fusion 89.67 90.57
w/ FLARE 86.57 80.72

Table 4: Average performance for the translate-train
setting with gold English translations during inference
across languages included in the XNLI, and NusaX
datasets, representing optimal translation quality. Evalu-
ation metrics include accuracy for XNLI and Macro F1
for NusaX.

Model Hparam XNLI TyDiQA NusaX

XLM-R Large epochs 10 10 20
batch size 64 64 64
sequence length 128 512 128
learning rate 2e-5 2e-4 2e-4

mT5-XL epochs 10 10 20
batch size 64 64 64
sequence length 128 512 128
learning rate 2e-5 2e-4 2e-4

Llama 3.1 8B epochs 3 3 5
batch size 64 64 64
sequence length 128 512 128
learning rate 2e-5 2e-4 2e-4

Gemma 2 9B epochs 3 3 5
batch size 64 64 64
sequence length 128 512 128
learning rate 2e-5 2e-4 2e-4

Table 5: Hyperparameter configurations for each mPLM
across the XNLI, TyDiQA, and NusaX datasets.

importance of incorporating source language rep-
resentations during inference to achieve effective
cross-lingual adaptation.
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Model en ar bg de el es fr hi ru sw th tr ur vi zh Avg.

Zero-Shot Cross-lingual Transfer

XLM-R Large 87.81 76.70 81.37 80.27 80.24 82.58 81.56 73.52 78.31 65.48 76.01 76.04 69.43 77.69 78.07 76.95
mT5-XL 89.04 77.13 82.27 81.34 81.00 83.43 82.74 74.58 80.22 70.19 75.93 77.22 70.35 76.33 78.15 77.92
Llama 3.1 8B 91.47 79.56 80.56 83.38 80.73 85.06 84.07 72.07 81.66 60.64 75.38 76.51 62.64 81.39 80.01 77.40
Gemma 2 9B 93.05 80.38 83.81 84.42 83.91 85.05 85.52 77.59 82.23 73.96 76.92 79.27 71.31 81.54 80.73 80.47

Translate-Test (translate test data to English using NLLB 3.3B)

XLM-R Large 87.81 76.52 81.46 81.31 81.03 82.37 81.57 74.47 77.80 71.96 72.65 78.24 67.87 78.13 74.43 77.13
mT5-XL 89.04 79.04 83.15 83.07 82.56 83.73 83.30 76.69 80.47 73.02 74.69 79.54 69.80 80.26 77.15 79.03
Llama 3.1 8B 91.47 78.89 83.61 84.00 82.86 85.92 83.97 76.25 80.00 73.30 73.34 79.84 69.03 79.49 76.55 79.08
Gemma 2 9B 93.05 79.76 84.55 84.99 83.98 87.04 84.82 77.01 81.24 73.75 74.04 81.31 69.24 80.57 77.58 79.99

Translate-Train (models are trained on training data translated to the target language)

XLM-R Large w/ LoRA 87.81 79.33 84.13 82.64 83.21 84.50 83.06 77.78 81.42 74.44 79.73 80.72 74.71 81.68 79.44 80.49
w/ X-Mixup 87.81 78.33 82.48 82.16 80.12 82.57 81.23 76.06 80.54 74.11 79.48 79.15 73.67 81.48 81.18 79.47
w/ input-level fusion 87.81 77.29 81.41 81.07 81.36 82.40 81.07 74.89 77.79 72.13 72.76 78.47 68.46 78.11 74.18 77.24
w/ FLARE MT 87.81 80.91 84.76 84.12 83.97 85.03 83.80 79.04 82.07 76.71 80.32 81.70 76.29 81.88 81.76 81.60
w/ FLARE 87.81 81.04 84.12 83.35 83.44 83.95 83.53 79.26 79.58 75.58 80.40 80.15 75.50 81.30 82.71 80.99

mT5-XL w/ LoRA 89.04 79.44 83.37 83.23 81.65 84.17 83.76 76.84 81.31 75.97 76.93 77.68 73.00 79.13 79.80 79.73
w/ X-Mixup 89.04 80.14 82.21 82.37 82.73 82.87 82.54 77.16 79.87 76.10 79.03 78.00 73.42 79.97 78.43 79.63
w/ input-level fusion 89.04 79.03 82.76 82.36 82.14 83.43 82.89 76.37 80.28 72.97 75.11 79.01 69.73 79.61 77.70 78.81
w/ FLARE MT 89.04 80.41 83.73 83.45 82.91 83.81 83.57 78.44 81.35 77.02 78.62 81.13 75.46 80.49 80.75 80.80
w/ FLARE 89.04 81.32 83.72 83.46 82.23 84.87 83.47 79.00 81.28 77.43 79.54 80.50 74.27 81.30 81.66 81.00

Llama 3.1 8B w/ LoRA 91.47 80.27 82.88 84.23 83.16 86.85 85.49 79.82 83.97 67.39 77.58 79.62 76.94 81.91 80.37 80.74
w/ X-Mixup 91.47 79.58 82.94 84.11 81.61 86.23 85.39 79.15 83.16 66.49 76.51 79.06 77.20 81.44 80.18 80.22
w/ input-level fusion 91.47 79.17 85.63 85.39 83.61 87.10 86.00 77.55 81.91 74.72 74.75 82.32 71.78 82.07 77.79 80.70
w/ FLARE MT 91.47 80.27 83.17 84.87 82.95 86.75 85.67 80.35 82.70 67.19 77.41 79.95 77.30 81.92 81.15 80.83
w/ FLARE 91.47 80.00 83.09 84.92 82.90 86.55 86.04 80.80 83.14 67.08 77.21 79.33 77.95 82.33 81.55 80.92

Gemma 2 9B w/ LoRA 93.05 85.19 87.87 88.03 87.78 89.06 87.13 82.49 86.10 79.52 83.20 84.25 78.07 85.09 84.69 84.89
w/ X-Mixup 93.05 84.70 87.76 87.84 87.32 88.61 87.83 82.44 85.27 80.12 82.60 83.51 77.35 84.50 84.86 84.62
w/ input-level fusion 93.05 79.98 84.84 85.19 84.16 86.65 85.12 77.39 81.74 74.48 75.07 81.98 70.70 81.74 78.34 80.53
w/ FLARE MT 93.05 85.07 87.73 87.89 87.70 88.93 87.90 82.69 84.97 80.52 82.82 84.18 77.36 84.88 85.19 84.84
w/ FLARE 93.05 84.67 87.93 88.14 87.77 89.23 88.10 82.86 85.97 79.73 83.15 84.08 78.13 85.23 85.19 85.01

Translate-Train (fusion models are trained on data translated into the target language and evaluated using gold translations from the target language to the source language)

XLM-R Large w/ input-level fusion 87.81 88.41 88.54 88.46 88.36 88.28 88.02 88.38 85.91 86.23 85.91 85.85 86.05 85.85 86.45 87.19
w/ FLARE 87.81 88.10 88.06 88.04 88.12 88.02 88.08 88.40 88.12 88.46 88.16 88.14 88.22 88.04 88.16 88.15

mT5-XL w/ input-level fusion 89.04 90.04 89.80 89.54 89.70 89.78 89.50 89.80 89.52 89.56 89.84 89.66 89.38 89.52 89.70 89.67
FLARE 89.04 88.62 88.74 88.80 85.34 87.83 86.19 84.31 86.12 89.66 88.49 89.56 79.22 85.33 83.73 86.57

Table 6: Average scores per language in the XNLI dataset. Model performance is evaluated using the Accuracy
metric.
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Model en ar ben fi ind ko ru sw tel Avg.

Zero-Shot Cross-lingual Transfer

XLM-R Large 49.05 24.27 32.78 30.15 44.51 29.92 30.15 40.27 58.42 36.31
mT5-XL 55.23 30.94 43.89 35.56 49.59 41.59 41.47 50.63 73.54 45.90
Llama 3.1 8B 55.61 2.41 0.00 5.22 1.64 0.58 5.49 2.52 1.06 2.36
Gemma 2 9B 60.08 1.63 2.46 3.20 0.88 0.24 2.77 1.87 6.61 2.46

Translate-Test (translate test data to English using NLLB 3.3B)

XLM-R Large 49.05 28.15 52.78 30.54 47.79 36.23 34.92 52.76 45.30 41.06
mT5-XL 55.23 34.01 49.00 36.08 51.97 42.61 39.87 54.95 74.89 47.92
Llama 3.1 8B 55.61 1.35 5.00 2.21 0.99 0.58 2.71 4.68 2.75 2.53
Gemma 2 9B 60.08 0.68 3.33 1.74 0.66 0.00 1.68 1.08 9.04 2.28

Translate-Train (models are trained on training data translated to the target language)

XLM-R Large w/ LoRA 49.05 31.10 38.97 30.35 46.61 37.11 24.54 47.13 65.34 40.14
w/ X-Mixup 49.05 26.25 36.67 26.65 43.70 34.19 24.40 45.85 68.21 38.24
w/ input-level fusion 49.05 31.56 40.00 30.04 45.63 33.33 28.12 50.29 64.62 40.45
w/ FLARE MT 49.05 30.21 35.00 33.02 44.82 35.90 25.38 48.46 58.26 38.88
w/ FLARE 49.05 30.83 41.67 33.44 44.61 35.33 26.17 48.47 66.93 40.93

mT5-XL w/ LoRA 55.23 33.48 46.71 38.90 49.84 46.77 33.20 51.46 73.73 46.76
w/ X-Mixup 55.23 32.55 54.49 38.15 52.17 49.05 33.75 52.04 73.68 48.23
w/ input-level fusion 55.23 34.75 49.74 39.29 51.74 45.29 30.69 52.79 76.32 47.58
w/ FLARE MT 55.23 46.08 48.59 39.31 53.94 44.90 30.14 49.16 75.75 48.48
w/ FLARE 55.23 47.86 49.55 40.98 54.23 46.05 30.41 50.85 74.82 49.34

Llama 3.1 8B w/ LoRA 55.61 39.69 26.11 44.27 56.61 53.56 37.23 53.47 31.75 42.84
w/ X-Mixup 55.61 23.44 16.11 37.26 30.69 0.00 10.96 0.00 21.32 17.47
w/ input-level fusion 55.61 37.48 21.03 45.86 56.68 62.61 37.03 61.82 46.20 46.09
w/ FLARE MT 55.61 38.33 26.11 37.90 48.78 53.85 34.04 44.94 27.63 38.95
w/ FLARE 55.61 44.48 26.66 48.09 62.80 56.98 42.44 59.73 40.70 47.74

Gemma 2 9B w/ LoRA 60.08 43.75 46.67 44.69 57.52 59.83 38.82 59.72 48.42 49.93
w/ X-Mixup 60.08 37.71 20.00 46.92 54.07 39.32 14.33 25.71 45.54 35.45
w/ input-level fusion 60.08 45.74 50.14 40.45 59.97 61.87 41.06 61.91 49.14 51.29
w/ FLARE MT 60.08 43.23 45.00 44.05 59.45 57.83 40.05 58.82 48.60 49.63
w/ FLARE 60.08 44.79 46.67 47.35 65.24 60.68 41.82 60.75 49.83 52.14

Table 7: Average scores per language in the TyDiQA dataset. Model performance is evaluated using the Exact
Match metrics.
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Model en ace ban bjn bug ind jav mad min nij sun Avg.

Zero-Shot Cross-lingual Transfer

XLM-R Large 92.04 68.34 75.37 80.37 51.90 90.76 84.69 69.01 80.06 69.23 82.89 75.26
mT5-XL 91.77 72.26 76.42 79.79 49.51 90.61 87.49 61.38 77.71 65.31 86.73 74.72
Llama 3.1 8B 89.75 70.50 72.00 80.33 39.92 89.75 77.25 64.75 77.75 65.42 79.75 71.74
Gemma 2 9B 91.15 66.42 71.58 82.08 31.92 91.67 86.25 64.00 80.75 64.33 77.08 71.61

Translate-Test (translate test data to English using NLLB 3.3B)

XLM-R Large 92.04 73.20 73.88 82.09 60.47 88.85 84.27 61.24 81.19 59.35 83.97 74.85
mT5-XL 91.77 76.27 73.43 81.72 69.29 86.86 83.50 60.63 82.47 60.86 82.68 75.77
Llama 3.1 8B 89.75 70.83 73.00 80.75 39.92 89.58 78.00 65.25 81.58 67.33 80.42 72.67
Gemma 2 9B 91.15 66.42 71.58 82.08 31.92 91.67 86.25 64.00 80.75 64.33 77.08 71.61

Translate-Train (models are trained on training data translated to the target language)

XLM-R Large w/ LoRA 92.04 74.19 74.55 81.84 60.99 89.40 85.90 70.75 81.15 67.35 83.87 77.00
w/ X-Mixup 92.04 73.10 73.08 81.18 62.22 88.38 85.90 65.79 82.30 68.97 82.74 76.37
input-level fusion 92.04 77.77 75.89 82.67 69.96 89.44 87.92 66.66 79.55 68.47 87.01 78.53
w/ FLARE MT 92.04 73.33 75.95 81.13 57.20 90.76 86.59 69.77 83.42 68.90 84.73 77.18
w/ FLARE 92.04 76.47 77.27 80.71 70.18 90.54 87.42 71.33 85.15 70.16 82.59 79.18

mT5-XL w/ LoRA 91.77 80.66 81.92 85.83 65.36 89.78 90.40 69.85 82.30 69.27 88.76 80.41
w/ X-Mixup 91.77 80.34 74.60 83.76 68.87 88.52 88.75 68.25 83.66 65.60 83.76 78.61
input-level fusion 91.77 81.00 79.48 85.54 71.44 89.75 87.58 66.33 83.28 68.02 88.78 80.12
w/ FLARE MT 91.77 81.19 84.12 85.19 66.59 90.14 89.67 71.16 84.80 71.87 88.94 81.37
w/ FLARE 91.77 81.03 82.03 85.88 66.95 89.55 89.80 68.63 84.20 69.31 88.05 80.54

Llama 3.1 8B w/ LoRA 89.75 76.26 73.71 78.10 62.82 88.66 84.29 62.91 82.20 58.04 80.64 74.76
w/ X-Mixup 89.75 77.25 76.58 79.00 64.17 89.92 85.08 64.58 82.17 59.83 80.50 75.91
input-level fusion 89.75 74.83 66.17 80.17 66.67 89.17 85.50 59.63 82.63 57.25 84.00 74.60
w/ FLARE MT 89.75 78.21 72.00 74.29 64.21 87.96 83.04 64.38 80.75 62.38 77.96 74.52
w/ FLARE 89.75 78.88 75.25 80.25 64.25 91.17 85.88 65.13 81.38 57.88 80.75 76.08

Gemma 2 9B w/ LoRA 91.15 77.89 79.14 82.30 66.83 91.71 87.56 69.81 85.72 67.61 85.18 79.37
w/ X-Mixup 91.15 80.94 77.92 82.82 68.22 91.46 88.29 69.41 87.64 67.26 85.48 79.94
input-level fusion 91.15 77.67 76.88 83.50 70.58 89.92 87.17 63.92 84.50 60.71 84.92 77.98
w/ FLARE MT 91.15 79.88 80.67 81.88 62.50 91.04 85.67 66.04 84.71 64.42 84.08 78.09
w/ FLARE 91.15 82.75 81.00 83.17 65.08 92.83 86.83 73.08 87.75 70.58 85.50 80.86

Translate-Train (fusion models are trained on data translated into the target language and evaluated using gold translations from the target language to the source language)

XLM-R Large input-level fusion 92.04 91.24 91.08 90.55 90.69 91.99 90.88 91.23 91.07 90.07 90.52 90.93
w/ FLARE 92.04 89.24 88.98 82.55 90.07 90.22 88.15 71.20 87.58 72.93 85.71 84.66

mT5-XL input-level fusion 91.77 91.39 90.39 91.47 91.54 90.88 89.49 88.87 90.86 89.20 91.60 90.57
w/ FLARE 91.77 83.80 80.55 84.06 64.70 88.32 90.50 74.36 83.64 69.29 88.00 80.72

Table 8: Average scores per language in the NusaX dataset. Model performance is evaluated using the Macro F1
metric.
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Dataset Model LoRA X-Mixup Input-level fusion

Translate-Train (models are trained on training data translated to the target language)

XNLI XLM-R w/ FLARE MT 0.000*** 0.000*** 0.000***
w/ FLARE 0.139 0.001*** 0.001***

mT5-XL w/ FLARE MT 0.001*** 0.000*** 0.000***
w/ FLARE 0.001*** 0.000*** 0.000***

Llama 3.1 8B w/ FLARE MT 0.564 0.001*** 0.885
w/ FLARE 0.321 0.000*** 0.813

Gemma 2 9B w/ FLARE MT 0.764 0.006*** 0.000***
w/ FLARE 0.221 0.002*** 0.000***

TyDiQA XLM-R w/ FLARE MT 0.311 0.710 0.213
w/ FLARE 0.296 0.035** 0.531

mT5-XL w/ FLARE MT 0.434 0.938 0.772
w/ FLARE 0.181 0.804 0.393

Llama 3.1 8B w/ FLARE MT 0.029** 0.007*** 0.005***
w/ FLARE 0.007*** 0.007*** 0.378

Gemma 2 9B w/ FLARE MT 0.536 0.014** 0.113
w/ FLARE 0.015** 0.007*** 0.505

NusaX XLM-R w/ FLARE MT 0.773 0.323 0.462
w/ FLARE 0.026** 0.009*** 0.514

mT5-XL w/ FLARE MT 0.044** 0.023** 0.192
w/ FLARE 0.693 0.032** 0.543

Llama 3.1 8B w/ FLARE MT 0.750 0.094* 0.964
w/ FLARE 0.015** 0.632 0.265

Gemma 2 9B w/ FLARE MT 0.086* 0.027** 0.936
w/ FLARE 0.041** 0.187 0.088*

Table 9: P-values from the Pitman permutation test comparing FLARE and FLARE MT (rows) against baseline methods
(columns) on the XNLI, TyDiQA, and NusaX datasets. The test is performed on average performance scores per
language in the translate-train setting, as reported in Tables 6, 7, and 8. Statistical significance at the 90%, 95%, and
99% confidence levels is indicated by *, **, and ***, respectively.
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Task Language ISO Code Source

XNLI Arabic ar

Crowd-sourced (Williams et al., 2018)

Bulgarian bg
Chinese zh
French fr
German de
Greek el
Hindi hi
Russian ru
Spanish es
Swahili sw
Thai th
Turkish tr
Urdu ur
Vietnamese vi

TyDiQA Arabic ar

Wikipedia (Clark et al., 2020)

Bengali ben
Finnish fi
Indonesian ind
Korean ko
Russian ru
Swahili sw
Telugu tel

NusaX Acehnese ace

SmSA (Purwarianti and Crisdayanti, 2019)

Balinese ban
Banjarese bjn
Buginese bug
Indonesian ind
Javanese jav
Madurese mad
Minangkabau min
Ngaju nij

Table 10: Overview of languages and corresponding source data used in the experiments, categorized by task.
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