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Abstract

Temporal information extraction from unstruc-
tured text is essential for contextualizing events
and deriving actionable insights, particularly
in the medical domain. We address the task
of extracting clinical events and their tempo-
ral relations using the well-studied I2B2 2012
Temporal Relations Challenge corpus. This
task is inherently challenging due to complex
clinical language, long documents, and sparse
annotations. We introduce GRAPHTREX, a
novel method integrating span-based entity-
relation extraction, clinical large pre-trained
language models (LPLMs), and Heterogeneous
Graph Transformers (HGT) to capture local
and global dependencies. Our HGT component
facilitates information propagation across the
document through innovative global landmarks
that bridge distant entities and improves the
state-of-the-art with 5.5% improvement in the
tempeval F1 score over the previous best and
up to 8.9% improvement on long-range rela-
tions, which presents a formidable challenge.
We further demonstrate generalizability by es-
tablishing a strong baseline on the E3C corpus.
Not only does this work advance temporal infor-
mation extraction, but also lays the groundwork
for improved diagnostic and prognostic models
through enhanced temporal reasoning.

1 Introduction

Electronic Health Records (EHRs) contain a wealth
of information in both structured data and un-
structured free-text notes written by healthcare
providers. These notes are the preferred infor-
mation source of physicians as they contain valu-
able insights often missing from the structured data
(Hersh et al., 2013; Capurro et al., 2014), includ-
ing temporal progression of symptoms, diagnoses,
and treatments. Modeling such temporal relations
is important for understanding the underlying dis-
ease pathology. For example, a drug given after a
symptom appears may indicate a treatment, while a

symptom appearing after a drug may indicate an ad-
verse effect. Precise extraction of event chronology
from text can aid precision medicine by improving
temporal reasoning for downstream applications
(Chen et al., 2021; Vashishtha et al., 2020).

One such application is facilitating opportunis-
tic screening of chronic health conditions such as
Diabetes Type 2 (T2D) (Pickhardt et al., 2021;
Scheetz et al., 2021). Many underprivileged pa-
tients forgo regular check-ups but interact with
the healthcare system for other reasons (Zhang
et al., 2015; Dhippayom et al., 2013). Oppor-
tunistic screening—screening patients for certain
conditions whenever they come in contact with
the healthcare system, possibly for unrelated rea-
sons—is expensive at scale. Leveraging patient
histories from the clinical notes can enable this by
identifying early risk factors, thereby enhancing
healthcare equity and reducing clinicians’ manual
review burden. This requires accurate temporal
relation extraction (TREX) to determine when risk
factors emerge in a patient’s history. Beyond risk
factors, TREX also plays a crucial role in under-
standing patterns of drug use and misuse, as well as
assessing the long-term benefits and potential side
effects of medications. For instance, the shared task
by Yao et al. (2024) on extracting cancer treatment
trajectories highlights the growing significance of
this vital research area. Modeling events and their
temporal connections has shown promise for event
forecasting in other fields (Li et al., 2021), but no
comparable work has been applied to the clinical
domain. While some patient representation models
consider coarse temporal chronology across pa-
tient visits (Ghassemi et al., 2015; Lee et al., 2020;
Chaturvedi et al., 2023), fine-grained temporal in-
formation in the clinical notes remains underuti-
lized (Tvardik et al., 2018).

The clinical TREX task faces at least three chal-
lenges. First, clinical text requires domain-specific
models due to its specialized vocabulary (e.g.,
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Figure 1: Temporal graph of clinical events and time expressions from a clinical note with color-coded spans as
nodes and edges indicating their temporal relations.

‘b.i.d.’ meaning twice a day for dosage), unique
temporal expressions (e.g., ‘three days postop’),
and ambiguity in abbreviations across providers
(e.g. ‘DM2’ can mean Diabetes Mellitus Type 2
or Myotonic Dystrophy Type 2), requiring contex-
tual interpretation. However, publicly available,
moderate-sized, free or affordable corpora of clin-
ical notes annotated with temporal relations are
scarce due to costly expert annotation and strict pri-
vacy regulations. Several works use the I2B2 2012
corpus (Sun et al., 2013a,b), as we do here. Another
corpus, THYME (Bethard et al., 2017; Styler IV
et al., 2014), requires a membership fee similar
to the Linguistic Data Consortium (LDC). Fortu-
nately, a small corpus annotated with THYME
guidelines, E3C (Magnini et al., 2022), was re-
cently released, and we report results on it as well.

Second, TREX is often tackled using a sequential
(pipeline) approach that first extracts entities and
then classifies the entity pairs into a relation type
(Xu et al., 2013). Unlike other relation extraction
tasks, temporal relations are constrained by tempo-
ral logic and often implied through linguistic cues
(verb tenses, temporal prepositions) and reason-
ing over the extracted relation pairs. Conventional
sequential approaches struggle to capture such in-
teractions between entities and temporal relations,
often leading to error propagation.

Third, clinical notes generally comprise long
documents with extensive patient history, find-
ings, treatment plans, etc. However, the recent
transformer-based models that perform exception-
ally well in NLP tasks have context-length limita-
tions. Due to this, recent works in clinical TREX tar-
get entity pairs across small context lengths, such
as only event pairs across three consecutive sen-
tences (Han et al., 2020) to avoid the quadratic
complexity of document-level context, overlook-
ing both the long-distance pairs and interactions

with the time expressions. Consider the example
in Figure 1, containing a small excerpt of a real
clinical note and corresponding temporal graph. It
is easy to infer that gait disorder < (before) ad-
mission < heparin < MRI, by observing the local
context. Given these patterns, one can also infer the
long-range relation that gait disorder < MRI. Infer-
ring such long-range relations is essential to obtain
more accurate timelines; however, it is known to
be a formidable challenge (Qin et al., 2023a).

Contributions. To address these challenges, we
introduce GRAPHTREX (Graph-based Temporal
Relation Extraction), an end-to-end framework
integrating text- and graph-based methods, en-
abling a more structured and context-aware ex-
traction. GRAPHTREX constructs a document-
level Heterogeneous Graph (HG) from span-based
model predictions using a clinical Pre-trained Lan-
guage Model (PLM), then applies Heterogeneous
Graph Transformers (HGT) for local and global
information propagation. By leveraging tailored
node types and heterogeneous information aggre-
gation, GRAPHTREX achieves state-of-the-art per-
formance on the I2B2 2012 corpus and establishes
a competitive novel baseline on the E3C corpus.
Importantly, our ablation experiments demonstrate
that GRAPHTREX excels in inferring long-distance
relations, a critical challenge in clinical TREX.

2 Related Work

Early clinical TREX approaches use a hybrid of
rule-based and machine-learning-based systems
that require extensive feature engineering and ad-
ditional annotations (Xu et al., 2013; Tang et al.,
2013; Sohn et al., 2013). Transformer-based PLMs
such as BERT (Devlin et al., 2019) improve both
entity extraction (Alsentzer et al., 2019; Si et al.,
2019) and relation classification (Zhou et al., 2021)
to classify known gold-standard entity pairs, ex-
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cluding unrelated pairs. However, they have not
been applied to the full end-to-end extraction task
due to document-level complexity, and remain lim-
ited to nearby event-event pairs (Han et al., 2020).
Since this task remains essential for real clinical
use cases, we refocus on the complete document-
level, end-to-end TREX using sliding windows and
graph-based modeling to incorporate long contexts.

Contemporary clinical TREX methods have not
shown improvement over the older baselines. Most
of the works adopt traditional token-based mod-
els for entity extraction (Liu et al., 2017), which
are prone to cascading label misclassifications (Yu
et al., 2022). Secondly, the pipeline approaches for
end-to-end relation extraction struggle to capture
the complex interactions between entities and their
relationships. In the general domain, joint span-
based approaches (Dixit and Al-Onaizan, 2019;
Lai et al., 2021; Eberts and Ulges, 2020; Yan et al.,
2022) have been shown to address these limita-
tions by modeling entity and relation extraction
together. They also mitigate the cascading error
issue of token-based systems by enumerating all
possible contiguous spans and then directly clas-
sifying them. Another joint framework REBEL
(Huguet Cabot and Navigli, 2021) that generates
entity-relation triplets autoregressively has shown
strong performance in document-level relation ex-
traction. However, it underperforms in clinical
TREX (Saiz and Altuna, 2023), likely due to the
unique challenges posed by temporal dependencies.
We integrate a span-based approach with structured
graph reasoning to address these challenges.1

3 Problem Statement & Data

3.1 Problem Statement
Given a clinical note, we extract a temporal graph
G, jointly identifying the nodes and edges. The
nodes correspond to entities, which comprise either
clinical events such as symptoms or medications; or
time expressions (timex) such as dates, frequencies,
or durations. Edges represent temporal relations.
As shown in Figure 1, a directed edge from e1 to e2
represents the temporal relation e1 Before (<) e2 or
e2 After (>) e1 while an undirected edge represents
e1 Overlaps (=) e2.

3.2 Data
We primarily focus on the I2B2 2012 Temporal
Relations Challenge corpus (Sun et al., 2013a,b)

1See Appendix S1 for additional related works.

in this study, which features a substantial number
of cross-sentence annotations, unlike other clinical
TREX corpora. The data comprises 310 discharge
summaries in English where entities include:
Clinical Events: Events include six types—,
namely TREATMENT, TEST, PROBLEM, CLIN-
ICAL DEPARTMENT, EVIDENTIAL, and OC-
CURRENCE. While TREATMENT, TEST, and
PROBLEM are self-explanatory; EVIDENTIAL
denotes information source (e.g. ‘tested’, ‘com-
plained’); OCCURRENCE refers to activities such
as transfers between departments, admission, dis-
charge, or follow-up. CLINICAL DEPARTMENT
anchors key services in the patient’s timeline, often
reflecting changes in severity (e.g., ICU admission
indicates higher severity).
Time Expression (TimEx): Includes DATE,
TIME, DURATION, and FREQUENCY.
SECTIME: Time anchors marking section cre-
ation times, like ADMISSION (clinical history)
or DISCHARGE (hospital course) dates.
Temporal relations or Tlinks: Include Before
(<), After (>), and Overlap (=). TLinks can exist
between event-event (EE), event-timex or event-
sectime (ET), and timex-timex (TT).
Train-test Split. The data is divided into 190 train-
ing files and 120 test files. Following (Zhou et al.,
2021), we sample 9 files from the training set as
the development set. On average, a document con-
tains 86.6 events, 12.4 timexes, and 176 TLinks.
There’s an average of 576 tokens per document,
110 entities, and 197 annotated relations.

We also conduct initial experiments on the En-
glish subset of the E3C corpus (Magnini et al.,
2022), a collection of clinical cases. The dataset
includes 48 test documents and 36 training docu-
ments, with 7 (20%) reserved for development.

Appendix S2 contains additional data details.

4 Our Method: GRAPHTREX

The clinical texts are long documents with numer-
ous entities and relations. The main motivation for
using graphs is that these long documents contain
implicit temporal dependencies that extend beyond
local neighborhoods, making them difficult to cap-
ture with span-based approaches alone. To discover
the global patterns, we create heterogeneous graphs
from whole documents, with entities as nodes and
their temporal relations as edges. We include spe-
cial landmark nodes to incorporate local and global
context. Our model GRAPHTREX works in three
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Figure 2: Heterogeneous Graph Construction. The gray edges represent intermediate high-confidence temporal
relations inferred before HGT integration. The blue arrow represents additional relation inferred by the HGT
component through local neighborhood aggregation via the entity and CONTEXT nodes and global neighborhood
aggregation via the WINDOW nodes.

steps—(i) obtaining domain-aware representations,
(ii) constructing a heterogeneous graph, and (iii)
obtaining final predictions with GNN.

4.1 Domain-aware Representations
(SPANTREX)

We adopt a span-based approach to obtain domain-
aware features, where a span is a contiguous se-
quence of tokens to be classified as an entity. We
enumerate all spans up to length k = 7, cover-
ing the 97th percentile of entity lengths in the
training data. Span representations are derived us-
ing BioMedBERT (Gu et al., 2021), pre-trained
from scratch on biomedical articles to capture
domain-specific vocabulary. For example, BioMed-
BERT recognizes ‘creatinine’ as a single token
unlike general-domain BERT, which splits it into
less meaningful subwords [‘cr’, ‘##ea’, ‘##tin’,
‘##ine’]. The representation esp of a span sp is
obtained by concatenating BioMedBERT embed-
dings ρ for the span’s start token (start[sp]), end
token (end[sp]), and span-width embedding (ω(sp)
encoding the number of tokens in a span (|sp|).

esp = FFNN(ρstart[sp]; ρend[sp];ω(sp)) (1)

A feed-forward network with two layers and ReLU
activation is used as an entity decoder.

ŷni = argmaxAsp
(g(espi)) (2)

g(espi) = softmax(FFNN(espi)) (3)

where Asp is the set of entity/span types, including
the NOT-ENTITY class for the remaining spans.

For relation classification, we create pair-wise
representations using entities not classified as NOT-

ENTITY. We concatenate each entity span repre-
sentation with the element-wise product of the two
spans to capture the interactions between the spans.
We also include the max-pooled representation of
all the token embeddings between two entity spans.
This design choice is inspired by several previous
studies that observe significant performance im-
provement in relation extraction tasks by providing
additional context between two entities (Cheng and
Weiss, 2023; Li et al., 2023a)— i.e. ectx denoted
the context between tokens i and j. Additionally,
we also provide the entity types as inferred by the
entity decoder to the model for modeling domain-
specific distributional constraints (Han et al., 2020;
Cheng and Weiss, 2023):

ϵi,j = [espi ; espj ; espi ⊙ espj ; eŷni ; eŷnj ; ectx(i,j)]

ectx(i,j) = maxpool( (4)

{ρk | end[spi] < k < start[spj ]; i < j})

A relation decoder similar to the entity de-
coder is used to classify the pair represen-
tation of ith and jth spans into Yrtype ∈
{Before, After, Overlap, NO-RELATION}.

ŷrij = argmaxRsp
(f(ϵi,j)) (5)

f(ϵi,j) = softmax(FFNN(ϵi,j)) (6)

where Rsp is the set of relation types.
For our task of joint end-to-end relation ex-

traction, we use the combined training loss L =
Ln + Lr. Where Ln is the cross-entropy loss for
entity and Lr for relation extraction.

Sliding Windows. Clinical notes are long, and
BioMedBERT is limited to 512 tokens. Previous
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works often split the document into 1–3 sentence
chunks, processing each separately, which results
in loss of global context and potential inconsis-
tencies. To overcome this, we use a sliding win-
dow approach to retain sufficient local context for
each token’s embedding (Beltagy et al., 2020). The
sliding window mechanism processes a sequence
by moving a fixed-size (n tokens) window with a
stride of ⌊n−2

2 ⌋. The window masks ensure that
despite overlapping windows to provide sufficient
context to all tokens, the final representation of
each token comes from a unique window (See Ap-
pendix S3 for details). These local representations
are then used for TREX.

We now describe our model GRAPHTREX that
uses the predicted entities and their most confident
Tlinks and refines the extracted temporal graph
using graph neural networks (GNN).

4.2 Document-Level Heterogeneous Graph

A Heterogeneous Graph (HG) models hetero-
geneities in both the node and the edge types
(Shi et al., 2017). It is defined as a tuple G =
(V, E ,A,R), where V = {vi}Nv

i=1 and E =
{ej}Ne

j=1 are the sets of nodes and edges. The node
types and edge types are denoted by A and R, with
a unique mapping for each node ϕ(v) : V → A and
edge ψ(e) : E → R. Here Nv and Ne represent
the total number of nodes and edges. We can model
the graph as a set of triples (ϕ(s), ψ(e), ϕ(t)), or
“meta relations”, for every source node s connected
to target node t by edge e. To construct an HG
from the documents (illustrated in Figure 2), we
define two categories of node types, namely, Token-
level nodes (Entity/CONTEXT) and Document-
level nodes (WINDOW) to incorporate local and
global context, allowing information exchange be-
tween both the neighboring entities and across the
windows. We describe these in the following para-
graphs and further elaborate in Appendix S4.

Token-level Nodes. Node types in this group cap-
ture the contextual understanding of the spans and
their local inter-dependencies. These include Span-
based and Context-based nodes.

Entity Nodes. We represent every span that is not
predicted as NOT-ENTITY by g as a node in this
subgroup. The node type for these is the predicted
entity type. Thus, we obtain |Asp| − 1 node types
intitialized with their representation esp. We con-
nect two such nodes if f predicts their correspond-
ing temporal relation other than NO-RELATION,

with the prediction probability above a pre-defined
threshold τ . This confidence thresholding ensures
that information is propagated only via the most
certain relation predictions of f . This is particu-
larly important in the early stages of training, as
all components are trained simultaneously with-
out certainty filtering, a sub-optimal model might
propagate the noise across the graph.

Context-based Nodes. In natural language, the
meaning of a word or phrase is closely tied to its
local context (Radford et al., 2018; Devlin et al.,
2019; Mikolov et al., 2013). We also observe this
in our experiments with SPANTREX, where incor-
porating additional context between spans brings a
high-performance gain in relation extraction (see
Figure 4). To capture this in the HG, we introduce
context nodes that store pooled context between
a span pair. Directed edges connect the spans to
the context node in the lexical order. Introducing
context nodes for all possible span pairs results in
a dense graph where even far-apart spans are reach-
able within 1- or 2-hops, leading to the common
over-smoothing issue after information aggrega-
tion. To mitigate this, we limit context nodes to
span pairs within a distance of δ tokens.

Document-level Nodes. To detect the long-range
dependencies, we introduce window nodes which
act as global landmarks in the document. Given
a common window length Lw for all documents,
there can be

⌈
L
Lw

⌉
window nodes in a document of

lengthLwhile the node type WINDOW is assigned
to all of them. Entity nodes within a window con-
nect to their window node via distinct edge types
based on the entity types, and window nodes are
connected sequentially based on their lexical order.
Window nodes are of significant importance since
they help aggregate information from far neighbor-
hoods and help in finding transitive relations.

4.3 Final Predictions by GRAPHTREX

Once an HG is constructed, we model it with the
heterogeneous graph transformer (HGT) (Hu et al.,
2020). Unlike traditional GNN typically applied
to homogeneous graphs (Veličković et al., 2018),
HGT considers node- and edge-type distributions.
The HGT module takes a document graph G con-
structed as discussed in Section 4.2 and initializes
entity nodes with span embeddings (esp). To pro-
duce structure-enhanced representations, the HGT
module applies a message-passing process and en-
riches span embeddings with the aggregated in-
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Relation 
Decoder (f)
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admission date: 12/04/18. the patient was initially hypotensive … she had a mechanical fall after admission.
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Figure 3: GRAPHTREX Architecture. (I) The dashed boundary represents SPANTREX that produces the initial
temporal graph. (II) A confidence threshold (τ ) filters uncertain edges (TLinks). (III) The edges are iteratively
refined with the HGT component. (IV) The final node representations from the graph are combined with weighted
residual of original span embeddings. (V) The relation decoder predicts the final temporal relations based on the
HGT-enhanced representation. This way GRAPHTREX infers additional local and global relations (blue arrow).

formation from their neighborhoods in the graph
to extract global relation patterns effectively (the
HGT module is described in Appendix S4.1).

Figure 3 shows the complete GRAPHTREX archi-
tecture. After obtaining HGT representations for
entities, we add them to the weighted residual of
the original span embeddings. The new representa-
tions are then fed to the relation decoder. Here the
nodes with CLS labels refer to the Window nodes
(we do not show the context nodes for clarity). The
example highlights that while SPANTREX can infer
the Overlap (=) relation between co-referring men-
tions of “admission”, HGT integration in GRAPH-
TREX allows us to go further. For example, by
aggregating information that ‘hypotensive’ = ‘ad-
mission’ and ‘mechanical fall’> ‘admission’, HGT
helps detect the long-range relation ‘hypotensive’
< ‘mechanical fall’ as shown with the blue arrow.

5 Experiments

5.1 Reproducibility

The implementation details are in Appendix S5,
and our code is available at https://github.com/
pbaghershahi/GraphTREX.

5.2 Evaluation Setup

The event extraction and timex extraction tasks in
the I2B2 2012 challenge are evaluated using span
F1 (EI for entity identification) rewarding partial
span match, and entity type accuracy (EC for en-

tity classification). For the end-to-end relation ex-
traction (RE), the TLink F1 is considered as the
primary metric. Following the I2B2 2012 shared
task, we exclude the NO-RELATION pairs for final
evaluation. An important consideration while eval-
uating Temporal Relation Extraction (TREX) meth-
ods is that the same temporal order of events can
be defined in multiple ways. For example, (A<B,
B=C) can also be specified as (A<C, B=C) due to
transitivity, and (A<B) is the same as (B>A) due
to invertibility. Therefore, the temporal awareness
metrics (UzZaman and Allen, 2011) are adopted
for evaluation:

P =
|G−

sys∩G+
gold|

G−
sys

, R =
|G−

gold∩G
+
sys|

G−
gold

, F1 = 2 PR
P+R

where G+ is the closure of graph G that makes
implicit temporal relations explicit by reasoning on
a set of relations using transitivity and invertibility
rules. G− is the reduced graph after removing
redundant relations inferable from other relations
of G. The intersections in the formulae refer to
the TLinks of the corresponding graphs. For E3C
corpus, we use micro-F1 scores for both entity and
relations following the THYME standard.

Baselines. For the I2B2 corpus, we evaluate
GRAPHTREX and SPANTREX against hybrid rule
and ML-based approaches (Xu et al., 2013; Tang
et al., 2013), a recent generative framework (Saiz
and Altuna, 2023), popular general-domain model
SPERT (Eberts and Ulges, 2020), and multi-head
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Model
EVENT TimEx TLink

EI EC EI EC RE

F1 Acc F1 Acc P R F1

Rule+ML (Xu et al., 2013) 91.66 85.74 91.44 89.29 67.10 60.01 63.36
Rule+ML (Tang et al., 2013) 90.13 83.60 86.59 85.00 70.06 56.88 62.78
REBEL+BART (Saiz and Altuna, 2023) 78.00 72.00 77.00 65.00 65.00 52.00 58.00
Multi-head Attention (Miller et al., 2023) 89.42 80.74 89.01 77.42 86.12 29.76 44.24
SPERT (Eberts and Ulges, 2020) 89.44 81.1 90.29 82.64 77.58 50.36 61.08
SPANTREX (ours) 89.49 81.35 90.13 81.32 81.33 56.44 66.63
GRAPHTREX (ours) 89.55 80.99 90.06 81.21 78.21 61.42 68.81

Table 1: I2B2 2012 end-to-end entity-relation extraction task results using TLink F1 as the primary metric.

attention-based method having state-of-the-art on
the THYME corpus Miller et al. (2023).2. We also
experiment with a pipeline approach—extracting
entities using our state-of-the-art BioMedBERT-
UMLS model (Appendix S6.1) and classifying
entity pairs using the method from Zhong and
Chen (2021), which attains state-of-the-art in I2B2
2012 relation classification (Cheng and Weiss,
2023). We extend this to include the majority NO-
RELATION class for pairs without clear temporal
links. Similar to earlier works, we are unable to
run this model for document-level pairs due to com-
putational constraints and limit this experiment to
same-sentence pairs (see Appendix S6.2). For E3C,
we compare SPANTREX and GRAPHTREX against
multi-head attention and SPERT. 3

5.3 Results and Discussion

Table 1 shows that GRAPHTREX sets a new state-
of-the-art in end-to-end TREX on I2B2 2012, with
a 68.81% tempeval F1, a 5.45% gain over Xu
et al. (2013). GRAPHTREX also outperforms
SPANTREX with more than 2% improvement
due to an improved recall. The improvement in
document-level F1 scores is also highly statisti-
cally significant (p-value = 4.26 × 10−9, paired
t-test). Even with added model complexity, these
gains are crucial for the clinical domain and pa-
tient outcomes. The multi-head attention method
has the lowest performance among all baselines
despite achieving state-of-the-art on the THYME
corpus. While multi-head attention between two
entities can effectively capture word-level depen-

2To ensure a fair comparison, we use the same entity-
extraction setup as SPANTREX and implement multi-head
attention over an n× n matrix of entities for relation decoder.

3We exclude baselines from 2013 due to code unavail-
ability and additional private annotations, and REBEL and
pipeline approaches due to poor performance on I2B2 2012.

dencies, it may still struggle with long-range de-
pendencies without additional global or local con-
text. In contrast, SPANTREX incorporates addi-
tional local context. GRAPHTREX further brings
node-specific and edge-specific multi-head atten-
tion and provides additional global context, allow-
ing interactions between existing high-confidence
relations to improve the inference over long-range
relations too. Additionally, the pipeline approach,
limited to same-sentence relations, struggles with
the NO-RELATION class, achieving only 10.79%
F1. In contrast, GRAPHTREX effectively distin-
guishes relevant relations from the majority of neg-
ative samples, achieving 59.67% F1 in sentence-
level pairs. We also train our model for relation
extraction with gold entities and find that the model
severely underperforms, showing the importance
of joint training with shared representations.

Qualitative Analysis We conduct an analysis
of the system outputs against the ground truth
and present a case study in Appendix S7, Fig-
ure S3. The example reveals an inconsistency in
the ground truth, where ‘discharge’ event overlaps
with both the admission and discharge dates. While
SPANTREX replicates this error, GRAPHTREX

does not, showing greater robustness. GRAPH-
TREX output is also more balanced across rela-
tion types and has denser connections than the
ground truth, while SPANTREX identifies fewer Be-
fore/After pairs. SPANTREX misses two important
wellness indicators—‘tolerated’ and ‘treatment’.
Beyond this case study, we also find that the re-
ported entity extraction scores may not fully reflect
our model’s capability, as it identifies meaningful
entities even when the gold standard omits them.
For example, given {admission’, hospitalization’},
GRAPHTREX and SPANTREX correctly identify
both while the ground truth labels only the first.
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Generalization to E3C Corpus We consider
EVENTs and their TLinks since E3C data is
sparsely annotated and majority (85.63%) of an-
notated TLinks occur between EVENTs only (Ap-
pendix S2.2). Table 2 shows SPANTREX outper-
forms SPERT by a large margin and GRAPHTREX

gives further 1% improvement, showing strong
generalizability of the method on this challenging
dataset. We also attain improved entity extraction
scores compared to the previous best of 63.44%
(Zanoli et al., 2024).

Model EVENT TLink

F1 F1

Multi-head Attention 84.0 3.97
SPERT 78.85 13.63
SPANTREX (ours) 81.3 22.55
GRAPHTREX (ours) 82.10 23.48

Table 2: Results on the E3C Corpus.

5.4 Ablation Analyses

Here we present further detailed analysis and abla-
tion studies on the I2B2 corpus and provide addi-
tional experiments in Appendix S6.

Distance
n̄r

SPANTREX GRAPHTREX %IMP
(dr) P R F1 P R F1

dr = 0 159.4 75.4 41.1 53.2 72.4 45.1 55.6 4.5
dr > 0 70.6 93.6 15.6 26.8 91.0 17.0 28.6 6.7
dr > 1 35.9 94.4 8.6 15.7 92.8 9.4 17.1 8.9

Table 3: TLink scores by entity pair distance on I2B2:
same window (d = 0), across windows (d > 0, d > 1).
n̄r is the average ground truth TLinks. %IMP measures
F1 gain of GRAPHTREX over SPANTREX.

Does the GNN module improve long-range pre-
dictions? We investigate whether local versus
global information exchange across an HG im-
proves performance for lexically distant entities.
We compare the TLink predictions over the same
context window (dr = 0) for local TLinks, across
different windows (dr > 0), and farther than ad-
jacent windows (dr > 1) for global TLinks. Here
dr denotes the number of windows between two
entities. Table 3 shows GRAPHTREX outperforms
SPANTREX across all distances, with a % improve-
ment (lift) of 4.5% for same-window relations,
6.7% for those spanning one or more windows,
and 8.9% for more distant pairs.

An important finding of this experiment is the
scalability potential of GRAPHTREX as it improves

structural dependencies across long documents
with graphs while keeping the relations and con-
text invariant to the document length. This is an
important advantage since the longer a document
gets, the harder it is for a text-based model or trans-
former LMs to process it and capture long-range
dependencies (Yuan et al., 2023; Qin et al., 2023a).

Variations in Pair Embedding Approaches. To
enhance SPANTREX, we include (1) additional con-
text by pooling all the tokens between entity spans
and (2) predicted entity types in the pair embed-
dings (ϵi,j ( Eq. 5). (3) We also augment training
data by adding inverse flipped relations—ifA = B,
we add B = A, if A < B, we add B > A and
vice-versa. Figure 4 shows the percentage improve-
ment w.r.t. the SPANTREX, with the highest boost
from additional context. Additional flipped rela-
tions also provide considerable gains while adding
entity types leads to marginal gains. Even on the
E3C corpus, additional context is crucial, as per-
formance drops to 8.44% without it, and without
flipping the Overlap relation, it drops to 20.95%.4

30 20 10 0
%IMP

w/o context
w/o entity-type

w/o flipped pairs

-31.6
-0.6

-17.5

Figure 4: % F1 gain on I2B2 of SPANTREX over abla-
tions omitting specific pair representation components.

Ablation on Graph Construction/Impact of
Node Types. We analyze the impact of each HG
component by varying the node types used for
graph construction and compare the performance
with SPANTREX (Table 4). Using only entity nodes
can degrade performance, likely due to the entity
nodes overfitting their local neighborhoods in the
absence of a broader context. Adding context nodes
improves results, consistent with Figure 4, showing
the importance of context between spans. Includ-
ing both the context nodes and the window nodes
further enhances the model performance, showing
that they are mutually compatible.5

Variations Across Different Encoders We ex-
periment with several other base encoders and re-
port the results with two popular models—BERT
and RoBERTa—in Table 5. We find that GRAPH-

4Before pairs are not flipped in E3C since it doesn’t have
the inverse After class.

5Ablation on E3C corpus gives slightly different trends,
given the short documents (Appendix S6.4).
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Method Graph Components

Sp
an

C
on

te
xt

W
in

do
w

P R F %IMP

SPANTREX 81.33 56.44 66.63 -

GRAPHTREX

✓ ✗ ✗ 80.26 53.67 64.43 -3.3
✓ ✓ ✗ 80.34 58.75 67.87 1.9
✓ ✗ ✓ 77.23 59.98 67.52 1.3
✓ ✓ ✓ 78.21 61.42 68.81 2.3

Table 4: % F1 gains (IMP) of GRAPHTREX variants
over SPANTREX for the I2B2 dataset.

TREX provides additional gains over SPANTREX

across both encoders. We also report the results
with clinical Longformer (Li et al., 2022), designed
to process long clinical texts. In line with Qin et al.
(2023b) we find that in their native implementation
using SPANTREX, the transformer-based models
including Longformer struggle with long-range de-
pendencies. Clinical Longformer also underper-
forms over GRAPHTREX with F1 score 63.84%.
We also report the results on entity extraction with
several pre-trained clinical base encoders in Ap-
pendix S6.1 Table S6, and find that none of them
outperform BioMedBERT.

Model TLink (end-to-end)
P R F1

GRAPHTREX 78.21 61.42 68.81

BERT-SPANTREX 75.94 48.63 59.30
BERT-GRAPHTREX 77.45 52.30 62.44
RoBERTA-SPANTREX 79.98 52.05 63.06
RoBERTa-GRAPHTREX 78.22 54.88 64.50

Clinical-Longformer 82.39 52.10 63.84

Table 5: Variations across encoders on the I2B2 data.

Performance Across Relation Classes We re-
port the performance of GRAPHTREX across indi-
vidual TLink classes in Table 6. While reporting
these scores for E3C is straightforward since the
evaluation metric is micro F1, for I2B2, we report
tempeval metrics. Therefore, before computing
these metrics, we filter the system and gold output
to the desired relation type. Note that during train-
ing, we enrich the training data with corresponding
inverse relations by flipping the participant entity
order, due to which the model learns to output an
equivalent number of Before/After relations. How-
ever, for the gold standard, there are fewer TLinks
for After. Therefore, to have a fair evaluation, we
similarly flip the relation type in the gold standard
before computing the above scores. The number

of TLinks reported in the above table is based on
the I2B2 evaluation script; they represent the to-
tal compatible links in the gold standard test set,
given the match in extracted entities. As seen from
this table, the model performance is better on the
majority class for both datasets.

Corpus RelType #TLinks F1

I2B2 2012
Overlap 7155 59.27
Before 13453 75.05
After 13453 74.94

E3C
Overlap 1560 24.23
Before 793 21.88

Table 6: Performance Across Relation Classes.

6 Conclusion and Future Work

We introduce GRAPHTREX, a novel model for tem-
poral relation extraction in long clinical documents.
By integrating span-based extraction with GNNs,
GRAPHTREX provides a structured and context-
aware framework, achieving a new state-of-the-art
in end-to-end TREX on the I2B2 2012 corpus. Our
ablation studies show that constructing a document-
level heterogeneous graph with special landmark
nodes more effectively captures local and global
information, enhancing long-range relation extrac-
tion. Experiments on the E3C corpus demonstrate
the model’s generalizability beyond the U.S. con-
text. We also introduce BioMedBERT-UMLS, a
knowledge-infused entity extraction model achiev-
ing state-of-the-art in TimEx extraction. Due
to non-trivial scalability challenges, we consider
knowledge integration for TREX a future direction.

Accurate event chronology is crucial for clini-
cal applications, including opportunistic screening
for chronic diseases like Type 2 Diabetes, which
affects millions worldwide (IDF, 2025) and is a
key focus of our ongoing research. This is espe-
cially vital for marginalized communities lacking
regular access to care. Clinical notes from even
a single patient visit capture richer historical con-
text than structured EHR but remain underutilized.
By enabling more precise TREX from these nar-
ratives, GRAPHTREX lays the foundation for en-
hanced event sequence modeling for health risk pre-
diction, treatment optimization, clinical decision
support, and patient education. Integrating such
systems with human-in-the-loop approaches can
mitigate missed diagnoses, facilitate opportunistic
screening, and advance healthcare for all.
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Limitations

One of the limitations of the current work is the
constraint to validate the model across more clini-
cal datasets due to their unavailability. In the clin-
ical domain, concerns about the leakage of pro-
tected health information limit data release and
cross-hospital annotation efforts. The only other
moderate-scale dataset THYME (Bethard et al.,
2017; Styler IV et al., 2014), requires a member-
ship fee similar to the Linguistic Data Consortium
(LDC). However, we show generalizability to an-
other recent small-scaled dataset. Due to the ease
of implementation, code availability, and adaptabil-
ity of our approach, it can be extended for the future
works once additional datasets become available or
accessible.

More broadly, GRAPHTREX enables down-
stream research in healthcare and clinical decision
support, rather than as a standalone diagnostic tool.
In real-world applications, clinical NLP models
like ours are typically integrated into a broader an-
alytics ecosystem, for example, in Type 2 Diabetes
opportunistic screening research in our own re-
search ecosystem, where we are applying it to mul-
tiple note types beyond just discharge summaries
and applying it for multi-document temporal rea-
soning. While strong model performance has posi-
tive societal impacts—such as improving early risk
detection, optimizing treatment pathways, reducing
clinician burden, and improving patient education
with summarized timelines—these systems should
be used with human oversight to manage the risks
associated with model limitations. Future research
should focus on robust evaluation across diverse
clinical settings, to ensure reliable, and contextu-
ally appropriate deployment of the system.

Ethics Statement

This research uses de-identified clinical notes from
Beth Israel Medical Center in Boston. The data
was released by Harvard Medical School and is
available with necessary ethical approvals. We
have signed a Data Use Agreement (DUA) with
n2c2 to ensure compliance with privacy regula-
tions and safeguard data confidentiality. We take
all necessary precautions to prevent misuse of the
data and unauthorized access to the data. Addition-
ally, we also show experimental results on the E3C
corpus constructed from publicly available clini-
cal documents. Our work aims to enhance clinical
decision-making by extracting temporal relations

from medical events, supporting healthcare profes-
sionals’ judgment without undermining it. By accu-
rately extracting detailed information from clinical
notes, which capture the nuances of patient history,
GRAPHTREX can provide a more comprehensive
and accurate summary of patient timelines. This
capability helps bridge diagnostic disparities, par-
ticularly for marginalized communities with irreg-
ular access to care or incomplete medical records,
ensuring healthcare providers have a more com-
plete view of a patient’s medical journey. Given
the potential impact on patient outcomes, ongoing
validation and evaluation are essential to ensure
that the model’s performance is robust, accurate,
and equitable, mitigating risks of misinterpretation
and unintended harm.
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APPENDIX

S1 Additional Related Literature

Temporal Information Extraction. The entity
and relation extraction techniques have evolved
from machine learning approaches such as Naive
Bayes, Markov Logic Network, SVM, CRF, and
Structured Perceptron to deep neural networks and
recently large pre-trained language models and
graph neural networks (Lim et al., 2019; Alfat-
tni et al., 2020). The features for training these
systems range from rule-based, lexical (uppercase,
stopword, sentence lengths, etc.), syntactic and se-
mantic (part-of-speech, tense, dependency paths,
etc.), ontology-based (for instance, the top ontol-
ogy class from Wordnet), to distributional features
(word embeddings, pre-trained language model em-
beddings). For relation extraction, while some
works include candidate pair identification and clas-
sification both (RE) (Xu et al., 2013; Tang et al.,
2013), others focus on relation classification (RC),
given the candidate pairs (Zhou et al., 2021). While
some develop separate classifiers for E-E (event-
event), E-T (event-timex), and T-T (timex-timex)
relations (Tang et al., 2013; Lin et al., 2016a), oth-
ers model different subtypes together using the
same classifier (Zhou et al., 2021). (Han et al.,
2020) focus on a sub-problem of end-to-end rela-
tion extraction where they only consider E-E (event-
event) pairs across short neighbourhoods (3 sen-
tence chunks). Pre-trained word embeddings with
additional manually engineered features have been
utilized with LSTM (Tourille et al., 2017; Liu et al.,
2019) and CNN (Dligach et al., 2017) networks on
the THYME dataset. Subsequently, the introduc-
tion of attention mechanism and transformer-based
pre-trained language models (PLM) like BERT of-
fered further significant improvements on both en-
tities (Alsentzer et al., 2019; Si et al., 2019; Yang
et al., 2020) and relations (Lin et al., 2019; Zhou
et al., 2021). The methods for relation classifi-
cation involve inserting special marker tokens to
better represent entity boundaries and processing
the sequence using a BERT-based model. This
requires creation of such sequences for every en-
tity pair, therefore, at the document level, the task
complexity becomes too onerous if the negative
samples, i.e. the pairs with No_Relation are also
included. These works therefore remain restricted
to the simpler task of relation classification, which
excludes the majority No_Relation class.

Relation Extraction using Additional Knowl-
edge. Some of the works also leverage additional
knowledge such as temporal calculus (Allen, 1983)
to either infer additional relations or improve con-
sistency of the identified relations (Ning et al.,
2017). Zhou et al. (2021) address the relation classi-
fication problem and incorporate temporal calculus
using probabilistic soft logic (PSL) rules to im-
prove over a simple BERT-based baseline by a sig-
nificant margin. Others incorporate clinical domain
knowledge, such as Xu et al. (2013), who use ad-
ditional private and public annotations to improve
entity extraction, Lin et al. (2016b), who enrich
the training set using Unified Medical Language
System (UMLS) ontology (Bodenreider, 2004) and
demonstrate improvements on the THYME dataset,
others model the data-driven constraints (Han et al.,
2019, 2020). More recently, Li et al. (2023b) lever-
ages the neighboring tokens of each event as lo-
cal cues and the temporal words between the two
events as the global cues to improve the relation
classification performance in the general domain.
Most of the recent works either perform relation
classification given the gold entity pairs or only
report performance on a subset of relations such as
event-event relations over 1-3 adjacent sentences
and ignore the long-distance relations.

Relation Extraction using LLMs. Large lan-
guage models (LLMs) such as BART (Saiz and
Altuna, 2023), T5 (Cui et al., 2023), and Llama2
(Rohanian et al., 2023) have also been applied to
TREX. However, at present, these models perform
significantly worse than the large specialized pre-
trained model-based approaches within both clin-
ical (Saiz and Altuna, 2023) and general domain
TREX (Gao et al., 2023; Li et al., 2023a), more
so for long-range temporal relations (Yuan et al.,
2023; Chan et al., 2023).

Relation Extraction using GNNs. GNNs have
been widely applied to heterogeneous graphs, a.k.a
knowledge graphs for different applications (Zhang
et al., 2019; Wang et al., 2019; Baghershahi et al.,
2023), particularly relation extraction. Prior works
use GNNs with document-level graphs using syn-
tactic, semantic, and discourse features for tempo-
ral relation classification, given the entities (Mathur
et al., 2021; Zhou et al., 2022), or for relation ex-
traction over 1-2 sentences (Zhang et al., 2021).
Wang et al. (2022) anchor similarly constructed
graphs using the document creation time and ob-
tain considerable improvements. Liu et al. (2021)
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train a GNN-based model to recover masked edges
during training and use the most confident predic-
tions to recover the edges during inference. How-
ever, none of these works focus on document-level
end-to-end TREX or the clinical domain.

S2 Data

S2.1 I2B2 2012 Corpus

Pre-processing. For the I2B2 2012 corpus, there
were several errors and omissions in the gold an-
notations that were addressed during preprocess-
ing. To begin with, a large number of character
offsets required correction when reading from the
XML files. Some entity types were not annotated,
we omitted these and also the relations involving
such omitted entities. Some relations were missing
head/tail, these were omitted as well. In several
documents, DISCHARGE was not annotated as a
SECTIME and still referred to in the TLinks with
id “Discharge”—this was replaced with the id of an
entity with text “Discharge” if available, otherwise
these relations were omitted as well.

Additional Data Description. We show the dis-
tributions of the number of tokens, the number of
entities, and the number of relations in each file in
the test split in Figure S1. On average, each file
has 786 tokens, 128 annotated entities, and 229 an-
notated relation pairs. The maximum token length
across the test set is 2503, the maximum number of
annotated entities is 344, and the highest number
of relations in any file is 639. Note that although
relation pairs can be quadratic in terms of num-
ber of entities, the annotated relation pairs in the
I2B2 dataset are sparse—annotation density is 21%
(Zhou et al., 2021)—due to the difficulty of anno-
tating the long documents. Therefore, to address
this, the closure computations are included during
the evaluation.

Entity Description. The span-based entity-
extraction models start by enumerating all possible
contiguous spans in the document. For example, in
a document with n tokens d = [t1, t2, t3, ...tn], the
model produces a list of O(n2) spans. Classifying
all possible spans not only increases the computa-
tional burden but also increases the data imbalance
by introducing many more Not-Entity types, since
usually the entity lengths have a much lower bound
compared to a document’s length. A common way
of handling this issue is to place an upper bound on
the length of the possible entity spans. We choose

a bound of 7 tokens which falls under the 97th per-
centile of all entity lengths in the training set. We
show the percentile of 7 across each entity type in
the training set in Table S1. We also show the dis-
tributions of token lengths across each entity type
in Figure S2 using kernel density plots as they give
a continuous and smooth curve estimating the prob-
ability density function. Note that on average, all
entity types are shorter than 7 tokens. The appear-
ance of negative token lengths in the distributions
in Figure S2 result of the KDE smoothing process.
Only a few instances of type PROBLEM, TEST,
TREATMENT, or CLINICAL DEPARTMENT can
be longer. For example, the longest token length
(using BioMedBERT tokenizer) in the test set for
TIME entity is 14 in ‘5-2-98 , at 4:55 p.m.’, for
FREQUENCY, it is 11 in ‘Q4-6H (every 4 to 6
hours )’, and for Clinical_Department, it is 18, and
includes a department, physician, and clinic names.
We also increased the maximum span length to 20.
However, it did not improve the results.

There are several boundary overlaps among the
entities, including overlaps in the same types (e.g.,
10/9/2024 vs. 10/9, both annotated as DATE).
Therefore, when compiling the gold set, we priori-
tize the first annotation. We also experiment with
choosing the largest entity span as a tie-breaker
strategy for the overlapping spans for training pur-
poses. However, this reduces the performance. On
average the entity annotations in the dataset have
high label consistency (97.68% in the training set
and 98.13% in the test set). Entity label consistency
is an important measure to validate the agreement
in the annotation. Specifically, the span-level en-
tity label consistency ϕeCon computes whether the
same sequence of tokens appearing multiple times
in the dataset are annotated with the same entity
type, and has a significant impact on an entity clas-
sification model’s performance (Fu et al., 2020).
ϕeCon(esp) = |ysp == Esp|/|esp|, where Esp is
the most frequently annotated class for entity span
esp. We report the span-level entity consistency
ϕeCon of individual entity classes in Table S1. Note
that the label consistency of ADMISSION and DIS-
CHARGE is low and that for DATE is relatively
lower than other entity types. Upon further analy-
sis, we find that the ADMISSION/DISCHARGE
entities always overlap with the DATE type. There-
fore, to address this issue, we set a priority order
to the entity types for label assignment for training
purposes. For example, we set the highest priority
to ADMISSION/DISCHARGE, then if an entity
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Figure S1: Distributions of the number of tokens, number of entities, and number of relations in each file over the
test set in the I2B2 corpus.

Figure S2: Distributions of the token lengths across each entity type in the test set of the I2B2 corpus.

is annotated with additional labels other than AD-
MISSION/DISCHARGE, we ignore it. There are
numerous other occurrences for DATE type entities
and the model can learn to identify DATE types
from those. During inference, as an additional post-
processing, we add additional DATE type entities
for each ADMISSION/DISCHARGE entity.

Relation Description. We report the number of
relation types across the training, development, and
test splits in Table S2. The data has a high imbal-
ance, with relatively fewer annotations for After
relations. To address the imbalance during training
we flip the relations pairs participating in Before
to create additional pairs for After, and vice-versa.
This creates an equal number of Before, and After
relation types for training. However such augmen-

tation introduces some imbalance w.r.t. Overlap
relation, even after augmenting additional Overlap
relations by flipping the Overlap pairs.

S2.2 E3C Corpus

We download the corpus version 2.0.0 from
https://live.european-language-grid.eu/
catalogue/corpus/7618/download/. We only
use the English subset and the first layer compris-
ing manual annotations. We then select a 20%
random sample of documents from the training
set to form the development set and save the
best-performing model on this set.

Pre-processing. We pre-process the data to ad-
just the character offsets (primarily due to carriage
returns), aligning the text spans with annotated en-
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EType Frequency
Consistency Percentile
ϕeCon (%) (7)

PROBLEM 4814 99.2 94.8
TREATMENT 3681 98.7 97.2
TEST 2507 98.7 98.2
CLINICAL DEPARTMENT 957 97.9 90.0
EVIDENTIAL 714 90.4 100.0
OCCURRENCE 3122 95.7 99.1
ADMISSION 168 52.3 100.0
DISCHARGE 163 52.6 100.0
DATE 1222 85.0 98.9
TIME 68 97.0 55.9
DURATION 388 95.7 99.1
FREQUENCY 240 98.7 99.6

Table S1: Entity types description for the training set
of the I2B2 corpus. Average label consistency over the
training set is 97.68, and the percentile of 7 across all
entity types is 97.

Relation Type Train Dev Test

#Overlap 12278 538 9889
#Before 16657 642 14920
#After 3075 127 2724

Table S2: Number of annotated relations across the
training, development, and test set in the I2B2 corpus.

tity names.

E3C Entity Description. The dataset has follow-
ing entity types BODYPART, PATIENT, EVENT,
DATE, OTHER and timexes including PREPOST-
EXP, DURATION, H-PROFESSIONAL, QUAN-
TIFIER, SET. However, there are only a few
TLinks involving at least one non-EVENT entity
(14.37% in the test set). In contrast, 85.63% of
TLinks are EVENT-EVENT links. Therefore, we
only consider EVENT-EVENT TLinks in this work.
On average, each EVENT in the training split com-
prises 1.2 tokens. However, the max token length
can be 10. We use the same max span length
as I2B2 (7) in our experiments which falls under
99.94th percentile of training data distribution.

E3C Relation Description. The dataset contains
both doctime relations and pairwise relations be-
tween entities. We only focus on the latter in this
work. This subset includes the following relation
types: Before, Contains, Overlap, Begins-On, Ends-
On, Simultaneous. Of these Before and Contains
are the most frequent, similar to the I2B2 dataset,
we merge the less frequent classes Overlap, Simul-
taneous, with Contains, and for clarity, denote it
as the Overlap class. We also merge Ends-On with
Before, and Begins-On with Before after flipping

Category Train Dev Test

Document Statistics
Total Documents 29 7 48
Average Tokens 406.14 350.43 392.67
Max Tokens 797 694 828
Min Tokens 118 129 122

Event Statistics
Total events 1657 385 2843
Max Token Length 1.20 1.22 1.24

Relation Statistics
#Overlap 962 220 1560
#Before 484 102 793
%E-E pairs 84.81 80.90 85.63

Table S3: Descriptive Statistics for the E3C Corpus.

the entity order.
Descriptive statistics of this dataset are reported

in Table S3.

S3 Sliding Window Example

Given a window size of n (e.g. in BERT-based
encoders, this can be at most 512), we use a stride
of n-2//2 to enumerate overlapping windows. For
example, consider the example in Table S4. Given
a sequence with 8 tokens T1, T2, ...T8, and let the
maximum window size be 6. Each window begins
with a CLS and ends with a SEP token. Each token
in the window attends to itself and three neighbors.
We fix the value of stride = 6 − 2//2 = 2, i.e.
the window moves 2 tokens at a time. While some
tokens participate in overlapping windows, their
final embedding is computed from a single window.
In the other window, they only provide additional
context for other tokens.

We clarify this process with reference to the
example in Table S4. The goal is to ensure that
each token receives a mask value of 1 exactly once
across all windows. Here mask value 1 means
the token contributes to embeddings, while −2
means the token embedding is used for context
but it doesn’t contribute to this token’s final repre-
sentation. Masking is performed in two steps:

1. Inner Window Construction:

• Each window has an inner −
window− size = min(window-size −
2, remaining-sequence-length). The
last window may be shorter and is
padded using [PAD] tokens to maintain
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a consistent size. The stride is set to
inner-window-size//2.

• Initial Mask Assignment: The first win-
dow assigns a Mask value of 1 to the
leftmost eligible position, while subse-
quent windows initially assign 0s. The
final window assigns a 1 to the rightmost
eligible position, while others maintain
0s.

• Each window is then divided into three
sections:

(a) Left section: inner − window −
size//4 tokens, filled with the left-
most mask value (typically 0).

(b) Middle section: inner−window−
size//2 tokens, filled with 1s (these
are the active tokens contributing to
final embeddings).

(c) Right section: Remaining positions,
filled with the rightmost mask value
(typically 0).

2. Prefix and Suffix Application: Special tokens
[CLS], [SEP] are respectively added at the
start and end of each window with their mask
values: −3. Any remaining positions are filled
with [PAD] token (mask value = −4), which
is ignored.

This process ensures that in the first window,
tokens T1, T2, T3 are actively covered (T4 used for
context but does not contribute to its own final
representation). In the second window, T4 and T5
are covered, followed by T6 and T7 in the third,
and in the fourth only T8 is covered. Therefore,
each token’s final representation is obtained from a
unique window where it actively contributes.

Token Windows Window Masks

[CLS,T1,T2,T3, T4, SEP ] [−3,1,1,1,−2,−3]
[CLS, T3,T4,T5, T6, SEP ] [−3,−2,1,1,−2,−3]
[CLS, T5,T6,T7, T8, SEP ] [−3,−2,1,1,−2,−3]

[CLS, T7,T8, SEP, PAD,PAD] [−3,−2,1,−3,−4,−4]

Table S4: Illustration of sliding window construction
for a sequence T1, T2, ...T8, with window size 6. Em-
beddings of active tokens (in boldface) are used while
the others only provide additional context. In addition,
the embeddings of CLS tokens in each window are also
used to initialize the window nodes.

S4 Graph Construction

We use SPANTREX to construct our initial graph.
We begin with mapping each predicted entity type
to a node type in the graph. Then we filter all
the relations for which the prediction probability
f(ϵi,j) of the relation decoder (f in Eq. 6) is above
a pre-defined threshold τ . We model these high-
confidence predictions as edges between the corre-
sponding nodes. This thresholding is of significant
importance because we train the GNN model end-
to-end, and our goal is to avoid the propagation of
noisy and spurious information through the graph.

Formally, given the predictions of g, we first
construct the set of entity nodes Vsp = {vsi |
i ∈ [1 · · ·Nv], ŷni ̸= Y n

none}, where Y n
none:=

NOT-ENTITY, and its corresponding set of node
types Asp = {ŷni | vsi ∈ Vsp}. We also
construct the set of edge types as Rsp =
{(ŷni , ŷrij , ŷnj ) | i, j ∈ [1 · · ·Nv], i ̸= j, ŷrij ̸=
Y r
none, ŷ

n
i , ŷ

n
j ∈ Asp, max softmax(f(ϵij)) ≥

τ}, where Y r
none:=NO-RELATION. Additionally,

we initialize the feature matrix of entity nodes as

Xsp =
Nv

||
i=1

espi .

Capturing Context with Global Landmarks.
Additionally, to detect the long-range dependen-
cies, we introduce “window” nodes which act as
global landmarks. Entity nodes from different win-
dows are connected to their corresponding window
node and the window nodes are connected to each
other in the lexical order. Formally, for the kth doc-
ument, we have a set of windows Vwn = {vwl }

Nk
w

l=1,

where Nk
w =

⌈
Lk
Lw

⌉
shows the number of win-

dows for the kth document of length Lk and Lw
is the window size. For this set of windows, we
have the set Awn = {ϕ(vwl ) = Y n

w }N
k
w

l=1 of win-
dow node types, s.t. Y n

w :=WINDOW denotes win-
dow node type, and the set of edges to window
nodes as Rwn = {(ŷni , Y e

w, Y
n
w ) | ŷni ∈ Asp} ∪

{(ϕ(vwp ), Y e
ww, ϕ(v

w
q )) | vwp , vwq ∈ Vwn, end[vwp ]+

1 = start[vwq ]}, where Y e
w:=BELONGS-TO de-

notes an edge from window node to its descendent
entity node, Y e

ww:=TO denotes edge type connect-
ing the window nodes, and start[.] end[.] denote the
start and end indices based on the lexical order of
tokens. The feature matrix of window nodes can

be written as Xwn =
Nk

w

||
i=1
ρ[CLS]i , where ρ[CLS]i is

the BioMedBERT embedding of the [CLS] token
for the ith window.
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Our experimental results without employing
HGT show that capturing the context between
two spans probably makes significant improve-
ments because it helps extract the short-range
inter-dependencies. Therefore, we also introduce
context nodes in the graph such that whenever
there is a context between two span entities that
are not farther than a distance threshold dc, we
put a context node between their respective entity
nodes. Formally, we add a set of context nodes
Actx = {ϕ(vcm) = Y n

c }Nc
m=1 s.t. Y n

c :=CONTEXT
denotes context node type and Nc is the number of
context nodes. We make the set of context node
edges as Rctx = {(ŷni , Y r

cb, Y
n
c ), (ŷ

n
j , Y

r
ca, Y

n
c ) |

i, j ∈ [1 · · ·Nv], ŷni , ŷ
n
j ∈

Asp, max(start[vsi ], start[vsj ]) −
min(end[vsi ], end[vsj ]) > dc, dc > 1}, where
Y r
cb:=BEFORE-CONTEXT and Y r

ca:=AFTER-
CONTEXT are before context edge type and after
context edge type respectively. For the feature ma-

trix of context nodes we have Xctx =
Nc

||
i=1

ectx(i,j)

s.t. i, j ∈ [1 · · ·Nv].
At the end, for the final graph, the heteroge-

neous set of node types is composed as A =
Asp ∪ Asn ∪ Actx and the heterogeneous set of
edge types is made as R = Rsp ∪ Rwn ∪ Rctx.
Also for the whole feature matrix we have X =
[Xsp;Xwn;Xctx].

S4.1 HGT Module

We utilize an HGT module to encode the structural
information of the document graph in its entities
through message-passing (see Figure 2 in (Hu et al.,
2020) for a representation of this module). This is
achieved using transformers (Vaswani et al., 2017)
and graph attention networks (Veličković et al.,
2018) in three key components: Mutual Attention,
Message Passing, and Aggregation.

Mutual Attention. Attention scores for aggregat-
ing information from node t’s neighbors are:

Attn(s, e, t) = softmax
s∈Nt

(
Nh

||
i=1
A-headi(s, e, t)) (7)

A-headi(s, e, t) =
µ(ϕ(s),ψ(e),ϕ(t))√

d
(Ki(s)W

ψ(e)
a Qi(t)

T )

Ki(s) = K-linearϕ(s)i (h(l−1)(s))

Qi(t) = Q-linearϕ(t)i (h(l−1)(t))

Where Nt is the neighborhood of node t, d is
the embedding size, A-headi(.) is the ith atten-
tion head, Nh is the number of heads, Wψ(e)

a ∈
R

d
Nh

× d
Nh is the edge specific weight matrix and

K-linearϕ(s)i : Rd → R
d

Nh and Q-linearϕ(t)i :

Rd → R
d

Nh denote linear projections specific
to the node to compute the key and query.
µ(ϕ(s),ψ(e),ϕ(t)) ∈ R|A|×|R|×|A| is the significance
factor for each meta-relation. These node- and
edge-specific projections and attention matrices
help with optimal modeling of distribution differ-
ences among different types of nodes and edges for
information aggregation.

Message Passing & Aggregation. HGT allows
edge-type-specific message passing for each node:

Msg(s, e, t) =
Nh

||
i=1
M -headi(s, e, t) (8)

M -headi(s, e, t) =M -linearϕ(s)i (h(l−1)(s))Wψ(e)
m

Where, W
ψ(e)
m ∈ R

d
Nh

× d
Nh are edge-specific

weights and M -linearϕ(s)i : Rd → R
d

Nh is node-
specific linear projection. Finally, messages are
aggregated across all source nodes within the neigh-
borhood of a target node t to update it as:

hl(t) = G-headϕ(t)(σ(h̃l(t))) + h(l−1)(t) (9)

h̃l(t) =
∑

s∈Nt

Attn(s, e, t) ·Msg(s, e, t) (10)

Where σ is a non-linear function and G-headϕ(t) :
Rd → Rd a linear projection for t.

S5 Implementation Details

All the experiments have been performed on a
single NVIDIA-A100 GPU. For maximum span
length, we choose a threshold of 7 tokens that falls
within the 97th percentile of entity length distri-
bution in the training split. We also experimented
with the threshold of 20 which covers 99.99 per-
centile. Since entities with very long token lengths
are rare, we find that 7 gives better performance and
is much faster to train. As our base encoder, we use
the BioMedBERT variant microsoft/BiomedNLP-
BioMedBERT-base-uncased-abstract-fulltext.

To obtain span pair representation, we also ex-
periment with concatenating max pooled or mean
pooled or attention-based pooling of the embed-
dings of all the tokens constituting a span. Further,
for span pair representation, we experiment with
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element-wise sum and difference to capture the in-
teraction between entity spans. For incorporating
additional context, we also use left-right pooling,
where we max-pooled all the tokens within a fixed-
sized window to the left and right of each span
(with window sizes 10, 100). However, these ex-
periments have lower performance.

We use the Adam Optimizer with a linear
warmup and learning rate of 0.0008 and a dropout
of 0.35 (hyperparameter range 0.2-0.35) after the
entity and relation classifier. The hyperparameters
were manually selected based on some previous
works and some experimentation. The weights of
the entity and relation decoder are initialized us-
ing default uniform distribution. We restrict span-
width to a max of 7 with the dimension of the span-
width embedding being 7. We also experimented
with 1–2 linear layers with ReLU activation for
obtaining span representation and 1–2 layers for
mention and relation decoder. We use 1000 hidden
units for each linear layer (we also experimented
with 100–800 units and found the best performance
with 1000 units. We are not able to increase these
further due to GPU-memory constraints). We use
a context window of length Lw = 512, this is
also the maximum token length the BioMedBERT
model can process.

For GNN-related hyperparameters, we use two
attention heads (we experimented with 2–8 heads)
and 2 layers (hyperparameter range 1–3). We run 2
iterations of GNN-based refinement (hyperparame-
ter range = 1–2) and use a dropout of 0.3 after each
HGT layer. For selecting the most confident edges
from SPANTREX, we use a threshold τ of 0.4 for
the prediction probability (hyperparameter range
= 0.1–0.5). For creating dummy nodes, we use a
pooling distance dc = δ*document-length, where
δ=0.5 (hyperparameter range 0.5–1). Finally, we
use a residual coefficient of 1.0 with the span em-
beddings to combine them with GNN-refined node
embeddings and obtain final entity embeddings
(hyperparameter range for residual coefficient =
0.5–1.0).

We train the model for 20 epochs (we experi-
mented with up to 50 epochs, the models don’t
show improvement after epoch 20) and save the
best-performing model on the validation split after
each epoch. We use a batch size of 8 (and experi-
ment with batch sizes in the range 1–16, where 16
is quite large given the GPU memory limitations
and quadratic complexity of relation extraction).
We allow the base transformer BioMedBERT to

fine-tune its weight using a learning rate of 3e-
05. We only use the entity loss Ln for the first
two epochs and after that use the combined loss
L = Ln + Lr since the model does not generate
any entities for the first few epochs.

Model
Time

#Parameters
Disk Space

Train (hrs) Inference (sec) (GB)

SPANTREX 7.3 14 1.2M 0.44
GRAPHTREX 10.8 14 1B 4.35

Table S5: Additional Computational Metrics for models
trained on the I2B2 corpus

Our method GRAPHTREX takes approximately
11 hours for training and on average 14 seconds
for inference on each document, and around 30
minutes on the full test split comprising 120 docu-
ments. The computational metrics are summarized
in Table S5.

For the multi-head attention baseline, we use
128 heads of 64 dimensions and find that the per-
formance decreases by increasing/decreasing the
heads.

S6 Additional Robustness Checks

S6.1 Performance Across Additional
Encoders and BioMedBERT-UMLS

Table S6 reports performance across various en-
coders pre-trained on clinical texts on the I2B2 cor-
pus. These include MimicEntityBERT (Lin et al.,
2021), a fine-tuned variant of BioMedBERT, that
uses an entity-masking strategy to mask events and
time expressions and achieves SOTA results on the
THYME corpus. However, neither this nor other
tested models outperform BioMedBERT on NER
for the I2B2 2012 dataset.

We also introduce BioMedBERT-UMLS, a span-
based NER model with external knowledge infu-
sion. For this, we integrate concepts extracted from
UMLS (Bodenreider, 2004) using MetaMap (Aron-
son et al., 1994). We then construct an induced
subgraph of these concepts based on the UMLS
semantic network, following Lai et al. (2021).
Nodes (concepts) are initialized using pre-trained
knowledge-infused embeddings from Maldonado
et al. (2019). We model this graph using a Rela-
tional Graph Convolutional Network (RGCN) with
two-hop message passing. The final node embed-
dings are concatenated with BioMedBERT embed-
dings based on span overlap and classified using a
two-layer fully connected decoder. This approach
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sets a new state-of-the-art in timex extraction while
achieving comparable performance on event extrac-
tion.

Model Event TimEx
(F1) (F1)

BioClinicalBERT (Alsentzer et al., 2019) 86.15 88.62
BlueBERT (Peng et al., 2019) 86.51 88.63
EntityBERT (Lin et al., 2021) 90.18 89.50
BioMedBERT 90.57 90.62
BioMedBERT (UMLS-fusion) 90.05 91.63

Table S6: Comparing encoders pre-trained on clini-
cal text on the NER task of the I2B2 dataset with
SPANTREX.

We also present more details of additional en-
coders presented in Table 5 in the expanded Table
S7, allowing comparisons across span identifica-
tion (EI) and entity typing (EC).

S6.2 Pipeline Approach.

We experiment with a pipeline approach that first
extracts entities using BioMedBERT-UMLS, a
state-of-the-art model for timex extraction, de-
scribed in the last paragraph. These extracted en-
tities are then passed to an independent relation
extraction module, where we apply the method of
Zhong and Chen (2021), which achieves state-of-
the-art performance on I2B2 2012 relation classifi-
cation (Cheng and Weiss, 2023).

Unlike end-to-end relation extraction, relation
classification is simpler as it only classifies entity
pairs that are known to participate in a relation
and, therefore, excludes the majority No-relation
class representing entity pairs without a clear tem-
poral link. For relation extraction, we add this
class by creating multiple negative training sam-
ples for each entity pair. Each training sample
is constructed by inserting special marker tokens
around entities for better-aligning entity boundary
representations. While this approach is effective
for sentence-level relation extraction, it becomes
computationally prohibitive at the document level
as it requires generating marker-augmented sen-
tence pairs for every possible entity pair. There-
fore, we restrict our experiment to same-sentence
relation extraction, focusing on same-sentence en-
tity pairs. Our comparison reveals that this model
severely under-performs when tasked with the ad-
ditional complexity of the No-relation class, with
an F1 score of 10.79%. In comparison, the F1

score of GRAPHTREX on sentence-level relations

is 59.67%.

S6.3 Performance on E-E relations.
As noted by Han et al. (2020), predicting E-E
TLinks or the temporal relations between two
events is more challenging than predicting rela-
tions when one of the participating pairs is a timex.
This is because the event spans do not explicitly
specify the starting or the ending time of an event.
We hypothesize that the heterogeneous modeling
over various event types helps the model learn the
domain-specific constraints. We find that GRAPH-
TREX indeed improves the performance of E-E
relations on the I2B2 corpus with the temporal F1

score over the E-E relations being 49.85%, while
for SPANTREX, the score is 46.27%. Here, we
evaluate these two models over all E-E pairs and
not just on the nearby pairs as in Han et al. (2020).

S6.4 Impact of Node Types across E3C
We also assess the impact of different nodes in HGT
construction on the performance across the E3C
corpus in Table S8 and find that Window nodes
are not helpful for this corpus. This is expected
since, on average, a document in E3C spans only
a single window (the maximum window length
is 512 tokens, and the average document length
in the test set is 392 tokens). Even the longest
document in the test set spans only two windows.
When we exclude the context nodes but retain the
window nodes, these nodes still connect the entities,
allowing information propagation. Including both
leads to a slight drop in comparison, and excluding
both leads to a further marginal drop.

S7 Qualitative Analysis

We perform a qualitative analysis by manually in-
specting the output of our GRAPHTREX model.
We present an example case study in Figure S3
representing one of the documents. To comply
with data usage agreements, the original text is
not shared, and some node captions are modified
while preserving the original meaning. For visu-
alization clarity, we invert the After relations to
Before by flipping the participating entities in the
pair. We also remove duplicates after inverting
such relations. Note that GRAPHTREX produces
more balanced relations compared to SPANTREX

which extracts more Overlap pairs compared to
Before/After. Interestingly, there is an error in the
ground truth annotations—the entity ‘discharged’
Overlaps with the admission date. This creates
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Model
EVENT TimEx TLink

EI EC EI EC RE

F1 Acc F1 Acc P R F1

GRAPHTREX 89.55 80.99 90.06 81.21 78.21 61.42 68.81

BERT-SPANTREX 85.87 71.10 85.79 70.93 75.94 48.63 59.30
BERT-GRAPHTREX 85.83 71.86 86.25 72.64 77.45 52.30 62.44

RoBERTA-SPANTREX 88.77 80.34 90.81 82.58 79.98 52.05 63.06
RoBERTa-GRAPHTREX 86.42 75.30 89.62 80.05 78.22 54.88 64.50

Clinical-Longformer 86.62 77.24 91.03 81.76 82.39 52.10 63.84

Table S7: Expanded Table for Robustness checks with additional encoders for the I2B2 corpus.

Model EVENT TLink

F1 F1

SPERT 78.85 13.63
SPANTREX 81.30 22.55

GRAPHTREX
Excluding Window Nodes 82.1 23.48
Excluding Context Nodes 81.73 23.39
Excluding Both 78.38 22.73
Including Both Nodes 81.46 22.97

Table S8: The effectiveness of Window and Context
nodes on the E3C corpus.

an inconsistency by transitivity, where the dates
‘10/5/95’ and ‘10/9/95’ are overlapping. This issue
is also present in SPANTREX predictions. How-
ever, GRAPHTREX addresses the issue. For this
example, all the graphs demonstrate structural
consistency (no cycles involving directed arrows).
SPANTREX misses two important wellness indi-
cators—‘tolerated’ and ‘treatment’. Both models
also exclude the entity ‘well’, a property of ‘toler-
ated’ in the text. They also separate ‘daily for four
days’ into ‘daily’ and ‘four days’ and connect them
with Overlap relation, thereby still preserving the
meaning.

We also find that some ’errors’ by standard
metrics reflect the strengths of our model, re-
vealing gaps in the gold standard. For example,
given the co-referring pairs such as (‘discharge’,
‘discharged’), (‘admission’, ‘hospitalization’), our
model can correctly identify the second mention
as a relevant entity type even though only the first
span has been labeled in the ground truth. This
yields additional correct relations with the missing
entities that are also missing in the gold standard.
Lastly, we note that for some of the documents, the

model inconsistently predicts the relation between
discharge and admission as Before. Approaches to
infuse real-world commonsense knowledge to im-
prove this might be an interesting future direction.
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Figure S3: Ground Truth vs. System Predictions for Temporal Graphs. The figure compares the reference and
predicted temporal graphs for a clinical document from the I2B2 corpus.
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