
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 25546–25572
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

EFFIVLM-BENCH: A Comprehensive Benchmark for Evaluating
Training-Free Acceleration in Large Vision-Language Models

Zekun Wang1*, Minghua Ma1∗, Zexin Wang1∗, Rongchuan Mu1∗

Liping Shan2, Ming Liu1,2, Bing Qin1,2

1Harbin Institute of Technology, Harbin, China
2Pengcheng Laboratory, Shenzhen, China.

3Du Xiaoman Science Technology Co., Ltd, Beijing, China
{zkwang,mhma,zxwang,rcmu,mliu,qinb}@ir.hit.edu.cn

Project Page: https://effivlm-bench.github.io/

Abstract

Large Vision-Language Models (LVLMs) have
achieved remarkable success, yet their signif-
icant computational demands hinder practical
deployment. While efforts to improve LVLM
efficiency are growing, existing methods lack
comprehensive evaluation across diverse back-
bones, benchmarks, and metrics. In this work,
we systematically evaluate mainstream acceler-
ation techniques for LVLMs, categorized into
token and parameter compression. We intro-
duce EFFIVLM-BENCH, a unified framework
for assessing not only absolute performance but
also generalization and loyalty, while exploring
Pareto-optimal trade-offs. Our extensive exper-
iments and in-depth analyses offer insights into
optimal strategies for accelerating LVLMs. We
open-source code and recipes for EFFIVLM-
BENCH to foster future research.

1 Introduction

Large vision-language models (LVLMs) (OpenAI,
2024; Team et al., 2024; Lu et al., 2024a; Wang
et al., 2024a; Team, 2025) have rapidly advanced,
transforming multimodal AI and showing great
potential for real-world applications (Anthropic,
2024; Xu et al., 2024a; OpenAI, 2025; Li et al.,
2025). However, their remarkable capabilities are
often overshadowed by massive computational and
memory costs, severely hindering practical deploy-
ment. To this end, some studies propose more
efficient architectures (Chu et al., 2023; Zhou et al.,
2024; Yao et al., 2024; Liu et al., 2024d) or in-
corporate distillation (Shu et al., 2024; Cai et al.,
2024a; Li et al., 2024d) to improve efficiency. But
these typically demand full retraining, incurring
substantial overhead (An et al., 2024).

As a result, there has been a growing focus
on training-free acceleration methods for LVLMs,
which are more economical and can be broadly
classified into two representative categories: token
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compression, eliminating redundant tokens in in-
puts (Chen et al., 2024b; Zhang et al., 2024b) or
KV cache (Wan et al., 2024; Tu et al., 2024), and
parameter compression, which reduces parame-
ter size by pruning (Sung et al., 2023) or quantiza-
tion (Lin et al., 2024; Yu et al., 2025). However, the
scope of performance evaluation for these methods
remains limited in several key aspects: (1) Out-
dated Model Architectures: Evaluations are ofter
stuck on outdated models like LLaVA (Liu et al.,
2023) or LLaVA-v1.5 (Liu et al., 2024a), without
considering state-of-the-art LVLMs with the dy-
namic resolution processing mechanism (Li et al.,
2024b; Wang et al., 2024a; Chen et al., 2024d).
(2) Limited Benchmarks: Assessments typically
use general VQA tasks, neglecting more challeng-
ing benchmarks that require advanced capabilities
such as OCR or long-context generation. (3) Nar-
row Evaluation Metrics: The focus is solely on
absolute performance, overlooking other critical
metrics such as generational quality and loyalty of
compression methods. This narrow focus leaves
a significant gap in understanding how these tech-
niques generalize across broader scenarios, which
severely limits their practical use. Furthermore,
there is a lack of systematic exploration into the
crucial trade-offs between performance and effi-
ciency (actual inference time), which is essential
for real-world LVLM deployment.

To address these limitations, we propose
EFFIVLM-BENCH, a unified evaluation framework
for systematically assessing training-free accelera-
tion methods of LVLMs. EFFIVLM-BENCH spans
a wide range of representative model architectures
and tasks, employing comprehensive metrics for
performance, generalization, loyalty, and efficiency.
With EFFIVLM-BENCH, we conduct a thorough
comparison of mainstream token and parameter
compression methods. We explore Pareto-optimal
performance-efficiency trade-offs and offer a nu-
anced understanding of their strengths and limita-
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tions. We hope our EFFIVLM-BENCH can provide
the research community with insightful perspec-
tives on LVLM acceleration, paving the way for
more effective and sustainable deployment.

2 Related Work

Recent advancements in LVLMs (OpenAI, 2024;
Team et al., 2024; Li et al., 2024b; Wang et al.,
2024a; Deitke et al., 2024; Chen et al., 2024d;
Team, 2025) have led to significant improvements
in various multimodal tasks. Despite their remark-
able capabilities, the computational overhead re-
mains a critical bottleneck of LVLMs for real-world
deployment. Some LVLM studies introduce more
efficient model architectures (Chu et al., 2023;
Zhou et al., 2024; Yao et al., 2024; Chen et al.,
2024a; Luo et al., 2024) or knowledge distilla-
tion (Wang et al., 2021, 2023a; Li et al., 2024d)
to enhance efficiency. However, these methods typ-
ically require training from scratch or retraining,
which incurs significant computational overhead.
Thus, increasing attention has been paid to training-
free acceleration methods for LVLMs, the focus of
this paper, which can be broadly categorized into
token compression and parameter compression.

Token Compression The lengthy input tokens
of LVLM impose a substantial computational bur-
den, mainly due to the quadratic scaling of com-
putational costs with the number of input tokens
in the attention. Some studies focus on directly
token pruning, which prune the redundant vi-
sual tokens during the forward process (Li et al.,
2024c; Wang et al., 2023b; Cha et al., 2024; Huang
et al., 2024). As for training-free methods, LLaVA-
PruMerge (Shang et al., 2024) first prunes uninfor-
mative tokens in visual encoder and then merges
the remaining ones using KNN techniques. Yang
et al. (2024) also dynamically prunes the tokens in
the visual encoder and then merges the pruned to-
kens to the next layer, while Chen et al. (2024b) and
Zhang et al. (2024b) leverage textual information
to guide visual token pruning in the initial layers
of LLMs. Another line of work mainly focuses
on KV cache compression. The inference time
during LVLM generation is memory-bound, pri-
marily due to the substantial memory consumption
of KV caches, particularly when processing high-
resolution images. KV cache compression lever-
ages attention sparsity to select fewer key-value
pairs, thereby reducing memory overhead and en-
hancing inference speed. Recent efforts in KV

cache compression have evolved from techniques
for LLMs (Xiao et al., 2023; Zhang et al., 2023b;
Li et al., 2024e; Ge et al., 2024; Cai et al., 2024b;
Xu et al., 2024b) to methods tailored for LVLMs.
VL-Cache (Tu et al., 2024) introduces a modality-
aware strategy that dynamically allocates cache
budgets across layers and incorporates a token scor-
ing mechanism tailored to the unique roles of vi-
sual and textual tokens. Similarly, LOOK-M (Wan
et al., 2024) adopts a look-once optimization that
minimizes redundant cache entries through evic-
tion and KV pair merging. Both methods show
that targeted compression can significantly reduce
memory usage and accelerate decoding in multi-
modal long-context scenarios while maintaining
performance.

Parameter Compression Besides reducing the
lengthy inputs, compressing the large model pa-
rameter size also benefits the efficiency of LVLM.
Weight pruning removes redundant parameters to
reduce parameter size and computations while pre-
serving accuracy (Sun et al., 2023; Frantar and
Alistarh, 2023; Wang et al., 2023a; An et al.,
2024; Wang et al., 2024b). Quantization(Frantar
et al., 2022; Lin et al., 2024) converts full-precision
weights and activations into lower-precision for-
mats (e.g., int8 or int4). Most existing work fo-
cuses on compressing the parameters of the LLM
backbone in LVLMs, while recent efforts have also
begun exploring the compression of the visual en-
coder (Yu et al., 2025). In this work, we concentrate
on reducing the parameters of LLMs, which is a
key bottleneck of LVLM efficiency.

3 EFFIVLM-BENCH

In this section, we introduce the details of
EFFIVLM-BENCH, including metrics (Section 3.1)
and tasks with model architectures (Section 3.2).

3.1 Metrics
Let c denote the compression method, m the target
model, and b the target benchmark. E(·) denotes
the mean operation.

Performance For each method c on model m,
we define the overall performance OPm,c as:

OPm,c =

√√√√ 1

B

B∑

b=1

E
(
EMm,c

b

EMm
b

)2

, (1)

where EMm,c
b is the evaluation performance met-

ric (e.g., accuracy) and EMm
b represents the corre-
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sponding metric for the original model. B denotes
the number of benchmarks.

Generalization To evaluate the generalization of
compression method c, we define the metric OGc

as the coefficient of variation of performance across
benchmarks and models:

OGc =
σb

(
Em

[
EMm,c

b
EMm

b

])

Eb,m

[
EMm,c

b
EMm

b

] (2)

where σb(·) represents standard deviation across
benchmarks. A lower OGc signifies more consis-
tent relative performance (better generalization),
while a higher value suggests greater sensitivity to
variations in models or benchmarks.

Loyalty Loyalty (OLc) measures how well a
compression method c preserves an original
model’s predictions (Pm

b ) with its compressed ver-
sion (Pm,c

b ). Ideally, compression should maintain
the original model’s behavior, avoiding new biases
or unexpected performance alterations (Xu et al.,
2021). Specifically, we define the loyalty metric
as:

OLc = Eb,m

[
I(Pm,c

b , Pm
b )

]
(3)

where I(P1, P2) is an agreement function between
predictions. Higher OLc indicates better loyalty.

Efficiency Actual inference time is our efficiency
measure for a compression method c. Unlike
FLOPs or parameter counts, it directly reflects
real-world latency, which varies significantly with
model architecture (e.g., depth vs. width) even for
similar theoretical complexities. Specifically, for
model m using compression method c on bench-
mark b, we measure the speedup of inference time
per fixed number of samples:

OEc = Eb,m

[
Tm
b

Tm,c
b

]
, (4)

where T ∗,c and T ∗ represent the latency of com-
pressed and original models, respectively. More
details of EFFIVLM-BENCH are shown in Ap-
pendix A.4.

3.2 Tasks and Models
EFFIVLM-BENCH evaluates across 17 widely-
used benchmarks, including DocVQA(Mathew
et al., 2020), ChartQA(Masry et al., 2022),
TextVQA(Singh et al., 2019), OCRBench(Liu
et al., 2024c), AI2D(Kembhavi et al., 2016),

GQA(Hudson and Manning, 2019), MMMU(Yue
et al., 2024), MME(Fu et al., 2024), Real-
worldQA(x.ai), MMStar(Chen et al., 2024c), Math-
Vista(Lu et al., 2024b), LLaVA-Wilder(Li et al.,
2024a), MMBench(Liu et al., 2024b), MMVet(Yu
et al., 2023), ImageDC(Li et al., 2024a), MP-
DocVQA(Tito et al., 2022) and MovieChat(Song
et al., 2023). These cover diverse tasks—
from document understanding and chart inter-
pretation to real-world QA—across single-image,
multi-image, and video scenarios (details in Ap-
pendix A.1). EFFIVLM-BENCH includes three
frontier LVLMs: LLaVA-OneVision(OV)-7B (Li
et al., 2024b), Qwen2-VL-7B (Wang et al., 2024a),
and InternVL2.5-38B (Chen et al., 2024d), span-
ning diverse model sizes for comprehensive eval-
uation. Furthermore, the modular design of
EFFIVLM-BENCH allows straightforward exten-
sion to support new tasks and emerging LVLMs.

4 Results

4.1 Token Compression
Setup We evaluate token compression effective-
ness by examining two mainstream approaches:
(1) token pruning, including FastV (Chen et al.,
2024b), VisionZip (Yang et al., 2024), and
PruMerge+ (Shang et al., 2024), which eliminates
redundant visual tokens. (2) KV cache compres-
sion, including streamingLLM (Xiao et al., 2023),
H2O (Zhang et al., 2023b), SnapKV (Li et al.,
2024e), PyramidKV (Cai et al., 2024b), LOOK-
M (Wan et al., 2024), and VL-Cache (Tu et al.,
2024). Notably, the last two methods are specifi-
cally designed for LVLMs. More implementation
details are in Appendix A.3 and A.4. We focus on
retention budgets up to 40%, as methods generally
maintain original performance at higher budgets.
Main results of token pruning and KV cache com-
pression are shown in Table 1 and Figure 1. More
results of KV cache compression are provided in
Appendix A.5 and Table 15.

Observation 1 Token compression perfor-
mance is task-dependent and shows significant
sensitivity to benchmark and model. Most meth-
ods are stable at higher budgets but degrade sharply
at 1%, especially on tasks requiring fine-grained vi-
sual detail (e.g., OCRBench) or long outputs (e.g.,
LLaVA-Wilder, ImageDC). For token pruning on
a 1% budget, pruning tokens within the visual en-
coder (e.g., VisionZip and PruMerge+) consistently
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LLaVA-OneVision-7B

1%
FastV 8 14.00 9.18 27 66.35 35.04 40.89 697.7 36.86 28.97 36.40 49.10 27.69 12.30 20.95 0.48

VisionZip 35 35.16 44.48 194 72.11 53.69 42.56 1704.2 53.86 41.30 39.30 71.20 74.10 28.60 87.50 0.75
PruMerge+ 27 34.88 44.66 121 71.08 54.18 43.44 1639.2 58.16 42.81 39.20 63.60 73.09 34.50 76.60 0.74

10%
FastV 48 43.16 52.37 190 72.57 49.63 45.33 1669.4 53.86 44.63 40.30 66.90 70.12 31.30 77.75 0.76

VisionZip 56 49.88 57.26 352 77.97 58.57 44.11 1915.0 59.87 45.45 45.00 71.80 78.86 36.60 87.50 0.84
PruMerge+ 37 40.96 55.59 203 74.77 58.54 44.44 1872.7 61.17 47.56 43.50 65.90 78.47 37.00 85.35 0.81

40%
FastV 80 69.20 72.48 488 86.23 60.56 46.33 1937.2 62.75 53.91 50.50 70.50 81.22 47.70 86.35 0.94

VisionZip 72 67.04 68.21 500 83.84 61.23 46.11 1956.8 63.01 51.17 52.60 71.60 80.43 48.30 87.55 0.93
PruMerge+ 49 51.40 67.79 382 79.82 61.78 45.55 1924.0 64.70 53.38 48.00 68.10 80.88 46.50 85.55 0.88

100% Original 87 80.00 74.79 595 89.96 61.92 45.44 1974.1 65.88 58.75 58.20 71.40 83.12 55.00 87.25 1.00

Qwen2-VL-7B

1%
FastV 19 12.24 22.45 71 65.22 39.79 44.67 1330.0 41.18 26.83 33.70 51.40 21.91 18.10 24.60 0.51

VisionZip 52 34.76 61.97 187 70.23 48.64 46.56 1702.0 58.56 35.77 39.10 60.80 48.99 39.00 66.15 0.70
PruMerge+ 45 38.80 60.16 162 68.04 51.45 45.67 1772.2 56.86 35.70 39.50 63.00 50.67 34.60 63.10 0.69

10%
FastV 68 31.04 68.72 272 73.28 50.33 48.00 1750.0 55.82 40.09 40.40 66.10 63.06 42.90 78.70 0.76

VisionZip 75 57.88 72.27 318 76.06 55.08 48.89 1860.0 60.65 42.56 44.50 67.20 63.06 45.10 79.85 0.81
PruMerge+ 61 48.76 68.16 283 70.98 56.77 47.67 1981.2 62.09 43.17 43.70 67.20 68.27 42.40 81.80 0.80

40%
FastV 92 67.40 79.52 532 86.53 58.35 49.22 2185.0 66.93 50.74 47.10 71.60 75.50 59.40 85.00 0.92

VisionZip 91 74.04 79.25 571 85.10 60.21 49.44 2150.0 63.79 51.09 53.40 70.50 73.76 59.50 84.70 0.93
PruMerge+ 85 68.96 76.97 490 75.68 60.64 49.00 2169.7 66.27 51.94 51.70 70.00 75.56 54.90 84.95 0.91

100% Original 95 81.56 81.82 813 91.02 62.30 50.77 2327.8 66.53 57.11 58.30 72.70 78.25 67.40 86.35 1.00

InternVL2.5-38B

1%
FastV 11 14.88 10.64 23 67.64 35.49 51.22 1264.1 44.44 29.64 34.60 52.70 22.64 7.10 20.20 0.47

VisionZip 15 18.56 21.21 57 69.04 42.34 53.89 1612.1 52.67 35.25 32.90 58.80 45.79 23.30 44.35 0.55
PruMerge+ 12 16.44 15.20 36 68.91 47.43 53.44 1655.3 47.97 35.34 34.90 55.80 50.73 11.50 58.60 0.56

10%
FastV 13 16.76 17.41 40 69.55 45.88 54.11 1587.9 49.01 39.39 38.10 61.70 53.13 24.20 62.65 0.58

VisionZip 39 34.84 54.34 303 78.98 58.77 56.89 2008.6 64.18 52.17 44.60 68.20 78.30 46.60 81.45 0.76
PruMerge+ 19 26.28 31.09 62 71.73 56.22 53.66 1880.1 56.99 45.34 44.10 63.90 72.93 35.60 79.30 0.67

40%
FastV 55 40.60 56.04 268 82.15 56.54 54.66 2084.8 64.31 53.56 50.80 69.50 79.26 44.90 83.25 0.78

VisionZip 77 77.52 78.07 609 91.77 63.49 58.56 2397.2 70.72 64.29 59.50 72.60 85.31 60.80 85.65 0.93
PruMerge+ 53 58.56 67.85 454 84.03 62.86 56.11 2338.0 69.41 59.94 55.00 71.60 83.52 55.00 85.15 0.84

100% Original 94 88.04 82.87 802 95.11 64.48 61.56 2453.9 72.41 69.80 70.20 74.80 86.94 69.40 86.45 1.00

Table 1: Main results of various visual token prune methods on different models and benchmarks. Bold denotes the
best result under the same setting.

outperforms those pruning in the LLM backbone
(e.g., FastV). On LLaVA-OV-7B, FastV’s relative
performance plummets to 48%, whereas VisionZip
retains 75% (Further analysis in Section 5.3.). For
KV cache compression, retaining sufficient to-
kens is crucial for preserving fine-grained infor-
mation, but sensitivity varies across architectures
and budgets. Notably, LLaVA-OV-7B processes
thousands of tokens, so even at a 1% budget, it
retains more tokens (40.17) than Qwen2-VL-7B
(7.62) and InternVL2.5-38B (15.14), leading to a
smaller performance drop. These findings under-
score the need to tailor compression methods to
model and task specifics, and to rigorously assess
their cross-benchmark generalization.

Observation 2 KV cache compression outper-
forms token pruning in generalization and loy-
alty. Table 2 shows H2O and PyramidKV lead-
ing in overall performance across metrics at high
(40%) and low (10%) budgets, respectively. KV
cache compression methods generally exhibit supe-
rior generalization and loyalty compared to token
pruning. Thus, they should be prioritized when
these aspects are critical. Meanwhile, we observe
that LOOK-M performs well at higher budgets,
but it exhibits a significant drop at lower budgets,
which aligns with results in Figure 1, highlight-
ing its high sensitivity under extremely aggressive

Methods OGc ↓ OLc ↑
1% 40% 1% 40%

StreamingLLM 49.76 12.05 33.26 85.98
H2O 30.93 2.05 53.02 94.57
SnapKV 31.98 2.34 55.85 93.31
PyramidKV 29.76 5.31 59.52 91.19
LOOK-M 51.72 3.46 29.67 93.43
VL-Cache 43.25 3.80 55.00 92.04
FastV 58.46 11.87 40.89 80.57
VisionZip 31.32 5.86 59.24 80.52
PruMerge+ 34.62 13.47 56.85 83.07

Table 2: Overall performance of generalization and loy-
alty for different token compression methods, with gen-
eralization calculated across all benchmarks and loyalty
on a subset(MathVista,LLaVA-Wilder,MMVet). Bold
indicates the best under the same setting.

constraints(detailed analysis is presented in Sec-
tion 5.4).

Observation 3 Selecting token pruning or KV
cache compression based on task statistics to
achieve better performance-efficiency trade-off.
Actual inference time can be broken down into two
components: time-to-first-token (TTFT), which
reflects the prefill overhead, and decoding time,
which measures the latency of subsequent token
generation. Figure 2 illustrates the trade-offs be-
tween efficiency and performance for token com-
pression methods. KV cache methods yield lim-
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Figure 1: Performance comparison of KV cache compression methods across multiple benchmarks and models.

ited TTFT speedup as they recompute attention
weights for token selection during prefill1. This
computation overhead is budget-independent, keep-
ing their TTFT speedup nearly constant (see ver-
tical lines in left part of Figure 2). In contrast,
token pruning removes visual tokens during pre-
fill, drastically reducing TTFT (e.g., 3.2× speedup
at 1% budget), making it ideal for short-response
tasks like VQA. For instance, at comparable over-
all performance, H2O achieves only 0.65× TTFT
speedup, while VisionZip delivers 2.29× TTFT
speedup. For decoding latency (right), KV cache
and token pruning methods show similar speedups
under the same budget. However, KV cache meth-
ods generally outperform token pruning at low bud-
gets for tasks requiring long outputs (e.g., LLaVA-
Wilder, ImageDC). Conversely, for tasks involving
high-resolution images, the fixed cost of computing
attention matrices in KV cache compression leads
to significant memory overhead, favoring token
pruning in these scenarios.

1When using mechanisms like Flash-Attention2 (Dao,
2024) that don’t provide full attention matrices for selection,
recalculation becomes necessary.

Observation 4 Consistent performance trends
of token compression across single-image, multi-
images, and video tasks. We further evaluate
token compression methods on multi-image and
video tasks. Table 3 shows the results based
on Qwen2-VL-7B. Under a 1% budget, SnapKV
achieves the best performance in MP-DocVQA,
while LOOK-M suffers a significant drop, consis-
tent with the results in DocVQA. In MovieChat,
VL-Cache outperforms other methods. Notably, at
higher budgets, some compression methods, such
as SnapKV and VL-Cache, can maintain the origi-
nal model’s performance while achieving substan-
tial speedups. These findings indicate that token
compression remains consistently effective across
single-image, multi-image, and video scenarios.
Future work will explore more challenging tasks
for further validation.

4.2 Parameter Compression

Setup Pruning and quantization are two main-
stream approaches for compressing LVLMs. We
evaluate three pruning methods: EcoFLAP (Sung
et al., 2023), Wanda (Sun et al., 2023), and
SparseGPT (Frantar and Alistarh, 2023); and two
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Trade-off Analysis on Token Compression Methods between OL and OP

StreamingLLM
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PruMerge+
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Pareto FrontierFigure 2: Trade-off Analysis on Token Compression Methods between Efficiency and performance. Left: Trade-off

between TTFT (time-to-first-token) and Performance across different methods. Right: Trade-off between Speedup
and performance across different methods. All metrics are expressed as ratios relative to the original model.

Benchmarks Methods 1% 10% 40% 100%

MP-DocVQA
(Split:val)

(Metric:ANLS)

StreamingLLM 36.74 51.38 69.04 85.91
H2O 38.73 63.02 80.67 85.91
SnapKV 69.39 80.73 84.11 85.91
PyramidKV 63.44 75.93 79.33 85.91
LOOK-M 18.38 57.09 80.69 85.91
VL-Cache 57.89 82.44 85.46 85.91

MovieChat
(Split:test)

(Metric:Acc)

StreamingLLM 13.11 34.63 37.03 37.73
H2O 14.23 37.15 37.19 37.73
SnapKV 28.29 36.36 37.53 37.73
PyramidKV 28.26 37.15 36.62 37.73
LOOK-M 11.95 36.49 37.57 37.73
VL-Cache 28.51 35.99 37.65 37.73

Table 3: Results of token compression methods on
Qwen2-VL-7B evaluated with multi-image and video
benchmarks.

quantization methods: AWQ (Lin et al., 2024) and
GPTQ (Frantar et al., 2022). EcoFLAP is specif-
ically designed for LVLMs, while the others are
widely-used for general LLM compression. Details
are shown in Appendix A.2 and A.3.

Observation 5 Parameter compression gener-
ally preserve performance more effectively than
token compression. Even at higher compression
ratios (50% or 2:4 sparsity), the overall perfor-
mance remains relatively stable. We observe that
quantization methods, such as AWQ, tend to pre-
serve higher performance compared to pruning.
However, since neither method shortens input to-
ken sequences, token compression remains essen-
tial for tasks involving very long inputs or high-
resolution images. Importantly, the two types of

compression are orthogonal that can be effectively
combined, Crucially, these two compression types
are orthogonal and can be effectively combined and
more results are shown in Appendix A.7.

5 Discussion

5.1 Revisiting Layer Adaptive Mechanism

While Cai et al. (2024b) shows that layer-adaptive
sparsity benefits KV cache compression in LLM,
EFFIVLM-BENCH results reveal that PyramidKV
underperforms SnapKV at low sparsity budgets de-
spite using the same token selection metric, due
to its layer-adaptive strategy. This suggests that
layer-adaptive sparsity is not always advanta-
geous in LVLM compression, especially under
low sparsity. To further probe this, we analyze
VL-Cache, a layer-adaptive KV cache compression
method proposed for LVLMs. As shown in Fig-
ure 3 and Appendix A.10: At 5% budget, the 0-th
layer has nearly 7× of the average budget. This
aggressive front-loading reduces budgets for sub-
sequent layers, effectively starving them (less than
the average). In addition, visualizations of the to-
kens selected in the 0-th layer (shown in Figure 8a
and Appendix A.11) reveal that most of the tokens
chosen are irrelevant. These findings suggest that
reducing the budget of early layers while increasing
the average allocation for later layers may lead to
better performance. Based on the VL-Cache layer
adaptive strategy, we propose a hybrid allocation
strategy: a portion (40% or 80%) of the total bud-
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100% Original 87 80.00 74.79 595 89.96 61.92 45.44 1974.1 65.88 58.75 58.20 71.40 83.12 55.00 87.25 1.000

20%
EcoFLAP 87 79.32 74.70 573 89.86 61.26 46.56 1951.0 64.84 60.27 55.80 70.20 82.17 57.70 85.75 0.995
Wanda 86 78.84 75.70 595 81.12 61.71 46.67 1939.8 66.14 59.11 54.10 68.60 82.17 60.10 86.90 0.992
SparseGPT 87 77.48 73.92 598 80.67 61.95 45.78 1957.2 66.14 58.28 56.30 70.30 83.18 55.40 86.10 0.986

50%
EcoFLAP 82 73.24 71.06 502 75.78 59.81 41.56 1732.8 63.40 54.23 50.20 53.80 78.69 39.80 57.55 0.877
Wanda 81 76.96 71.30 582 72.12 60.10 41.67 1726.8 64.18 54.41 48.50 65.20 42.26 47.20 85.50 0.900
SparseGPT 81 72.08 70.20 534 77.66 61.16 42.89 1741.1 66.01 53.05 49.30 64.90 79.82 47.30 85.00 0.921

2:4
EcoFLAP 67 62.02 60.70 483 65.19 52.68 32.89 1309.1 49.54 45.75 36.00 49.30 71.35 30.20 81.05 0.760
Wanda 69 63.52 59.71 499 67.39 53.09 34.22 1282.7 57.52 43.09 38.80 51.60 72.81 30.60 81.65 0.779
SparseGPT 74 62.68 65.60 426 67.10 56.97 34.44 1296.2 62.35 45.99 35.60 52.90 35.59 35.70 81.30 0.772

W4A16† AWQ 84 75.52 72.78 575 85.23 61.84 45.44 1978.3 67.58 53.70 52.60 70.50 78.92 54.80 87.05 0.972
GPTQ 86 75.83 72.36 571 85.40 61.90 44.82 1970.2 66.24 56.25 55.80 70.30 78.69 54.30 86.55 0.975

Table 4: Main results of various parameter compression methods on LLaVA-OneVision-7B evaluated on different
tasks, grouped by Setting. † indicates that only the LLM backbone is quantized.

Models Benchamrks A-Only U-40% U-80%

LLaVA-OneVision-7B

DocVQA 82 83 84
OCRBench 372 398 410
ChartQA 74.12 75.84 76.24
TextVQA 70.73 71.83 72.36

Qwen2-VL-7B

DocVQA 83 85 86
OCRBench 386 410 424
ChartQA 67.00 67.84 68.24
TextVQA 68.17 69.93 70.98

Table 5: VL-Cache Budget Allocation (5% Total Bud-
get) with Hybrid Strategies: A-Only (adaptive-Only
Allocation) vs. U-40% (40% uniform + 60% adaptive)
vs. U-80% (80% uniform + 20% adaptive).
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Figure 3: Layer-wise Budget Allocation of VL-Cache
on LLaVA-OneVision-7B (5% Total Budget Constraint,
OCRBench Example).

get was evenly distributed across all layers, and the
remaining (60% or 20%) is adaptively allocated
according to the original allocation strategy. As
shown in Table 5, evenly allocating 80% of the
total budget produced the best results.

5.2 Revisiting Head Adaptive Mechanism

Previous KV cache compression methods diverge
on whether heads within a layer should select iden-
tical cached tokens. We explore head-adaptive to-

ken selection (i.e., allowing heads in the same layer
to select different tokens) at a 1% budget. Table 6
shows that head-adaptivity significantly improves
performance. This improvement likely stems from
different KV or query heads capturing distinct infor-
mation patterns, enabling head-adaptive selection
to preserve critical information under tight budget
constraints better. Detailed head attention distribu-
tions are in Appendix A.9.

Models Benchmarks H2O SnapKV VL-Cache

w/ w/o w/ w/o w/ w/o

LLaVA-OneVision-7B

ChartQA 67.32 65.12 74.64 73.84 68.64 66.64
TextVQA 64.96 62.33 65.62 65.60 61.76 61.85
MathVista 42.40 41.60 54.40 51.20 52.20 49.50
LLaVA-Wilder 62.50 60.60 63.70 61.40 62.80 62.40

Qwen2-VL-7B

ChartQA 54.36 45.92 55.96 56.16 57.76 53.32
TextVQA 51.16 42.85 57.38 52.96 50.69 47.03
MathVista 49.00 48.50 49.90 49.20 52.90 52.30
LLaVA-Wilder 37.20 31.60 27.70 26.60 42.30 39.80

Table 6: Effect of head-adapive strategy for KV cache
compression methods.

5.3 Attention Sink Tokens in LVLMs

Xiao et al. (2023) identified attention sinks in Trans-
formers: a few initial tokens attract dispropor-
tionate attention regardless of semantic relevance,
and their removal significantly degrades perfor-
mance. We explore sink tokens in both textual
and visual modalities within LVLMs. For tex-
tual sinks, comparing a random baseline against
StreamingLLM (which preserves these sink tokens)
shows StreamingLLM significantly improves per-
formance at a 1% budget (Table 15), underscor-
ing their importance. Similarly, visual informa-
tion tends to concentrate on a set of image tokens
after passing through the visual encoder Darcet
et al. (2024). We find that FastV (using text-guided
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Methods Budgets

10% 20% 40%

FastVorigin 31.04 54.20 67.40
FastVA1 30.36 52.40 65.40
FastVA2 45.56 58.60 70.04

Table 7: Comparison of results for FastVorigin, FastVA1,
and FastVA2 on ChartQA with Qwen2-VL-7B.

metrics for visual token pruning) underperforms
VisionZip (relying solely on the visual encoder’s
attention map). We hypothesize this is because
visual sink tokens critically impact performance,
yet text-guided metrics often fail to capture them.
Two ablations on ChartQA using Qwen2-VL-7B
(Table 7) further support this hypothesis: A1: Pro-
hibiting FastV from selecting from the top 10%
most critical visual tokens slightly degraded perfor-
mance. A2: Conversely, forcing FastV to prioritize
these top 10% tokens significantly improved per-
formance. These results indicate that text-based
selection can overlook critical visual sink tokens,
and that retaining these sinks is vital, particularly
under low budgets. The recent attention-sink-free
gated attention model of Qiu et al. (2025) also war-
rants future exploration. More visualizations are
available in Appendix A.12.

5.4 How to Merge Evicted Tokens
The merge operation shows promise for recovering
evicted information (Bolya et al.). Current methods
differ: LOOK-M and PruMerge+ merge evicted
tokens into retained ones, whereas VisionZip con-
catenates them. This poses the question: What
is an effective merge strategy for LVLMs? Our
experiments reveal LOOK-M’s performance drops
at low budgets. We hypothesize that at a 1% bud-
get, its text-prior mechanism discards visual tokens,
which are then merged into remaining text tokens.
This cross-modal fusion, we argue, disrupts critical
textual features (e.g., sink tokens), degrading per-
formance.. Thus, we modify LOOK-M to merge
evicted tokens only within the same modality. Ta-
ble 8 shows our modification consistently improves
performance over the original LOOK-M, under-
scoring that modality-specific merging is crucial
for LVLM token compression. Specific examples
are in Appendix A.13.

6 Conclusion

This paper introduces EFFIVLM-BENCH, a com-
prehensive benchmark for systematically evaluat-
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1% LOOK-Morigin 38 34.44 44.74 81 44.30 43.40
LOOK-Mchange 44 56.16 48.12 117 51.80 59.30

5% LOOK-Morigin 74 73.72 70.29 375 53.10 65.50
LOOK-Mchange 74 75.04 70.89 406 53.50 69.00

Table 8: The performance comparison between LOOK-
M with origin merge(LOOK-Morigin) and modality-
specific merge(LOOK-Mchange) on LLaVA-OV-7B.

ing token and parameter compression methods for
LVLMs across diverse tasks, models, and met-
rics. Our empirical results reveal inherent trade-
offs—performance, generalization, loyalty, and ef-
ficiency—tied to different compression strategies.
Analysis of factors such as attention sinks and
layer- or head-adaptive sparsity provides practical
insights for optimizing these techniques. We hope
that EFFIVLM-BENCH offers a robust foundation
for advancing future research in LVLM compres-
sion.

Limitations

Our work has several limitations: (1) Although
EFFIVLM-BENCH systematically evaluates both
token and parameter compression approaches, it fo-
cuses primarily on a subset of representative LVLM
models and tasks, leaving the performance on other
architectures and more specialized domains un-
derexplored. (2) We only consider training-free
methods in this study, and the incorporation of
training-based compression algorithms could pro-
vide deeper insights into the balance between per-
formance gains and resource overhead. (3) Al-
though our analysis delves into several mechanisms
under extremely low budgets, there may be ad-
ditional factors in token and parameter compres-
sion methods. In future work, we plan to extend
EFFIVLM-BENCH to include more tasks, models,
and methods, offering a more comprehensive as-
sessment of LVLM compression.
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A Appendix

A.1 Evaluation Benchmarks
We conduct evaluations in realistic scenarios, us-
ing diverse benchmarks that span a wide range of
vision-language tasks. These are grouped into three
categories:

(1) Chart, Diagram, and Document Understand-
ing This category focuses on textual and dia-
grammatic comprehension. Benchmarks include
DocVQA (Mathew et al., 2020), ChartQA (Masry
et al., 2022), TextVQA (Singh et al., 2019), OCR-
Bench (Liu et al., 2024c), and AI2D (Kembhavi
et al., 2016). These test the ability to accurately
detect and recognize text in various forms (printed,
handwritten, or embedded in charts/diagrams) and
to understand document layouts or diagrammatic
structures.

(2) Perception and Multi-discipline Reasoning
This category targets visual perception combined
with logical or knowledge-intensive reasoning.
Benchmarks include GQA (Hudson and Manning,
2019), MMMU (Yue et al., 2024), MME (Fu et al.,
2024), MMBench (Liu et al., 2024b), MMVet (Yu
et al., 2023), MMStar (Chen et al., 2024c), and
MathVista (Lu et al., 2024b).

(3) Real-world Compositional & Interactive QA
This category assesses interactive and composi-
tional reasoning in realistic conversational set-
tings. Benchmarks like LLaVA-Wilder (Li et al.,
2024a), RealWorldQA (x.ai), and ImageDC (Li
et al., 2024a) test a model’s ability to handle open-
ended questions, multi-turn dialogues, and complex
visual-linguistic grounding, as well as its adapta-
tion to diverse topics and coherence over extended
interactions.

Across these benchmarks, we evaluate various
compression methods on multimodal understand-
ing and reasoning. Input/output lengths differ
significantly by task (Table 9). To assess KV
cache methods on longer sequences, we select MP-
DocVQA (Tito et al., 2022) for multi-images and
MovieChat (Song et al., 2023) for video.

A.2 Compression Method
Token Pruning Token pruning compression re-
duces computational overhead by eliminating re-
dundant tokens during inference. We implement
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Input
LLaVA-OneVision-7B 7313 3882 5147 1233 3497 2693 3613 5768 7778 2226 2935 4559 1903 5006 2704
Qwen2-VL-7B 2027 406 1010 75 598 383 730 1141 1776 288 465 904 251 1018 363
InternVL2.5-38B 1835 1367 1744 1212 1389 1800 1588 1506 1834 1478 1346 1337 1387 1400 1492

Output
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Table 9: Input and Output token length of different models on various benchmarks. We select 100 samples from
each benchmark for calculation.

methods including FastV (Chen et al., 2024b), Vi-
sionZip (Yang et al., 2024), and PruMerge+ (Shang
et al., 2024), which selectively remove redundant
tokens based on relevance scores or token-level
importance metrics.

KV Cache Compression We explore several KV
cache compression methods that reduce memory
usage during inference by selectively retaining key-
value states, including StreamingLLM (Xiao et al.,
2023), H2O (Zhang et al., 2023a), SnapKV (Li
et al., 2024e), PyramidKV (Cai et al., 2024b),
LOOK-M (Wan et al., 2024), and VL-Cache (Tu
et al., 2024).

Model Pruning Model pruning aims to reduce
model size and inference cost while preserv-
ing performance. We evaluate EcoFLAP (Sung
et al., 2023), Wanda (Sun et al., 2023), and
SparseGPT (Frantar and Alistarh, 2023), applying
these methods only to the LLM backbone of the
LVLM.

Model Quantization Model quantization com-
presses models by reducing the precision of their
weights and activations, thereby lowering memory
requirements and accelerating computation. We
consider techniques like AWQ (Lin et al., 2024)
and GPTQ (Frantar et al., 2022) (applied only to
the LVLM’s LLM backbone).

A.3 Details of Methods

Token Pruning Let Tv = {tv,j}lvj=1 be the set of
lv visual tokens, each tv,j ∈ Rd. Given a retention
budget b ∈ (0, 1], pruning aims to select l′v =
⌊b · lv⌋ tokens. This typically involves a scoring
function s : Rd → R to assess token importance.

FastV uses a lightweight scoring strategy. For each
visual token tv,j , its importance s(tv,j) is its accu-
mulated attention score among textual tokens. A

binary mask m ∈ {0, 1}lv is defined by

mj =

{
1, if s(tv,j) ≥ τ,

0, otherwise,

where the threshold τ is set to ensure the binary
mask m satisfies the following constraint:

lv∑

j=1

mj = ⌊b · lv⌋.

The pruned visual token set is given by

T ′
v = { tv,j | mj = 0 }.

VisionZip first selects an initial set of tokens to keep
using accumulated attention (similar to FastV),
and identifies the discarded set T ′

v. To compen-
sate for information loss from T ′

v, VisionZip clus-
ters Td into k groups. The original paper sets
k = ⌊(b/6.4) · lv⌋. For each cluster Ci ⊆ T ′

v,
its centroid ci is computed:

ci =
1

|Ci|
∑

t∈Ci

t.

The recycled token set is then defined as

Rv = { ci | i = 1, 2, . . . , k }.

Finally, the tokens in Rv are concatenated with the
retained tokens.

PruMerge+ also adaptively selects important to-
kens and merges less important ones to retain criti-
cal information. For each visual token tv,j , its im-
portance score is computed via the [CLS] token’s
attention weights in the vision encoder:

s(tv,j) = A
[CLS]
j ,
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where A[CLS] ∈ Rlv denotes the attention weight
from the [CLS] token to visual tokens. For architec-
tures without [CLS] tokens, we compute row-wise
averages of the attention matrix:

s(tv,j) =
1

lv

lv∑

i=1

Aij .

The binary mask m ∈ {0, 1}lv is determined
through interquartile range (IQR) based outlier de-
tection:

mj =

{
1, if s(tv,j) ≥ τ,

0, otherwise,

where threshold τ is adaptively calculated using
the IQR method. To ensure budget compliance, we
enforce:

lv∑

j=1

mj = ⌊b · lv⌋.

If IQR selection yields fewer than l′v = ⌊b · lv⌋
tokens (the target budget b), PruMerge+ first sup-
plements this set by uniformly sampling from the
remaining highest-scoring unselected candidates.
All l′v tokens in the final retained set then undergo
feature merging to consolidate information. Unlike
VisionZip, PruMerge+ merges information from
pruned tokens into retained ones.

KV Cache Compression In the LVLM prefill
stage, let lv and lt be the number of visual and
text tokens, respectively, with total length l = lv +
lt. Let w be the recent window size and b the
compression budget fraction. The attention map
is A ∈ Rl×l, where Aij is the attention weight
between query i and key j. To compress the KV
caches, we introduce:

F : Rl×l → {0, 1}l,

which produces a binary mask m ∈ {0, 1}l indi-
cating which tokens to retain (mj = 1) or evict
(mj = 0). We consider four variants of F that
rank token importance:

• Accumulated Attention Facc. We sum atten-
tion weights along the query tokens dimen-
sion:

sj =

l∑

i=1

Aij .

• Normalized Attention Fnorm. We normalize
attention weights for each query i, then sum
and average:

s̃j = Norm(
l∑

i=1

Aij)

• Sliding Window Attention Fsw. We compute
accumulated attention scores along the query
tokens but only over a recent window:

s̃j =
l∑

i=l−w+1

Aij .

• Post-Vision Attention Fpv. Recognizing that
in many LVLMs, the textual tokens following
the visual tokens are more critical, this vari-
ant computes attention scores using only the
queries from the text region. Formally, letting
the text region be indexed by i = lv+1, . . . , l,
we define:

s̃j =
l∑

i=lv+1

Aij .

These variants of F offer different strategies
for ranking tokens, allowing us to evaluate how
attention-based selection influences KV cache com-
pression in LVLMs. In experiments, H2O and
LOOK-M use Accumulated Attention, SnapKV and
PyramidKV use Sliding Window Attention and VL-
Cache uses Post-Vision Attention.

Model Pruning aims to identify a binary mask
S ∈ {0, 1}m×n so that the pruned weight matrix
W̃ = W ⊙ S preserves performance while satisfy-
ing a desired sparsity level, i.e., ∥S∥0 = p·(m×n),
with p being the fraction of weights to retain. An
importance score sij is computed for each weight
Wij . The binary mask is then determined by select-
ing the top-p fraction of weights with the highest
scores.

Wanda measures the importance of each weight by
the product of its magnitude and the norm of its
corresponding input activation:

sij = |Wij | · ∥Xj∥2,

where Xj is the input activation vector associated
with the j-th column of W . This prioritizes weights
coupled with strong activations, preserving contri-
butions critical to model performance even if the
weights themselves are small.
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EcoFLAP prunes LVLMs layer-wise in a coarse-to-
fine manner. The coarse phase computes layer i’s
importance S(Wi) using an expected zeroth-order
gradient approximation: ||▽WiL(Wi,D)||2 =

Ed∼D[Ez∼N(0,1)[|L(Wi+ϵz,d)−L(Wi−ϵz,d)
2ϵ |]]. The

fine-grained step then uses same score as Wanda lo-
cally within each layer to prune weights according
to these layer-specific sparsity ratios.

SparseGPT minimizes a layer’s output reconstruc-
tion error using a second-order approximation. Its
importance metric is derived from an approximate
diagonal of the Hessian:

sSparseGPT
ij = [

||W ||2
diag(XXT + λI)−1

]ij

Model Quantization Quantization aims to ap-
proximate a full-precision weight matrix W ∈
Rm×n with a low-bit representation while mini-
mizing performance degradation. In our experi-
ments, we consider two notable approaches of Post-
Training Quantization: AWQ and GPTQ.

AWQ refines the PTQ process by incorporating in-
put activation statistics to better preserve the layer
output. Given the weight matrix W and its corre-
sponding input activations X , AWQ selects quanti-
zation parameters by solving:

min
s, z

∥∥∥WX − ŴX
∥∥∥
2

F

with Ŵij = s ·
(
round

(
Wij

s

)
− z

)
.

GPTQ enhances PTQ by leveraging second-order
information to minimize the output error induced
by quantization. Starting from the uniform quanti-
zation of W , GPTQ aims to adjust the quantization
parameters so as to minimize the reconstruction
error using a Taylor expansion involving an approx-
imate Hessian H (often estimated via the diagonal
of X⊤X). This Hessian-guided correction allows
GPTQ to achieve high quantization fidelity in one
shot, even under aggressive bit-width reductions.

A.4 Implementation Details

Token Pruning To ensure fair comparison of to-
ken pruning methods, we standardize average token
retention rates across layers. We evaluate rates of
1%, 5%, 10%, 20%, and 40%. Higher rates are
omitted, as 40% retention typically preserves per-
formance comparable to the original model. Addi-
tionally, because the metrics of these methods can

be architecture-dependent, we adapt each method
consistently across all evaluated LVLMs to main-
tain fair comparisons.

KV Cache Compression For fair comparison of
KV cache compression methods, we standardize
budget allocation. We test budgets of 1%, 5%, 10%,
20%, and 40% of the original cache size. Higher
budgets are omitted as 40% typically yields per-
formance comparable to the uncompressed model.
During prefill, 10% of the currently allocated bud-
get forms a recent window to retain the most recent
tokens; the remainder is managed by each method’s
specific mechanism. In the decoding, to maintain
uniformity and fairness across all methods, we do
not apply any additional KV cache compression.

Model Pruning In our experiments, we focus
on pruning the LLM component. We utilize a
consistent set of 128 samples from the COCO-
Caption(Chen et al., 2015) as our validation set.
We apply unstructured pruning at 20% and 50%
sparsity levels, as well as semi-structured prun-
ing under 2:4 setting. We do not apply structured
pruning because these result in significant perfor-
mance drops without recovery training (Wang et al.,
2024b).

Model Quantization We focus exclusively on
quantizing the LLM component, aligning with the
existing LVLM quantization work. We utilize
the same validation dataset as in our pruning ex-
periments. For the LLM’s weights, we apply a
W4A16g128 quantization scheme, where weights
are quantized to 4 bits and activations are kept in
FP16, and a group size of 128 is used during quan-
tization. This scheme offers a balanced trade-off
between model performance and efficiency.

Evaluation We use lmms-eval (Zhang et al.,
2024a) framework to perform evaluation. Given
the diversity of benchmarks and LVLMs, we select
specific LVLMs and benchmarks tailored to each
method type, which are detailed in Appendix A.1.
The batch size is set to 1. We use 8 × NVIDIA
A800 GPUs. For the efficiency experiments, we
run 128 samples with an 8k input token length and
100 token output length on a single NVIDIA A800
GPU.

A.5 Detailed Results of KV Cache
Compression

Table 15 presents the detailed results of various KV
cache compression methods across different mod-
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Figure 4: Visualizations of attention weight heatmaps from layers 0, 14, and 27 of Qwen2-VL-7B. Different heads
within the same layer exhibit notable pattern variations.

els and benchmarks under varying cache budgets.

A.6 More Results of Token Compression
We additionally evaluate two recent token com-
pression approaches: iLLaVA (Hu et al., 2024)
and SparseVLM (Zhang et al., 2024b), which in-
corporate progressive sparsification strategy that
gradually sparsifies tokens across multiple layers,
rather than enforcing a target sparsity ratio at a sin-
gle layer. We follow the original implementation
details and the results against existing methods in
our benchmark are shown in Table 10.

We find that: (i) iLLaVA demonstrates compet-
itive performance at higher token budgets (40%)
thanks to its iterative pruning strategy within the
visual encoder. This strategy progressively prunes
tokens across layers while preserving critical ones
in earlier stages. However, at lower token budgets
(1%), performance declines significantly similar
as the phenomenon of FastV, likely due to the vi-
sual sink token: relying on text tokens to guide
pruning within LLM may inadvertently remove es-
sential visual sink tokens, leading to performance
degradation (details are in Section 5.3). (ii) Regard-
ing SparseVLM, compared to other token pruning
methods that also exclusively prune visual tokens in
the LLM component (e.g., FastV), it introduces an
iterative pruning strategy and a more fine-grained,

text-driven selection criterion to guide the pruning
process. Consequently, SparseVLM achieves con-
sistently strong performance across various com-
pression budgets and tasks.

A.7 More Results of Parameter Compression

Table 11 shows the results of parameter compres-
sion methods on Qwen2-VL-7B across various
benchmarks. To investigate the efficacy of com-
bining token-level and parameter-level compres-
sion, we select AWQ and SnapKV as represen-
tative methods for token and parameter compres-
sion, respectively. The results on Qwen2-VL-7B
are shown in Table 12. Combining AWQ with
SnapKV boosts inference speed by 1.65× over
AWQ alone, while maintaining comparable overall
performance, particularly on multimodal reasoning
tasks (MMMU, MathVista). This highlights the
efficiency gains achievable with hybrid compres-
sion. However, for tasks demanding fine-grained
visual perception (e.g., TextVQA), integrating to-
ken compression like SnapKV results in a marginal
performance drop. This underscores that acceler-
ation strategies must be tailored to specific target
scenario characteristics.

25561



Budgets Methods TextVQA AI2D MMMU MME MathVista

1%
VisionZip 44.48 72.11 42.56 1704.2 39.30
iLLaVA 22.86 68.78 43.11 1101.0 37.50

SparseVLM 42.29 71.07 43.00 1662.5 39.40

10%
VisionZip 57.26 77.97 44.11 1915.0 45.00
iLLaVA 64.88 73.47 44.66 1773.9 39.30

SparseVLM 65.72 79.27 45.22 1841.8 44.60

40%
VisionZip 68.21 83.84 46.11 1956.8 52.60
iLLaVA 73.26 87.62 47.44 1995.3 56.60

SparseVLM 72.80 88.66 45.78 1993.8 54.10

100% Original 74.79 89.96 45.44 1974.1 58.20

Table 10: Results of iLLaVA and SparseVLM on LLaVA-OneVision-7B model. Bold denotes the best result under
the same setting.
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100% Original 81.56 81.82 813 91.02 62.3 50.77 2327.78 66.53 57.11 58.3 72.7 86.35 1.000

20%
EcoFLAP 81.36 81.82 805 91.13 62.30 50.00 2,288.0 66.67 56.74 57.10 52.70 87.33 0.964
Wanda 75.52 80.64 754 89.67 60.86 46.11 2,090.8 65.88 53.02 52.40 50.20 84.90 0.918
SparseGPT 71.68 77.45 722 82.32 57.84 39.56 1,871.9 59.61 45.99 40.70 44.50 81.00 0.842

50%
EcoFLAP 81.08 81.79 800 91.16 62.32 50.44 2,312.6 66.54 56.69 58.90 53.50 87.13 0.970
Wanda 77.72 80.61 784 88.63 61.20 45.00 2,129.1 64.97 52.74 53.50 51.20 85.55 0.924
SparseGPT 71.96 78.08 727 82.29 58.66 38.78 1,967.3 57.91 45.63 39.30 44.50 80.30 0.845

2:4
EcoFLAP 81.16 82.08 809 91.03 62.32 50.78 2,317.2 67.45 56.85 59.30 54.80 88.37 0.977
Wanda 73.96 80.09 790 88.44 61.54 44.89 2,106.9 65.10 53.42 53.10 52.40 86.00 0.924
SparseGPT 61.04 76.60 721 81.19 58.24 36.89 1,675.00 59.22 42.31 40.40 48.70 85.25 0.832

Table 11: Results of various parameter compression methods on Qwen2-VL-7B.

Methods Speedup AI2D MMMU MME TextVQA MathVista

AWQ 1.0x 90.80 57.20 2320.6 50.26 66.53
AWQ+SnapKV 1.65x 90.74 57.40 2235.9 48.78 66.80

Table 12: Results on Qwen2-VL-7B on combining token and parameter compression.

A.8 Architectural Impact on Compression
Effectiveness

We analyze how architectural differences in
LVLM backbones (LLaVA-OneVision, Qwen2-
VL, InternVL-2.5) affect compression effective-
ness. Two primary aspects are considered:

• High-Resolution Image Processing. LLaVA-
OneVision and InternVL-2.5 use anyres-like
strategies, splitting high-resolution images
into many patches, averaging 4180 visual to-
kens per input on our benchmark. In contrast,
Qwen2-VL employs NaViT, a visual encoder
with native dynamic-resolution support that
merges visual tokens, reducing their average
count to 762 (see Dehghani et al. (2023) for

NaViT details). This difference in initial vi-
sual token count directly impacts token com-
pression. For example, LLaVA-OneVision-
7B consistently outperforms similarly sized
Qwen2-VL-7B in various token compression
budgets (Table 9). This suggests that a larger
pool of initial visual tokens offers greater flex-
ibility for compression, as its richer represen-
tation can tolerate more aggressive reduction
without substantial performance loss.

• Parameter Size. To isolate the impact
of model scale, we evaluate Qwen2-VL-2B
against Qwen2-VL-7B using various param-
eter compression methods. The results are
shown in Table 13.
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100% Original 2B 83.83 46.20 1872.0 40.85 79.70 1.0000
7B 91.02 58.30 2327.7 50.77 81.82 1.0000

20%

ECOFLAP 2B 80.99 44.00 1883.4 39.44 79.19 0.9769
7B 91.13 57.10 2288.0 50.00 81.82 0.9900

Wanda 2B 81.99 45.30 1884.5 39.89 79.31 0.9874
7B 91.16 58.90 2312.6 50.44 81.79 1.0000

SparseGPT 2B 82.35 46.30 1852.9 40.00 79.44 0.9901
7B 91.03 59.30 2317.2 50.78 82.08 1.0030

50%

ECOFLAP 2B 71.99 33.50 1585.2 34.44 76.39 0.8497
7B 89.67 52.40 2090.8 46.11 80.64 0.9356

Wanda 2B 72.83 34.90 1721.8 36.44 76.26 0.8812
7B 88.63 53.50 2129.1 45.00 80.61 0.9350

SparseGPT 2B 72.15 35.70 1535.1 33.56 75.75 0.8472
7B 88.44 53.10 2106.9 44.89 80.09 0.9309

2:4

ECOFLAP 2B 44.79 28.20 1008.7 27.11 66.12 0.6445
7B 82.32 40.70 1871.9 39.56 77.45 0.8313

Wanda 2B 47.83 27.70 1207.2 26.89 67.01 0.6695
7B 82.29 39.30 1967.3 38.78 78.08 0.8336

SparseGPT 2B 49.92 26.20 1027.8 29.22 66.91 0.6624
7B 81.19 40.40 1675.0 36.89 76.60 0.8000

W4A16 AWQ 2B 82.90 46.50 1835.4 39.82 79.34 0.9893
7B 90.80 58.30 2232.5 48.78 81.31 0.9826

Table 13: Results of various parameter compression methods on different model sizes of Qwen2-VL.

A.9 Visualization Head Attention Distribution

To illustrate how head-adaptive mechanisms can
capture diverse attention patterns, we analyzed at-
tention distributions across heads in several ran-
domly selected layers. Qwen2-VL-7B was chosen
for this visualization because its relatively fewer
image tokens enhance attention map readability.
Indeed, Figure 4 shows that different heads within
the same layer exhibit distinct attention patterns.

A.10 Visualizations on VL-Cache Budget
Allocation

We evaluated VL-Cache on eight benchmarks
across three LVLMs, all at a 5% total budget.
The models consistently exhibited similar, highly
skewed layer-wise budget allocations (Figures 5
and 6). True to its design, VL-Cache’s layer-
adaptive mechanism heavily favored early “dense”
layers, particularly the first two. Allocation min-
ima were observed at layer 4 for LLaVA-OV-7B
and Qwen2-VL-7B, and at layer 5 for InternVL2.5-
38B, with subsequent layers typically receiving

far below-average budgets. This consistent front-
loading suggests performance could be improved
by reallocating budget from these over-resourced
early layers to the under-resourced later ones. Ef-
fective layer-adaptive strategies therefore demand
a more nuanced resource balance, rather than just
aggressive front-loading.

A.11 Visualization of VL-Cache Token
Selection

We visualize visual tokens selected by VL-Cache
at layers 0, 1, and 2 in LLaVA-OV-7B (5% bud-
get, across 6 benchmarks). Figure 8 reveals that
for the first two layers (0 and 1), selected token
distributions are strikingly similar: they predomi-
nantly cluster towards the end of the visual token
sequence, potentially limiting their utility in deriv-
ing final answers. Layer 2, in contrast, displays a
more uniform distribution of selected tokens across
the entire sequence. Although VL-Cache’s strat-
egy allocates a higher token density to these early
layers, these observed patterns suggest such aggres-
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Figure 5: Budgets distribution of LLaVA-OV-7B and Qwen2-VL-7B across 8 benchmarks under 5% budget. Each
subplot shows a random sample from the respective benchmark.

sive, front-loaded budgeting may not be optimal.

A.12 Visualization of Visual Sink Tokens
To further illustrate the visual token sink phe-
nomenon, we visualize attention heatmaps for 15
randomly selected ChartQA samples using LLaVA-
OV-7B and Qwen2-VL-7B. Figure 10 clearly
shows a visual sink emerging after the visual en-
coder’s forward pass: image information consis-
tently converges to a limited subset of visual tokens.
Furthermore, Figures 7 and 9 compare visual to-
ken selection by VisionZip (image-guided) against
FastV (text-guided). VisionZip tends to retain these
critical sink tokens, whereas FastV often fails to
capture many of them, explaining observed perfor-
mance differences.

A.13 Case of Different Merge Strategies
Table 14 contrasts LOOK-M’s outputs under two to-
ken merge strategies: cross-modal versus modality-
specific. Modality-specific merging yields an accu-
rate image caption; in contrast, cross-modal merg-
ing results in an image-irrelevant output.
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Figure 6: Budgets distribution of InternVL2.5-38B across 8 benchmarks under 5% budget. Each subplot shows a
random sample from the respective benchmark.

Figure 7: Visualization of token selection strategies on ChartQA with Qwen2-VL-7B under 10% budget. Left to
right: attention heatmap, tokens retained by FastV and VisionZip. VisionZip selects more critical tokens.
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Q: "Which color Bar shows the greatest Meat consumer?"
A: "Finland"

base(select) upper left upper right lower left lower right

base(origin) upper left upper right lower left lower right

Q: "Which college's name is specified in the logo?"
A: "MEHARRY MEDICAL COLLEGE"

base(select) upper left upper right lower left lower right

base(origin) upper left upper right lower left lower right

(a) Visualization of Layer 0 visual token selection: representative cases from ChartQA (left) and DocVQA (right)

Q: "What is the sum of the two numbers visible in the picture?"
A: "71"

base(select) upper left upper right lower left lower right

base(origin) upper left upper right lower left lower right

Q: "Which spot is the red car parking on?"
A: "31"

base(select) upper left upper right lower left lower right

base(origin) upper left upper right lower left lower right

(b) Visualization of Layer 1 visual token selection: representative cases from MathVista (left) and MMVet (right)

Q: "Where is this?"
A: "garage"

base(select) upper left upper right lower left lower right

base(origin) upper left upper right lower left lower right

Q: "What is the number for southern homes?"
A: "648-HOME"

base(select) upper left upper right lower left lower right

base(origin) upper left upper right lower left lower right

(c) Visualization of Layer 2 visual token selection: representative cases from OCRBench (left) and TextVQA (right)

Figure 8: Visualization of VL-Cache selected visual tokens in layers 0–2 on LLaVA-OneVision-7B. Highlighted
regions with bounding boxes are critical to the answer.
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(a) Visualization results of randomly selected cases from DocVQA

(b) Visualization results of randomly selected cases from MMMU

Figure 9: Visualization of token selection strategies on DocVQA and MMMU with Qwen2-VL-7B under 10%
budget. Left to right: attention heatmap, tokens retained by FastV and VisionZip. VisionZip selects more critical
tokens than FastV.
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(a) Heatmap visualization results of ChartQA on LLaVA-OneVision-7B

(b) Heatmap visualization results of ChartQA on Qwen2-VL-7B

Figure 10: Heatmap visualizations of 15 randomly selected examples from the ChartQA benchmark on LLaVA-
OneVision-7B and Qwen2-VL-7B.
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Visual input example for image caption

User Please give a brief description of this picture.

Qwen2-VL-7B The image shows a classic Honda motorcycle parked on a gravel surface. The motor-
cycle has a black and chrome finish, with a quilted seat and a small windshield.

LOOK-Morigin The image shows a close-up of a person’s hand holding a small, round object. The
object appears to be a small, metallic ball or a similar spherical item.

LOOK-Mchange The image shows a motorcycle parked outdoors. The motorcycle has a classic design
with a prominent front wheel and a seat that appears to be made of leather.

Table 14: Comparative analysis of response quality in Qwen2-VL-7B original model vs. LOOK-M with origin
merge and modality-specific merge strategies under extreme compression ratios
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Benchmarks Models Methods 1% 5% 10% 20% 40% 100%

DocVQA
(Split:test)

(Metric:ANLS)

LLaVA-OneVision-7B

Random 31 55 69 79 85 87
StreamingLLM 42 62 71 74 79 87
H2O 58 78 82 86 87 87
SnapKV 76 82 83 85 86 87
PyramidKV 70 76 75 78 81 87
LOOK-M 38 74 81 85 87 87
VL-Cache 69 82 85 86 87 87

Qwen2-VL-7B

Random 13 60 78 89 94 95
StreamingLLM 42 56 65 74 84 95
H2O 47 67 79 89 93 95
SnapKV 78 90 92 92 94 95
PyramidKV 66 83 82 84 87 95
LOOK-M 27 58 77 89 94 95
VL-Cache 52 83 91 93 94 95

InternVL2.5-38B

StreamingLLM 0 46 53 63 80 94
H2O 58 76 86 91 93 94
SnapKV 34 91 93 93 94 94
PyramidKV 53 90 92 93 93 94
LOOK-M 12 54 78 90 93 94
VL-Cache 64 87 91 93 93 94

ChartQA
(Split:overall)
(Metric:Acc)

LLaVA-OneVision-7B

Random 45.04 59.76 64.56 69.52 72.72 80.00
StreamingLLM 58.20 65.44 69.84 73.88 75.36 80.00
H2O 67.32 75.48 76.44 77.48 77.84 80.00
SnapKV 74.64 76.48 76.68 77.20 77.28 80.00
PyramidKV 72.68 76.20 76.08 76.24 76.80 80.00
LOOK-M 34.44 73.72 76.72 77.40 77.72 80.00
VL-Cache 66.64 74.12 75.96 77.08 77.56 80.00

Qwen2-VL-7B

Random 13.00 45.96 66.08 72.32 79.68 81.56
StreamingLLM 50.28 61.52 65.04 69.60 76.32 81.56
H2O 54.36 70.12 74.56 78.60 80.88 81.56
SnapKV 55.96 77.32 79.28 80.20 81.32 81.56
PyramidKV 67.24 72.08 76.08 78.96 80.40 81.56
LOOK-M 23.00 48.52 68.24 76.96 79.48 81.56
VL-Cache 53.32 67.00 74.28 79.16 80.68 81.56

InternVL2.5-38B

StreamingLLM 0.68 67.08 71.68 73.72 80.00 88.04
H2O 34.64 80.32 84.76 86.88 87.84 88.04
SnapKV 60.60 84.80 86.64 87.28 87.92 88.04
PyramidKV 76.40 85.36 86.68 87.24 87.52 88.04
LOOK-M 8.80 54.48 75.48 84.04 87.16 88.04
VL-Cache 58.60 82.48 85.88 87.64 88.16 88.04

TextVQA
(Split:val)

(Metric:Acc)

LLaVA-OneVision-7B

Random 39.63 57.15 64.29 68.96 71.81 74.79
StreamingLLM 47.01 57.29 64.49 70.25 71.41 74.79
H2O 64.96 72.16 73.71 74.14 74.54 74.79
SnapKV 65.62 72.54 70.86 71.62 73.77 74.79
PyramidKV 58.56 68.39 66.37 66.60 69.70 74.79
LOOK-M 44.74 70.29 73.07 74.39 74.76 74.79
VL-Cache 61.85 70.73 72.92 73.46 74.16 74.79

Qwen2-VL-7B

Random 5.21 48.04 61.58 72.78 79.78 81.82
StreamingLLM 31.60 49.70 58.89 67.77 75.18 81.82
H2O 51.16 64.50 71.40 77.85 81.13 81.82
SnapKV 57.38 73.45 78.37 80.83 81.19 81.82
PyramidKV 67.50 71.01 73.90 77.89 78.87 81.82
LOOK-M 31.89 52.07 70.24 78.62 81.24 81.82
VL-Cache 47.03 68.17 77.74 80.81 81.79 81.82

InternVL2.5-38B

StreamingLLM 0.83 51.49 53.24 58.97 70.28 82.87
H2O 63.29 76.08 79.93 81.96 82.52 82.87
SnapKV 36.56 80.58 82.15 82.69 82.77 82.87
PyramidKV 56.73 79.70 80.64 81.91 82.16 82.87
LOOK-M 12.56 61.42 76.33 81.13 82.34 82.87
VL-Cache 64.40 76.54 80.35 82.29 82.71 82.87
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Benchmarks Models Methods 1% 5% 10% 20% 40% 100%

OCRBench
(Split:test)

(Metric:Acc)

LLaVA-OneVision-7B

Random 67 335 455 530 564 595
StreamingLLM 94 222 320 386 502 595
H2O 229 407 495 554 588 595
SnapKV 281 415 445 475 553 595
PyramidKV 275 337 354 358 426 595
LOOK-M 81 375 463 544 589 595
VL-Cache 231 372 460 505 551 595

Qwen2-VL-7B

Random 109 192 336 491 658 813
StreamingLLM 116 199 248 349 465 813
H2O 153 334 441 570 713 813
SnapKV 199 428 542 654 725 813
PyramidKV 241 417 535 642 662 813
LOOK-M 112 202 299 441 587 813
VL-Cache 216 386 505 592 660 813

InternVL2.5-38B

StreamingLLM 51 121 162 214 399 802
H2O 143 487 656 752 782 802
SnapKV 359 652 720 777 791 802
PyramidKV 478 637 664 734 765 802
LOOK-M 18 183 491 695 771 802
VL-Cache 193 487 630 733 778 802

MathVista
(Split:testmini)
(format: COT)
(Metric: GPT)

LLaVA-OneVision-7B

Random 41.10 44.20 47.80 53.50 55.90 58.20
StreamingLLM 40.40 43.10 45.20 48.50 54.40 58.20
H2O 42.40 48.90 53.70 55.40 56.60 58.20
SnapKV 54.40 55.30 56.30 56.70 56.60 58.20
PyramidKV 53.00 54.10 54.50 56.50 56.30 58.20
LOOK-M 44.30 53.10 53.60 54.00 55.10 58.20
VL-Cache 49.50 53.40 55.80 55.90 56.50 58.20

Qwen2-VL-7B

Random 45.00 49.60 54.00 56.30 57.20 58.30
StreamingLLM 47.40 54.80 55.30 56.20 56.40 58.30
H2O 49.00 55.60 55.80 57.00 57.80 58.30
SnapKV 49.90 56.50 57.20 57.40 58.00 58.30
PyramidKV 50.30 57.30 57.60 57.50 58.00 58.30
LOOK-M 35.80 54.30 56.20 55.50 56.70 58.30
VL-Cache 52.30 55.00 54.80 56.40 56.70 58.30

InternVL2.5-38B

StreamingLLM 40.80 48.00 50.10 54.50 59.10 70.20
H2O 50.40 60.90 64.60 68.60 70.50 70.20
SnapKV 53.70 64.30 68.40 68.40 70.00 70.20
PyramidKV 56.10 66.10 66.20 68.00 69.60 70.20
LOOK-M 38.30 56.50 61.60 66.70 69.40 70.20
VL-Cache 53.90 60.70 65.00 67.60 70.60 70.20

MMVet
(Split:test)

(Metric: GPT)

LLaVA-OneVision-7B

Random 19.60 34.10 40.80 46.50 47.70 55.00
StreamingLLM 24.60 39.80 46.30 48.10 50.00 55.00
H2O 33.60 46.10 51.60 53.20 54.10 55.00
SnapKV 32.90 47.90 50.20 52.20 53.30 55.00
PyramidKV 33.60 43.60 47.80 47.20 51.60 55.00
LOOK-M 20.60 45.20 49.10 52.20 53.60 55.00
VL-Cache 30.00 42.50 49.30 50.20 51.90 55.00

Qwen2-VL-7B

Random 4.10 10.90 22.30 33.90 52.20 65.40
StreamingLLM 1.10 16.30 28.00 38.60 44.60 65.40
H2O 8.30 27.30 39.20 53.70 56.00 65.40
SnapKV 12.10 33.50 43.50 55.10 56.50 65.40
PyramidKV 11.20 31.20 39.30 46.70 51.40 65.40
LOOK-M 1.40 17.80 30.40 46.30 55.30 65.40
VL-Cache 7.00 25.80 38.10 47.40 53.30 65.40

InternVL2.5-38B

StreamingLLM 0.00 21.20 32.20 37.70 53.70 69.40
H2O 15.90 47.50 58.80 68.00 70.70 69.40
SnapKV 23.00 51.40 63.60 67.10 69.20 69.40
PyramidKV 33.30 51.10 57.70 64.00 67.10 69.40
LOOK-M 2.80 29.20 50.50 57.80 71.10 69.40
VL-Cache 16.50 35.50 48.40 57.50 67.00 69.40
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Benchmarks Models Methods 1% 5% 10% 20% 40% 100%

LLaVA-Wilder
(Split:test)

(Metric: GPT)

LLaVA-OneVision-7B

Random 34.10 51.60 58.20 63.60 67.70 71.40
StreamingLLM 48.00 65.70 69.20 71.20 69.40 71.40
H2O 62.50 69.20 70.00 71.00 70.60 71.40
SnapKV 63.70 66.20 69.40 71.00 70.90 71.40
PyramidKV 62.30 67.20 66.80 67.50 69.00 71.40
LOOK-M 43.40 65.50 65.70 66.80 68.40 71.40
VL-Cache 62.40 67.10 69.10 69.50 70.90 71.40

Qwen2-VL-7B

Random 12.50 21.00 31.50 42.30 59.90 72.70
StreamingLLM 19.50 39.60 53.40 61.00 69.20 72.70
H2O 37.20 57.30 62.00 65.60 72.50 72.70
SnapKV 27.70 58.10 64.50 66.60 69.50 72.70
PyramidKV 36.30 58.50 64.10 65.00 68.70 72.70
LOOK-M 19.10 52.30 60.50 67.80 69.80 72.70
VL-Cache 39.80 57.90 63.40 68.00 69.30 72.70

InternVL2.5-38B

StreamingLLM 21.20 45.80 58.70 66.60 71.00 74.80
H2O 51.90 69.10 72.60 73.40 74.10 74.80
SnapKV 52.70 69.10 70.90 72.60 74.40 74.80
PyramidKV 56.20 69.90 70.30 71.80 72.30 74.80
LOOK-M 16.80 59.20 67.10 71.80 73.60 74.80
VL-Cache 55.20 66.80 69.80 72.80 72.00 74.80

ImageDC
(Split:DC100_EN)

(Metric: GPT)

LLaVA-OneVision-7B

Random 27.35 54.35 73.80 83.35 86.65 87.25
StreamingLLM 38.40 77.95 80.50 85.25 86.50 87.25
H2O 77.05 85.30 86.00 86.75 86.53 87.25
SnapKV 28.00 77.00 80.15 83.25 86.25 87.25
PyramidKV 27.75 69.55 75.45 80.40 84.00 87.25
LOOK-M 24.55 83.95 85.99 86.50 86.70 87.25
VL-Cache 21.00 51.80 70.95 80.00 84.95 87.25

Qwen2-VL-7B

Random 15.25 38.30 56.60 69.50 82.10 86.35
StreamingLLM 16.70 31.35 76.95 82.15 85.10 86.35
H2O 29.55 82.25 83.85 85.80 85.80 86.35
SnapKV 17.30 29.85 64.05 77.95 83.75 86.35
PyramidKV 16.90 31.05 56.80 69.90 78.55 86.35
LOOK-M 24.05 23.65 29.15 82.10 85.55 86.35
VL-Cache 15.05 17.80 41.80 70.35 82.30 86.35

InternVL2.5-38B

StreamingLLM 13.25 48.10 51.40 73.30 83.50 86.45
H2O 59.60 83.55 85.05 85.85 86.65 86.45
SnapKV 37.60 75.05 80.60 85.50 85.25 86.45
PyramidKV 46.75 77.65 81.95 84.45 86.10 86.45
LOOK-M 19.35 62.00 70.50 76.50 86.40 86.45
VL-Cache 24.90 56.55 71.40 82.95 85.50 86.45

Table 15: Main results of various KV cache compression methods on different models and tasks.Bold denotes the
best result under the same setting.
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