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Abstract

Large Language Models (LLMs) have demon-
strated impressive performance in biomedical
relation extraction, even in zero-shot scenar-
ios. However, evaluating LLMs in this task
remains challenging due to their ability to gen-
erate human-like text, often producing syn-
onyms or abbreviations of gold-standard an-
swers, making traditional automatic evaluation
metrics unreliable. On the other hand, while
human evaluation is more reliable, it is costly
and time-consuming, making it impractical for
real-world applications. This paper investi-
gates the use of LLMs-as-the-Judge as an al-
ternative evaluation method for biomedical re-
lation extraction. We benchmark 8 LLMs as
judges to evaluate the responses generated by
5 other LLMs across 3 biomedical relation ex-
traction datasets. Unlike other text-generation
tasks, we observe that LLM-based judges per-
form quite poorly (usually below 50% accu-
racy) in the biomedical relation extraction task.
Our findings reveal that it happens mainly
because relations extracted by LLMs do not
adhere to any standard format. To address
this, we propose structured output formatting
for LLM-generated responses that helps LLM-
Judges to improve their performance by about
15% (on average). We also introduce a do-
main adaptation technique to further enhance
LIM-Judge performance by effectively trans-
ferring knowledge between datasets. We re-
lease both our human-annotated and LLM-
annotated judgment data (36k samples in total)
here: https://github.com/tahmedge/11lm_
judge_biomedical_re.

1 Introduction

Relation extraction, the task of identifying mean-
ingful associations between biomedical entities
such as drugs, diseases, and genes from vast
amounts of unstructured text (Bassignana and
Plank, 2022), is a cornerstone of biomedicine. As
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Human Annotated Gold Relation

drug: dex, bort
side-effect: peripheral neuropathy

Expected Human Evaluation

drug: bort, 7
side-effect: peripheral neuropath
pEy PN "correctly_predicted_relations": 1,
LLM Predicted Relation "total_predicted_relations": 2
b
Pair: Rituximab and
dexamethasone
Side-effect: Peripheral neuropathy

Figure 1: An example of human evaluation of LLM-
generated outputs in comparison to the gold labels. The
drug “dex” in the gold relation is predicted as “dexam-
ethasone” in LLM response. While exact match will fail
in this case, human evaluators can recognize.

the volume of unstructured biomedical text grows
exponentially, efficient and accurate relation ex-
traction is no longer a convenience but a necessity
for advancing medical research, drug discovery,
and improving patient outcomes (Luo et al., 2022).
Recent research has shown that Large Language
Models (LLMs) can achieve strong performance
in biomedical relation extraction, even in zero-
shot scenarios (Jahan et al., 2024). This capability
makes LLMs particularly valuable for real-world
biomedical applications where manually annotated
datasets are scarce or costly to obtain.

However, LLM’s ability to generate human-like
text introduces a major challenge in evaluation
(Laskar et al., 2024a; Jahan et al., 2024). Tradi-
tional automatic evaluation methods, such as string
matching and token overlap, fail to capture seman-
tic equivalence, as LLMs frequently produce syn-
onyms, abbreviations, or paraphrased responses
that are meaningfully correct but not exact matches.
For example, an LLM may generate “Hepatic car-
cinoma” instead of “Liver cancer”, leading conven-
tional metrics to misclassify correct extractions as
incorrect. Due to these limitations, human evalua-
tion has been the predominant method (see Figure 1
for an example) for assessing LLM performance in
biomedical relation extraction (Jahan et al., 2024).
However, human evaluation is slow and costly,
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Figure 2: Average judgment accuracy based on our eval-
uation of different LLMs-as-the-judge across 3 Relation
Extraction datasets (KD-DTI, DDI, BC5CDR) to evalu-
ate the LLM-generated responses in Jahan et al. (2024).

making it impractical for real-world applications.

To address this, LLMs-as-the-Judge (Zheng
et al., 2023) have gained attention as a poten-
tial alternative to human evaluation. While this
paradigm has been explored in general NLP tasks
(Li et al., 2024a; Gu et al., 2024), there is cur-
rently no biomedical-specific LLM-Judge designed
to evaluate relation extraction tasks. Unlike open-
domain text generation, biomedical relation extrac-
tion requires precise domain knowledge, standard-
ized terminology, and strict adherence to extract re-
lationships between entities. This complexity raises
concerns about whether existing LLM-Judges can
reliably assess biomedical extractions.

To investigate this, we examined the capabil-
ity of several LLMs-as-Judges in evaluating the
responses generated by different LLMs (LLM-
Generators) across multiple biomedical relation
extraction datasets (Jahan et al., 2024). Surpris-
ingly, despite prior success in general NLP evalua-
tion tasks, LLM-Judges performed very poorly in
biomedical relation extraction in comparison to hu-
man evaluators (Figure 2). These findings suggest
that domain specificity may significantly impact
the effectiveness of LLMs-as-Judge, underscoring
the need for adaptation in biomedicine.

To address the shortcomings of LLMs-as-Judge
in the biomedical relation task, we propose
structured output format (Xia et al., 2024; Li
et al., 2024b) for response generation by LLM-
Generators. Based on extensive experiments, we
find that structured output format in the response
generated by LLM-Generators consistently helps
the LLM-Judges to improve their performance
across various relation extraction datasets.

Moreover, we also find that there is a lack of
human-annotated judgment data that prohibits the
training of LLM-Judges for relation extraction.
Therefore, we propose a domain adaptation (Laskar
et al., 2022) technique to address the lack of human-
annotated judgment data by effectively transferring
knowledge from out-of-domain data to improve the
performance of LLM-Judges in the target domain.
Our major contributions are summarized below:

* We provide the first comprehensive study of
LLM-Judges in biomedical relation extraction,
benchmarking 8 LLM-Judges on responses
generated by 5 LLM-Generators across 3
biomedical relation extraction datasets. Our
findings demonstrate that LLMs are not re-
liable to serve as evaluators in biomedicine,
highlighting their significant performance gap
compared to human evaluators.

To address the above limitation, we pro-
pose structured output formatting in LLM-
generated responses for biomedical relation
extraction to improve the performance of
LLM-Judge. We also propose a domain adap-
tation technique to effectively transfer knowl-
edge from one domain to another to further
improve LLM-Judge performance in biomedi-
cal relation extraction.

* We conduct over 100 experiments, analyzing
the impact of structured output format, do-
main adaptation, and model scaling on LLM-
Judge performance. These experiments reveal
critical insights into why LLM-based evalu-
ation fails in biomedical relation extraction,
establishing the need for task-specific evalua-
tion frameworks.

* We make our judgment data (4k human-
annotated and 32k LLLM-annotated samples)
consisting of 3 relation extraction datasets
publicly available'.

2 Background

2.1 Relation Extraction Task Description

The relation extraction task aims to extract relations
between named entities in a given text (Zhong and
Chen, 2021). The biomedical relation extraction

1ht‘cps: //github.com/tahmedge/11m_judge_
biomedical_re
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Figure 3: An Overview of LLM-based Relation Extraction System. After constructing the input prompt for the LLM-
Generator for a given dataset, the LLM-Generator generates a response. The evaluation requires the identification of
the number of correctly predicted relations and the total number of predicted relations in the response to evaluate
the performance of the LLM-Generator for relation extraction in terms of metrics like Precision, Recall, and F1.

task aims to identify relationships between biomed-
ical named entities like genes, drugs, and diseases
(Chen et al., 2023). More specifically, in the con-
text of biomedicine, the goal is to analyze textual
data to identify which gene/variant is responsible
or which treatment/drug is effective for which dis-
ease, as well as identifying drug-drug interactions,
and etc. An example for disease-treatment relation
extraction is given below.

Example Text: The patient has been given
chemotherapy for their rare form of cancer.
Expected Relation: “Chemotherapy” is a treat-
ment for “rare form of cancer”.

2.2 Related Work

Traditional approaches for biomedical relation ex-
traction relied on supervised learning techniques
that required large, manually annotated datasets
(Luo et al., 2022). However, the construction of
such datasets is expensive and time-consuming. Re-
cently, LLMs have demonstrated impressive zero-
shot performance across a wide range of NLP tasks
(Laskar et al., 2023a; Bang et al., 2023; Qin et al.,
2023). This has inspired researchers to successfully
apply LLMs for biomedical relation extraction, par-
ticularly in zero-shot scenarios where annotated
data is scarce (Jahan et al., 2023, 2024; Tian et al.,
2024). Despite LLMs achieving impressive zero-
shot performance in the biomedical relation extrac-
tion task, evaluating the performance of LLM in
this task remains challenging (Jahan et al., 2024).
This is because LLMs may generate valid outputs
that are semantically equivalent to the gold stan-
dard but differ in surface form (e.g., synonyms,
abbreviations). This issue is further exacerbated
in biomedicine due to the nuanced and complex
nature of biomedical language. Therefore, existing
automatic metrics like string matching or n-gram
overlap often fall short in assessing the semantic

correctness of LLM-generated free-form responses
(Laskar et al., 2024a).

In the context of biomedical relation extraction,
while human experts can assess the relevance of
LLM extracted relations (Jahan et al., 2024), hu-
man evaluation is inherently time-consuming, ex-
pensive, and lacks scalability. This makes it im-
practical for rapid iteration cycles in research and
real-world deployment scenarios. The paradigm of
using LLMs-as-judges (Zheng et al., 2023) for eval-
uating free-form text generated by other LLMs has
recently gained a lot of attention as a potential alter-
native to human evaluations (Laskar et al., 2024a).
While prior research suggests that LLM-based eval-
uators can capture linguistic nuances often over-
looked by traditional metrics (Li et al., 2024a; Gu
et al., 2024), most of these studies have focused on
general-domain tasks, without exploring their ef-
fectiveness in specialized domains such as biomed-
ical relation extraction. To this end, this paper
explores the potential of LL.Ms-as-the-Judge for
evaluating the response generated by other LLMs
in the biomedical relation extraction task to miti-
gate the dependence on expensive, time-consuming
human evaluation, alongside ensuring reliability in
LLM evaluation by capturing domain-specific nu-
ances that traditional metrics may overlook.

3 Methodology

3.1 LLM-based Relation Extraction Systems

We show the overall pipeline to develop an LLM-
based end-to-end relation extraction system in Fig-
ure 3. Here, at first, for a given relation extraction
dataset, pre-processing steps are first applied to
construct a prompt. This prompt is then provided
to an LLM (i.e., LLM-Generator), which extracts
relations. Afterwards, we demonstrate two evalua-
tion paradigms which we describe below:
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(i) Existing Approaches based on Human Eval-
uation: Where an annotation guideline is first con-
structed to evaluate the performance of the LLM-
Generator (i.e., relation extraction LLM) by human
annotators. The LL.M-generated response is then
sent to the human annotators for evaluation.

(i) Our Proposed Approach based on LLM-
Judge: Where the prompt for the LLM-Judge is
first constructed to evaluate the performance of
the LLM-Generator. The response generated by
the LLM-Generator is then evaluated by the LLM-
Judge. This is our proposed approach where hu-
man evaluator(s) are replaced with the LLM-Judge.
In the following, we describe our proposed LLM-
Judge to evaluate relation extraction models.

3.2 LLM-Judge for LLM-based Relation
Extraction Model Evaluation

Prompting: To utilize LLM-Judge for the eval-
uation of LLM-generated responses (i.e., LLM-
Generators) in relation extraction, we first design
the prompt for the judge, as described below.

Prompt to the LLM-Judge

You are required to annotate the response generated by
an Al model for biomedical relation extraction. You
are given the relation extraction task description,
followed by the biomedical text, then the human
annotated gold relations, and finally the AI model
predicted relations. Now, identify how many of the
Al predicted relations are correct in comparison to the
gold relations. Also, identify how many relations in
total are predicted by Al. Generate your response in
the JSON format with the following keys:

1. correctly_predicted_relations
2. total_predicted_relations

[TASK DESCRIPTION]
[BIOMEDICAL TEXT]

[GOLD RELATIONS]

[AI PREDICTED RELATIONS]

We designed this prompt based on extensive
prompt engineering using several LLMs (e.g., Chat-
GPT, Gemini, Claude, etc.) on the outputs gener-
ated by different LLM-Generators in Jahan et al.
(2024) across various relation extraction datasets.

Structured Output Formatting: During prompt
engineering in our previous step, we notice that
LLM-Judges often find it difficult to properly un-
derstand the response generated by various LLM-
Generators since the generated responses are
mostly unstructured text. To address this issue, we
propose Structured Output Formatting for the LLM-

Unstructured Output Structured Output

{
"drug": "salbutamol",
"side-effect": "tremor"

b

- Salbutamol: tachyphylaxis
- High dose inhaled salbutamol:
tremor, palpitations

Figure 4: An example of the LLM-generated outputs for
drug and drug-induced side-effects relation extraction
in the unstructured format used by Jahan et al. (2024)
and our proposed structured format.

Generators. In our proposed Structured Output For-
matting approach, we require the LLM-Generators
to generate their response in a structured format,
i.e., JSON format (see Figure 4 for an example).
JSON format was selected since recent research
has demonstrated that LLMs are more reliable in
generating responses in “JSON” instead of other
formats like “YAML” (Laskar et al., 2024b).

Domain Adaptation via Transfer Learning:
Leveraging closed-source LLMs-as-the-judge have
several limitations. For instance, closed-source
LLMs are continuously updated. Therefore, the
release of an updated version of a closed-source
model often makes their respective earlier ver-
sions obsolete (Biderman et al., 2024; Laskar et al.,
2024a). This creates a huge reproducibility con-
cern. While open-source LLMs could be a suitable
alternative, they do not have the superior zero-shot
ability of their closed-source counterparts (Jahan
et al., 2024). Moreover, we find that existing open-
source LLM-Judges like Prometheus-2 (Kim et al.,
2024) are restricted to certain evaluation dimen-
sions (e.g., pairwise ranking or pointwise scoring
for specific criteria: helpfulness, factual correct-
ness, etc.) since they are fine-tuned only for such
qualitative metrics. This prohibits the customiza-
tion of the judging criteria based on user needs,
making them inapplicable in our case to evaluate
the relation extraction performance of other LLMs.

Furthermore, due to the absence of human evalu-
ation data in existing relation extraction datasets for
LLM-generated responses, it is difficult to train a
reliable LLM-Judge model to evaluate the response
generated by different relation extraction models.
To address this low-resource problem that prohibits
the training of LLM-Judge for relation extraction,
we propose a domain adaptation technique (Garg
et al., 2020; Laskar et al., 2022). In our proposed
approach, the LLM-Judge is fine-tuned on a limited
number of human annotated out-of-domain rela-
tion extraction data to make it more specialized for
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relation extraction evaluation. More specifically,
suppose we have two datasets, X and Y, where
the dataset X may focus on drug-drug-interaction
extraction and the dataset Y may focus on disease-
treatment-relation extraction. In our domain adap-
tation technique, if the target dataset for the judge
model to evaluate is the dataset X, then we first
fine-tune the judge model on the dataset Y if we
have some human evaluation data (e.g., human-
annotated judgment labels containing the number
of predicted relations and total predicted relations
by the LLM-Generator) available for the dataset
Y. In this way, we specialize the LLM-Judge for
biomedical relation extraction evaluation.

4 Experiments

To evaluate our proposed solution of replacing
human evaluators with LLM-Judges, we conduct
extensive experiments with various LLMs-as-the-
Judge on the responses generated by different LLM-
Generators for biomedical relation extraction. Be-
low, we first describe the datasets used in our exper-
iments. Then, we describe the LLMs used as the
Judge and the Generator. Afterwards, we present
our evaluation metrics to measure the performance
of the LLM-Judge. Finally, we briefly describe the
implementation details.

4.1 Datasets

To evaluate the LLM-Judges, we use the responses
generated by the LLM-Generators for chemical-
disease-relation extraction (500 test samples) in
the BC5CDR dataset (Li et al., 2016), drug-target-
interaction extraction (1159 test samples) in the
KD-DTI dataset (Hou et al., 2022), and drug-drug-
interaction extraction (191 test samples) in the DDI
dataset (Herrero-Zazo et al., 2013).

4.2 Models

LLM-Generators: To evaluate the performance
of different LLM-Judges, at first we benchmark
their performance on different LLM-generated re-
sponses collected from Jahan et al. (2024). The
responses from the following LLM-Generators are
used: (i) GPT-3.5 (Achiam et al., 2023), (ii) Claude-
2 (Anthropic, 2023), (iii) PaLM-2 (Anil et al.,
2023), (iv) LLaMA-2-13B (Touvron et al., 2023b).
Moreover, to investigate the effectiveness of Struc-
tured Output Format, we regenerate the response
using GPT-4-Turbo (Achiam et al., 2023) in both
unstructured and structured format, and compare

the performance of the LLM-Judge when the re-
sponse is generated in different formats by the same
LLM-Generator. For this case, we did not use the
LLM-Generators used in Jahan et al. (2023) since
they are early generation LLMs and we observe
that they fail to generate the response in structured
format.

LLM-Judges: For the LLM-Judges, we select the
cheapest versions of the currently available closed-
source LLMs (GPT-4, Gemini, and Claude-3) to
minimize their usage cost. For the open-source
LIM-Judges (LLaMA, Phi, Qwen, and DeepSeek),
we select the models with less than 10B param-
eters since they can be used in a machine with
just 1 L4 GPU (Fu et al., 2024), making them
cost-effective for real-world deployment. More
specifically, for the LLM-Judge, we primarily use
the following LLMs: (i) GPT-40-Mini (Achiam
et al., 2023), (i) Gemini-1.5-Flash (Team et al.,
2023), (iii) Claude-3-Haiku (Anthropic, 2024), (iv)
LLaMA-3.1-8B-Instruct? (Grattafiori et al., 2024),
(v) Qwen-2.5-7B-Instruct? (Yang et al., 2024b),
and (vi) Phi-3.5-Mini-3.8B-Instruct* (Abdin et al.,
2024). With the recent success of reasoning-
based LLMs like DeepSeek-R1 (Guo et al., 2025),
we also use its distilled versions based on Qwen
and LLaMA, (vii) DeepSeek-R1-Distill-Qwen-7B>
and (viii) DeepSeek-R 1-Distill-Llama-8B®, respec-
tively. Appendix A.2 contains detailed model de-
scriptions.

While we also tried the biomedical domain-
focused BioMistral-7B model (Labrak et al., 2024)
as a judge, we observed that it failed to follow
the judging instruction and could not evaluate any
LLM-Generators response (see Appendix A.4.1 for
details). Therefore, we did not report its results.

4.3 Evaluation Metrics

We use the following metrics to evaluate the effec-
tiveness of the LLM-Judge.

Exact Match Accuracy: Measures the Exact
Match Accuracy of the LLM-Judge annotation in

2https://huggingface.co/meta—llama/Llama—3.
1-8B-Instruct
3https://huggingface.co/Qwen/QwenZ.
5-7B-Instruct
*https://huggingface.co/microsoft/Phi-3.
5-mini-instruct
5https://huggingface.co/deepseek—ai/
DeepSeek-R1-Distill-Qwen-7B
6https://huggingface.co/deepseek—ai/
DeepSeek-R1-Distill-Llama-8B
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comparison to the human-annotated gold label. For
exact match calculation, if there is a match for both
the number of correctly predicted relations and
total predicted relations between the gold human
annotation and the LLM-Judge annotation, then we
consider it as an exact match, and the score will be
1. Otherwise, the score will be 0. Thus, a higher
exact match score denotes better performance.

Root Mean Squared Error: Measures the Root
Mean Squared Error (RMSE) distance between the
LILM-Judge annotation and the human-annotated
gold label. Mean Squared Error (MSE) is defined
as the average of the squared differences between
the predictions (in this case, the LLM-Judge anno-
tations) and the actual values (the Human-Judge
annotated gold labels). RMSE, which is the square
root of the MSE, helps penalize larger errors more
severely while being in the same units as the target
variable. Suppose the correctly predicted relations
and the fotal predicted relations annotated by hu-
mans are 0 and 2, respectively, and by LLM-Judge
are 1 and 2, respectively, then the RMSE distance:

\/; (1=0)2+(2-2)2) =05~ 0.71.

Contrary to the exact match score, a lower RMSE
distance denotes better performance.

4.4 Implementation

For the inference of LLM-Generators and LLM-
Judges, we use the temperature value of 1.0, with
other decoding parameters being set to the default
values: as given in the respective API providers
(OpenAl’, Google®, Anthropic”) for the closed-
source models, and in HuggingFace (Wolf et al.,
2020) for the open-source models. We select the
temperature value of 1.0 to allow more diversity in
LLM-generated responses such that it allows us to
ensure a more robust evaluation of the LLM-Judges
in diverse output scenarios. Since both the LLM-
Generators and the LLM-Judges do not need to pro-
duce outputs of longer sequence length, the max-
imum output tokens was set to 300 tokens except
for the reasoning models (DeepSeek-R1). For the
DeepSeek-R1-based models, we increased the out-
put token limit to 1000 tokens to allow the model
enough tokens for thinking. For domain adapta-
tion via transfer learning, we fine-tune for 3 epochs
"https://platform.openai.com/docs/
api-reference/introduction

8https://ai.google.dev/gemini-api/docs
*https://www.anthropic.com/api

with the batch size = 1, learning rate = 2e — 5, and
sequence length = 3k. All experiments were run
using 1 A100 GPU.

5 Results and Discussion

5.1 Performance in Existing LLM-based
Relation Extraction Benchmarks

In this section, we benchmark the performance of
different LLM-Judges to evaluate the responses gen-
erated by different LLM-Generators used by Jahan
et al. (2024). In their work, Jahan et al. (2024) used
GPT-3.5 (Achiam et al., 2023), PaLM-2 (Anil et al.,
2023), Claude-2 (Anthropic, 2023), and LLaMA-
2-13B-Instruct (Touvron et al., 2023b) as the LLM-
Generators. We collected their human evaluator
annotated labels consisting of the number of cor-
rectly predicted relations and total predicted rela-
tions for each LLM-Generator. Then we measure
the Exact Match Accuracy and the RMSE Distance
between the LLM-Judge annotation (the number
of correctly predicted relations and the total pre-
dicted relations annotated by the LLM-Judge) and
the human annotation.

For each dataset, we then compute the aver-
age Exact Match Accuracy and RMSE Distance
across all LLM-Generators, as demonstrated in Ta-
ble 1. From Table 1, we find that none of the LLM-
Judges could reach accuracy above 50%, except
GPT-40-Mini. Nonetheless, GPT-40-Mini still fails
to achieve more than 60% accuracy in any datasets.
Our hypothesis is that the responses generated by
the LLM-Generators used by Jahan et al. (2024)
were quite unstructured, which could be difficult
for the LLM-Judges to evaluate. In the following
section, we investigate whether Structured Output
Formatting could alleviate this issue.

5.2 Performance of LLM-Judges based on
Structured vs Unstructured Output

To improve the LLM-Judge accuracy, we generate
the responses in all three datasets using the GPT-4-
Turbo (Achiam et al., 2023) model as the generator,
with specifically prompting GPT-4-Turbo to ex-
tract the relations between the named entities in a
more structured way, i.e., JSON format. To com-
pare whether this structured output format could
improve the performance of the LLM-Judges, we
also regenerate the responses without any struc-
tured output format instruction by using the same
prompt as used by Jahan et al. (2024). Afterward,
two human annotators having backgrounds in NLP
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BC5CDR | DDI | KD-DTI
LLM-Judge EM (A) RMSE (V) | EM (A) RMSE (V) | EM (A) RMSE (V)
Phi-3.5-Mini-3.8B-Instruct 33.80 2.40 43.06 2.19 35.55 2.11
Qwen-2.5-7B-Instruct 45.25 2.42 46.60 2.15 49.98 1.82
LLaMA-3.1-8B-Instruct 29.45 2.40 29.32 2.95 36.73 2.10
Deepseek-R1-Qwen-7B 30.60 2.76 42.67 3.07 42.45 2.51
Deepseek-R1-LLaMA-8B 30.50 3.37 42.15 4.16 33.48 3.25
Claude-3-Haiku 29.50 2.26 31.15 2.70 40.27 1.83
Gemini-Flash 42.55 2.09 47.12 2.11 40.68 1.98
GPT-40-Mini 48.35 2.33 59.03 1.84 53.11 1.81

Table 1: Performance of different LLM-Judges on the responses generated by the LLM-Generators in Jahan et al.
(2024) across three datasets: BCSCDR, DDI, and KD-DTI. The Exact Match (EM) Accuracy (higher is better,
indicated by A) and the Root Mean Squared Error (RMSE) (lower is better, indicated by V) are reported. The
reported score for each LLM-Judge is the average of their evaluations for all LLM-Generators within each dataset.

BC5CDR DDI KD-DTI

Structured Unstructured Structured Unstructured Structured Unstructured
LLM-Judge EM (A) RMSE (V)|EM (A) RMSE (V)|EM (A) RMSE (V)|EM (A) RMSE (V)|EM (A) RMSE (V) |EM (A) RMSE (V)
Phi-3.5-Mini-3.8B-Instruct| 53.80 0.94 35.60 2.74 32.89 1.92 32.51 242 36.94 2.02 36.74 2.55
Qwen-2.5-7B-Instruct 67.80 0.93 44.60 2.84 43.93 1.64 43.46 2.08 61.78 1.19 55.82 2.18
LLaMA-3.1-8B-Instruct 59.20 0.85 33.00 2.67 37.70 1.99 30.37 243 40.38 2.44 38.22 2.46
Deepseek-R1-Qwen-7B 57.00 1.28 31.60 3.32 41.88 2.55 35.60 2.85 47.71 1.83 46.16 2.65
Deepseek-R1-LLaMA-8B | 54.40 2.25 37.40 3.64 37.70 4.14 35.60 4.62 48.40 2.68 42.36 3.31
Claude-3-Haiku 67.80 0.60 36.80 2.67 32.46 3.01 25.13 2.80 59.28 1.22 50.04 222
Gemini-1.5-flash 70.20 0.66 48.40 2.75 43.98 1.75 39.27 2.29 41.59 1.68 41.52 2.47
GPT-40-mini 67.20 0.73 43.20 2.72 53.93 1.45 47.12 2.14 72.39 1.08 66.35 2.13

Table 2: Performance Comparison between Structured (our proposed) and Unstructured (baseline) output format.
All the responses are generated using GPT-4-Turbo as the LLM-Generator.

Data
LLM-Judge Fine-Tuning ‘ Evaluation \ EM Accuracy
Qwen-2.5-7B-Instruct BC5CDR KD-DTI | 75.75 (+13.97)
Qwen-2.5-7B-Instruct KD-DTI BC5CDR | 71.40 (+3.60)
Phi-3.5-Mini-3.8B-Instruct | BC5CDR KD-DTI | 69.54 (+32.60)
Phi-3.5-Mini-3.8B-Instruct KD-DTI BC5CDR | 64.80 (+11.00)

Table 3: Effectiveness of Domain Adaptation via Trans-
fer Learning. The value in brackets indicates the perfor-
mance gain relative to the Zero-Shot results for Struc-
tured output in respective evaluation datasets in Table 2.

and biomedicine annotated the correctly predicted
relations and the total predicted relations in the
GPT-4-Turbo generated responses for both struc-
tured and unstructured cases. When discrepancies
arise between annotations from different annota-
tors, they are resolved through discussions.

We then evaluate the performance of LLM-
Judges in these structured responses as well as
the unstructured responses generated by GPT-4-
Turbo. Based on the results presented in Table 2,
we find that structured formatting consistently im-
proves the performance for all models. While in
the BC5CDR dataset, Gemini-1.5-Flash achieves
the best performance in terms of accuracy with

Claude-3-Haiku achieving the best result in terms
of the RMSE metric, in other two datasets (DDI
and KD-DTTI), GPT-40-Mini achieves the best per-
formance in terms of both metrics. For open-source
LLMs, in the BC5SCDR dataset, Qwen-2.5-7B has
the best accuracy and LLaMA-3.1-8B performs
the best in terms of RMSE distance. However, the
accuracy is quite low for LLaMA-3.1-8B while
being larger than Qwen-2.5-7B. In the other two
datasets (DDI and KD-DTTI), Qwen-2.5-7B-Instruct
achieves the best result in terms of both metrics
among open-source models, even outperforming
reasoning-based DeepSeek-Distilled models.

For all three datasets, we find based on paired
t-test that the performance difference between the
structured and unstructured approach is statisti-
cally significant (p < 0.05) for both metrics.

5.3 Effectiveness of Domain Adaptation via
Transfer Learning

In our prior experiments, we demonstrate that pro-
prietary LLMs demonstrate better performance as
the judge in zero-shot scenarios. However, issues
such as transparency, reproducibility, and cost high-
light the need for open-source LLM-Judge. While

25489



early work (Kim et al., 2023, 2024) demonstrates
the effectiveness of training an open-source LLM
Judge, to our best knowledge, there is no open-
source LLM-Judge trained on biomedical data cur-
rently available. Since there is also a lack of human-
annotated judgment data that prohibits the training
of LLM-Judges for relation extraction, we inves-
tigate a domain adaptation technique via transfer
learning to address this low-resource problem.

Recent research has demonstrated that language
models can effectively transfer knowledge from
one dataset to another (Garg et al., 2020; Laskar
et al., 2022). Inspired by the idea, in this work,
we also propose transfer learning from one rela-
tion extraction dataset to the other. Based on our
human-annotated labels for the Structured output in
Section 5.2, we investigate two scenarios: (i) Fine-
Tuning on the BCSCDR dataset (500 samples) and
Evaluation on the KD-DTI dataset (1159 samples),
and (ii) Fine-Tuning on the KD-DTI dataset (1159
samples) and Evaluation on the BC5CDR dataset
(500 samples). For hyperparameter tuning, we use
the DDI dataset as the validation set. We fine-
tune the Qwen-2.5-7B-Instruct and Phi-3.5-3.8B-
Instruct models because our previous experiments
demonstrated that Qwen with 7 billion parameters
outperforms the larger 8-billion parameter LLaMA
model, while Phi-3.5-3.8B achieves comparable
performance with the 2x larger LLaMA model.

Based on the results presented in Table 3, we find
that our proposed domain adaptation strategy by
transferring knowledge via fine-tuning on a limited
amount of labeled data could significantly improve
the accuracy. The performance gains in BC5CDR
and KD-DTI by Qwen-2.5-7B-Instruct even out-
perform the closed-source models in Table 2. This
demonstrates the effectiveness of our domain adap-
tation technique in low-resource scenarios.

5.4 TImpact of Model Scaling

Since one of our motivations behind LLM-Judge
is to reduce cost and improve efficiency to ensure
their real-world utilization, we primarily selected
open-source models having less than 10B parame-
ters or the most cost-efficient version of different
closed-source LLM providers. In this section, we
investigate two scenarios:

(i) What is the impact of reducing the size of the
best-performing open-source model?

(i1) Can domain adaptation via fine-tuning help
even smaller models outperform larger models?

Below, we demonstrate our findings.

I Qwen-2.5-1.5B-Instruct
70 67.8  mmm Qwen-2.5-7B-Instruct

EM Accuracy

10

BC5CDR DDI
Model

Figure 5: Performance comparison between Qwen mod-
els based on size: 1.5B and 7B, based on evaluating on
the GPT-4-Turbo generated Structured responses.

80 75.75%
70.49%

61.78%

[-]
o

B
(=]

34.59%

EM Accuracy

N
=]

Qwen-2.5-1.5B Qwen-2.5-3B Qwen-2.5-7B Qwen-2.5-7B
Fine-tuned Fine-tuned Zero-Shot Fine-tuned
Model

Figure 6: Comparing fine-tuned smaller models, Qwen-
2.5B-Instruct (1.5B and 3B) against the larger model:
Qwen-2.5B-7B-Instruct (both zero-shot and fine-tuned).
The KD-DTT dataset with Structured response is used.

Reducing the Model Size: In Figure 5, we show
the performance difference between the 1.5B and
7B Qwen models in zero-shot and find that reduc-
ing the model size significantly drops the accu-
racy. More specifically, the performance drops by
58.70%, 45.12%, and 74.44%, in BC5CDR, DDI,
and KD-DTI, respectively.

Fine-tuning Smaller Models: We investigate the
impact of fine-tuning smaller Qwen-2.5-Instruct
models: 1.5B and 3B (we did not show their zero-
shot result as they could not generate the response
in the required format in most cases, leading to
very poor accuracy) in comparison to the larger
zero-shot model (Qwen-2.5-7B-Instruct). Based
on the results shown in Figure 6, we find that
the 3B model, fine-tuned on 500 samples in the
BCS5CDR dataset (the evaluation is conducted on
KD-DTI) can outperform the zero-shot 7B model,
while achieving performance comparable to the
fine-tuned 7B model. This makes it possible to use
smaller models in resource-constrained scenarios.
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5.5 Ablation Test

In our experiments, we include human-annotated
gold relations in the prompt to maintain consis-
tency with the work of (Jahan et al., 2024), where
human annotators relied on the gold reference rela-
tions to assess the correctness of LLM-generated
outputs. We further conduct an ablation experiment
using GPT-40 as the judge on the BC5CDR dataset
without providing the gold reference relations in
the prompt and find that our structured approach
again outperforms the unstructured baseline in the
reference-free setting. The RMSE distance for the
structured approach is 1.53, while for the unstruc-
tured approach it is 3.19.

6 Conclusion and Future Work

In this paper, we evaluated the effectiveness of
LLMs-as-the-Judge for assessing biomedical rela-
tion extraction models, revealing significant per-
formance gaps between LLM-Judges and human
evaluators. While previous work has demonstrated
the potential of LLM-based evaluation for general
NLP tasks, our findings indicate that existing LLM-
Judges struggle to reliably assess biomedical rela-
tion extraction due to the nuanced and domain-
specific nature of biomedical text. To improve
LILM-Judge performance, we proposed structured
output for LLM-generated responses, which led to
substantial accuracy gains across multiple datasets.
Additionally, we introduced a domain adaptation
technique that effectively transfers knowledge from
one biomedical relation extraction dataset to an-
other to enhance the reliability of LLM-Judges.

In the future, we aim to explore instruction-
tuning (Ouyang et al., 2022; Zhang et al., 2023)
and chain-of-thought (Wei et al., 2022) prompting
techniques to improve the performance of LLM-
Judges in biomedical relation extraction. Moreover,
conducting a more fine-grained analysis by con-
structing a detailed error taxonomy could also be
considered as a future extension of this paper.
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Limitations

Despite the effectiveness of structured output for-
matting and domain adaptation, LLM-Judges still
fall short of human evaluators. Biomedical relation
extraction requires deep domain-specific reasoning,
and the foundation LLMs are trained on general-
domain corpora (Zhao et al., 2023; Lu et al., 2024;
Minaee et al., 2024). Therefore, they still struggle
with complex relationships, ambiguous terms, and
implicit entity connections that human experts can
recognize (some examples in Appendix A.4.2 are
provided demonstrating the common errors made
by LLM-Judges while evaluating biomedical re-
lations extracted by different LLM-Generators).
Nonetheless, since our human-annotated judgment
dataset will be released, future work may focus on
improving the performance of the LLM-Judge.

In our study, we followed a strategy similar to
prior work (Laskar et al., 2024b) by first experi-
menting with prompts on a small subset of the data
to identify the optimal prompt that reliably pro-
duced outputs by following the intended instruc-
tions. While evaluating many prompting strate-
gies is valuable, this process is computationally
expensive. Therefore, we set a reasonably effective
prompt and compared the LLM judge performance.

Moreover, our study primarily benchmarks a lim-
ited set of LLMs, and results may vary with the re-
lease of newer or more specialized biomedical mod-
els (Singhal et al., 2023; Lu et al., 2024; Saab et al.,
2024). Furthermore, cost constraints prevented the
exploration of larger, more computationally expen-
sive models (e.g., reasoning models like OpenAl
03), which may have improved results but are im-
practical in the real world. Nonetheless, due to
choosing cheaper closed-source models'®, Gemini-
1.5-Flash saves cost approximately 13 times in
comparison to Gemini-1.5-Pro, Claude-3-Haiku
saves cost approximately 12 times and 60 times in
comparison to Claude-3.5-Sonnet and Claude-3-
Opus, respectively, and GPT-4o-Mini is approxi-
mately 17 times cheaper than GPT-40. In terms of
open-source LLMs, models having less than 10B
parameters can be run using just 1 L4 or A100
GPU machine (Laskar et al., 2023b, 2025). This
significantly saves the deployment cost (Fu et al.,
2024). Moreover, using an LLM judge for evalua-
tion instead of humans can also address the time-
consuming and costly human annotation, which is
another key motivation of this paper.

Yhttps://docsbot.ai/models/compare

25491


https://docsbot.ai/models/compare

Ethical Considerations

Our proposed LLM-Judge is designed solely for the
evaluation of LLM-generated responses in biomed-
ical relation extraction and is not intended for direct
use by end users in clinical applications. The accu-
racy and reliability of the relation extraction system
depend on the LLM-Generator, which produces
the relation extraction outputs. Since our proposed
model only acts as an evaluator, the ethical risks
associated with direct application in biomedical
decision-making are minimized. By providing a
scalable and efficient evaluation framework, our
solution enables researchers and practitioners to
quickly assess the quality of their biomedical rela-
tion extraction LLMs without relying on costly and
time-consuming human evaluations. This can ac-
celerate advancements in biomedical NLP while en-
suring that models are assessed using standardized
criteria. To further enhance reliability, a human-in-
the-loop approach can be implemented where ex-
pert annotators verify the outputs of the models that
achieve better performance based on LLM-Judge
evaluation. Moreover, in this paper, additional com-
pensations are not needed for the annotators since
two of the authors conducted the human annotation.
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A Appendix
A.1 Structured Prompt for the

LLM-Generator

Prompt: KD-DTI Dataset

Identify the drug-target interactions in the biomedical
text given below (along with the interaction type
among the following: ’inhibitor’, *agonist’, *'modu-
lator’, ’activator’, ’blocker’, “inducer’, *antagonist’,
"cleavage’, "disruption’, ’intercalation’, ’inactivator’,
’bind’, ’binder’, ’partial agonist’, ’cofactor’, ’sub-
strate’, "ligand’, ’chelator’, ’"downregulator’, *other’,
“antibody’, ’other/unknown’):

[BIOMEDICAL TEXT]

Prompt: BCSCDR Dataset

Identify each pair of drugs (e.g., chemicals) and
the drug-induced side-effects (e.g., diseases) in the
following passage:

[BIOMEDICAL TEXT]

Prompt: DDI Dataset

Identify the pairs of drug-target interactions in a given
passage based on the following four interaction types:
(1) mechanism: This type is used to identify
drug-drug interactions that are described by their
pharmacokinetic mechanism.

(ii) effect: This type is used to identify drug-drug
interactions describing an effect.

(iii) advice: This type is used when a recommendation
or advice regarding a drug-drug interaction is given.
@iv) int: This type is used when a drug-drug
interaction appears in the text without providing any
additional information. :

[BIOMEDICAL TEXT]

A.2 Models

* GPT-4-Turbo: It is an advanced version
of OpenAl’s original GPT-4 (Achiam et al.,
2023). The GPT-4-Turbo!! model offers en-
hanced performance and efficiency, making
it suitable for a wide range of applications re-
quiring natural language understanding and
generation.

* GPT-40-Mini: The GPT-40-Mini'? is another
optimized version of GPT-4. More specifi-
cally, it is a more optimized version of the
recently released GPT-4o0. It balances robust

language understanding with efficiency. It’s
designed to handle complex tasks while sig-
nificantly reducing operational costs.

Gemini-1.5-Flash: Part of Google’s Gemini-
1.5 family, this model emphasizes rapid in-
ference and the ability to handle extremely
long contexts, up to one million tokens (Team
et al., 2023). Gemini-1.5-Flash!? is ideal for
real-time applications where speed and pro-
cessing of large amounts of data are crucial.

Claude-3-Haiku Similar to GPT-40-Mini
and Gemini-1.5-Flash, it is the most cost-
optimized version of the Claude-3 series (An-
thropic, 2024). The Claude-3-Haiku'# model
is tailored for succinct, creative outputs. It
excels at producing elegant, brief responses,
while still managing complex instructions and
reasoning tasks.

LLaMA-3.1-8B-Instruct: This 8 billion
parameter variant from Meta’s LLaMA-3
(Grattafiori et al., 2024) series has been
fine-tuned for instruction following. It strikes
a balance between computational efficiency
and performance, outperforming its earlier
versions (Touvron et al., 2023a,b) and making
it suitable for a wide range of tasks.

Phi-3.5-Mini-8B-Instruct: = A compact,
instruction-optimized model from Microsoft’s
Phi series (Gunasekar et al., 2023). Despite its
smaller size, it’s designed to understand and
execute diverse tasks in resource-constrained
environments while maintaining strong perfor-
mance (Abdin et al., 2024).

* Qwen-2.5-7B-Instruct Developed by Al-

ibaba, this 7-billion—parameter model is tuned
for following instructions. It offers a good
balance between efficiency and output quality
(Yang et al., 2024a,b).

DeepSeek-R1-Distilled Models: DeepSeek-
R1 (Guo et al., 2025) is a reasoning model
developed by DeepSeek-Al, which is mostly
trained via large-scale reinforcement learn-
ing.  DeepSeek-R1-Distill-Qwen-7B and

llhttps ://platform.openai.com/docs/models/ 13https: //ai.google.dev/gemini-api/docs/models/
gpt-4-and-gpt-4-turbo gemini#fgemini-1.5-flash
12https ://openai.com/index/ 14https: //www.anthropic.com/news/

gpt-4o-mini-advancing-cost-efficient-intelligence/ claude-3-haiku
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a. Human-Annotated Gold Relation

rdrug: dex, bort
side-effect: peripheral neuropathy

drug: bort,
\_side-effect: peripheral neuropathy Y,

b. LLM Predicted Relation

~

Pair: Rituximab and dexamethasone
Side-effect: Peripheral neuropathy

. /)

c. Human Evaluation
f{ N
"correctly_predicted_relations": 1,
"total_predicted_relations": 2

U Y,

d. LLM-Judge Evaluation
(<
"correctly_predicted_relations": 0,
"total_predicted_relations": 2

U J

Figure 7: Our Evaluation Process where both the (c)
Human Judge and the (d) LLM-Judge annotate the cor-
rectly predicted relations and the total predicted rela-
tions by comparing between (a) Human-Annotated Gold
Relation and (b) LLM Predicted Relation. The biomed-
ical text from where the relations are extracted is also
provided as a context (not shown here).

DeepSeek-R1-Distill-LLaMA-8B are the dis-
tilled version of Qwen-2.5-7B-Math (Yang
et al., 2024¢) and LLaMA-3.1-8B-Instruct
(Grattafiori et al., 2024), respectively, fine-
tuned on 800k synthetic reasoning data gener-
ated from DeepSeek-R1.

A.3 [Evaluation Process Demonstration

In Figure 7, we show our evaluation process. Since
there is a mismatch between the gold human anno-
tation and the LLM-Judge annotation for the cor-
rectly predicted relations and total predicted re-
lations, the exact match score is 0. The RMSE
distance is calculated as follows:

\/; (1= 0)2+(2—2)2) = V0.5~ 0.71.

A.4 Error Analysis
A.4.1 BioMistral-7B-as-Judge Outputs

We provide some sample responses generated by
BioMistral-7B model (Labrak et al., 2024), based
on Mistral-7B (Jiang et al., 2023), as-the-Judge in
Table 4, demonstrating its ineffectiveness as the
judge by generating improper responses.

A.4.2 Error Outputs by LLM-Judges

We show some of the common error outputs of the
LILM-Judges in Table 5. For the error output anal-
ysis, we use the overall best-performing zero-shot
LLM, the GPT-40-Mini model and demonstrate
how complex biomedical terms could make it diffi-
cult for LLMs to evaluate relations extracted in an
unstructured format. For instance:

* Example 1 in Table 5 demonstrates a case
when 2 drugs and 6 corresponding side effects
are extracted by an LLM-Generator, but the
GPT-40-Mini based LLM-Judge only consid-
ers total relations as 6 instead of 12. Moreover,
it only extracted 5 as correct while the correct
should be 4 side-effects for each drug (in total
8 side-effects for the 2 drugs are correct).

* Example 2 in Table 5 demonstrates a case
when 2 drugs and 1 corresponding side effect
for each of them have been extracted by an
LLM-Generator. While drug: thiopentone
and disease (side-effects): delirium is one of
the correct answers, the LLM-Judge based on
GPT-40-Mini considers only 1 side effect and
1 drug. It is highly likely that GPT-40-Mini
considers Thiopentone and propofol as a sin-
gle drug even though they should be consid-
ered different. This could be the reason it con-
siders no correct relation is extracted. This
demonstrates GPT-40-Mini having limitations
in understanding complex biomedical terms.

* Example 3 in Table 5 demonstrates a case
when 2 drugs and 6 side effects in total are
extracted by an LLM-Generator. While Pair 1
and Pair 3 have 1 side effect each, Pair 2 has
4 different side-effects. However, GPT-4o-
Mini based LLM-Judge may have considered
all these 4 side-effects as just 1 side-effect.
This demonstrates its lack of biomedical text
understanding capability.
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Dataset Output Format | Gold Relati Predicted Relations BioMistral-7B-as-Judge-Annotation

BC5CDR | Unstructured drug: famotidine Famotidine - delirium { “correctly_predicted_relations™: [ { “chemi-
disease (side-effects): delirium cal”: “famotidine”, “di : “delirium” } ],

“total_predicted_relations™: 1 }

KD-DTI Unstructured drug: PNU156804 PNU156804 - Janus tyrosine kinase 3 { “correctly_predicted_relations™: [ “drug”:
target: Janus kinase 3 (JAK-3) (Jak3) - inhibitor “PNU156804”, “target”: “Janus kinase 3 (JAK-
interaction: inhibitor PNU156804 - IL-2-mediated Jak3 3)”, “interaction”: “inhibitor” ] }

auto-tyrosine phosphorylation - blocker
PNU156804 - Jak3 substrates signal
transducers and activators of transcription
(Stat) 5a and Stat5b - blocker

PNU156804 - extracellular regulated

kinase 1 (Erk1) and Erk2 (p44/p42) - blocker

DDI Unstructured drug: gemfibrozil gemfibrozil-rosiglitazone, mechanism { “correctly_predicted_relations™ [ 1, 1, 0, 0, 0,
target: rosiglitazone rifampin-rosiglitazone, mechanism 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
interaction: mechanism CYP2CS8 inhibitor/rosiglitazone, advice 0,0,0,0,0}
drug: rifampin CYP2CS8 inducer/rosiglitazone, advice
target: rosiglitazone
interaction: mechanism

BCS5CDR | Structured drug: cyclosporine [{ “chemical”: “tacrolimus”, { “correctly_predicted_relations™: [ “chemical:
disease (side-effects): thrombotic | “disease”: “scleroderma renal crisis” }, “tacrolimus”, “disease”: “scleroderma renal cri-
microangiopathy { “chemical”: “prednisolone”, sis” ], “total_predicted_relations™: 2 }
drug: corticosteroids “disease”: “scleroderma renal crisis” }]

rug: corticosteroids
disease (side-effects): ssc
drug: tacrolimus
disease (side-effects):: ssc

KD-DTI Structured [{ “drug™: “thiorphan”, drug: Thiorphan { “correctly_predicted_relations”: [ {
“target”: “neutral target: Neutral endopeptidase (MME) “drug”:  “Thiorphan”, “target”: “Neutral
endopeptidase (NEP)”, interaction: inhibitor endopeptidase (MME)”, “interaction”: “in-
“interaction”: “inhibitor” }] hibitor” } ], “total_predicted_relations”:

1, “total_gold_relations”: 1, “percent-
age_correctly_predicted_relations™: 100.0,
“percentage_total _...” }

DDI Structured drug: CYLERT [{ “drug”: “CYLERT”, “target”: “other drugs”, |{ “correctly_predicted_relations™: [ { “drug”
target: antiepileptic medications “interaction”: “int” }, “CYLERT”, “target”: “antiepileptic medi-
interaction: effect { “drug”: “CYLERT”, cations”, “interaction”: “effect” } ], “to-

“target”: “antiepileptic medications”, tal_predicted_relations™: 2 }
“interaction”: “effect” }]

Table 4: Sample judgment outputs generated by BioMistral-7B in different datasets.

# Example | Gold Relations Predicted Relations Human Human LLM LLM
Annotated | Annotated | Predicted | Predicted
Correct | Total Correct | Total
Relations |Relations |Relations | Relations
1. drug: s-53482 Drugs: 8 12 5 6
disease (side-effects): growth retardation| 1. S-53482
drug: s-23121 2. 823121
disease (side-effects): growth retardation | Drug-induced side-effects:
drug: 523121 1. Embryolefhfllity
disease (side-effects): teratogenic 2. Teratogenicity
3. Ventricular septal defects
drug: s-23121 4. Wavy ribs
disease (side-effects): embryonic death |5, Growth retardation
drug: s-53482 6. Increased incidence of embryonic death

disease (side-effects): embryonic death |t is important to note that these are drug-induced
drug: s-53482 side-effects or outcomes observed in rats during
the study, and further investigation is needed to
understand the mechanism and

drug: s-23121 its relevance to human health.
disease (side-effects): ventricular septal

defect

drug: s-53482
disease (side-effects): ventricular septal

disease (side-effects): teratogenic

defect

2. drug: thiopentone Pair of drugs: Thiopentone and propofol 1 2 0 1
disease (side-effects): postoperative Drug-induced side-effect: Delirium
delirium

drug: thiopentone
disease (side-effects): delirium

3. drug: dox Pair 1: 2 6 2 3
disease (side-effects): cardiotoxicity Drug - Doxorubicin
drug: Drug-induced side-effects - Cardiotoxicity
rug: dox

disease (side-effects): necrosis Pair 2:

Drug - Doxorubicin

Drug-induced side-effects - Cardiac disarrangement,
necrosis, DNA damage

(strand breaks and oxidized pyrimidines),

decreased total antioxidant performance (TAP)

Pair 3:

Drug - Doxorubicin

Drug-induced side-effects - Increased resistance
to oxidative stress

Table 5: Example of annotation errors by GPT-4o-Mini-as-the-Judge on some sampled data in the BCSCDR dataset.
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