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Abstract
Identifying arguments is a necessary prerequi-
site for various tasks in automated discourse
analysis, particularly within contexts such as
political debates, online discussions, and sci-
entific reasoning. In addition to theoretical
advances in understanding the constitution
of arguments, a significant body of research
has emerged around practical argument min-
ing, supported by a growing number of pub-
licly available datasets. On these benchmarks,
BERT-like transformers have consistently per-
formed best, reinforcing the belief that such
models are broadly applicable across diverse
contexts of debate. This study offers the first
large-scale re-evaluation of such state-of-the-
art models, with a specific focus on their ability
to generalize in identifying arguments. We eval-
uate four transformers, three standard and one
enhanced with contrastive pre-training for bet-
ter generalization, on 17 English sentence-level
datasets as most relevant to the task. Our find-
ings show that, to varying degrees, these mod-
els tend to rely on lexical shortcuts tied to con-
tent words, suggesting that apparent progress
may often be driven by dataset-specific cues
rather than true task alignment. While the mod-
els achieve strong results on familiar bench-
marks, their performance drops markedly when
applied to unseen datasets. Nonetheless, in-
corporating both task-specific pre-training and
joint benchmark training proves effective in
enhancing both robustness and generalization.

1 Introduction

Undeniably, discourse gives people the opportunity
to express and discuss their beliefs on any topic.

Argument mining, in this sense, is the automatic
identification of the structure of inference and rea-
soning expressed as arguments presented in natural
language (Lawrence and Reed, 2019).

Although there is no one-size-fits-all answer to
What is an argument? (Stab et al., 2018), the idea
suggests itself that arguments are latent yet observ-
able and revolve around how they are constituted
in terms of their logical scaffolding of argument
discourse units, rather than what specific subject
they address. In practice, these elements, whether
sentences or sub-sentence segments, are pragmat-
ically assigned functional roles, most commonly
claims and premises, and form the fundamental
building blocks of an argument (Stab and Gurevych,
2014; Daxenberger et al., 2017; Lawrence and
Reed, 2019; Lopes Cardoso et al., 2023).

Consider the example X should Y, because Z,
such as Students should study, because it improves
grades or We should reduce plastic use, because
it minimizes ocean pollution, which illustrates that
the manifestation of an argument should ideally
rely on structural components conveyed through
functional patterns, while remaining agnostic of
certain topics or other content-specific elements.

For this reason, one might assert that argument
mining, in theory, is applicable across different cor-
pora if the structural signals defining arguments
are reliably identifiable from appropriately labeled
data. Conversely, in practice, any inability to apply
these signals to diverse datasets may expose sys-
tematic biases in the field, an issue that has long
been informally discussed over coffee breaks.

Generalizability, in this regard, takes high pri-
ority, especially at leading NLP conferences such
as ACL 2025, as it allows models to make reliable
and reasonable predictions on data that does not
correspond to their training data. This is especially
true for real-world models, which should mimic
human-like generalization abilities, where emerg-
ing evidence indicates that such models are often
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fine-tuned to the specifics of established benchmark
datasets, leading to unfounded optimism about their
improvements (Saphra et al., 2024).

Consequently, concerns about vulnerability to
shortcut learning (Geirhos et al., 2020) highlight
the broader challenge of evaluating baselines be-
yond isolated benchmarks (Rendle et al., 2019).

Argument mining is one such area of natural lan-
guage processing applications in which the ability
to generalize is key. Hence, we ask for:

Q1: How comparable are the existing benchmark
datasets for argument mining?

Q2: Do state-of-the-art argument mining models
generalize to out-of-distribution data from
other benchmarks?

Q3: Do these models acquire a generalizable con-
cept of arguments?

In this context, there has been speculation
that BERT (Devlin et al., 2019), known to pay
great attention to basic syntax, nouns, and co-
references (Clark et al., 2019), is prone to learning
shortcuts when mining arguments (Geirhos et al.,
2020), where its generalization is limited to within-
topic signals in datasets sharing similar argument
and topic structures (Thorn Jakobsen et al., 2021).

Our aim is not to propose a new formalism for
arguments or to pinpoint the best-performing argu-
ment mining model, but to use data from previous
work in which different theories have been applied
to see whether individual efforts and perspectives
converge in terms of identifying arguments.

With this being said, we perform the first large-
scale experimental assessment of benchmarks, sys-
tematically evaluating generalization across diverse
argument mining datasets following a comprehen-
sive review of datasets spanning 2008 to 2024.

For our study, we selected BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019), and Distil-
BERT (Sanh et al., 2019) as exemplary BERT-
like models, widely recognized as standard base-
lines in various areas of natural language process-
ing (Rogers et al., 2020), including recent research
on argument mining (Shnarch et al., 2020; Mayer
et al., 2020a; Fromm et al., 2021a; Alhamzeh et al.,
2022; Feger and Dietze, 2024b). We also examine
WRAP (Feger and Dietze, 2024a), the only trans-
former whose language representation pre-training
is extended by leveraging contrasts of inference and
information signals to generalize argument compo-
nents. Although originally designed for cross-topic

generalization on Twitter (X), WRAP does not rely
on tweet- or topic-specific features to enhance its
generalizability, distinguishing it from the others
and making it particularly interesting for research.

In this study, we start by detailing our process of
finding argument mining benchmark datasets and
explain the selection criteria and justifications in
Section 2. The core characteristics of these datasets,
addressing research question Q1, are then exam-
ined in Section 3. Next, we describe our exper-
imental setup in Section 4, covering both result
generation and the implementation of best prac-
tices for significance testing, which form the basis
for answering Q2 - Q3 in Section 5. The results
of this paper are then discussed in Section 6 and
concluded in Section 7.

In order not only to elucidate the process but
also to foster discussion that may inspire new ap-
proaches for novel datasets and broader generaliza-
tion of argument mining methods, we contribute:

1. A survey of argument mining datasets be-
tween 2008 and 2024, primarily from the ACL
Anthology, that identified 52 relevant papers
with datasets from leading NLP conferences.

2. The first large-scale re-assessment that com-
bines benchmark evaluations for 17 selected
argument mining datasets, including con-
trolled manipulation experiments to determine
whether the reported state-of-the-art models
(BERT, RoBERTa, DistilBERT, WRAP) actu-
ally learn generalizable argument concepts.

3. Statistical evidence that shortcut learning un-
dermines generalization in argument mining.
Although each of the examined transform-
ers delivers strong results on benchmarks, all
struggle to varying degrees when applied to
other datasets, with WRAP generally perform-
ing slightly better. These challenges are com-
pounded by divergent argument definitions
and inconsistent annotations across datasets.

2 Argument Mining Benchmark Datasets

This section outlines the dataset collection and se-
lection process, emphasizing the rationale behind
our choice of benchmark datasets for argument min-
ing. The decisions for all 52 datasets reviewed are
present in Appendix A.1. Additionally, the code
and data are available in our repository1.

1Limited-Generalizability
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Dataset Paper Genre Definition Arguments No-Arguments

ACQUA (Panchenko et al., 2019) Mixed Argumentative 1,949 5,236
WEBIS (Al-Khatib et al., 2016a) Online Debate Argumentative 10,804 5,543
ABSTRCT (Mayer et al., 2020b) Academic Claim-based 1,308 7,323
ARGUMINSCI (Lauscher et al., 2018) Academic Claim-based 6,554 9,548
CE (Rinott et al., 2015) Encyclopedia Claim-based 1,546 85,417
CMV (Hidey et al., 2017) Online Debate Claim-based 979 1,593
FINARG (Alhamzeh et al., 2022) Spoken Debate Claim-based 4,607 8,310
IAM (Cheng et al., 2022) Mixed Claim-based 4,808 61,715
PE (Stab and Gurevych, 2017) Academic Claim-based 2,093 4,958
SCIARK (Fergadis et al., 2021) Academic Claim-based 1,191 10,503
USELEC (Haddadan et al., 2019) Spoken Debate Claim-based 13,905 15,188
VACC (Morante et al., 2020) Online Debate Claim-based 4,394 17,825
WTP (Biran and Rambow, 2011) Online Debate Claim-based 1,135 7,274
AFS (Misra et al., 2016) Online Debate Conclusion-based 5,150 1,036
UKP (Stab et al., 2018) Mixed Evidence or Reasoning 11,126 13,978
AEC (Swanson et al., 2015) Online Debate Implicit-Markup 4,001 1,374
TACO (Feger and Dietze, 2024b) Twitter Debate Inference-Information 864 868

Table 1: The final 17 datasets that meet the sentential, binary label, and reproducibility criteria, each yielding at
least 1,700 instances (850 per label) under a stratified 60/20/20 split, ensuring adequate size for the experiments.

2.1 Collection Process
As part of our data collection process, we examined
the most recent and relevant survey papers on argu-
ment mining, primarily from the ACL Anthology
(Daxenberger et al., 2017; Cabrio and Villata, 2018;
Lawrence and Reed, 2019; Vecchi et al., 2021;
Schaefer and Stede, 2021; Ajjour et al., 2023), all
of which catalog datasets addressing various sub-
tasks within the field, where argument identifica-
tion is a fundamental prerequisite for each.

To expand and back up our dataset collection,
we searched Google Scholar and Google Dataset
Search for the keyword argument mining to find
contributions beyond survey papers.

Based on our assessment, we found 52 such pa-
pers with datasets, mostly from top NLP confer-
ences like ACL, NAACL, LREC, or EMNLP.

2.2 Selection Criteria
The dataset selection process for this paper was
conducted in two stages. In the primary inclusion
phase, we evaluated all 52 datasets based on:

• Sentential: The data and labels are at the
sentence-level or aggregatable to this level
(e.g., from sub-sentence or token annotations).
Tweets were excluded from classical sentence
conventions due to their unique structure.

• Binary: The dataset assigns binary labels to
distinguish argument from no-argument sen-
tences (e.g., based on the presence or absence
of claims or other argument components).

• Reproducible: The dataset is largely replica-
ble, with minor discrepancies from the pub-
lication (e.g., updates or duplicate removal
affecting size). To ensure reproducibility, we
reviewed documentation, labels, guidelines,
and tools, and attempted to resolve access is-
sues (e.g., client-sided or coding errors).

We applied these criteria sequentially, excluding
datasets immediately upon failing any condition,
eliminating 24 of the initial 52. In the refined in-
clusion step, we assessed relationships and data
sufficiency to ensure adequate evaluation and gen-
eralization sizes, leading us to consider:

• Related: Connections between datasets such
as updated versions, additional non-task-
related features (e.g., stance added to a claim),
and curated subsets derived from repositories
that serve as data sources rather than datasets.

• Sufficiency: For a stratified 60/20/20 split,
each dataset must have at least 500 training
instances and 150 evaluation instances per la-
bel. An initial analysis revealed that two in
five datasets fell short of this threshold, and
alternative splits (e.g., 70/15/15 or 80/10/10)
would further reduce evaluation sizes, wors-
ening the small-data issue.

In total, this process resulted in 17 datasets en-
compassing ~345k labeled sentences, each meeting
the aforementioned criteria. The final selection of
datasets included in this study is listed in Table 1.
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3 Characterizing Argument Mining
Benchmark Datasets and Definitions

Before addressing Q1, we briefly introduce the in-
dividual datasets, organizing them by their primary
labels. We then give the answer to Q1 in terms of
comparing definitions in Section 3.1 and textual
characteristics in Section 3.2.

Argumentative serves as an umbrella term, iden-
tifying arguments with markers or patterns that
suggest structural components, without necessarily
specifying their roles (e.g., as claim or inference).
In this sense, ACQUA (Panchenko et al., 2019) con-
tains 7,185 argumentative sentences from Common
Crawl (Panchenko et al., 2018), covering topics like
computer science and brands, categorizing compar-
isons (e.g., Matlab vs. Python) as argumentative
or not. Similarly, WEBIS (Al-Khatib et al., 2016a)
comprises 16,347 segments across 14 topics (e.g.,
culture, health) from iDebate, with user-assigned
labels (introduction, for, against) mapped to argu-
mentative and non-argumentative labels.

Claim-based approaches explicitly annotate for
the presence of claims as the core of an argument.
Thereby, ABSTRCT (Mayer et al., 2020b), sourced
from PubMed, comprises 8,631 sentences extracted
from abstracts related to five diseases (e.g., neo-
plasm, glaucoma). ARGUMINSCI (Lauscher
et al., 2018) provides annotations for the Dr. In-
ventor dataset (Fisas et al., 2016) for computer
graphics publications, totaling 16,102 sentences.
CE (Rinott et al., 2015) contains 86,963 sentences
from Wikipedia across 58 topics (e.g., one-child
policy, physical education). CMV (Hidey et al.,
2017) consists of 2,572 sentences from the Change
My View subreddit, spanning a diverse range of
topics. FINARG (Alhamzeh et al., 2022) com-
prises 12,917 sentences sourced from transcribed
earnings calls of Amazon, Apple, Microsoft, and
Facebook. Moreover, IAM (Cheng et al., 2022)
contains 66,523 sentences from various online plat-
forms across 123 topics (e.g., vaccination, multi-
culturalism), while PE (Stab and Gurevych, 2017)
includes 7,051 annotated sentences from persuasive
essays (e.g., about cloning). SCIARK (Fergadis
et al., 2021) contains 11,694 annotated sentences
from scientific literature (e.g., PubMed, Semantic
Scholar) on sustainable development goals (e.g.,
well-being, gender equality), also considering gen-
eralization to ABSTRCT. On the other hand, US-
ELEC (Haddadan et al., 2019) offers 29,093 sen-
tences from transcripts of U.S. presidential debates

from 1960 (Kennedy vs. Nixon) to 2016 (Clinton
vs. Trump), transcribed from the Commission on
Presidential Debates. VACC (Morante et al., 2020)
offers 22,219 sentences from a mixed collection of
online debates about vaccination, while WTP (Bi-
ran and Rambow, 2011) includes 8,409 sentences
from Wikipedia Talk Pages on various topics (e.g.,
Darwinism, the Catholic Church).

Others represents a residual category encom-
passing a variety of distinct definitions. AFS (Misra
et al., 2016) comprises 6,186 annotated sentences
drawn from online debate platforms such as iDe-
bate and ProCon for three topics (e.g., gay mar-
riage, death penalty). Sentences are labeled based
on whether they explicitly convey a specific argu-
ment facet, with conclusions serving as the core
component of the argument. UKP (Stab et al.,
2018) contains 25,104 sentences across eight top-
ics (e.g., nuclear energy, minimum wage) for cross-
topic argument mining from heterogeneous sources,
where arguments provide evidence or reasoning
to support or oppose a topic. On the other hand,
AEC (Swanson et al., 2015) contains 5,375 sen-
tences on four topics (e.g., evolution, gun control)
from CreateDebate, highlighting simple argument
signals with labels based on the implicit markups:
so, if, but, first, I agree that. Finally, TACO (Feger
and Dietze, 2024b) comprises 1,734 tweets span-
ning six topics (e.g., abortion, Squid Game). It is
designed for cross-topic argument mining on Twit-
ter, focusing on inference to shape arguments.

3.1 Comparing Argument Definitions
(Q1) Argument definitions vary, reflecting a spec-
trum of perspectives that contribute to a shared
understanding of arguments. Central to this is
the observation that definitions mutually inform
each other in their concepts (Lopes Cardoso et al.,
2023). For example, in Table 1 most papers are
claim-based, but when comparing the definitions,
some view a claim as argumentative (Lauscher
et al., 2018; Fergadis et al., 2021), others as conclu-
sive (Mayer et al., 2020b), as stances (Rinott et al.,
2015; Hidey et al., 2017; Cheng et al., 2022; Stab
and Gurevych, 2017), or as a hybrid concept of all
these (Haddadan et al., 2019; Morante et al., 2020).

Hence, further clarification is needed, especially
concerning their generalization as part of Q2 - Q3.
Thereby, Table 2, with examples from different
definitions, illustrates whether their efforts never-
theless converge in the identification of arguments
despite different perspectives.
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Label Dataset Example

ARG
ACQUA We chose MySQL over PostgreSQL primarily because it scales better and has embedded replication.
SCIARK In this case, if symptomatic, the treatment should be surgery, clinical follow-up, and counseling.
AEC So it would seem that if there is a scientific theory of [. . . ], it has been tested [. . . ] and therefore [. . . ].

¬ARG
WEBIS The Mo Ibrahim Prize was first established in 2007, and the prize represents [. . . ] African leadership.
FINARG For those unable to attend in person, these events will be webcast and you can follow [...] at URL.
TACO ’Bitter truth’: EU chief [...] on idea of Brits keeping EU citizenship after #Brexit URL via USER

Table 2: Examples of argument (ARG) and no-argument (¬ARG) sentences from various datasets. Despite
differences in definitions and topics, the similarities within and distinctions between label groups underscore the
shared endeavor of argument mining approaches in identifying arguments, though each emerged differently.

3.2 Comparing Dataset Dimensions
First, the two text dimensions used to analyze the
selected datasets are presented. For dataset-wise
correlations of these, please refer to Appendix A.2.

Sentence-Level: To capture a broad, macro-
level view without delving into individual word
details, we used spaCy2 to extract key textual at-
tributes. These features reveal the overall structural
and statistical properties of sentences, enabling
sentence-level characterization of each dataset by:

• Length: Measured by the number of words
per sentence, which serves as an indicator of
linguistic complexity and verbosity.

• Stop/Function Word Ratio: The ratio of stop
(e.g., it, is, are) and function words (e.g.,
against, because, therefore), including dis-
course markers, to the other words in a sen-
tence to show their relative frequency of use.

• Type-Token Ratio: The ratio of unique words
to total words in a sentence, assessing lexical
diversity.

• Readability: The Flesch Reading Ease score
quantifies text clarity, with lower values (0 ≤)
indicating complex academic language and
higher values (≤ 100) denoting easy readabil-
ity, understandable by an 11-year-old.

• Entropy: Quantifies lexical unpredictability
and the amount of information in a sentence,
with values ranging from 0 (fully predictable
text) to 1 (maximal unpredictability).

• Sentiment: Defined by polarity, ranging from
-1 (extremely negative) to 1 (extremely pos-
itive), and subjectivity, ranging from 0 (ob-
jective) to 1 (subjective), possibly revealing
persuasive strategies through emotions.

2spacy.io

• Part-of-Speech Tags: The distribution of the
17 universal POS tags reflects basic syntax,
lexical composition, and stylistic variation.

Word-Level: To compare datasets at the word
level, we analyze the vocabulary of unique words
used in each dataset. We extend this to words that
convey the central semantic content of a sentence
(e.g., government, abortion, freedom), that is, all
words except stop and function words, discourse
markers, and punctuation. Their relatedness or
uniqueness is described using Jaccard similarity, a
measure of similarity between two sets based on
the ratio of their intersection to their union.

(Q1) The sentence structures are strongly corre-
lated across all datasets and labels. On average,
a sentence contains 21 words, with nearly every
second word (48%) being a stop or function word.
Sentences are lexically diverse (91% type-token
ratio) yet highly readable (63% readability). The
high predictability (22% entropy) and objective
tone (43% subjectivity) suggest clear, structured
writing with a slightly positive inclination (8% po-
larity). This is reinforced by the POS patterns,
where sentences typically include five nouns, three
punctuation marks, and two verbs, adpositions, and
determiners, with other tags averaging below two.

Moreover, an average sentence closely aligns
with both argument and no-argument sentences
across these 24 sentence-level features (Spearman’s
ρ ≥ 0.97), with a strong correlation (ρ ≥ 0.68)
across datasets. Slight differences exist in length,
with an argument sentence averaging 24 words
compared to 20 for a no-argument sentence, with
readability scores of 60% and 64%, respectively.

(Q1) Datasets and labels mainly differ in their
semantic content. Looking at the vocabularies, the
datasets remain largely distinct, with 7–36% Jac-
card similarity, a trend also observed for the seman-
tic content words, reflecting their open-class.
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In contrast, stop, function, and discourse words
show over 73% overlap due to their closed nature.

Interestingly, while comparing sentences across
labels shows similar patterns, words describing the
core semantic content remain largely distinct, over-
lapping below 48% and 19% on average, reinforc-
ing lexical separation. Undeniably, the datasets
share overlapping content, e.g., when discussing
the one-child policy (PE) and abortion (IAM,
TACO, UKP) or, figuratively speaking, the death
penalty (AEC). Similarly, when discussing vacci-
nation (VACC) overlaps might occur with medical
(ABSTRCT) or sustainability (SCIARK) topics.

However, we found that these similarities are not
very pronounced and that the datasets and labels are
largely disjointed in terms of their core semantic
content. This could provide the models with a
shortcut opportunity, not based on how the labels
are constructed, but rather on what they are about.

4 Experimental Setup

In this section, we outline the experimental setup
and the best practices used for statistical testing to
generate the data needed to answer Q2 - Q3.

Sampling: To create fixed training, develop-
ment, and test sets, we used a 60/20/20 stratified
split for each of the 17 datasets in Table 1, select-
ing 850 instances per label, corresponding to 1,700
samples per dataset and 28,900 in total.

Transformers: We selected BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019), and Distil-
BERT (Sanh et al., 2019) as widely accepted stan-
dard baselines for NLP (Rogers et al., 2020), in-
cluding argument mining (Shnarch et al., 2020;
Mayer et al., 2020a; Fromm et al., 2021a; Al-
hamzeh et al., 2022; Feger and Dietze, 2024b).
Further, we examined WRAP (Feger and Dietze,
2024a), the only transformer that is specifically pre-
trained for argument generalization. This applies
contrastive learning to cluster similar manifesta-
tions of inference and information, separate dis-
similar ones, and produce generalized embeddings
robustly adaptable to downstream classification.
However, our goal is to assess the generalizability
of these state-of-the-art argument mining models,
not to find the best. For these, we use the standard
hyperparameter grid for GLUE (Wang et al., 2018),
as accepted in the BERT and RoBERTa papers, bal-
ancing performance and time with a batch size of
32, 3 epochs, and a learning rate between 2e-5 and
5e-5, each trained on an A100 GPU.

Benchmarking and Generalization: The exper-
iments presented here are the core investigations
related to Q2. For each, we report the test results
after tuning the hyperparameters to a target’s devel-
opment dataset, optimizing the macro F1 score to
ensure equal importance of both labels.

We begin with an initial assessment using pair-
wise comparisons, following the transfer learning
framework (Pan and Yang, 2010; Houlsby et al.,
2019; Zhuang et al., 2019), where models are
trained on one dataset and evaluated on others, in-
cluding benchmarks on individual datasets. This
yields a 17 × 17 matrix per model, with rows as
training and columns as test data, see Figure 1.

Secondly, we conducted a supplementary ex-
periment by training on all but one dataset and
testing on the reserved one, forcing the models
to generalize from joint benchmark data (Hays
et al., 2023; Feger and Dietze, 2024a). Thereby, we
will report the performance per model and evaluate
each against the excluded dataset’s state-of-the-art
benchmark, compare Table 4 and Figure 1.

Disrupting Argument Signals: To build on the
experiments addressing Q2 and provide insight for
Q3, we apply controlled input manipulation to both
experiments described above. Specifically, we as-
sess transformer performance after systematically
removing stop and functional words (e.g., a, the,
against, because), discourse markers, and punctua-
tion using spaCy2. This process results in the elimi-
nation of around half the words in each sentence. It
is therefore assumed that the removal of these lexi-
cal and syntactic elements, which also function as
scaffolding for rhetorical and logical devices (Knott
and Dale, 1994), suppresses the linguistic cues that,
in theory, enable the distinction between the ele-
ments that constitute an argument and those that
do not (Daxenberger et al., 2017; Opitz and Frank,
2019; Thorn Jakobsen et al., 2021). What remains
is a lexical skeleton that primarily reflects topical
and subject-related content while omitting func-
tional and discursive elements, calling into ques-
tion the model’s ability to discern argued excerpts
from mainly descriptive content (Lopes Cardoso
et al., 2023), see Table 3.

Evaluation: We perform the experiments for
Q2 - Q3 and repeat them three times, each with
varied samples and training initializations. To test
significance, we use a two-way ANOVA with re-
peated measures for experimental robustness and
one-tailed Student’s t-tests for pairwise compar-
isons of models, see Appendix B for full details.

23905



Label Form Example

ARG Original
They should increase more routes to
make people transport more easily.

Manipulated increase routes people transport easily

¬ARG Original
Should governments spend more money
on improving roads and highways?

Manipulated
governments spend money improving
roads highways

Table 3: Example from PE showing an argument (ARG)
and no-argument (¬ARG) sentence in the original and
manipulated form.

5 Results

In this section, we will address and answer ques-
tions Q2 - Q3. To this end, we will mainly focus
on Figure 1, which compares the pairwise exper-
iments to show which state-of-the-art argument
mining model performs best, thus reflecting the
current benchmark and generalization landscape.
Tying in with this, we will then turn on Table 4
contrasting the state-of-the-art performance against
those obtained by the models if trained on hetero-
geneous data. In addition, we elaborate on the
insights gained from the controlled manipulations
applied to these experiments. After that, we will
discuss the significance of our results. However,
for a better understanding, it can already be as-
sumed that the results for each model and exper-
iment follow a normal distribution, as confirmed
with D’Agostino and Pearson’s K2 test (p ≥ .05).

ACQUA
WEBIS

ABSTRCT

ARGUMINSCI CE
CMV

FINARG
IAM PE

SCIARK

USELEC
VACC

WTP
AFS

UKP
AEC
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Figure 1: The best macro F1 scores from the benchmark-
ing and pairwise generalization experiments, compar-
ing WRAP (W), BERT (B), RoBERTa (R), and Distil-
BERT (D), indicate that strong performance is primarily
achieved in the benchmark settings, as reflected along
the main diagonal. Furthermore, WRAP excels in gen-
eralizing to TACO, as seen on the right.

(Q2) Strong argument mining baselines do not
necessarily imply strong argument generalization.
A notable observation in Figure 1 is the contrast
between baselines on individual datasets and gen-
eralization across multiple datasets and definitions.
Strikingly, 97% of generalization experiments fall
below the mean benchmark result (M = 0.79),
with 62% scoring under 0.65, while in 8% of cases
generalization drops below 0.5 macro F1, highlight-
ing the challenge of maintaining strong benchmark
performances when tested on out-of-distribution
datasets. We will further break down our answer:

Generalizability seems to be the exception rather
than the norm. Given these circumstances, Table 1
shows several notable exceptions of good (≥ 0.75)
to strong (≥ 0.8) generalizability across and within
both definitional categories and genres, particularly
for claim-based datasets. For instance, strong per-
formance emerges within the academic domain,
where SCIARK reaches 0.82 on ABSTRCT with
BERT, and both ABSTRCT and ARGUMINSCI
achieve 0.77 using BERT and DistilBERT. Evi-
dence of cross-genre generalization also appears
in cases such as IAM (mixed genre) and VACC
(online debate), which achieve 0.76 and 0.79 on
CE (encyclopedia) using RoBERTa and WRAP.

Broader generalization across definitions and
genres is especially evident in UKP (evidence or
reasoning, mixed), which surpasses 0.75 on both
ABSTRCT (claim-based, academic) and CE (claim-
based, encyclopedia) with BERT and WRAP. Sim-
ilarly, TACO (inference-information, Twitter de-
bate) consistently exceeds 0.8 across a vast range
of definitions and genres with WRAP.

Still, both cross-definition and cross-genre gen-
eralization remain limited and exceptional.

Task-related pre-training appears to have a pos-
itive effect on overall performance and generaliza-
tion. Numerically, WRAP (M = 0.61, SD = 0.1)
shows the best overall performance in terms of
macro F1. Notably, WRAP is the only model
that attains a mean above 0.6 macro F1, while
BERT (M = 0.58, SD = 0.11), RoBERTa
(M = 0.57, SD = 0.12), and DistilBERT (M =
0.56, SD = 0.11) all perform worse. This perfor-
mance advantage is particularly evident in cases
where WRAP achieves the highest scores compared
to the other models. In fact, WRAP demonstrates
superior performance in 133 out of 289 experi-
ments (46%), whereas BERT does so in 58 experi-
ments (20%), RoBERTa in 50 experiments (17%),
and DistilBERT in 48 experiments (17%).
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WRAP BERT RoBERTa DistilBERT SOTA ∆max/min

ACQUA 0.66 0.6 0.59 0.59 0.84 0.18 / 0.25
WEBIS 0.63 0.66 0.62 0.65 0.74 0.08 / 0.12
ABSTRCT 0.74 0.74 0.74 0.71 0.89 0.15 / 0.18
ARGUMINSCI 0.59 0.47 0.55 0.5 0.84 0.25 / 0.37
CE 0.77 0.72 0.76 0.72 0.85 0.08 / 0.13
CMV 0.63 0.62 0.62 0.58 0.67 0.04 / 0.09
FINARG 0.61 0.62 0.66 0.65 0.68 0.02 / 0.07
IAM 0.73 0.71 0.73 0.73 0.76 0.03 / 0.05
PE 0.65 0.65 0.69 0.65 0.78 0.09 / 0.13
SCIARK 0.75 0.73 0.74 0.73 0.83 0.08 / 0.1
USELEC 0.7 0.66 0.68 0.59 0.74 0.04 / 0.15
VACC 0.68 0.7 0.68 0.69 0.78 0.08 / 0.1
WTP 0.59 0.55 0.55 0.54 0.65 0.06 / 0.11
AFS 0.57 0.58 0.59 0.6 0.84 0.24 / 0.27
UKP 0.7 0.67 0.7 0.68 0.79 0.09 / 0.12
AEC 0.52 0.57 0.51 0.56 0.96 0.39 / 0.45
TACO 0.76 0.61 0.65 0.55 0.88 0.12 / 0.33

Table 4: Transformers trained on all but the target bench-
mark are evaluated against their state-of-the-art base-
line (SOTA), compare diagonal of Figure 1. Minimum
and Maximum values indicate deviation from SOTA
(∆max/min). While all models fall short relative to
SOTA, WRAP yields the best results in most cases.

Joint benchmark data for training may also help
bootstrap reliable and improved generalization.
Furthermore, the results of the supplementary ex-
periment presented in Table 4 indicate that over-
all performance tends to improve when models
are trained on joint benchmark data. Thereby,
WRAP (M = 0.66, SD = 0.07), RoBERTa (M =
0.65, SD = 0.07), BERT (M = 0.64, SD =
0.07), and DistilBERT (M = 0.63, SD = 0.07)
all achieve average macro F1 scores above 0.6, with
values that are numerically higher than those ob-
served in the pairwise setup. Again, WRAP shows
the most consistent advantage, ranking first in 11
out of 17 experiments (65%).

(Q3) State-of-the-art argument mining models
are not solely defined by argument signals. Fol-
lowing the controlled manipulation in the pair-
wise setup, all models dropped to similar levels,
WRAP and BERT (M = 0.56, SD = 0.09), Dis-
tilBERT (M = 0.55, SD = 0.1), and RoBERTa
(M = 0.57, SD = 0.1). Similar trends ap-
pear post-manipulation in the supplementary ex-
periment for WRAP, RoBERTa, and DistilBERT
(M = 0.62, SD = 0.06), and BERT (M = 0.61,
SD = 0.06). With careful attention to detail:

Shortcut learning influences generalization of
arguments, but task-related pre-training weakens
the impact. For the pairwise experiments, BERT
and DistilBERT showed almost no changes after
manipulating inputs (∆ ≤ 0.02), while RoBERTa
maintained its performance completely, suggest-
ing that the overall performance of these models

is not based on learning how arguments are con-
stituted. In contrast, WRAP, which relies on its
task-related pre-training to embed structural argu-
ment components across topics, showed the largest
drop in macro F1 with ∆ = 0.05.

Jointly integrating benchmark data for training
improves generalization and reduces shortcut re-
liance. The impact of WRAP towards robustness
of generalization is also true for the supplementary
experiment, where WRAP exhibited the largest
performance drop (∆ = 0.04) post-manipulation.
Nonetheless, RoBERTa and BERT showed simi-
lar trends (∆ = 0.03), while DistilBERT showed
mostly no changes (∆ = 0.01). Whereas the re-
sults in Table 4 show that each model underper-
formed relative to the state-of-the-art baselines, a
notable pattern still emerged. This is, training on
jointly integrated benchmark data raises the av-
erage macro F1 score to at least 0.64 for three
out of four transformers and 0.63 for the lowest-
performing model, compared to a maximum of 0.61
in pairwise transfer, achieved by WRAP. While
only WRAP generalizes better in the pairwise set-
ting and is less affected by lexical shortcuts, this
advantage persists when trained on joined datasets.
However, in this merged setting, RoBERTa and
BERT also show improved robustness, despite their
stronger reliance on shortcuts in the pairwise setup.
Furthermore, average differences remain moderate
with ∆̄max = 0.12 and ∆̄min = 0.18 while the
models learn from heterogeneous data sources.

Differences in definitions of arguments reinforce
the limitations of generalization. However, while
signs of shortcut learning are found, it is undeni-
ably not the sole limiting factor. Averaged across
all models, misclassification patterns show that ar-
guments are correctly classified 28% of the time
and no-arguments 37%, suggesting that identifying
no-arguments is easier. This is further supported by
the lower misclassification rate for no-arguments
(13%) compared to arguments (22%), highlighting
practical differences in argument definitions that
affect both generalization and benchmarks (e.g.,
due to conflicting annotations). This can also be
observed when analyzing the misclassifications of
individual models. Here, all models misclassify no-
arguments as arguments in fewer than 16% of cases.
In contrast, BERT, RoBERTa, and DistilBERT ex-
hibit higher misclassification rates, ranging from
21% to 26%, while WRAP misclassifies arguments
as no-arguments in 18% of cases, highlighting its
superior generalization ability for arguments.
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(Q2 - Q3) The experiments demonstrate both
statistical significance and practical relevance.
Repeated experiments support the robustness of
these results. Regarding the pairwise experiments,
a two-way repeated measures ANOVA for Q2
showed a significant effect only when compar-
ing model performances (F (3, 864) = 69.47, ϵ =
0.56, pcorr < .05, η2G = 0.03), with negligible re-
sampling or interaction effects. For Q2, paired
one-tailed t-tests also showed that only model
comparisons involving WRAP were significant
(pcorr < .05, 8.12 ≤ t(288) ≤ 10.14), with moder-
ate effect sizes (0.39 ≤ d ≤ 0.49). Similarly, re-
peating Q3 revealed no significant effects, confirm-
ing that once ablated, the models perform compara-
bly overall. Also, for Q3, when comparing pre- and
post-manipulation results per model, only WRAP
showed a relevant decrease (p < .05, t(288) =
−8.91, d = −0.49). In terms of the supplemen-
tary experiments, repetition yielded no significant
effects pre- and post-manipulation. However, re-
garding Q3, one-sided paired t-tests revealed sig-
nificant post-manipulation decreases for WRAP,
RoBERTa, and BERT (p < .05,−5.52 ≤ t(16) ≤
−2.67,−0.58 ≤ d ≤ −0.41), with WRAP show-
ing the strongest effect.

6 Discussion

To summarize the limited generalization in argu-
ment mining addressed, Table 5 compares the best
baseline results pre- and post-manipulation. On
average, macro F1 differences remain close, within
∆̄max = 0.07 and ∆̄min = 0.12 per model, and in
the best cases even exceed benchmark levels.

In the single case of AEC, which relies on only
five keywords for arguments, overemphasis on
these signals also appears to impair generaliza-
tion. Although AEC attains the highest score (0.96)
and experiences the largest post-manipulation drop
(≤ 0.45, Table 5), its generalization is limited to
0.63 or even below 0.5, compare Figure 1. Given
the low performance and minimal differences be-
tween pre- and post-manipulation results, BERT,
RoBERTa, and DistilBERT do not clearly demon-
strate an inherent ability to generalize arguments.

Although these challenges may be widespread,
positive examples highlight the potential for fu-
ture progress. This is particularly evident in cases
involving diverse sources and topics (VACC, CE,
TACO, UKP, IAM), where UKP, IAM, and TACO
already aim for generalizable annotations.

WRAP BERT RoBERTa DistilBERT SOTA ∆max/min

ACQUA 0.73 0.77 0.76 0.78 0.84 0.06 / 0.11
WEBIS 0.61 0.66 0.66 0.67 0.74 0.07 / 0.13
ABSTRCT 0.83 0.87 0.84 0.87 0.89 0.02 / 0.06
ARGUMINSCI 0.78 0.79 0.77 0.77 0.84 0.05 / 0.07
CE 0.75 0.79 0.77 0.81 0.85 0.04 / 0.1
CMV 0.57 0.64 0.64 0.65 0.67 0.02 / 0.1
FINARG 0.62 0.61 0.66 0.69 0.68 -0.01 / 0.07
IAM 0.66 0.69 0.71 0.7 0.76 0.05 / 0.1
PE 0.66 0.67 0.71 0.73 0.78 0.05 / 0.12
SCIARK 0.71 0.8 0.77 0.79 0.83 0.03 / 0.12
USELEC 0.65 0.66 0.62 0.66 0.74 0.08 / 0.12
VACC 0.67 0.68 0.69 0.69 0.78 0.09 / 0.11
WTP 0.58 0.54 0.57 0.56 0.65 0.07 / 0.11
AFS 0.78 0.81 0.8 0.79 0.84 0.03 / 0.06
UKP 0.74 0.76 0.78 0.74 0.79 0.01 / 0.05
AEC 0.51 0.55 0.58 0.59 0.96 0.37 / 0.45
TACO 0.77 0.76 0.76 0.77 0.88 0.11 / 0.12

Table 5: Post-manipulation performance of each trans-
former compared to state-of-the-art (SOTA) results for
baseline experiments per dataset. Minimum and Maxi-
mum values are highlighted, with ∆max/min indicating
their deviation from SOTA.

Despite limitations, the need for a unified struc-
tural approach to argument analysis becomes ap-
parent. This is reinforced by the effectiveness of
methodologies tailored to argument mining, as seen
in WRAP’s strong performance, averaging 0.75
when generalizing to TACO from all other datasets
(Figure 1). Training on joint benchmark data fur-
ther strengthens these abilities also for the stan-
dard transformers, even if numerical results fall
short of the rarely doubted state-of-the-art (Table 4).
Benchmarking should therefore build on combined
datasets that capture the task’s general demands,
as in GLUE (Wang et al., 2018) and instruction-
tuning benchmarks (Ouyang et al., 2022; Zhang
et al., 2024), for which decoder-based argument
mining (Cabessa et al., 2025) may be of interest.

7 Conclusion

We present the first large-scale re-evaluation of
argument mining benchmarks through a general-
ization lens and evaluate whether the reported per-
formance marks true progress. While structural
patterns hold, thematic and content differences be-
tween labels and datasets favor shortcut learning.
BERT, RoBERTa, and DistilBERT often rely on
this to inflate benchmarks, while WRAP shows
more resilience, likely due to its pre-training for
argument generalization. Training on shared bench-
mark data further reduces shortcut reliance and
improves generalization, notably in combination
with WRAP. Our results stress the need to integrate
different task demands and suggest re-framing ar-
gument mining as a joint generalizability task.
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Limitations

This study did not separate direct from implicit
arguments lacking clear structural and lexical cues,
including discourse markers, and based on data
analysis, assumed such cases are rare. However,
this may affect interpretation, as implicit arguments
are likely to depend on topical and content cues.

While we mostly used publicly available
datasets, some require granted access.

Additionally, when extraction scripts were un-
available, we derived our procedures from both the
available documentation and our understanding of
the original process. This was particularly relevant
for datasets where .ann files only provided anno-
tated sequence boundaries for larger documents
stored in .txt or .json formats. In such cases,
we used spaCy2 for sentence boundary extraction,
which may produce boundaries that differ from the
original assumptions. Nevertheless, we confirmed
that over 95% of the extracted sentences ended with
proper punctuation and began with a capital letter.
We provide an extraction script1 that automatically
retrieves and processes all datasets considered.

The reproducibility of the experiments may be
constrained by factors such as data size, runtime,
and associated costs, with all experiments in this
study running ~126 hours on a costly A100 GPU.

Acknowledgments

We sincerely thank the anonymous reviewers for
their attentive and constructive feedback, which
greatly contributed to improving the paper. Cheers!

References
Ehud Aharoni, Anatoly Polnarov, Tamar Lavee, Daniel

Hershcovich, Ran Levy, Ruty Rinott, Dan Gutfreund,
and Noam Slonim. 2014. A benchmark dataset for
automatic detection of claims and evidence in the
context of controversial topics. In Proceedings of
the First Workshop on Argumentation Mining, pages
64–68, Baltimore, Maryland. Association for Com-
putational Linguistics.

Yamen Ajjour, Johannes Kiesel, Benno Stein, and Mar-
tin Potthast. 2023. Topic ontologies for arguments.
In Findings of the Association for Computational Lin-
guistics: EACL 2023, pages 1411–1427, Dubrovnik,
Croatia. Association for Computational Linguistics.

Yamen Ajjour, Henning Wachsmuth, Johannes Kiesel,
Martin Potthast, Matthias Hagen, and Benno Stein.
2019. Data acquisition for argument search: The
args.me corpus. In KI 2019: Advances in Artificial

Intelligence, pages 48–59, Cham. Springer Interna-
tional Publishing.

Khalid Al-Khatib, Henning Wachsmuth, Matthias Ha-
gen, Jonas Köhler, and Benno Stein. 2016a. Cross-
domain mining of argumentative text through distant
supervision. In Proceedings of the 2016 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 1395–1404, San Diego, California.
Association for Computational Linguistics.

Khalid Al-Khatib, Henning Wachsmuth, Johannes
Kiesel, Matthias Hagen, and Benno Stein. 2016b.
A news editorial corpus for mining argumentation
strategies. In Proceedings of COLING 2016, the
26th International Conference on Computational Lin-
guistics: Technical Papers, pages 3433–3443, Osaka,
Japan. The COLING 2016 Organizing Committee.

Alaa Alhamzeh, Romain Fonck, Erwan Versmée, Elöd
Egyed-Zsigmond, Harald Kosch, and Lionel Brunie.
2022. It‘s time to reason: Annotating argumentation
structures in financial earnings calls: The FinArg
dataset. In Proceedings of the Fourth Workshop on
Financial Technology and Natural Language Process-
ing (FinNLP), pages 163–169, Abu Dhabi, United
Arab Emirates (Hybrid). Association for Computa-
tional Linguistics.

Roy Bar-Haim, Indrajit Bhattacharya, Francesco Din-
uzzo, Amrita Saha, and Noam Slonim. 2017. Stance
classification of context-dependent claims. In Pro-
ceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 1, Long Papers, pages 251–261,
Valencia, Spain. Association for Computational Lin-
guistics.

Or Biran and Owen Rambow. 2011. Identifying justi-
fications in written dialogues by classifying text as
argumentative. International Journal of Semantic
Computing, 05(04):363–381.
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A Extended Descriptive and
Experimental Details

This appendix provides additional data and details
omitted from Sections 2 and 3.

A.1 Section 2

For Section 2 we present the entire decision-
making process for the selection of the benchmark
datasets used in this work, which is in Table 6.

A.2 Section 3

Figure 2 extends the analysis in Section 3.2 by
showing pairwise Spearman’s ρ correlations for all
reproducible datasets, including those omitted from
experiments due to their small size.

Figure 3 extends the vocabulary analysis from
Section 3.2 by displaying word overlaps across all
datasets with available data.

B Statistical Design Protocol

In this appendix we also explain our protocol for
the best-practices of statistical testing as described
in Section 4 and applied in Section 5.
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Figure 2: The correlations of the individual datasets (as
well as the labels) in relation to the sentence-related
features show a strong overall correlation (ρ ≥ 0.68).
Most strikingly, the ABSTRCT dataset stands out as
medical texts exhibit different sentence structures from
conventional ones, characterized by technical language,
methodological details, and numerical values.
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Figure 3: The word overlaps, measured by the Jac-
card similarity between the vocabularies of two datasets,
show that the datasets (as well as the labels) are gen-
erally distinct from each other. The overlaps range
between 3–36%, with an average of 19%.

B.1 Two-Way Repeated Measures ANOVA
We employ a two-way repeated measures ANOVA
to evaluate the effects of sampling (factor 1) and
model choice (factor 2) on the macro F1 (dependent
variable), with each dataset pair treated as a subject.

For valid inference, the following assumptions
must be met:

• Continuous Dependent Variable: By def-
inition, the macro F1 score is a continuous
measure.

• Within-Subject Design: Each subject experi-
ences every variation of both factors.

• Normality: The dependent variable is approx-
imately normally distributed for each repeated
measure (D’Agostino and Pearson’s K2 test).

• Sphericity: The variances of the differences
between every pair of repeated measures are
equal. If the Greenhouse-Geisser ϵ is below
0.75 (with values near 1 indicating compli-
ance), we adjust the p-values (pcorr).

We can specifically evaluate for:

• Sampling Effect: Whether variations in data
sampling (via different random seeds) influ-
ence model performance.

• Model Choice Effect: The performance dif-
ferences among transformer models trained
and evaluated on fixed samples. Each model
is reinitialized in each trial using distinct ran-
dom seeds to prevent carry-over effects.

• Interaction Effect: Whether the effect of
sampling varies across the different models,
offering insights into model stability under
varying data conditions.

We evaluate the practical relevance of statistical
significance using the effect size:

• Generalized Eta Squared (η2G): Propor-
tion of the explained variance, interpreted
as: ~0.01 (small), ~0.06 (moderate), ~0.14+
(strong).

B.2 One-Tailed Paired Student’s t-Tests
Further, we conduct one-tailed paired t-tests as
post-hoc analysis to identify directional differences
(e.g., one model consistently outperforming an-
other). These tests use the same assumptions as
the prior ANOVA, except for sphericity. We ap-
ply the Bonferroni correction (pcorr) for multiple
comparisons.

For these tests, we evaluate their practical rele-
vance using the effect size:

• Cohen’s d: The mean difference between
paired conditions relative to the standard devi-
ation of the differences, interpreted as: ~0.2
(small), ~0.5 (moderate), ~0.8+ (strong).
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Dataset Paper Definition Genre Sent. Binary Reprod. Related Arg. N-Arg. Used

ACQUA (Panchenko et al., 2019) Argumentative Mixed Yes Yes Yes 1,949 5,236 Yes
AMPERE (Hua et al., 2019) Argumentative Academic Yes Yes Yes 6,729 242 No
ASRD (Shnarch et al., 2020) Argumentative Spoken Debate Yes Yes Yes 260 440 No
CDCP (Niculae et al., 2017) Argumentative Online Debate Yes No No
COMARG (Boltužić and Šnajder, 2014) Argumentative Online Debate No No
EDIT (Al-Khatib et al., 2016b) Argumentative Online Debate Yes No No
IAC (Walker et al., 2012) Argumentative Online Debate No No
MARG (Mestre et al., 2021) Argumentative Spoken Debate Yes No No
QMC (Levy et al., 2018) Argumentative Encyclopedia Yes Yes Yes 733 1,766 No
SDAT (Hansen and Hershcovich, 2022) Argumentative Twitter Debate Yes Yes Yes 387 210 No
WEBIS (Al-Khatib et al., 2016a) Argumentative Online Debate Yes Yes Yes 10,804 5,543 Yes
AAE (Stab and Gurevych, 2014) Claim-based Academic Yes Yes Yes PE No
ABSTRCT (Mayer et al., 2020b) Claim-based Academic Yes Yes Yes 1,308 7,323 Yes
AMECHR (Teruel et al., 2018) Claim-based Legal Yes Yes No No
AMSR (Fromm et al., 2021b) Claim-based Academic Yes Yes Yes 839 561 No
ARGUMINSCI (Lauscher et al., 2018) Claim-based Academic Yes Yes Yes 6,554 9,548 Yes
ASC (Wojatzki and Zesch, 2016) Claim-based Twitter Debate Yes Yes Yes 147 568 No
CDC (Aharoni et al., 2014) Claim-based Encyclopedia Yes Yes Yes CE No
CE (Rinott et al., 2015) Claim-based Encyclopedia Yes Yes Yes 1,546 85,417 Yes
CMV (Hidey et al., 2017) Claim-based Online Debate Yes Yes Yes 979 1,593 Yes
CS (Bar-Haim et al., 2017) Claim-based Encyclopedia Yes Yes Yes CE No
DT (Olshefski et al., 2020) Claim-based Spoken Debate No No
FINARG (Alhamzeh et al., 2022) Claim-based Spoken Debate Yes Yes Yes 4,607 8,310 Yes
IAM (Cheng et al., 2022) Claim-based Mixed Yes Yes Yes 4,808 61,715 Yes
MT (Peldszus and Stede, 2015) Claim-based Microtext Yes Yes Yes 112 337 No
OC (Biran and Rambow, 2011) Claim-based Online Debate Yes Yes Yes 702 7,824 No
PE (Stab and Gurevych, 2017) Claim-based Academic Yes Yes Yes 2,093 4,958 Yes
QT (Hautli-Janisz et al., 2022) Claim-based Spoken Debate Yes No AIFDB No
RCT (Mayer et al., 2018) Claim-based Academic Yes Yes Yes ABSTRCT No
SCIARK (Fergadis et al., 2021) Claim-based Academic Yes Yes Yes 1,191 10,503 Yes
UGWD (Habernal and Gurevych, 2017) Claim-based Online Debate Yes Yes Yes WD No
USELEC (Haddadan et al., 2019) Claim-based Spoken Debate Yes Yes Yes 13,905 15,188 Yes
VACC (Morante et al., 2020) Claim-based Online Debate Yes Yes Yes 4,394 17,825 Yes
VG (Reed et al., 2008) Claim-based Mixed Yes Yes Yes AIFDB 547 2,029 No
WD (Habernal and Gurevych, 2015) Claim-based Online Debate Yes Yes Yes 211 3,661 No
WTP (Biran and Rambow, 2011) Claim-based Online Debate Yes Yes Yes 1,135 7,274 Yes
ECHR (Poudyal et al., 2020) Conclusion-based Legal Yes Yes Yes 414 10,264 No
AFS (Misra et al., 2016) Conclusion-based Online Debate Yes Yes Yes IAC 5,150 1,036 Yes
ARGSME (Ajjour et al., 2019) Conclusion-based Online Debate Yes No No
BASN (Kondo et al., 2021) Conclusion-based Mixed Yes No No
BIOARG (Green, 2018) Conclusion-based Academic Yes No No
DEMOSTHENES (Grundler et al., 2022) Conclusion-based Legal Yes Yes No No
RSA (Houngbo and Mercer, 2014) Conclusion-based Academic Yes No No
AIFDB (Lawrence et al., 2012) AIF Mixed Yes No No
LAMECHR (Habernal et al., 2023) Custom Framework Legal Yes No No
ABAM (Trautmann, 2020) Evidence or Reasoning Mixed Yes No AURC No
ASPECT (Reimers et al., 2019) Evidence or Reasoning Mixed Yes No UKP No
AURC (Trautmann et al., 2020) Evidence or Reasoning Mixed Yes Yes No No
BWS (Thakur et al., 2021) Evidence or Reasoning Mixed Yes No UKP No
UKP (Stab et al., 2018) Evidence or Reasoning Mixed Yes Yes Yes 11,126 13,978 Yes
AEC (Swanson et al., 2015) Implicit-Markup Online Debate Yes Yes Yes IAC 4,001 1,374 Yes
TACO (Feger and Dietze, 2024b) Inference-Information Twitter Debate Yes Yes Yes 864 868 Yes

Table 6: Summary of the 52 datasets from the reviewed papers, sorted by their applied definitions. Data collection
followed the methodology described in Section 2.1, and selection criteria are detailed in Section 2.2. Empty entries
indicate that the corresponding criteria were not further evaluated because a preceding criterion had already been
rejected. The Related column indicates connections between datasets, like updates (e.g., AAE to PE, CDC to CE,
RCT to ABSTRCT), additions of non-task-related features (e.g., CS adds stances to the claims from CE, ABAM
adds aspects to the claims of AURC), or subsets from larger repositories (e.g., VG and QT from AIFDB, AEC and
AFS from IAC).
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