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Figure 1: The audio description is from a classic Chinese essay “Kou Ji", which vividly depicts a performer using
only vocal mimicry to recreate an entire dramatic scene. The existing Text-to-Audio generation model struggles to
generate such narrative and multi-event audios. The generated audio often fails to contain all events in the described
sequence while maintaining acoustic quality and harmony.

Abstract

Text-to-audio (T2A) generation has achieved
remarkable progress in generating a variety of
audio outputs from language prompts. How-
ever, current state-of-the-art T2A models still
struggle to satisfy human preferences for
prompt-following and acoustic quality when
generating complex multi-event audio. To im-
prove the performance of the model in these
high-level applications, we propose to enhance
the basic capabilities of the model with AI feed-
back learning. First, we introduce fine-grained
AI audio scoring pipelines to: 1) verify whether
each event in the text prompt is present in the
audio (Event Occurrence Score), 2) detect de-
viations in event sequences from the language
description (Event Sequence Score), and 3) as-
sess the overall acoustic and harmonic quality
of the generated audio (Acoustic&Harmonic
Quality). We evaluate these three automatic
scoring pipelines and find that they correlate
significantly better with human preferences
than other evaluation metrics. This highlights
their value as both feedback signals and eval-
uation metrics. Utilizing our robust scoring
pipelines, we construct a large audio preference
dataset, T2A-FeedBack, which contains 41k
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prompts and 249k audios, each accompanied by
detailed scores. Moreover, we introduce T2A-
EpicBench, a benchmark that focuses on long
captions, multi-events, and story-telling scenar-
ios, aiming to evaluate the advanced capabili-
ties of T2A models. Finally, we demonstrate
how T2A-FeedBack can enhance current state-
of-the-art audio model. With simple preference
tuning, the audio generation model exhibits sig-
nificant improvements in both simple (Audio-
Caps test set) and complex (T2A-EpicBench)
scenarios. The project page is available at
https://T2Afeedback.github.io

1 Introduction

Recent Text-to-Audio (T2A) generation mod-
els (Huang et al., 2023b,a; Liu et al., 2023a, 2024;
Ghosal et al., 2023; Majumder et al., 2024; Vyas
et al., 2023) have made drastic performance im-
provements. By trained on massive audio-text
data (Gemmeke et al., 2017; Fonseca et al., 2021;
Chen et al., 2020; Kim et al., 2019), these genera-
tive models learn to generate diverse sounds with a
given language prompt. For audio generation, gen-
erating harmonious multi-event audio or describing
a story with audio has important applications in
music (Agostinelli et al., 2023), advertising, video-
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audio generation (Luo et al., 2024; Wang et al.,
2024), etc. However, as shown in Figure. 1, ex-
isting audio generation models are struggling to
generate harmonious and high-quality audio from
narrative and complex descriptions, which limits
the potential for high-level applications.

The failure of the generated results is often
demonstrated in three aspects: 1) cannot fully in-
clude all the events described, 2) cannot accurately
follow the order of all the events described, and 3)
cannot organize all the events harmoniously. There-
fore, the model performance in multi-event scenar-
ios is determined by its capabilities in these three
fundamental aspects.

To improve the model’s performance across
more advanced applications, we focus on strength-
ening the audio generation model’s fundamental
abilities. Inspired by feedback learning in large
language models (Ouyang et al., 2022; Bai et al.,
2022; Touvron et al., 2023), we propose creating an
audio preference dataset centered on three abilities
necessary for generating harmonic and complex
audio: 1) Event Occurrence Prompt-Following,
2) Event Sequence Prompt-Following, and 3)
Acoustic&Harmonic Quality. Based on the pref-
erence information, we can refine the model’s core
abilities, resulting in better results in both simple
and challenging scenarios.

However, due to the scarcity of audio data and
the challenges of annotating the scale of user pref-
erences, it is difficult to collect massive audio pref-
erence datasets that only rely on human annotators.
To fill this void, we explore using AI feedback (Cui
et al., 2023; Lee et al., 2023; Yuan et al., 2024;
Burns et al., 2023) in text-to-audio generation, uti-
lizing AI models to rank audios instead of relying
on human annotators. Compared to manual annota-
tion, automating the data collection and annotation
process reduces the cost of obtaining audio prefer-
ence data and enhances scalability.

Specifically, we develop three AI scoring
pipelines to evaluate the generated audio in a fine-
grained and holistic manner, corresponding to three
core capabilities:

• Event Occurrence Score: To specifically
check whether each event occurs in, we cal-
culate the audio-text semantic matching score
for each described event separately. A lower
score suggests that the corresponding event
might be absent from the audio.

• Event Sequence Score: To verify the cor-

rectness of event order, we analyze the start
and end times of each event and compare
them with the event order outlined in the text
prompt. A higher score implies a greater simi-
larity between the event sequences in caption
and audio.

• Acoustics&Harmonic Quality: Drawing inspi-
ration from aesthetic scoring methods used
in image quality scoring, we manually anno-
tate acoustic and harmonic quality for audio
samples. These data are then used to train an
automatic acoustic&harmonic predictor.

We confirm that our three scoring functions show
a stronger correlation with human evaluations com-
pared to existing automatic audio evaluation meth-
ods (Wu et al., 2023b; Xie et al., 2024). Conse-
quently, in addition to their application in ranking
preference data, these scoring functions can be used
as evaluation metrics that more effectively capture
human preferences across different aspects.

Leveraging these advanced AI scoring pipelines,
we establish a comprehensive data collection and
annotation framework. As a result, we construct
T2A-Feedback, a large audio preference dataset
comprising 41,627 captions and 249,762 generated
audios, each annotated with detailed scores.

Furthermore, to evaluate the higher-level capa-
bilities of text-to-audio models in multi-event sce-
narios, we introduce a more challenging bench-
mark, T2A-EpicBench, which features longer,
more imaginative, and story-telling captions for
audio generation. We enhance the advanced text-to-
audio diffusion model, Make-an-Audio 2 (Huang
et al., 2023a), with T2A-Feedback. Our results
show that using T2A-Feedback not only effec-
tively improves the basic capabilities of the model
in simple AudioCaps benchmark, but also emer-
gently improves the performance in complex T2A-
EpicBench.

2 Related Work

2.1 Text-to-Audio Generation
Text-to-audio generation is an emerging field that
aims to convert textual descriptions into corre-
sponding audio outputs. Existing text-to-audio
generation methods can be divided into two cat-
egories: Diffusion-based and Language model-
based. Diffusion-based techniques have gained
prominence for generating high-quality, realis-
tic audio by modeling the process of denoising.

23536



These methods, like Make-an-Audio (Huang et al.,
2023b,a), AudioLDM (Liu et al., 2023a, 2024),
Tango (Ghosal et al., 2023; Majumder et al., 2024),
start with random noise and iteratively refine it to
produce coherent audio over a series of denois-
ing steps. On the other hand, Language model-
based methods (Borsos et al., 2023; Agostinelli
et al., 2023; Cideron et al., 2024) tokenize audios
as acoustic discrete tokens, and predict the tokens
within an auto-regressive model conditioned on
text inputs.

The above models acquire the ability to gener-
ate diverse audio by training on large-scale audio-
text datasets. However, current datasets like Au-
dioSet (Gemmeke et al., 2017), AudioCaps (Kim
et al., 2019), and FSD50k (Fonseca et al., 2021)
only provide tag-level annotations or short captions.
As a result, when processing long, detailed lan-
guage prompts, existing models often produce low-
quality, noisy outputs and struggle to accurately
follow the text. Due to the difficulty of annotating
detailed audio captions, scaling rich and accurate
audio descriptions remains a challenge. In this
work, we focus on enhancing the model’s basic
abilities in event occurrence, sequence, and har-
mony, thereby improving its performance in both
simple scenarios and advanced applications.

2.2 Perference Tuning with Human&AI
Feedback

Tuning generative models according to human pref-
erences has emerged as a standard practice for im-
proving the quality of outputs. By tuning with feed-
back information on different aspects, the model
can be improved and aligned with human pref-
erences in corresponding aspects. Traditionally,
this preference data used for tuning relied heav-
ily on human evaluators who rank multiple gener-
ated results, assessing their quality based on vari-
ous criteria such as relevance, coherence, and aes-
thetic value (Bai et al., 2022; Touvron et al., 2023;
Ouyang et al., 2022; Kirstain et al., 2023; Liang
et al., 2024; Wu et al., 2023a; Cideron et al., 2024).

While effective, manual human annotation is
costly and time-consuming, which greatly hampers
the scalability of preference tuning across more
diverse generative tasks. To address the difficulty,
more recent developments have focused on leverag-
ing pre-trained AI models to automate the process
of scoring generated content (Cui et al., 2023; Lee
et al., 2023; Yuan et al., 2024; Burns et al., 2023).
Such an AI feedback approach has achieved im-

pressive improvements in large language models.
Recently, some studies have attempted prefer-

ence fine-tuning in text-to-audio generation models.
One recent paper related to our work, Tango2 (Ma-
jumder et al., 2024), utilizes contrastive language-
audio pre-training (CLAP) (Wu et al., 2023b) to
rank audio generated by the Tango model. How-
ever, CLAP can only evaluate the global alignment
between audio and text but falls short in assessing
the fine-grained details, like detailed event occur-
rence, sequence, and harmony. In this paper, we
construct more robust AI audio scoring pipelines
with fine-grained recognition ability. Our method
shows a much stronger correlation with human
preference and the constructed dataset brings sig-
nificant improvement to the current text-to-audio
generation model.

2.3 Text-to-Audio Evaluation Metric

Existing evaluation metrics for audio generation,
such as FAD and IS, assess audio distributions but
cannot evaluate the quality of individual samples.
Additionally, many studies rely on similarity scores
from the CLAP model to assess global audio-text
semantic alignment. PicoAudio (Xie et al., 2024)
uses a text-to-audio grounding model (Xu et al.,
2024) to detect audio segments based on language
prompts. However, there remains a lack of fine-
grained evaluation methods for assessing detailed
event occurrence, sequencing, and acoustic quality.
Our research fills this gap by creating robust audio
AI scoring pipelines, that show a strong correlation
with humans, and significantly surpass alternative
methods.

3 T2A-Feedback

In this section, we first dive into the three AI audio
scoring pipelines: (i) Event Occurrence Prompt-
following, in Section. 3.1; (ii) Event Sequence
Prompt-following, in Section. 3.2; (iii) Acoustic
Quality, in Section. 3.3. We then describe the spe-
cific data generation and sorting method for the
T2A-Feedback dataset in Section. 3.4.

3.1 Events Occurrence Prompt-following

Generating audio that accurately reflects the events
described in a given prompt is the fundamental re-
quirement of prompt-following. However, when
multiple events are included in the text description,
current text-to-audio generation models often strug-
gle to generate each event precisely. To improve
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Figure 2: The overview of event occurrence and se-
quence scoring pipelines.

the generation model’s event occurrence prompt-
following ability, we first build an AI pipeline to
determine the occurrence of events in audio.

Previous methods primarily utilize contrastive
language-audio pre-training (CLAP) (Wu et al.,
2023b) over the audios and language descriptions
to assess their semantic relevance. However, in
multi-event scenarios, the sentence-level match-
ing score struggles to identify event-level misalign-
ment, and can not pinpoint which specific events
are present and which are not, as shown in Figure. 4.
To accurately identify misaligned events, we pro-
pose to measure the audio-text semantic alignment
at the event-level. To this end, we first separate the
language description and audio into basic events,
as shown in the “Event Separation" part of Fig-
ure. 2. Specifically, we utilize a large language
model (LLM) (Jiang et al., 2023) to decompose
descriptions into event captions according to the
described order. Meanwhile, we employ an ad-
vanced audio separation model (Liu et al., 2023b)
to segment the audio into event-level sub-audios
based on these event captions. By calculating the
similarity between each event-level description and
its corresponding sub-audio in CLAP space, we
can gain clearer insights into the specific aligned
and misaligned events.

To encourage the models to comprehensively
generate all described events, for each audio-text
pair, we select the lowest value among all event-
level audio-text matching scores as the Event Oc-
currence Score. For audios generated from the
same caption, a higher score indicates that the
audio is more likely to contain all the described
events.

3.2 Events Sequence Prompt-following

In addition to generating all events, whether these
events occur in the temporal order described in the
caption is also a crucial aspect of prompt-following.
Some recent work attempts to detect the sequence
of events in audio. Tango2 (Majumder et al., 2024)
computes the CLAP matching score between the
temporal description and corresponding audios, but
we find the sentence-level CLAP score is not sen-
sitive to the temporal description in captions, as
demonstrated in Figure. 4 and Table. 2. On the
other hand, PicoAudio (Xie et al., 2024) employs
audio grounding model (Xu et al., 2024) to detect
audio segments. However, due to the limitation of
the training scale, the generalization performance
of the audio grounding model is limited.

To robustly analyze audio event sequences, we
propose a new pipeline for event sequence analysis.
Similar to event occurrence, we first use the LLM
and audio separation model to extract event-level
descriptions and their corresponding sub-audios.
For each separated audio track, we determine the
event’s start and end times based on volume levels.
Specifically, we normalize the volume to a range
of [0,1], and the period where the normalized vol-
ume exceeds a certain threshold is identified as the
event’s duration.

In multi-event scenarios, there are multiple com-
plex temporal relationships. To comprehensively
assess the temporal alignment between the lan-
guage prompt and the generated audio, and to
specifically identify which temporal relationships
are accurate and which are misaligned, we em-
ploy Kendall’s τ coefficient. This widely used
non-parametric statistic measures rank correlation
between two variables. Considering n events and
their n(n− 1) event pairs, we use LLM to analyze
the relationships between each event pair in the lan-
guage description and extract the event sequence in
the audio based on the starting time of each event.
The Events Sequence Score (e.g., Kendall’s τ co-
efficient between event sequences in language and
audio) is calculated as:

τ =
C −D

n(n− 1)
(1)

where C represents the number of concordant event
pairs between the description and the audio, D de-
notes the number of discordant ones. Higher τ
indicates a greater alignment of the event sequence
in the generated audio with the text description.
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Specifically, τ = 1 signifies that the event sequence
in the generated audio is identical to the language
description, while τ = −1 indicates that the se-
quences are completely reversed.

3.3 Acoustic&Harmonic Quality
In addition to generating all events accurately fol-
lowing the language prompt, organically integrat-
ing different events to create a pleasant-sounding
effect is also one of the basic capabilities. However,
current audio generation models often produce low-
quality and noisy results.

To alleviate this challenge, we first develop an au-
dio acoustic&harmonic quality predictor. Inspired
by the image aesthetic predictor in (Schuhmann
et al., 2022), we first manually score audio sam-
ples on a scale from 1 to 4 according to their qual-
ity. Three annotators independently score the audio
samples according to the same criteria, and samples
with consistent scores are accepted as training data.
Detailed scoring criteria is provided in Appendix.

Using the human-annotated data, we train a lin-
ear predictor on the top of CLAP audio embeddings.
With the high-quality pre-trained representation,
we find that, akin to aesthetic score predictors for
images, a small amount of annotated data can yield
a generalized subjective quality predictor. Specif-
ically, we train the acoustic predictor with 2,000
meticulously annotated audio samples using cross-
entropy loss. The output of the predictor is termed
the Acoustic&Harmonic Quality.

3.4 Preference Data Generation
To generate diverse and comprehensive audio, we
first augment the text prompts used for audio gener-
ation. We begin with the captions from the training
set of the large-scale audio-text dataset, AudioCaps.
By employing an LLM, we decompose these cap-
tions into fundamental event descriptions and cal-
culate their semantic similarity within the CLAP
space to filter out non-overlapping, basic event de-
scriptions. Then, we prompt the LLM with ran-
domly selected events to create varied and natural
multi-event audio descriptions, with explicit tem-
poral ordering. Finally, we combine the enhanced
3,769 captions with the 37,858 captions from the
training set of AudioCaps, serving as the prompt
source for audio generation.

As highlighted in (Cui et al., 2023), diversity
is crucial for preference datasets. To mitigate the
potential bias of using a single audio generation
model and to enhance the generalization of the gen-

erated data, we employ three advanced audio gener-
ation models: Make-an-Audio2, AudioLDM2, and
Tango2. Each model generates 2 audio per caption,
resulting in a total of 6 audio files for each cap-
tion. In summary, we produce 249,762 audios from
41,627 descriptions. For audios generated from the
same captions, we combine three rankings of each
score to derive the overall ranking.

The histogram plots of the scores on all the gen-
erated audios are shown in Appendix. The dis-
tribution of Event Occurrence Scores and Acous-
tic&Harmonic Quality is similar to a Gaussian dis-
tribution. Since most descriptions contain one or
two sequential events, Event Sequence Scores are
concentrated between -1 and 1. As noted in (Liang
et al., 2024), this discriminative score distribution
ensures a balanced ratio of negative to positive sam-
ples, enabling effective preference tuning.

4 T2A-EpicBench

Current text-to-audio generation models are mainly
evaluated and compared on the AudioCaps test set.
However, the captions in AudioCaps are generally
short and simple, averaging 10.3 words per sen-
tence. Specifically, 17% of the captions feature
only a single event, and 44% contains two events.
This is not enough to assess the model’s capabilities
in more advanced applications involving detailed,
multi-event, and narrative-style audio generation.

To fill this gap, we propose T2A-EpicBench,
consisting of 100 detailed, multi-event, and story-
telling captions. Each caption averages 54.8 words
and 4.2 events, with 86% containing four events
and the remainder featuring five or more. Initially,
we manually write 10 detailed captions, then used
them as in-context examples to prompt LLM for
generating the remaining captions. All 100 cap-
tions are manually reviewed for accuracy. Several
examples from T2A-EpicBench are included in the
Appendix.

5 Experiment

5.1 Analysis of AI Scoring Pipelines
5.1.1 Quantitative analysis
Evaluation of Event Occurrence Score (EOS)
To evaluate the scoring model’s capability in rec-
ognizing whether audios contain all the events de-
scribed in the text, we propose a missing event
recognition task. We construct distracting captions
by adding random event descriptions to the ground-
truth captions. This task challenges models to
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AudioCaps Clotho MusicCaps

Random Guess 50.0% 50.0% 50.0%
CLAP 77.5% 86.4% 69.4%
PANNs 82.0% 79.9% 56.1%

EOS(ours) 90.9% 90.4% 99.8%

Table 1: Results of event occurrence recognition

Two Events Three Events
Correlation

Acc F1 Acc F1

CLAP 49.6% - 53.7% - -
PicoAudio 71.6% 0.787 51.3 0.574 0.30

ESS0.1 79.6% 0.814 54.2 0.606 0.43
ESS0.3 79.1% 0.851 57.6 0.587 0.52
ESS0.5 78.0% 0.769 56.7 0.535 0.52

Table 2: Results of event sequence recognition. ESS0.x

stands for using 0.x as volume thresholds.

distinguish the ground-truth caption from the con-
structed interference captions. The test sets of Au-
dioCaps (3,701 samples), Clotho (5,225 samples),
and MusicCaps (4,434 samples) are employed for
evaluation.

We mainly compare our EOS with CLAP and
PANNs. The caption with the higher matching
score to the audio is considered as the prediction.
For the audio tagging model, PANNs, we match
the top 5 recognized audio categories with open-
domain descriptions. As shown in Table 1, our
EOS score showcases a notable advantage over
baselines on all the benchmarks, demonstrating the
superiority of event-level audio-text matching in
identifying whether all events are correctly con-
tained in audios.

Evaluation of Event Sequence Score (ESS) To
verify the ability to distinguish the alignment of
event sequences in text and audio, we collect 450
two-event and 200 three-event samples from Pi-
coAudio’s data, and reverse the events orders in
the description as interference caption. Using this
dataset, we compare different methods by calculat-
ing the accuracy of recognizing the ground-truth
description versus the interference description, and
by evaluating the Segment F1 Score (Mesaros et al.,
2016) for detecting the start and end times of each
audio event. Moreover, we manually annotate tem-
poral order alignment for 100 audios generated
from our temporal-enhanced captions and compute
the correlation between different methods and hu-
mans.

The results of event sequences are provided in

Figure 3: Visualization of the predicted scores from our
AI scoring pipeline. We highlight the first, second, and
third events described in the captions using blue, brown,
and green, respectively.

Figure 4: Qualitative comparison between CLAP scores
and EOS/ESS scores reveals distinct sensitivities to mis-
alignment. By adding or reversing events in the ground-
truth caption, the captions become misaligned with the
audio in terms of event occurrence and sequence.

Table. 2. We compare ESS with CLAP score and
the audio grounding model (Xu et al., 2024) used
by PicoAudio (Xie et al., 2024). Compared to base-
lines, our method distinguishes the ground-truth
caption from the distracting one more accurately
and achieves higher F1 scores in detecting the start
and end times of events in audio. More importantly,
our method shows a much stronger correlation to
human annotations.

Additionally, we investigate various volume
thresholds used to determine the duration of each
event. In Table 2, we test thresholds of 0.1, 0.3, and
0.5. ESS consistently outperforms other methods
across most settings, with 0.3 providing the optimal
results and thus chosen as the default setting.

Evaluation of Acoustic&Harmonic Quality
(AHQ) To validate our acoustic&harmonic pre-
dictor, we independently annotate 100 additional
audios as a test set. The correlation between the
model predictions and human labels on the test set
is 0.786, showing strong generalization ability and
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FAD↓ KL↓ IS↑ CLAP↑ EOS.↑ ESS.↑ AQ.↑
Make an Audio 2 1.82 1.44 10.03 69.97 42.05 0.53 2.33

Preference Tuning

Audio-Alpaca
RAFT 1.93 1.29 10.37 72.23 44.85 0.53 2.45
DPO 3.20 1.24 12.27 72.36 44.42 0.55 2.14

T2A-Feedback
(ours)

RAFT 2.29 1.33 11.66 73.10 45.53 0.51 2.50
DPO 2.64 1.31 11.35 74.00 49.58 0.57 2.57

Table 3: Evaluation results on AudioCaps. The EOS,
ESS and AHQ represent the Event Occurrence Score,
Event Sequence Score and Acoustic&Harmonic Quality,
respectively.

high consistency with human preferences.
Moreover, we explore building the Acous-

tic&Harmonic Predictor on top of various pre-
trained audio models and evaluate how well each
variant correlates with human preferences. The cor-
relation of the predictor built on CLAP (Wu et al.,
2023b) (0.79) outperforms those based on self-
supervised models like AudioMAE (Huang et al.,
2022) (0.61) and BEAT (Chen et al., 2022) (0.52).
Similarly, the image aesthetics predictor (Schuh-
mann et al., 2022) is built on the CLIP model (Il-
harco et al., 2021). This advantage may stem from
the alignment with language, resulting in better
semantic discrimination.

5.1.2 Qualitative Analysis
We show some example predictions from our scor-
ing pipelines in Figure. 3, where our methods can
specifically identify the misaligned event, the out-
of-order event order, and the disharmony between
events in the audio. Moreover, we provide the qual-
itative comparison between our EOS and ESS with
the single CLAP score, in Figure. 4. For the ground-
truth audio-caption pairs from AudioCaps, we per-
turb the captions by adding an event or shuffling
the order of events. We find that the CLAP score is
not sensitive to these perturbations and even yields
a higher score with the incorrect, perturbed caption.
In contrast, our EOS and ESS scores more accu-
rately reflect the alignment between audio and text
regarding event occurrence and event order.

5.2 Analysis of Preference Tuning

To demonstrate the effect of T2A-Feedback dataset
in improving audio generation model, we finetun-
ing the advanced text-to-audio model, Make-an-
Audio 2 (Huang et al., 2023a), with two preference
training methods: Direct Preference Optimization
(DPO) (Wallace et al., 2024) and Reward rAnked
FineTuning (RAFT) (Dong et al., 2023). Another
audio preference dataset, Audio-Alpace, proposed

AI Scoring Human Scoring

winEOS winESS winAHQ winEOS winESS winAHQ

Make an Audio 2 - (14.21) - (0.03) - (1.96) - - -

Preference Tuning

Audio-Alpaca
RAFT 53%(15.73) 51%(0.04) 42%(1.69) 57% 54% 53%
DPO 55%(16.87) 52%(0.03) 49%(1.96) 65% 64% 59%

T2A-Feedback
(ours)

RAFT 52%(15.85) 52%(0.05) 54%(2.14) 61% 57% 61%
DPO 58%(19.96) 64%(0.13) 52%(2.10) 68% 62% 68%

Table 4: Evaluation results on T2A-EpicBench. The
winEOS , winESS and winAHQ represent the win rates
of tuned models over the original model in terms
of Event Occurrence, Event Sequence and Acous-
tic&Harmonic Quality, respectively.

by (Majumder et al., 2024) is the main baseline
for comparison. Both the widely-used AudioCaps
and the new T2A-EpicBench are used as bench-
marks, corresponding to applications in simple and
complex scenarios respectively.

5.2.1 Quantitative Results on AudioCaps
The classical automated metrics (FAD, KL, IS, and
CLAP), as well as our three new scores (EOS, ESS,
and AHQ) are employed to quantitatively evaluate
and compare different model variants.

The quantitative results are provided in Table. 3.
FAD, KL, and IS assess audio fidelity by evalu-
ating the distribution of the generated audio. For
these metrics, both the preference dataset and train-
ing methods result in similar overall improvements.
CLAP is commonly used to measure the semantic
alignment between the input prompt and the gen-
erated audio. While both Audio-Alpaca and T2A-
Feedback improve the CLAP score, T2A-Feedback
yields greater gains.

Moreover, as analyzed in Section. 5.1.1, the pro-
posed EOS and ESS are more accurate than CLAP
in judging event occurrence and event sequence,
and AHQ shows a strong correlation to human pref-
erence in acoustic and harmony. We calculate the
three scores for different model variants to evalu-
ate audio generation results more accurately and
comprehensively. The significantly better results
across these three metrics demonstrate that T2A-
Feedback yields far greater improvements com-
pared to Audio-Alpaca, and the DPO method out-
performs RAFT in our setting.

5.2.2 Quantitative Results on T2A-EpicBench
Since there are no ground-truth audios for the long
and story-telling text prompts in T2A-EpicBench,
we primarily measure the win rate of preference-
tuned models against the original model outputs
across three key areas: event occurrence, event
sequence, and acoustic & harmonic quality. In
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a). AudioCaps

b). T2A-EpicBench

Figure 5: Visualization of the impact of preference tuning with T2A-Feedback.

addition to scoring the generated audio with our
AI pipeline, we conduct a user study where two
human annotators evaluate and select the better
output based on each criterion.

The results on T2A-EpicBench, are illustrated
in Table. 4, indicate that Audio-Alpaca provides
only marginal improvements in handling detailed
captions and multi-event scenarios, whereas T2A-
Feedback significantly and comprehensively en-
hances the model’s performance.

It is worth noting that T2A-Feedback does not
include long audio descriptions. The average word
count per caption in T2A-Feedback is 9.6, which is
considerably shorter than the 54.8 average word
number of T2A-EpicBench prompts, and even
shorter than Audio-Alpaca’s 10.2 words per cap-
tion. T2A-Feedback does not directly provide addi-
tional long caption data, and the 65% average win
rate in the user study reinforces that by focusing on
improving the basic capabilities, the audio gener-
ation model can emergently learn to handle more
complex long-text and multi-event scenarios.

5.2.3 Qualitative Findings
To better demonstrate the effectiveness of prefer-
ence tuning on T2A-Feedback, we visualize some
examples of tuning the original model on our T2A-
Feedback with the DPO method in Figure. 5. For
the examples of short captions in Figure. 5a, while
both models before and after fine-tuning can pro-
duce clean audio, the fine-tuned model successfully

generates all events in the described order. In the
more challenging case from T2A-EpicBench, the
original model often generates noisy, low-quality
audio, making it difficult to distinguish the events.
Preference tuning on T2A-Feedback, as shown in
Figure. 5b, significantly reduces background noise
and generates audio that more faithfully captures
both events and their orders.

6 Conclusion

In this paper, we build AI scoring pipelines to
evaluate three fundamental capabilities of audio
generation: Event Occurrence Prompt-following,
Event Sequence Prompt-following, and Acous-
tics&Harmonic Quality. Using these automatic
evaluation metrics, which are highly correlated
with human preferences, we build a large-scale
audio preference dataset, T2A-Feedback. Experi-
mentally, the three scores demonstrate a strong cor-
relation to human preferences, which highlights its
potential to better evaluate text-to-audio generation
models. To assess the model’s ability in complex
multi-event scenarios, we propose a new challeng-
ing benchmark, T2A-EpicBench, which requires
models to generate detailed and narrative audios.
Using our T2A-Feedback to tune the audio genera-
tion model effectively improves its capabilities in
the three basic capabilities and achieves better per-
formance in both simple (AudioCaps) and complex
(T2A-EpicBench) scenarios.
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Limitation

Automatically generating high-quality and harmo-
nious audio from detailed, narrative, and multi-
event scenarios remains a long-term goal. The per-
formance of the audio generation model depends
on both the pre-training phase and the post-training
phase (fine-tuning and feedback learning). To fully
address the challenge of generating coherent au-
dio for long narrative prompts, improvements are
needed across the entire process.
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A Examples from T2A-EpicBench

1. At a lively beach, the waves crash rhythmi-
cally against the shore, providing a soothing
melody. Suddenly, a seagull caws overhead,
drawing attention from sunbathers. Children‘s
giggles fill the air as they splash in the water.
Just then, a distant drumbeat starts, adding a
festive atmosphere to the scene.

2. In a vibrant classroom, the teacher’s
voice resonates as she explains a lesson.
Suddenly, a pencil rolls off a desk and clatters
to the floor, causing a brief distraction. A
student whispers a joke, provoking a wave
of giggles. Just then, the school bell rings,
signaling the end of the period.

3. In a busy city street, the honking of
cars creates a chaotic symphony. Suddenly, a
bicycle bell rings sharply as a cyclist weaves
through traffic. The murmur of pedestrians
chatting fills the air, blending with the distant
sound of street performers playing music.
Just then, the sound of footsteps approaches,
adding to the urban rhythm.

4. At a busy construction site, the sound
of drills and saws fills the air, creating a
symphony of labor. Suddenly, a heavy beam
falls with a loud thud, causing workers to
pause. A whistle blows, signaling a break,
and conversations buzz among the crew. Just
then, a truck backs up, beeping as it arrives.

5. In a vibrant downtown area, the honking of
cars creates a chaotic symphony. Suddenly, a
street vendor shouts out their specials, trying
to attract customers. The laughter of people
enjoying a nearby café adds warmth to the
urban sounds. Just then, a bus rumbles past,
its engine growling as it continues.

6. In a vibrant market, the chatter of
vendors fills the air as they hawk their goods.
Suddenly, a loud crash echoes as a stack of
crates falls over, causing startled gasps. A
nearby musician strums a guitar, trying to
restore the upbeat mood. Just then, a child
squeals with delight, tugging at their parent’s
hand to explore further.
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EOS ESS AHQ

Make an Audio 2 14.21 0.03 1.96
AudioLDM2 16.35 0.04 1.98

Tango2 19.42 0.07 2.11

Make an Audio 2 +
T2A-Feedback (DPO)

19.96 0.13 2.10

Table 5: Results of AudioLDM2 and Tango2 on our
T2A-EpicBench.

B Implementation Details

Audio Generation During the audio generation
process in T2A-Feedback, all models are set to
100 denoising steps with the DDIM scheduler, and
classifier-free guidance is configured at 4.0.

Training Details For Acoustic&Harmonic Pre-
dictor, we train an extra two-layer MLP projector
on the top of CLAP audio representations using
Cross Entropy(CE) loss. The predictor is trained
using the Adam optimizer with a learning rate of 1e-
2.5 for 6 epochs on 1,000 manually annotated data.
For preference tuning, we employ the AdamW op-
timizer with a learning rate of 1e-5 for both DPO
and RAFT strategy, and train one epoch for both
Audio-Alpaca and T2A-Feedback.

C Other models on T2A-EpicBench

The performance of AudioLDM 2 and Tango 2 on
T2A-EpicBench is as follows:

As shown in Table. 5, the improvements ob-
served across Make-an-audio 2, AudioLDM2, and
Tango2 on EpicBench align with their inherent ca-
pabilities, with newer and more advanced models
achieving better results. This indirectly validates
the robustness and effectiveness of our benchmark
and AI-based scoring pipeline.

Moreover, we observed that although the Make-
an-audio 2 model does not perform well on
EpicBench initially, it achieves the best per-
formance after feedback alignment with T2A-
Feedback. This highlights the practicality and sig-
nificance of our dataset.

D Study about Lowest Score for EOS

We tested the effect of selecting the average score
and the lowest score among all matching scores for
event occurrence judgment in Table. 6. We find
that using the lowest score can better distinguish
the caption with extra events for current audio-text

AudioCaps Clotho MusicCaps

Average 89.3 88.8 99.8
Lowest 90.9 90.4 99.8

Table 6: Comparison between selecting lowest or aver-
age score for event occurrence score

datasets. According to the statistical results, we
empirically select the lowest score for event occur-
rence.

E Negative Effect to FAD Score

FAD and FID estimate the mean and covariance of
two sample groups in a high-dimensional feature
space and calculate their similarity. A negative cor-
relation between FAD (FID) and subjective metrics
is widely observed in the text-to-image and text-to-
audio generations. The study Pick-a-Pic (Kirstain
et al., 2023) for text-to-image feedback learning
has discussed this phenomenon, suggesting that it
may be correlated to the classifier-free guidance
scale mechanism. Larger classifier-free guidance
scales tend to produce more vivid samples, which
humans generally prefer, but deviate from the dis-
tribution of ground truth samples in the test set,
resulting in worse (higher) FID (FAD) scores.

More specifically, this phenomenon is witnessed
in Tables 1 and 2 of CogView3 (Zheng et al., 2024)
(text-to-image method) and Table 3 of Tango2 (Ma-
jumder et al., 2024) (text-to-audio method), where
models achieve higher human preference scores but
worse FID (FAD) scores. The negative correlation
between FID (FAD) and subjective scores, as con-
sistently shown by previous methods, appears to
be an expected outcome when aligning generative
models with human preferences.

F Statistic of Each Score

We provide the histogram maps of three different
scores in Figure. 6.

G Agreement between AHQ Annotations

We provide the agreement between Acous-
tic&Harmonic Quality (AHQ) annotations and pre-
dictions in Table. 7. All the annotators exhibit an
agreement rate of over 70% with the majority vote,
which demonstrates the reliability of our annotation
process.
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Figure 6: Histograms of three different scores in T2A-Feedback.

A-1 A-2 A-3 Majority

Predictor 70.31% 68.75% 62.50% 73.44%
A-1 - 64.06% 68.75% 74.33%
A-2 64.06% - 65.63% 71.88%
A-3 68.75% 65.63% - 70.31%

Table 7: Agreement between AHQ annotations and
predictions on 100 testing samples. A-1, A-2 and A-
3 are three human annotators. “Majority" stands for
the agreement between each judge and the other three
judges’s majority votes.

H Potential Risks

Since our audio data is generated by the model
based on the text, its content is mainly determined
by the provided text. Therefore, if using genera-
tion models without safety checkers, offensive and
unsafe content may be generated. In our work, we
checked the content of the text prompt to ensure
that the generated data does not contain offensive
content.
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